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This document describes a research proposal to the IEEE G-2.1.6 Subcommittee on
Video Compression Measurements.

1. Research Background

1.1 IEEE JND Project

In early 1998, the IEEE G-2.1.6 Subcommittee on Video Compression Measurements
initiated a " Task Force to define a unit of measure and means of calibration for video
quality analysis." This effort was lead by Leon Stanger. In the interim the Task Force has
discussed various methods that might be used to derive an absolute scale of video quality.
This document describes a specific proposal that might satisfy the needs of the Task
Force.

1.2 VQEG Project

The Video Quality Experts Group (VQEG) has recently completed alarge study
comparing subjective data and predictions from a set of models(VQEG, 2000). The data
consisted of observers rating 20 source videos (SRCs) as processed by 16 hypothetical
reference circuits (HRCs). An HRC is a particular set of processing operations, such as
compression at a particular bit-rate. About 300 observers took part in the VQEG study.
The ratings were obtained using the Double Stimulus Continuous Quality Scale (DSCQS)
method of ITU-R BT.500-8(ITU-R, 1998).

There are several problems with rating data of this sort. First, they are quite variable.
Second, they are subject to criterion and context effects. For example, the ratings given
will depend upon the range of quality used in the experiment. In addition, the scale on
which they are rated has no inherent meaning, since different experiments use different
scales and different ranges of quality. A final problem with these data, is that they used
only asingle viewing distance. Quality is known to vary markedly with viewing
distance(Nakasu, Aoki, Yajima, Kanatsugu & Kubota, 1996), and it would be useful to
test this property of the models. This proposal describes a program of research that
addresses all of these problems.

2. New Approach

In the approach described here, rather than asking the observer to rate a given video, we
ask the observer which of two videos is moreimpaired. Thisis called “pair comparison”,
and also “two-alternative forced-choice.” From the responses to that ssmple question, we
hope to measure the observer’sinternal “perceptua scale” for visua impairment. The
ideaisthat each video gives rise to amental estimate of impairment. This perceptual
impairment, as afunction of increasing physical impairment, is what we mean by the



perceptual scale. This scale would be measured in units of IND (just-noticeable-
differences).

2.1  Thurstone Scaling

We derive the scale from the pair comparisons by means of Thurstone's “Law of
Comparative judgement” (Thurstone, 1959). Thurstone proposed that physical sensory
stimuli (such a sound) might give rise to sensory magnitudes arranged along a one-
dimensional internal sensory scale (such as loudness), as pictured in Figure 1. However,
the sensory magnitude varies from presentation to presentation, due to the unavoidable
variability of neural systems. In one particular case (Thurstone’' s “ Case Five’), the
distributions are assumed to be Normal, with a standard deviation of 1 (as depicted by the
yellow triangles). Inthat case, the probability of a correct judgement in a pair
comparison is afunction only of the distance between the sensory magnitudes induced by
the two intensities of the pair. We can therefore estimate these distances by finding which
values would most likely give rise to the datain hand. Mathematical details, and an
example, will be given below in the Pilot Experiments.
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Figure 1. Thurstone Model.

In the research described below, we will use this general method to obtain quality
estimates for awide range of video materials (a subset of the VQEG materias).

2.2 Methods of estimation

A secondary goal of this project will be to develop an efficient method of scale
estimation. In the preceding discussion, we did not address the question of which pairsto
use. Clearly, some are more informative than others. We have begun development of an
efficient method of pair selection, based on Bayesian statistical methods(Watson & Pelli,
1983). Thisideais discussed in more detail later in this proposal.

3. General Methods

All of the experiments described in this proposal employ a set of common methods,
which we describe here.

3.1  Source materials

Sequences will be selected from the collection created as part of the VQEG experiments
(VQEG, 2000). This collection consists of 340 eight-second sequences. Each sequence is
either an original source sequence (SRC) or that source sequence modified by a
hypothetical reference circuit (HRC). The collection contained 20 SRCs, ten in 525/60

Hz format and ten in 625/50Hz format. There were 16 HRCs, consisting of various
analog and digital processing stages. In the remainder of this document, we will identify a



particular video by the syntax SRC-HRC, with the original source video considered
HRC=0. For example, video 3-9 is the source 3 modified by HRC 9. Single frames from
the 525 videos are shown in the following figure.
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Figure 2. Single frames from 525/60Hz videos used in the VQEG study.

3.2 Blends

In some of the experiments, we will make use of "blends.” A blend isavideo that isthe
linear combination between two videos, typically the source video and that same video
modified by a particular HRC. A blend is defined by the "source” video, the "sink" video,
and the weight w (0<w<1) used to combine them. Thus

blend(source,sinkw) = (1- w)source+wsink (1

The arithmetic above should be understood as being applied to the raw numbers within
the ITU-601 file that specify the values of Y and downsampled Cb and Cr. Blendsarea
simple way of controlling, in a quantitative way, the amount of a particular artifact that is
added to a source video(Brunnstroem, Eriksson & Ahumada, 2000).

In our pilot experiments we have used a series of 21 weights spaced logarithmically from
0.1 to 1. We often express these weights in units of 1/100ths of alog unit (base 10),
which we call centiLogs, or cL. Thusthe set of 21 weights correspond to 0, -5, -10, ...-
95, -100 cL. These are best thought of as attenuations of the sink. It is convenient to
identify a particular blend by the syntax SRC.HRC.cL. For example, avideo created from
videos 2.0 and 2.10 with aweight of 0.63 = 10"(-20/100) = 20 cL would be identified as
2.10.20.

3.3 Viewing Conditions
Observerswill view the sequences under Recommendation 500 viewing conditions. The
viewing distance will be specified for each experiment in picture heights (usually 3 or 5).
3.4  Observers

For the pilot studies, the authors of this study will serve as observers. For subsequent
studies, observers will be non-experts who will typically be paid for their services and
will participate for asingle 1-2 hour session. Observers will be checked for normal color
vision and corrected-to-normal spatial acuity using standard eye charts.

3.5 Video Presentation

Each video will be presented under computer control and displayed on a studio quality
television monitor capable of displaying ITU-601 digital video streams. In our |aboratory,




the display apparatus consists of an SGI Octane computer with SDI serial digital video
input/output board, a Ciprico FibreChannel Disk Array, and aSONY BVM 20E1U
monitor.

3.6  Psychophysical Procedures

In general, this research program will make use of 2-alternative, forced-choice (2AFC)
methods. On each trial, the observer will be presented with a pair of videos, separated by
apause of 1 second. At the end of the second presentation, the observer will pressa
button to indicate whether the first or second video appeared more degraded. Audio
feedback will tell the observer whether they were correct or incorrect. A QUEST
adaptive staircase(Watson & Pelli, 1983; Watson & Solomon, 1997) will then be used to
select the next pair of videos to be presented. Quest operates by estimating, after each
trial, the most likely location of threshold. Figure 3 illustratestrials 1, 2, 4, and 32 from a
QUEST procedure. The horizontal axis indicates stimulus strength, which in the present
case would be the value of the blend weight. The vertical axis shows on the left,
probability of a correct response, and on the right, trials. The points show each
presentation, green for correct, red for incorrect. The blue histogram is the distribution of
trials over strengths. The s-shaped curve that appears on every panel beyond thefirst is
the best-fitting version of a Weibull psychometric function that relates probability to
strength. Threshold is defined as the point at which this curve equals a probability of
0.82. Thetext describes this estimate as well as other parameters yielded by the fit. The
gray shape in the background is the posterior probability density for the location of
threshold. Asthe number of trials progresses, this shape narrows, indicating greater
certainty regarding threshold.
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Figure 3. lllustration of the progress of the QUEST procedure at trials# 1, 2, 4, and 32.
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3.7 Data Analysis

Beyond the fitting of Weibull functions to estimate thresholds, data analysis will consist
of examination of variability of the data, estimation of visual quality scales, and
comparison of datato the predictions of quality models. Some of these methods are
described in greater detail in the pilot experiments described below.

4. Pilot Experiments

To illustrate and validate the methods and analyses, as well as possible outcomes of the
proposed experiments, we have conducted two brief pilot experiments that will be
described here. Two observerstook part in these experiments. CVR and LCK. Both are
research associates participating in this research program.

4.1  Pilot Experiment 1: Thresholds for Individual SRC/HRC Conditions

Each SRC/HRC condition may be regarded as the sum of the original SRC video and an
error video. By making use of blends, as described above, it is possible to measure the
fraction of the error video that isjust detectable. Since many video quality models are
based on threshold measurements, these data may provide an interesting comparison to
predictions of quality models.

In athreshold experiment, on each trial two videos are presented, separated by 1 second.
One of the two is a source video, the other is ablend. For example, one might be video
2.0, and the other 2.10. In Figure 4 | show the data of observer CVR for blends of videos
2.0 and 2.10. As noted above, videos are identified by the format SRC.HRC, with the
original source video considered HRC=0. We used the standard 21 blends from —100to O
cL in stepsof 5 cL. The units of strength shown on the abscissa are steps along this 21
point scale, and thus map to cL by therule cL =-105 + 5 strength. It is asimple matter to
transform the estimated threshold of 14.3, in units of strength, to cL where it equals 33.5
cL, which in turn corresponds to aweight of 0.462.
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Figure 4. QUEST datafor blends from condition 2-10.

Using blends and the QUEST procedure, we have measured thresholds for two source
videos: SRCs 2 and 6, and nine HRCs (8-16). These are all of the 625/50 Hz HRCs. The
results are shown in Figure 5. It should be emphasized that these thresholds result from
only 32 trials, and are thus subject to some variability. Neverthel ess, despite some
variations, the two observers agree reasonably well. This provides some confidence in the
methods and in the stability of these thresholds. The results also show considerable



variation in threshold with SRC and HRC, as expected. SRCs and HRCs that yield large
impairment scores, in general, yield lower thresholds. If the artifact is highly visible, we
will need less of it to reach threshold.
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Figure 5. Detection thresholds for SRCs 2 and 6.

The thresholds for video 6.12 warrant comment. There is alarge discrepancy between the
two observers. Thisis dueto the fact that this HRC was a "transmission impairment,” an
artifact that appeared briefly at one location in the video. Once observer LCK noticed this
artifact, it was easily seen, and alow threshold resulted. This raises the difficult issue of
how to deal with "non-stationary” artifacts which may be highly localized in space and
time. More generally, it raises the issue of how cognitive factors (such as knowledge of
the artifact location) should be manipulated in these experiments. However, we do not
anticipate using transmission errors in these experiments, so these issues may be
somewhat |ess pressing.
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Figure 6. Threshold weight versus MDOS or DV Q.

In Figure 6 we examine more closely the issue of the relation between thresholds and
other measures of impairment or quality. The two panels show the relation between
threshold weight and mean differential opinion score (MDOS) or DVQ prediction. The
figures combine the results for the two SRCs (2 and 6), and show the mean thresholds for
the two observers. The figures confirm the general relation suggested above: the lower



the threshold, the greater the measured or predicted impairment. The relationship is not
perfect, however; the Spearman rank correlations for the two figures are -0.673891 and -
0.630547. It should be pointed out, however, that we lack one piece of information that is
needed to directly and quantitatively relate the thresholds to the measures for the full
HRC, namely, knowledge of how the perceived artifact grows as the blend weight
increases. Figure 6 shows clear evidence of a saturation in this function, since data are
generally concave uowards, and tend to flatten out at high impairments and low values of
w. The precise nature of this relation between w and perceived impairment is the subject
of the next phase of the investigation.

4.2  Pilot Experiment 2: Estimation of Quality Scale

While the measurement of thresholds, as described in the previous section, tells us how
much of agiven artifact is detectable, it does not tell us how "intense" the full measure of
the artifact will be. Consider the example of hearing. We may measure the threshold for
each of a set of tones of different frequencies, but thiswill not tell us how loud each tone
will be when all are set to acommon sound pressure level. Nor doesiit tell usthe relative
loudness of two sound pressures of the same tone. To know these two things, we must
measure the growth of loudness as sound pressure increases. Likewise, we must measure
the growth of perceived impairment as the magnitude of the artifact isincreased.

In the introduction, the general logic of Thurstonian scaling was introduced, and methods
for measuring perceptual scales using pair-comparison were described. Here we show a
concrete application of those methods.

4.2.1 Threshold vs reference weight

In this experiment we measure the impairment scale by means of a method we call
"concatenated thresholds.” In essence, we measure the first threshold, then use that
threshold weight as the reference from which to measure a second threshold, and so on.
In the previous experiment, each 2AFC trial contained areference and atest video. The
reference video was always the original source, which by definition has a blend weight of
0. In this experiment, we again measure detection thresholds for impairment blends, but
in this case the reference video may have aweight greater than 0.

In Figure 7 | plot the results of this experiment for SRC 6. The first threshold (with the
original source as areference) is at about 0.15 for both observers. Using approximately
this value as a new reference, the second threshold is at about 0.21 for one observer,
about 0.32 for the other. Using the approximate mean as the new reference, we then
measure the third threshold, and so on. The complete set of thresholds (t) are plotted
versus the corresponding reference weight (w). Figure 7 also plots the difference between
the threshold weight and the reference (t-w) as afunction of w. Considering the small
number of trials per threshold (32), there is good agreement between observers.

These data do not go all the way to areference weight of 1. In future experiments, we
will measure afina threshold by using areference weight of 1 and test weights of less
than 1.
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Figure 7. Threshold weight (t) versus reference weight (w), and weight increment (t-w)
versus weight (w).

4.2.2 Direct estimation of quality scale

The datain Figure 7 allow us to make a direct estimate of the subjective impairment
scale. Thefirst step in this process is to construct an interpolation function t(w), based on
the datain, that returns athreshold weight for any given reference weight. The purpose
of thisfunction is simply to span the gaps between the specific points at which we have
measured t as afunction of w. An example function, for data of observer CVR, is shown
in Figure 8A. We used second-order interpolation, but the method is not very sensitive to
the order.

We now want to construct a function y that returns avalue of d' (the unit of the
perceptual impairment scale, a'so known asa JND) for a given w. We can obtain samples
of this function as follows. When w=0, by definition the perceptual scaleis

zero (y(0)=0), so the first sample of the function is{0,0}. We know that the function has
grown to y=1 when w=t(0), so the second point on the scale function is{t(0), 1}. Now if
t(0) were used as a reference weight, the interpolating function tells us that the next
threshold (y=2) would be reached when w=t(t(0)), so the third point is at { t(t(0)), 3}.
Thus the complete set of w values that yield increasing integer values of y are
{t(0),t(t(0)), t(t(t(0))),...}. The function 1 obtained by joining up these sample valuesis
shown in Figure 8B.
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Figure 8. Direct construction of impairment scale.



4.2.3 Estimation of quality scale via function fitting

An alternative method for estimation of the perceptual scale isthe use of curve fitting. In
essence, we assume a particular form for the scale function, and then we estimate its
parameters by means of maximum likelihood estimation. We will illustrate this method
here, again using the data of observer CVR.

First we discuss the method in general terms. Consider a scale function of the formy (w,
p), wherew isthe blend weight and p isalist of parameters. The data consist of a set of k
trials, each yielding arecord of the form {r;, t,, d}, wherej isatrial index, r and t are the
weights of reference and test, and d isatrial outcome, 1 or 0, depending on whether the
observer was correct or not. From the Thurstone model, we know that the probability of a
correct decisionis

P(r,t,p) = C? (t, P)‘-sz (I‘, p);

(2
where C is the cumulative distribution of a standard Normal density. The likelihood of a
complete data set is thus given by

) )

L= QP t,p) O1- P(r,.t,,p) (3
jld; =1 jld;=0

Using standard optimization techniques, we can then find the parameters that maximize

the likelihood function L. In practice, it is often easier to optimize the log of L, which

yields the same set of parameters.

Figure 9 shows the result of this method applied to the data of CVR. In this example, the

function fit to the data was of the form

v (w) =maximum Max(0, w - threshold)™ (4

with parameters { maximum, power, threshold} ={11.61, 0.5037, 0.1398}. For
comparison, | reproduce the data from Figure 8B, the direct estimates of . It is clear that
the two methods give gratifyingly close results.
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Figure 9. Quality scales estimated directly (black) and through curve fitting (red).

Under the assumptions of thisanalysis, Figure 9 is a picture of the growth of the
subjective artifact, in units of d' (or IND, or standard deviation). Although we did not
measure it here (see note above), this function can be estimated all the way up to w=1,



that is, to the full HRC artifact. In this case, we would project avalue of somewhere
around 10 JND.

5. Experiment 1

5.1 General

Experiment 1 will use the methods of Pilot Experiment 1 to measure impairment scales
for a subset of the 340 VQEG conditions. For each condition, we will use the method of
concatenated thresholds to measure the complete scaling function for 0 <w < 1.

5.2 Source materials

Each threshold based on 32 QUEST trials takes about 10 minutes to complete. The
number of thresholds that must be measured for each HRC is approximately equal to the
JND value for that HRC. In the pilot experiment, we found that video 6.15 measured
about 10 JND, and its DMOS was about 34. Adopting the crude assumption of alinear
relation between DMOS and JND, and noting that the mean DM OS over the entire
VQEG data set was about 18.7, we estimate that the mean JND would be about 5.5. Thus
to measure scale functions for the complete VQEG source materials would require

(20 SRC) * (16 HRC) * (5.5 thresholds) * (10 minutes) = 17,600 minutes = 293.3 hours.
Thisis comparable to the approximately 23,000 minutes of observation time required by
the VQEG experiments. However, we do not plan at this time to include all these
conditions.

5.2.1 HRCs
We have selected five HRCs, as shown in Table 1. The HRCs are sorted in order of the
mean DM OS score obtained in the VQEG experiments. We exclude HRCs 1, 11, and 12,
(shown in gray) because they proved problematic in the VQEG experiments. The five
selected (shown in yellow) are about evenly spaced in terms of mean DMOS, and
exclude analog artifacts, which may be less important in future systems.
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HRC | Mean DMOS | Mbps CODEC Details

2 5.79 19-19-12 422p@ml | 3 generation

7 5.82 6 mp@ml

10 8.86 4.5 mp@ml

3 11.06 50-50-...50 | 422p@ml | 7" generation with shift / | frame
5 13.83 8& 4.5 mp@ml Two codecs concatenated

4 16.55 19-19/-12 | 422p@ml | PAL or NTSC 3 generations

6 17.85 8 mp@ml Composite NTSC and/or PAL
8 19.38 4.5 mp@ml Composite NTSC and/or PAL
12 20.25 4.5 mp@ml Transmission errors

9 21.18 3 mp@ml

1 23.23 n/a n/a Multi-generation Betacam

11 30.30 3 mp@ml Transmission errors

14 33.35 2 mp@ml Horizontal resolution reduction
16 34.12 15 H.263 CIF, Full Screen

13 37.74 2 sp@ml

15 45.75 0.768 H.263 CIF, Full Screen

Table 1. Mean DM OS score for each HRC from the VQEG experiment.

5.2.2 SRCs

We propose to only examine 60 Hz conditions (SRC 13-22 as shown in Figure 2).
Further, we propose to exclude SRC 20, asit was a still image. Thisyields atotal of 9
SRCs.

5.3  Viewing Conditions

Viewing conditions will follow ITU Rec. 500 recommendations. We will use two
viewing distances of 3H and 5H. Two viewing distances will be used because it is known
that viewing distance has alarge effect on perceived quality, and we would like to test the
models ability to predict this. The 5H distance is chosen to match that used in the VQEG
experiments.

5.4  Total Observing Time

A summary of total observing timeisgivenin Table 2. For the conditions selected, we
anticipate approximately 75 hours of observing time. It should be noted that this time will
be distributed over a number of observers. Each observer will be present for about 1.5
hours, and will complete only the thresholds corresponding to about 2 SRC-HRC
conditions.
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HRC 5
SRC 9
distances 2
thresholds 5
minutes/threshold 10
replications 1
total minutes 4500
total hours 75

Table 2. Total Observing Time

55 Observers

Observers will be non-experts with normal or corrected-to-normal acuity and normal
color vision. Each observer will complete two SRC-HRC conditions at a single viewing
distance. The pair of conditions will be chosen so that the anticipated number of
thresholds to be measured adds up to about 10. Two observers, serving as research
associates on this project, will complete all 75 hours of observation. Their results will
provide a useful comparison to the data from the other observers.

5.6  Experimental Design

Since each observer will be available for only about 1.5 hours, each will complete only a
small fraction of the complete experiment. As noted above, 1.5 hours will sufficeto
collect about 7 thresholds. A general strategy will be to select two different SRCs, and
two different HRCs, whose expected number of thresholds adds up to 7. These
expectations will be based on the MDOS scores form the VQEG experiment, as described
above.

A consequence of this design is that no condition will be repeated on a single observer
(except for the Research Associates data) and there will be no way of estimating effects
due to individual differences, suc as acuity or sensitivity. This could be remedied by
increasing the number of iterationsto 2. To compensate, the number of SRCs might be
reduced from 9 to 5.

5.7  Psychophysical Procedures
QUEST will be used to measure thresholds, and 32 trials will be used for each threshold.
The method of concatenated thresholds will be used. Other methods will be as described
in the pilot experiments.

5.8 Comparison With DMOS Data
The previous VQEG research project(V QEG, 2000) obtained differential mean opinion
scores (DMOS) for each of the 320 distinct SRC-HRC conditions. The most
straightforward analysis would be to correlate the IND values for each measured HRC to
the DM OS scores obtained by VQEG. Thiswould provide a potential "calibration” of
DMOS scoresin terms of JIND. Another interesting analysis would be to compare the
relative variability of IND and DMOS scores.
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6. Experiment 2

6.1 General

In Experiment 1 we made use of blends to estimate the scaling function for each HRC,
and as the end point of that scale, the IND value for the full (w=1) HRC. In Experiment

2 we attempt arrive at these numbers with a method that does not require the use of
blends. Here we again make use of the logic of Thurstonian scaling. We note that stimuli
which do not arise from an obvious one-dimensional physical intensity scale (such asthe
weight in a blend) nevertheless, in the Thurstone scheme, give rise to sensory magnitudes
that are ordered along the sensory scale. Thus we can use pair comparisons among a
complete set of HRCs for agiven SRC to derive the sensory scale.

6.2 Source materials

Here we will use the same 5 HRCsand 9 SRCsasin experiment 1. If pilot experiments
suggest that more HRCs are needed, they will be drawn from the other VQEG HRCs.

6.3  Viewing Conditions

Viewing conditions will be identical to those for Experiment 1. Viewing distances of 3H
and 5H will again be used.

6.4 Observers

This experiment, because it will require alarge number of trials from a single observer,
will be conducted first using the authors as observers. If the method proves successful,
additional observerswill be used.

6.5 Psychophysical Procedures

Each trial will again be atwo-alternative forced-choice presentation of two videos. a.x
and a.y. A block of trialswill again be 32 trials. Simulations will be conducted to
determine how many blocks will be required to establish the scale for each SRC.
Because comparisons between stimuli far apart on the sensory scale are not informative,
we will make use of arecently developed method that adaptively selects the pairsto be
presented based on prior results(Silverstein & Farrell, 1998).

6.6 Data Analysis

The maximum likelihood method described above will be used to derive the scale value
for each HRC from the pair comparison data. These scale values, in units of JIND, will be
compared to the comparable numbers derived from Experimentl, as well asto the DMOS
scores from the VQEG study. Finally, they will be compared to the predictions of the
DVQ moddl.

The data from this experiment also provide an internal test of the assumptions that
underlie the Thurstone model. In essence, the additivity of JINDs can be tested. If HRCs a
and b are one IND apart, and b and c are one IND apart, then aand ¢ should be two JINDs
apart. Whether thisis so will be manifest in the value of the error term in the maximum
likelihood fit.

7. Efficient Adaptive Estimation of Sensory Scales

In experiment 1 we propose to use the method of concatenated thresholds (MCT) to
measure impairment scales. The pilot experiment has demonstrated the utility of this
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method. However, it has several drawbacks. Oneisthat it typically requires that the
threshol ds be measured in a particular sequence, from areference of w=0, to references
of progressively greater w. This may bias the results in unknown ways, for example, if
the observer gets better (or worse) as data collection progresses. A second possible
drawback isthat it may be efficient. If the goalsis to estimate the underlying scale
function, the placement of trialsimplied by MCT may not be optimal.

As a separate research project, we propose to develop an optima method for scale
estimation. The general ideais as follows. We have described previously how the
Thurstone model predicts the probability a correct response to a particular pair of blends
(Equation 1). If aparticular parametric form is assumed for the scale function, a
likelihood function can be constructed for the data collected, and the parameters can be
optimized so as to maximize the likelihood. After some data have been collected, we can
consider how presentation of any possible pair will influence the parameter estimates.
This influence can be expressed as a narrowing of the posterior density for each
parameter, or asagain in information (reduction in entropy). The best pair will be that
which has the highest expected information gain. Although the mathematics may be
opaque, the principleissimple. A pair that are too far apart will provide little
information, because the observer will always get the right answer. A pair that are too
close will be uninformative, because the observer will perform at chance. Intuitively,
there is an optimal separation. Likewise the location (midpoint) of the pair will have an
impact on the information gained, sinceif all the trials were previously at one end of the
scale, more information will be gained by testing the other end.

The method we propose will be based upon a mathematical analysis of the likelihood
function and of information gain in the case of multiple parameters. We have made some
initial progress in this problem. We are also aware of other efforts to address this
problem, which we will study further (Jesteadt, 1980; Levitt, 1992; Kiessling, Schubert &
Archut, 1996; Keidser, Seymour, Dillon, Grant & Byrne, 1999).

8. Subjective Laboratories
The following laboratories may have the facilities and the willingness to participate in
these studies.
8.1  Sarnoff Research Center
Contact: Jeffrey Lubin.

8.2  Tektronix, Inc.
Contact: Ann-Marie Rohaly.

8.3  National Telecommunications and Information Administration (NTIA)

Contact: Arthur Webster webster @its.bldrdoc.gov
Contact: Stephen Wolf
url: http://www.its.bldrdoc.gov/n3/video/Default.htm

8.4 Communications Research Centre of Canada

Contact: Phillip Corriveau
url: http://www.crc.ca
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