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On the Kinematics of the
Octopus’s Arm
The kinematics of the octopus’s arm is studied from the point of view of robotics. A
continuum three-dimensional kinematic model of the arm, based on a nonlinear rod
theory, is proposed. The model enables the calculation of the strains in various muscle
fibers that are required in order to produce a given configuration of the arm—a solution
to the inverse kinematics problem. The analysis of the forward kinematics problem shows
that the strains in the muscle fibers at two distinct points belonging to a cross section of
the arm determine the curvature and the twist of the arm at that cross section. The
octopus’s arm lacks a rigid skeleton and the role of material incompressibility in enabling
the configuration control is studied. �DOI: 10.1115/1.4000528�
Introduction

This paper presents a kinematical model for the octopus’s arm.
he arm of an octopus is an efficient hyper-redundant manipulator
nd hence the motivation for studying it. We focus on the kine-
atic analysis of a three-dimensional continuum model. Of par-

icular interest is the way the octopus uses the incompressibility of
he arm to overcome the absence of a rigid skeleton. The follow-
ng is a kinematical analysis that could suggest some applications
n biomimetic robots. However, we do not consider specific appli-
ations to robots nor do we suggest technologies that may enable
he construction of continuous robots having the kinematic model
escribed below. A kinematic model of the octopus’s arm having a
nite number of degrees of freedom, and therefore, a lot simpler

o implement, is presented in the first author’s thesis �1�.
In many cases, hyper-redundant robots are modeled and are

esigned as discrete mechanical systems �2–7�. However, particu-
arly in the context of biomimetics, hyper-redundant robots are
esigned and are analyzed as continuous mechanical systems
8–16�. Accordingly, both discrete and continuous models of the
ctopus’s arm have been studied.

Two-dimensional discrete kinematical and dynamical models
or the octopus’s arm are presented in Refs. �17,18�. In their study,
he authors model the arm as an array of point masses intercon-
ected by linear or nonlinear springs that represent the muscles.
he incompressibility constraint is applied by preserving the area
f each compartment created by four adjacent masses. The model
onsiders external forces, such as gravity, drag, buoyancy, and
nternal forces, such as the muscles’ active forces and the forces
eeded to preserve the area of the compartments.

Following studies such as in Refs. �19,20� on continuous mod-
ls for hyper-redundant robots, Boyer et al. �21� used a geometri-
ally exact theory of nonlinear beams to simulate the dynamics of
wimming of an eel-like robot. In their analysis the robot is
reated as a continuous series of infinitesimal sections. The defor-

ation is defined by a homogeneous matrix g that describes the
rientation and translation of each section. The authors write the
ifferential equation for the homogeneous transformations of the
ross section along the axis of the arm X in the form

Contributed by the Mechanisms and Robotics Committee of ASME for publica-
ion in the JOURNAL OF MECHANISMS AND ROBOTICS. Manuscript received May 7, 2009
nal manuscript received September 29, 2009; published online November 24, 2009.

ssoc. Editor: Jean-Pierre Merlet.

ournal of Mechanisms and Robotics Copyright © 20

 https://mechanismsrobotics.asmedigitalcollection.asme.org on 06/29/2019 Terms
��R

�X

�d

�X

0 0
� = �R d

0 1
��K̂ �

0 0
�

where R is the orientation matrix for the cross section, d is the
position vector for the center of the cross section, �

=RT��d /�X�, and K̂=RT��R /�X� is a skew-symmetric matrix
whose components describe the bending and torsion of the robot.
The first component of � describes the stretching of the centerline
of the robot; the two remaining components describe the shear of
the sections relative to one another. The dynamic model considers
the swimming locomotion and the effect of forces caused by the
flow.

The present work is similar to that of Boyer et al. �21�, as we
also used a geometrically nonlinear continuum theory of rods.
However, our kinematic analysis of the octopus’s arm studies
what seems to us to be an essential aspect of the control of its
configuration, namely, the role of an incompressibility constraint.
Specifically, it is assumed here that the volume of any segment of
the arm �bounded between two cross sections� remains fixed dur-
ing a deformation.

It is noted that the equations governing the mechanics of point-
wise incompressible rods are formulated and solved by Antman
�22�. Antman did not present any application and his work is
concerned with the kinematics of the cross sections for pointwise
incompressible rods. As mentioned, we used a simplified theory
where incompressibility is assumed to hold only for segments of
the arm rather than pointwise.

The present kinematical model describes the relative rotations
of the cross sections due to bending and torsion. As an additional
kinematic constraint, we adopted a traditional hypothesis of the
rod theory and did not consider transverse shear of the various
cross sections.

Our objective is to study the kinematics of the octopus’s arm
from the point of view of robotics, namely, the inverse and direct
kinematics problems. Thus, one has to define what parameters of
the arm’s configuration should be controlled and what are the
actuation parameters. Subject to the constraints of the three-
dimensional rod theory described, it is assumed here that it is
necessary to control the configuration of the arm completely. In
other words, rather than controlling a part of the arm, the analog
of an end effector, the geometry of the entire centerline in space,
and the twist of the arm about it are considered. This requirement
is motivated by the existence of suction units along the entire
length of the arm. The actuation parameters are the strains in the
various muscle fibers of the arm. Thus, for the inverse kinematics
problem, one seeks the strains in the various muscle groups that
will induce a required configuration of the arm. For the forward

kinematics problem, one seeks the configuration of the arm in-
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uced by the given strains in the muscle. An analysis of these two
roblems is presented in Sec. 5, following the introduction of the
asic kinematic variables in Sec. 3 and the analysis of strain in
ec. 4.

Octopus’s Arm Physiology: An Overview
Organs such as the mammalian tongue, the elephant’s trunk,

nd the octopus’s arms are termed muscular hydrostats �23�. They
re characterized by their lack of vertebras and compressible cavi-
ies. The most important feature of muscular hydrostats is their
elatively large bulk modulus that results from a dense muscula-
ure without any gas-filled cavities or large blood vessels �24�.
his enables manipulation of an organ lacking any vertebrate skel-
ton by activating two or more muscle group simultaneously.

The octopus’s arm consists of three primary muscle fiber
roups surrounding a central axial nerve cord �Fig. 1�: the longi-
udinal, transverse, and oblique or helicoidal muscles. The latter
ppear in both right and left handed coils.

The transverse muscle fibers are oriented in planes perpendicu-
ar to the axis of the arm. They are laid in an orthogonal array
urrounding the axial nerve cord. Two bundles extend parallel to
he lateral plane,1 and two bundles are parallel to the frontal plane
see Fig. 2�.

The longitudinal fibers surround the transverse fibers in four
undles: an oral, aboral, and two lateral bundles. The cross section
rea is larger in the aboral bundle, in comparison with the oral and
ateral bundles. This enables the exertion of higher moments when
he arm is bent aborally to reveal the suction line.

Helicoidal muscle fibers appear in three different layers: inter-
al, median, and external. In every cross section, the three layers
or groups� spiral around the centerline both in right and left
anded helices. Kier and Stella examined in Ref. �24� two octopus
pecies and reported a mean pitch angle of 62 deg for external and
edian oblique muscle fibers. Internal oblique muscle fibers have
lower mean pitch angle that varies between the two species: 42

eg for octopus briareus and 56 deg for octopus digueti.
As the arm does not contain any rigid skeleton, control of the

onfiguration is made possible by combining incompressibility
ith contractions of a number of muscle groups. In addition, the

ncompressibility property compensates for the inability of the
uscle fibers to extend actively. For example, due to volume con-

ervation, the arm will extend passively when the transverse
uscles are contracted actively.
As another example, a contraction of the longitudinal muscle at

he oral side will cause shortening of the arm and an increase in
he cross section area. To avoid the contraction and create flexure,
he cross section area is held fixed by contracting the transverse

uscles. As a result of the arm’s inability to change its volume,
he aboral side must elongate and thus produce flexure of the arm
n the sagittal plane.

1Note that in order to show the suction elements clearly, the sagittal plane is

Nerve cord

Transverse fibers

Oblique fibers

G2

G1

Suction

elements

line

Longitudinal

fibers

Oral

side

Aboral

side

Frontal Plain

Fig. 1 A schematic cross section of an octopus’s arm
rawn horizontally in Fig. 2.
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The role of the helicoidal muscle groups may be explained
roughly as follows. Consider the arm in its straight unbent con-
figuration. Assuming that the helicoidal muscles are in 45 deg to
the centerline, the extension of the right handed helicoidal fibers
and contraction of the same magnitude of the left handed helicoi-
dal fibers will produce the shear strain needed for the right handed
twist of the arm—the strain needed for the “adjacent” cross sec-
tion to turn right relative to the “current” cross section. In general,
muscle fibers do not extend actively. In the situation described
above, the right handed fibers extend because of volume conser-
vation.

As mentioned in the introduction, our objective in the paper is
to give a robot kinematics model of the octopus’s arm. In such a
model, the strains in various muscle fiber groups make up the
“joint variables.” In such a model, for the inverse kinematics
problem, one computes for the strains in the muscle fiber groups
for a given configuration of the arm. In particular, the role of
incompressibility is such a kinematic model will be studied.

3 Configurations of the Arm

3.1 Notation and Preliminaries. The reference configuration
of the arm is assumed to be an elliptical cylinder in the vector
space R3. Each material point in the arm is described by the ref-
erence coordinates �X1 ,X2 ,X3�= �X ,Y ,S� in some reference frame
and it is assumed that at the reference configuration, the centerline
occupies the points �0,0 ,S� for S� �0,1� with the base of the arm
being located at S=0. Thus, the centerline of the arm is situated
along the X3=S axis and is set to be of a unit length for the sake
of simplicity. The principal axes of the elliptical cross section of
the cylinder are denoted as a0 and b0 and are in the directions of
the X- and Y-coordinate axes, respectively. The suction elements
are located on the points on the circumference of the cylinder for
which Y =0 and X=a0 �see Fig. 2�.

The radius vector in the reference frame to typical material
point of the arm is R=R�X ,Y ,S� and the underformed centerline
curve will be denoted as R0�S�=R�0,0 ,S�. At each point in the
reference state we may define the base vectors Gp= ��R /�Xp�. As
the reference configuration is a right cylinder, the vectors 	Gp
 are
orthonormal and are identical to the unit vectors along the refer-
ence coordinate axes.

The actual configurations of the arm take place in the physical
space which we do not necessarily identify with the reference
frame. The physical space is represented by a three-dimensional
Euclidean space and it is assumed that a specific orthonormal
frame is given. Thus, denoting the orthonormal base vector by ei
�i=1,2 ,3�, any point in space may be represented in the form r
=xiei, where summation on repeated indices is implied.

The deformed configuration of the arm is specified by a func-
tion r=r�R�=r�X ,Y ,S�, giving the position in space correspond-
ing to each material point R at the deformed configuration so that

Y

XS

S = 1
Suction

elements line

Frontal

Plane

Sagittal

Plane

Fig. 2 The reference configuration of the arm
xi=xi�Xp�. For simplicity, the following is assumed:
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ASSUMPTION 1. r�0�=0, and the points �X ,Y ,0� are mapped
nto �a1X ,a2Y ,0�, where a1 ,a2�0.

In analogy with the notation we introduced earlier, the curve
0�S�=r�0,0 ,S� in the physical space will denote the centerline
urve at the deformed state.

We now make the basic assumptions regarding the kinematics
f the arm. These assumptions slightly generalize the traditional
uler–Bernoulli postulates for the rod theory in solid mechanics,
here now in-plane deformations of the cross sections are

dmissible.
ASSUMPTION 2. For each S0� �0,1�, the ellipse

�X ,Y ,S0� ,X2 /a0
2+Y2 /b0

2�1
 representing the cross section of the
rm at S0 is mapped onto an ellipse centered at r0�S0�.
ASSUMPTION 3. The ellipse containing the points r�X ,Y ,S0� is

erpendicular to the deformed centerline at r0�S0�, i.e.

�r�X,Y,S0� − r0�S0�� ·
dr0

dS
�S0� = 0 �3.1�

or all X ,Y.
ASSUMPTION 4. Vectors in the plane 	�X ,Y ,S0�
 are mapped

inearly to the plane of the ellipse at r0�S0�, i.e., for each S0 the
apping

R�X,Y,S0� − R0�S0� � �r�X,Y,S0� − r0�S0�� �3.2�
s linear.

ASSUMPTION 5. The lines 	�X ,0 ,S0�
 and 	�0,Y ,S0�
 are
apped to the principal axes of the ellipse r�X ,Y ,S0�.
We will naturally refer to the points r�X ,Y ,S0� as the cross

ection of the deformed arm at S0. Thus, Assumption 1 implies
hat the cross section at S0=0 is not translated, rotated, or twisted.
t is just stretched or contracted along the X- and Y-directions.
ssumptions 2 and 3 are the classical assumption of the rod

heory that plane sections normal to the centerline remain plane
nd normal to the deformed centerline. Unlike the traditional
irchhoff theory, we allow a cross section to deform in its plane.
ssumption 4 implies that the in-plane deformation is homoge-
eous. In terms of the octopus’s physiology, this implies uniform
train in the transverse fiber muscles. Furthermore, Assumption 5
mplies that the X and Y are the principle axes of the in-plane
inear strain, and as such, they remain perpendicular.

3.2 The Centerline Triads. For each point in the deformed
rm, consider the base vectors

gp =
�r

�Xp
�3.3�

nd note that

gp =
�r

�Xp
=

�r

�xi

�xi

�Xp
=

�xi

�Xp
ei �3.4�

he vector gp at point r1=r�R1� is tangent to the curve through r1,
hich contains the image of the curve R�Xp�=R1+X�p�G�p� �no

ummation�. Thus, for example

g3�0,0,S� =
�r

�S
�0,0,S� =

dr0

dS
�S� �3.5�

s tangent �not necessarily of unit length� to the deformed center-
ine r0�S�. In addition, the vectors g1 and g2 are tangent to the
ross section of the deformed arm.

From Assumptions 4 and 5 it follows that the base vectors g1
nd g2 are uniform and mutually perpendicular in any particular
ross section. In each elliptical cross section of the deformed arm,
1 and g2 are parallel to the principal axes. These two vectors
epresent the directions of the two mutually perpendicular trans-
erse muscle groups in the deformed arm. By Assumption 3,
3�0,0 ,S� is perpendicular to both g1 and g2. We conclude that the

riads gp�0,0 ,S� contain mutually orthogonal vectors. The vectors

ournal of Mechanisms and Robotics

 https://mechanismsrobotics.asmedigitalcollection.asme.org on 06/29/2019 Terms
gp�X ,Y ,S� at points other than the centerline need not be perpen-
dicular. If, for example, the deformed arm becomes conical, the
longitudinal fibers are no longer parallel. It is noted that the base
vectors are not necessarily of unit length due to the centerline
extension and the change in the principal axes of the elliptic cross
section.

We will refer to the triads gp�0,0 ,S� as the centerline triads. It
follows from Eq. �3.4� that at each S there is a linear mapping
T�S�, whose matrix is �xi /�Xp�0,0 ,S�, such that

gp�0,0,S� = T�S�ipei �3.6�
It is recalled that according to the polar decomposition theorem,

a nonsingular linear mapping T may be decomposed in the form

T = Q � U �3.7�

where Q is an orthogonal mapping and U is a positive definite
symmetric mapping. Applying this to the mappings T�S�, so that
T�S�=Q�S� �U�S�, one can write for the centerline triads

gp�0,0,S� = Q�S�ijU�S� jpei �3.8�

Each of the triads 	d j�S�
, defined by

d j�S� = Q�S�ijei �3.9�

contains mutually orthogonal unit vectors. As the parameter S
varies, the orthonormal triad rotates according to Q�S� �see Fig.
3�. In our case, as the vectors gp�0,0 ,S� are mutually orthogonal,
the polar decomposition is particularly simple. The vector d j is
simply the unit vector in the direction of the vector g j. The matrix
Qij contains the components of d j and the matrix Ujp is diagonal
and contains the norms �gp� of the vectors belonging to the cen-
terline triad on its diagonal. The various 	di
 triads associated with
the points S� �0, l� along the centerline will be referred to as the
orthonormal rod frames.

It follows that

dp�S� =
1

�gp�
gp�0,0,S� �no summation� �3.10�

the unit vector d3 is tangent to the deformed centerline curve, and

g1�S� = a1�S�d1�S�, a1�S� = �g1�0,0,S�� �3.11�

g2�S� = a2�S�d2�S�, a2�S� = �g2�0,0,S�� �3.12�

Using s for the arc length parameter for the deformed centerline
and assuming naturally that s�S� is a monotonically increasing
function, it follows from Eq. �3.5� that the stretch or extension of
the centerline is given by

ds

dS
�S� = �g3�0,0,S�� �3.13�

We denote the stretch of the arm’s centerline as ��S�
= �g3�0,0 ,S�� and the length of the deformed centerline as l
=��dS.

Using the centerline triads, our assumptions imply that the con-
figuration of the arm may be represented by

r�R� = r0�S� + Xg1�0,0,S� + Yg2�0,0,S�
�3.14�

r�R� = r0�S� + Xa1�S�d1�S� + Ya2�S�d2�S�

3.3 The Extended Darboux Vector. As the parameter s var-
ies, the triad 	di
 undergoes a rigid motion. The origin of the triad
is displaced tangent to the deformed centerline. The vectors di are
rotated rigidly, as expressed by Eq. �3.9�. As s�S� was assumed to
be monotonically increasing, one may consider the dependence
di�s�=di�S�s��.
Consider the rates

FEBRUARY 2010, Vol. 2 / 011008-3
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ddi

ds
=

ddi

dS

dS

ds
=

1

�

dQ�S� ji

dS
e j �3.15�

hese rotation rates may be represented by a vector u, so that

ddi

ds
= u � di �3.16�

he components of u may be found by dot multiplying Eq. �3.16�
y d j obtaining

ddi

ds
· d j = �u � di� · d j �3.17�

sing �ijk to denote the permutation symbol, we have

ddi

ds
· d j = um�ijm, um =

1

2
�ijm

ddi

ds
· d j �3.18�

t is straightforward to write similar expressions for the rates rela-
ive to the parameter S and write the relations between the two
ypes of rates.

It is customary in rod theory �25� to denote the components of
he vector u as 	� ,�� ,�
T so

 �

��

�
� = u1

u2

u3
� =

dd2

ds
· d3

dd3

ds
· d1

dd1

ds
· d2
� �3.19�

enoting differentiation with respect to S by a prime, we imme-
iately get by the chain rule

di� = �
ddi

ds
= �u � di �3.20�

he linear mapping � defined by

��v� = �u � v �3.21�
s represented by the matrix

�� 0 � − ��

− � 0 �

�� − � 0
� �3.22�

hus, one has

d1�

d2�

d3�
� = �d1

d2

d3
� �3.23�

he components of the vector u may be interpreted as follows: �
nd �� represent the bending of the centerline about the axes d1

d1(s)

d3(s + s0)

d2(s + s0)

d1(s + s0)
d2(s)

g2(s + s0)

g1(s + s0)

g3(s + s0)

d3(s)

Fig. 3 The triads ˆgi‰ and ˆdi‰ „i=1,2,3…
nd d2, respectively, and � is the torsion about the tangent to the

11008-4 / Vol. 2, FEBRUARY 2010
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curve d3. The parameter � is different from the intrinsic torsion of
the deformed centerline �described in the Appendix� as it accounts
for the relative twist of the various cross sections of the arm. In
addition, while the intrinsic torsion of a curve is not defined for
the case where the curvature vanishes �see Appendix�, � is always
well defined. It is noted that the rotation rate vector u is an exten-
sion of the Darboux vector used in differential geometry.

From the representation of the configuration in Eq. �3.14�, as
the centerline triads may be obtained from their derivatives
through integration and using the initial conditions given by As-
sumption 1, we conclude that the collection of function
	��S� ,���S� ,��S� ,��S� ,a1�S� ,a2�S�
 defines uniquely the configu-
ration of an extensible rod under the assumptions made earlier.
For example

r0�S� =�
�=0

S

����d3���d� �3.24�

4 The Deformation Gradient and Strain

4.1 The Matrix of the Deformation Gradient. Equation
�3.14� for the description of the configuration determines the po-
sition vector in the deformed state of a particle having reference
coordinates �X ,Y ,S� by

r�X,Y,S� = xiei = r0�S� + Xg1�0,0,S� + Yg2�0,0,S�
We recall that the deformation gradient of solid mechanics is the
linear mapping

F = Fipei � Gp �4.1�
represented by the matrix

Fip =
�xi

�Xp
�4.2�

Thus, the first two columns of the deformation gradient matrix are
given by

Fi1ei =
�r

�X
= g1 �4.3�

Fi2ei =
�r

�Y
= g2 �4.4�

and the third column is given by

Fi3ei =
�r0

�S
+ X

�g1

�S
+ Y

�g2

�S
= �d3 + X�da1

dS
d1 + a1

dd1

dS
�

+ Y�da2

dS
d2 + a2

dd2

dS
� �4.5�

For any particular S, one may choose the basis 	ei
 in space to
be identical to the triad 	di�S�
. Under this specific choice, the last
expressions imply that the matrix of F�X ,Y ,S� assumes the form

�F�d�X,Y,S� = �a1 0
da1

dS
X − �a2�Y

0 a2 �a1�X +
da2

dS
Y

0 0 � − ��a1�X + �a2�Y
� �4.6�

where the dependence of the various variables on S was omitted
on the right.

4.2 The Consequences of Incompressibility. As mentioned
in Sec. 2, the octopus’s arm is almost entirely composed of virtu-
ally incompressible muscle tissue. Indeed, in earlier treatments of
octopus arm kinematics �24� it is assumed that the arm is incom-
pressible. For the sake of simplicity, we assume the incompress-

ibility constraint holds for segments of the arm rather than point-
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ise. A theoretical treatment of rod theory, where the rod is
ssumed to be pointwise incompressible, was presented only re-
ently in Ref. �22�. Thus, we make the following assumption:

ASSUMPTION 6. The volume of any segment 	�X ,Y ,S�
 �0�S1
S�S2�1� of the arm does not change under deformation.
It is noted that for a pointwise incompressibility constraint, the

n-plane deformation of a cross section is not homogeneous �22�.
hus, pointwise incompressibility requirement would be inconsis-

ent with our earlier assumptions.
Consider a volume element dV0 containing a material point R

nd its image dV containing r�R�. Then, using J for the determi-
ant of the deformation gradient, one has dV /dV0=J. The volume
of a deformed segment of the arm is thus given as

V =��� JdXdYdS

�4.7�

V =�
S1

S2

a1�S�a2�S���S�	a0b0dS

ssuming that the integrand in Eq. �4.7� is continuous, we con-
lude that a necessary and sufficient condition for the volume of
very segment of the arm to remain unchanged, i.e., that V=V0
	a0b0�S2−S1�, is

��S� =
1

a1�S�a2�S�
, ∀ S � �0,1� �4.8�

ince the last equation cannot determine a unique pair �a1 ,a2� we
ake the following assumption:
ASSUMPTION 7. The arm preserves the initial ratio between the

engths of the principal axes of the elliptic cross section.
We denote the abovementioned ratio as rª �a0 /b0�. Conse-

uently, �a /b �= �a a /a b �, and so, a �S�=a �S�=a�S�.
0 0 1 0 2 0 1 2

pecifically, such a configuration will be given by the set of func-

ournal of Mechanisms and Robotics
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4.3 Strain Analysis. Consider an infinitesimal vector

dX = dXpGp �4.9�

originating at the point R in the reference configuration, whose
image under the deformation is

dx = dxiei =
�xi

�Xp
dXpei = F�dX� �4.10�

originating at r�R�. It is convenient, and indeed of wide use in the
mechanics of continuous media, to describe the extension of the
element dX by the quantity

1
2 �dx · dx − dX · dX� = 1

2 �FTF − I��dX� · dX = E�dX� · dX

�4.11�

where

E = 1
2 �FTF − I� �4.12�

is the Lagrangian strain tensor.
This standard definition may be motivated intuitively using the

special case of small deformations superimposed on the reference
deformation as follows: If the vector dX is normalized to be of
unit length, 1

2 �dx ·dx−dX ·dX� is the linear approximation to the
change in length of dX during the deformation.

Returning to the general case of large deformations, for a unit
vector n̂ originating at �X ,Y ,S�, it is natural to refer to

�n̂�X,Y,S� = �E�X,Y,S�n̂� · n̂ �4.13�

as the strain at the point �X ,Y ,S� in the direction of n̂.
Once again, the Lagrangian strain tensor has a simpler expres-

sion when written relative to the orthonormal rod frame, and we
have
�E�d =
1

2�
a2 − 1 0 a�da

dS
X − a�Y��

0 a2 − 1 a�da

dS
Y + a�X��

a�da

dS
X − a�Y�� a�da

dS
Y + a�X�� �aY�� − aX��� + ��2 + �da

dS
Y + a�X��2

+ �da

dS
X − a�Y��2

− 1
� �4.14�
t is noted that for X=Y =0, the mapping F becomes the mapping
of Eq. �3.6�. The strain E at the centerline is given by �UT �U

I� /2= �TT �T− I� /2, where U is the positive definite component
f the decomposition in Eq. �3.7�.

Manipulator Kinematic Analysis
In this section we consider the octopus’s arm as a manipulator

nd we study its kinematic properties, specifically, the inverse and
irect kinematics. In order to perform such an analysis, one has to
efine what parameters of the configurations should be controlled.
he arm is used as a tool along its entire length and the objective

s to bring the suction elements into contact with some surface in
uch a way that the arm and the surface are tangent along the
ontact line. Thus, the manipulator kinematic analysis will con-
ider the control of the configuration of the arm as described by
he deformed centerline and generalized Darboux vector �rather
han just the end of the arm or a segment of the arm, for example�.
tions 	��s� ,���s� ,��s� ,��S�
, where Eq. �4.8� and Assumption 7
relate the extension parameter ��S� with the cross section param-
eter a�S�.

5.1 Inverse Kinematics. For the inverse kinematics problem
the configuration of the octopus’s arm is given in terms of the
functions ��s�, ���s�, ��s�, and ��S�, and the actuation variables
are the strains in the various muscle groups. It will be assumed
that the fibers of various groups are present coincidently at all
points in the arm. Accordingly, we will calculate the strains at
each point in the arm in the directions of the various groups.

We set �L, �T1, �T2, �H1, and �H2 to be the strains in the direc-
tions of the longitudinal, oral-aboral and lateral transversal, and
right and left helicoidal groups, respectively. Thus,

�L = d3 · E�d3�

�T1 = d1 · E�d1�
�T2 = d2 · E�d2�
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�H1 = n̂c · E�n̂c�

�H2 = n̂cc · E�n̂cc� �5.1�

here n̂c and n̂cc are unit vectors pointing at the directions of the
ight and left coiled helicoidal muscle fibers, respectively. It as-
umed that in the reference configuration the helicoidal fibers are
t 45 deg angle to the centerline.2 Thus

n̂c = �−
rY

A
,
r−1X

A
,

1
�2
�T

�5.2�

n̂cc = � rY

A
,−

r−1X

A
,

1
�2
�T

here A=�2�r2Y2+r−2X2, and rªa0 /b0 was defined following
ssumption 7.
It is noted that by Assumption 7, �T1=�T2, and so it is natural to

efine the vector field

��X,Y,S� = 	�T1�X,Y,S�,�L�S�,�H1�X,Y,S�,�H2�X,Y,S�
T

�5.3�
hat contains the values of the analog of the actuation variables
ontrolling the configuration of the arm.

For the inverse kinematics problem, we seek a mapping 
 that
cts on the set of functions 	��s� ,� �s� ,��s� ,��S�
 and gives �, so
�

The generalization to any other pitch angle is straightforward.
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��X,Y,S� = 
���s�,���s�,��s�,��S�,X,Y,S� �5.4�

By using Eq. �4.13� we find that


�T1

�L

�H1

�H2

� = �A�
E11

E33

E13

E23

� �5.5�

where

�A� = �
1 0 0 0

0 1 0 0

1

2

1

2
− sin � cos �

1

2

1

2
sin � − cos �

� �5.6�

where sin �= �a0
2Y /�b0

4X2+a0
4Y2� and cos �= �b0

2X /�b0
4X2+a0

4Y2�.
We define a nonlinear function h that takes the configuration

parameters and gives the four strain components �E11,E33,
E ,E �=h�� ,� ,� ,��. By Eq. �4.14� we have
13 23 �
h��,��,�,�� =
1

2
a2 − 1

�a��Y − a���X + ��2 + �a�Y + a��X�2 + �a�X − a��Y�2 − 1

aa�X − �Y

aa�Y + �X
� �5.7�
ence, the inverse kinematics mapping 
 is given by


 = A � h �5.8�

5.2 Forward Kinematics. The forward kinematic problem is
oncerned with the inverse �=
−1 of the mapping 
 defined
bove. Since the analogs of the joint parameters in our case are
he strain fields within the arm, one might expect that the domain
n which 
 is defined is the collection of all continuous indepen-
ent strain fields

	�E11�X,Y,S�,E33�X,Y,S�,E13�X,Y,S�,E23�X,Y,S��
 �5.9�

owever, this cannot hold true because not all strain fields corre-
pond to continuous configurations of the arms. In fact, if a tensor
eld Fij is indeed the gradient of a configuration of the arm, i.e.,
ij =�xi /�Xj, then it must satisfy the compatibility condition

�Fij

�Xp
=

�Fip

�Xj
=

�2xi

�Xj � Xp
�5.10�

urthermore, it is clear that a generic configuration induced by a
ompatible strain field need not satisfy necessarily the assump-
ions we made in Sec. 3.1. For example, not every continuous
onfiguration of the arm necessarily satisfies our assumption that
he cross sections remain plane and perpendicular to the center-
ine. Furthermore, using Eq. �4.14�, we find that the strain fields
atisfy the constraint

2

E13X + E23Y = a
da

dS
�X2 + Y2� �5.11�

Thus, our analysis of the forward kinematics of the arm will
lead us to the conclusion that the values of the strain at two points
�X1 ,Y1 ,S0� and �X2 ,Y2 ,S0� in a cross section S0 that are not on the
centerline determine the values of a�S0�, da /dS�S0�, ��s0�, ���s0�,
��s0�, and ��S0�, with some additional consistency conditions.

Noticing that the transformation A is singular and using

dE11

dS
=

d

dS

1

2
�a2 − 1� = aa� �5.12�

and �T1=E11, we have


�T1

�L

�H1

d�T1

dS
� = �

1 0 0 0

0 1 0 0

1

2

1

2
− sin � cos �

0 0
X

X2 + Y2

Y

X2 + Y2

�E11

E33

E13

E23

� �5.13�

where now, the transformation is invertible.
The inverse of Eq. �5.13� will give the vector

	E11,E33,E13,E23
 in terms of the modified strain functions vector
	�T1 ,�L ,�H1 ,

d�T1

dS

. In order to represent the configuration param-

eters 	� ,�� ,� ,� ,a1 ,a2
 in terms of the strain functions—the for-
ward kinematics mapping—we use Eq. �4.14� together with Eq.

�5.13� to obtain
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a1 = a2 = a = �2�T1 + 1 �5.14�

� =
�a0

2 − b0
2�XY

b0
2X2 + a0

2Y2�T1� +
�b0

4X2 + a0
4Y2

2�b0
2X2 + a0

2Y2�
�2�H1 − �T1 − �L�

�5.15�

�aY − ��aX =
�2�L − �a�Y + a��X�2 − �a�X − a��Y�2 + 1

�
− 1

�5.16�

Since none of the configuration parameters are functions of X
r Y, we find that the expressions on the right hand sides of Eqs.
5.14� and �5.15� depend only on S. Thus, the independence of
hese expressions on X and Y, originating from the kinematical
ssumptions made, may be used as conditions for the in-plane
train fields to be compatible with some configuration.

To find �, �, and ��, we evaluate Eqs. �5.15� and �5.16� at two
oints in a cross section. For simplicity, we choose to evaluate the
train functions in Eq. �5.15� at X=a0 , Y =0, and thus we obtain

��S� =
1

a0
�2�H1�a0,0,S� − �T1�a0,0,S� − �L�a0,0,S�� �5.17�

etting X=0, Y =b0 and X=a0 , Y =0 alternatively in Eq. �5.16�,
e obtain

��S� =
�2�L�0,b0,S� − �a�2�S� + �2�S���S��b0

2 + 1 − ��S�
a�S���S�b0

�5.18�

���S� =
��S� − �2�L�a0,0,S� − ��2�S���S� + a�2�S��a0

2 + 1

a�S���S�a0

�5.19�
o conclude, we recall from Eq. �4.8� that

��S� =
1

a2�S�
�5.20�

Example
To demonstrate the use of the model in computing the strains in

he different muscle fibers, we consider the following configura-
ion of the arm:

��S� = 5S, ���S� = 2.7, ��S� = 0.5S, ��S� = 1 �6.1�

ig. 4 Illustration of the arm’s configuration depicted by Eq.
6.1…
ournal of Mechanisms and Robotics
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illustrated in Fig. 4. By substituting Eq. �6.1� into Eqs. �5.5� and
�5.6�, we obtain the following strain field:


�T1

�L

�H1

�H2

� =
0

1

2
��1 − 2.7X + 5SY�2 + 0.25S2�X2 + Y2� − 1�

1

2��L + 0.25
�a0

2Y2 + b0
2X2�

�Y2a0
4 + X2b0

4
S�

1

2��L − 0.25
�a2Y2 + b2X2�
�Y2a0

4 + X2b0
4
S� �

�6.2�
Computing the configuration parameters using Eqs. �5.14� and
�5.17�–�5.20� and the strains in Eq. �6.2� will result in the same
configuration parameters given in Eq. �6.1�. Moreover, it is readily
shown that Eq. �5.16� holds for all

�X,Y� � 	X = a0, Y = �b0�0 �  � 1, 0 � � � 1


7 Conclusion
Studied from the point of view of robot kinematics, the octo-

pus’s arm emerges as a sophisticated continuous robot that uses
the incompressibility of the material composing it in order to con-
trol its shape in space. We have no physiological data to support
the assumption we have made regarding the behavior of the arm
as a rod with variable cross section. In addition, we cannot justify
our assumptions on the basis of the ratio between the size of the
cross section relative to the length of the arm. Nevertheless, it
seems to us that in the proposed model, we were able to capture
the essential aspects of the way the configuration of the arm is
controlled. Hopefully, such analyses can inspire the constructions
of efficient continuous robots.
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Appendix: Representation of the Arm’s Configuration
Using the Frenet–Serret Parameters

An alternative approach to the above description of the arm’s
configuration is based on the well known Frenet–Serret param-
eters �FS� �26� for a spatial curve represented by a vector function
r0�s��R3, where s is the arc length along the curve. It is recalled
that for the case of nonvanishing curvature, a unique Frenet–
Serret frame can be associated with each point on the curve. The
Frenet–Serret orthonormal basis at a point S is given by

T =
dr0

ds
, N =

1

�FS

dT

ds
, B = T � N �A1�

where T, N, and B are referred to as the tangent, normal, and
binormal vectors, respectively. �We omitted the dependence on s

for brevity.� The parameters �FS and �FS, which are the curvature
and the torsion, respectively, are defined by

�FS = �dT

ds
�, �FS =

dN

ds
· B �A2�

It can be shown that the curvature and torsion functions uniquely
define an inextensible spatial curve up to a rigid body displace-
ment �26�. The Frenet–Serret triads satisfy the differential equa-

tions
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dT

ds
= �FSN

dN

ds
= − �FST + �FSB

dB

ds
= − �FSN �A3�

he Frenet–Serret triads describe the geometry of the deformed
enterline. In order to describe the configuration of the arm com-
letely, we need to account for the stretch �, the in-plane defor-
ation, and the twist of the arm about the centerline. In order to

escribe the twist, we define a parameter �, the angle between the
ormal unit vector N, and the image g1 of the vector G1 �see Fig.
�.

Given the set 	� ,�� ,�
, when ��2+�2�0, one can find the
orresponding FS parameters by

�FS = ���2 + �2 �A4�

�FS = � +
1

���2 + �2�3/2��
d��

ds
− ��

d�

ds
� �A5�

� = cos−1� ��
���2 + �2� = sin−1� − �

���2 + �2� �A6�
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