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Abstract

Linear Discriminant Analysis (LDA) is a popular
data-analytic tool for studying the class relation-
ship between data points. A major disadvantage of
LDA is that it fails to discover the local geometri-
cal structure of the data manifold. In this paper, we
introduce a novel linear algorithm for discriminant
analysis, called.ocality Sensitive Discriminant
Analysis(LSDA). When there is no sufficient train-
ing samples, local structure is generally more im-
portant than global structure for discriminant analy-
sis. By discovering the local manifold structure,
LSDA finds a projection which maximizes the mar-
gin between data points from different classes at
each local area. Specifically, the data points are
mapped into a subspace in which the nearby points
with the same label are close to each other while the
nearby points with different labels are far apart. Ex-
periments carried out on several standard face data-
bases show a clear improvement over the results of
LDA-based recognition.
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techniques for this purpose are Principal Component Analy-
sis (PCA) and Linear Discriminant Analysis (LDADudaet
al., 2004.

PCA is an unsupervised method. It aims to project the data
along the direction of maximal variance. LDA is supervised.
It searches for the project axes on which the data points of
different classes are far from each other while requirinig.da
points of the same class to be close to each other. Both of
them are spectral methods, i.e., methods based on eigenvalu
decomposition of either the covariance matrix for PCA or
the scatter matrices (within-class scatter matrix and eéetw
class scatter matrix) for LDA. Intrinsically, these metkod
try to estimate the global statistics, i.e. mean and covari-
ance. They may fail when there is no sufficient number of
samples. Moreover, both PCA and LDA effectively see only
the Euclidean structure. They fail to discover the undadyi
structure, if the data lives on or close to a submanifold ef th
ambient space.

Recently there has been a lot of interest in geometri-
cally motivated approaches to data analysis in high dimen-
sional spaces. Examples include ISOANRenenbaunet
al., 2004, Laplacian EigenmapBelkin and Niyogi, 200},
Locally Linear EmbeddingRoweis and Saul, 2000 These
methods have been shown to be effective in discovering the
geometrical structure of the underlying manifold. However

Practical algorithms in supervised machine learning dgra they are unsupervised in nature and fail to discover the dis-
in performance (prediction accuracy) when faced with manycriminant structure in the data. In the meantime, manifold
features that are not necessary for predicting the desired 0 based semi-supervised learning has attracted consideatbl
put. An important question in the fields of machine learning,tention[Zhouet al,, 2003, [Belkin et al,, 2004. These meth-
knowledge discovery, computer vision and pattern recognioeds make use of both labeled and unlabeled samples. The la-
tion is how to extract a small number of good features. Abeled samples are used to discover the discriminant steyctu
common way to attempt to resolve this problem is to use diwhile the unlabeled samples are used to discover the geomet-
mensionality reduction techniques. Two of the most populafical structure. When there is a large amount of unlabeled

samples available, these methods may outperform tradltion
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applications such as face recognition, the unlabeled sssmpl

fnay not be available, thus these semi-supervised learning

gaethods can not be applied.
In this paper, we introduce a novel supervised dimension-



ality reduction algorithm, calledocality Sensitive Discrim- Besides LDA, there is recently a lot of interests in graph
inant Analysis, that exploits the geometry of the data mani- based linear dimensionality reduction. The typical algo-
fold. We first construct a nearest neighbor graph to model theithms includes Locality Preserving Projections (LPRg
local geometrical structure of the underlying manifold.isTh and Niyogi, 2003), Local Discriminant Embedding (LDE,
graph is then split intavithin-class graprandbetween-class [Chenet al, 2009), Marginal Fisher Analysis (MFA,Yan et
graph by using the class labels. In this way, the geometri-al., 2008), etc. LPP uses one graph to model the geometri-
cal and discriminant structure of the data manifold can becal structure in the data. LDE and MFA are essentially the
accurately characterized by these two graphs. Using the n@ame. Both of them uses two graphs to model the discrim-
tion of graph LaplaciadiChung, 199%, we can find a linear inant structure in the data. However, these two algorithms
transformation matrix which maps the data points to a subimplicitly consider that the within-class and betweensslee-
space. This linear transformation optimally preserveddhe lations are equally important. This reduces the flexibitify

cal neighborhood information, as well as discriminant info the algorithms.

mation. Specifically, at each local neighborhood, the nmargi

between data points from different classes is maximized. 3 L ocality Sensitive Discriminant Analysis
The paper is structured as follows: in Section 2, we prowdqn this section, we introduce olwocality Sensitive Discrimi-

a brief review of Linear Discriminant Analysis. The Locglit : : : i
" S : . . nant Analysislgorithm which respects both discriminant and
Sensitive Discriminant Analysis (LSDA) algorithm is intro eometrical structure in the data. We begin with a desaripti

duced in Section 3. In Section 4, we describe how to perfor . L L o .
LSDA in Reproducing Kernel Hilbert Space (RKHS) whichngf the locality sensitive discriminant objective function

gives rise to kernel LSDA. The experimental results are pre3 1 The L ocality Sensitive Discriminant Objective
sented in Section 5. Finally, we provide some concluding Function for Dimensionality Reduction

remarks in Section 6. . . .
As we described previously, naturally occurring data may be

generated by structured systems with possibly much fewer
2 Rdatgd Works ) ) ) . o degrees of freedom than the ambient dimension would sug-
The generic problem of linear dimensionality reductiorhist gest. Thus we consider the case when the data lives on or

following. Given a seky,Xa, - -+, X,, in R", find a transfor-  close to a submanifold of the ambient space. One hopes
mation matrixA = (ay,--- ,a4) € R"*? that maps these:  then to estimate geometrical and discriminant propertfes o
points to a set of pointg,,ys,, - - - , " inR? (d < n), such  the submanifold from random points lying on this unknown
thaty, “represents’;, wherey, = A" x;. submanifold. In this paper, we consider the particular ques
Linear Discriminant Analysis (LDA) seeks directions that tion of maximizinglocal margin between different classes.
are efficient for discrimination. Suppose these data pbiets Given m data points{x;,xs, -+ ,X,,} C R" sampled
long to ¢ classes and each point is associated with a labetom the underlying submanifold, one can build a near-
I(x;) € {1,2,---,c}. The objective function of LDA is as est neighbor graplt to model the local geometrical struc-
follows: . ture of M. For each data point;, we find its & nearest
8, — arg max a Spa (1)  nheighbors and put an edge betwegrand its neighbors. Let
P a ar's,a N(x;) = {x},---,xF} be the set of it nearest neighbors.
c . . . Thus, the weight matrix off can be defined as follows:
S 2””(“ W = p) @ wo_ L ifxeNG o ENKX)
= W=\ 0, otherwise. ®)
Sw=Y_ | D (xh—pH)(xs —p)” (3)  The nearest neighbor gragh with weight matrix1¥ char-
i=1 \j=1 acterizes the local geometry of the data manifold. It has

. . been frequently used in manifold based learning techniques
wherepu is the total sample mean vectat, is the number of . L

. . i y ) such agBelkin and Niyogi, 200}, [Tenenbaunet al.,, 2004,
samples in thé-th classy® is the average vector of theth [Roweisi and Saul 23’@3{% ar]1Ld[Niyogi 200B Howevg:r

class, and’ is the j-th sample in the-th class. We calk,, . : ) e ;
T .
the within-class scatter matrix ais; the between-class scat- '([jh;agraph fails to discover the discriminant structuretia t

ter matrix. The basis functions of LDA are the eigenvectors In order to discover both geometrical and discriminant
of the following generalized eigen-problem associatedhwit oth g X
structure of the data manifold, we construct two graphs, i.e

the largest eigenvalues: within-class graphG,, and between-class grapli/,. Let
Spa= AS,a (4)  I(x;) be the class label ot;. For each data point;, the

Clearly, LDA aims to preserve thglobal class relationship ?\?U(\; (’;i) ?\?n(ge) ncfgﬁ{:ilkﬁstﬂg igé?gmoofgt;?gﬁ?‘ (ggxiagns(jame
w\>g ). w\ ™

between data points, while it fails to discover the intrinsi ; . X . !
local geometrical structure of the data manifold. In many'@P€l with x;, while N, (x;) contains the neighbors having
real world applications such as face recognition, there mag'ﬁerem labels. Specifically,

not be sufficient training samples. In this case, it may not be No(x:) = {X|I(x)) = I(x;),1 < j < k}
able to accurately estimate the global structure and tred loc _ _

structure becomes more important. No(x;) = {x]|l(x]) # 1(x;),1 < j <k}
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Figure 1: (a) The center point has five neighbors. The poiiitis thhe same color and shape belong to the same class. (b)
Thewithin-class graptconnects nearby points with the same label. (c) bé®veen-class graptonnects nearby points with
different labels. (d) After Locality Sensitive DiscriminAnalysis, the margin between different classes is mazanohi

Clearly, Ny(x;) N Ny (x;) = @ and Np(x;) U Ny (x;) = By simple algebra formulation, the objective function (&c
N(x;). LetW,, andW, be the weight matrices af,, and  be reduced to
G, respectively. We define: 1
B Z(?Ji — ;) Waij
ij

1, ifx; € Np(x;)0orx,; € Np(x;
Woij = { 0, OtherwiseF 4) O ) (6) ) ) .
= §Z(a X; —a Xj) Wwﬂ‘j
W { 1, ifx; € Ny(x;) 0rx; € Ny(x;) 7) ij
w,ij 0, otherwise. _ Z aTXtiﬂ'inTa _ Z aTxiWw7ijxfa
It is clear to sedV = W, + W,, and the nearest neighbor i ij
graphG can be thought of as a combination of within-class — a’xD,XTa—al’xXW,XxTa

graphG,, and between-class gragh,. ) ] o }

Now consider the problem of mapping the within-classWhereD,, is a diagonal matrix; its entries are column (or row,
graph and between-class graph to a line so that connect&inceW., is symmetric) sum oWy, Dy i = 325 Wa,ij-
points of G,, stay as close together as possible while con-Similarly, the objective function (9) can be reduced to
nected points of7, stay as distant as possible. Let= 1 )

(y1,92, -+ ,ym)T be such a map. A reasonable criterion for 5 Z(yi = i) Wiz
choosing a “good” map is to optimize the following two ob- ij

jective functions: 1 T T \2
= 52(5\ X; —a xj) Whij

min 3" (5 — 1) Wa; (8) i
ij = a’'X(D, - W) XTa
T T
= a X)X a
max » (i = 4;)* W ©) . o .
i whereD,, is a diagonal matrix; its entries are column (or row,

inceW, is symmetric) sum oy, Dy, ;; = Zj Wi Ly =

» — W, is the Laplacian matrix of7,.

Note that, the matrixD,, provides a natural measure on the
data points. 1D, ;; is large, then it implies that the class con-
tainingx; has a high density around. Therefore, the bigger
the value ofD,, ;; is, the more “important” isc;. Therefore,
we impose a constraint as follows:

under appropriate constraints. The objective function (8)s
on within-class graph incurs a heavy penalty if neighborin
pointsx; andx; are mapped far apart while they are actu-
ally in the same class. Likewise, the objective function (9)
on between-class graph incurs a heavy penalty if neighgorin
pointsx; andx; are mapped close together while they actu-
ally belong to different classes. Therefore, minimiziny €3
an attempt to ensure thatif andx; are close and sharing the yI'D,y=1=a"XD,XTa=1
same label thep; andy; are close as well. Also, maximiz- - . .
ing (9) is an attempt to ensure thatf andx; are close but Thus, the objective function (8) becomes the following:
have different labels they andy; are far apart. The learning min 1 —aZXW,XTa (10)
procedure is illustrated in Figure 1. a

. . . or equivalently,
3.2 Optimal Linear Embedding

In this subsection, we describe our Locality Sensitive Dis-
criminant Analysis algorithm which solves the objective And the objective function (9) can be rewritten as follows:
functions (8) and (9). Supposgeis a projection vector, that . -

is,y” = a” X, whereX = (x;,--- ,X,,) iS an x m matrix. max a’ XX a (12)

a

max al XW,XTa (11)
a



Finally, the optimization problem reduces to finding: Let & denote the data matrix in RKHS:
arg max a' X(aLy+ (1—a)W,)X"a (13) @ = [p(x1), p(x2), -+, B(xm)]

a . . .
a’ XD XTa=1 Now, the eigenvector problem in RKHS can be written as fol-
¢ lows:
wherea is a suitable constant arfid< « < 1. The projec- T T
tion vectora that minimizes (13) is given by the maximum ®(aLly + (1 - a)Wy,)2'v =A0D, e v (15)
eigenvalue solution to the generalized eigenvalue problem  Because the eigenvector of (15) are linear combinations

_ T, _ T of ¢(x1),p(x2),- - , p(xm), there exist coefficients;, i =
X(aLy+ (1 - a)W,)X"a=AXD,X"a (14) 1.2, m such that

Let the column vectom,,as,--- ,a, be the solutions of m
equation (14), ordered according to their eigenvalugs;> v = Zafb(x') — da
.-+ > \g. Thus, the embedding is as follows: Pt P
x; =y = ATx; wherea = (o, asg, - ,a,)T € R™.
A= (aj,as, - ,ag) Following some algebraic formulations, we get:

wherey; is ad-dimensional vector, and is an x d matrix. ®(aLy + (1 — a)W,)@"v = A0D,,d"v

Note that, if the number of samplesn) is less than T T
the number of featuresu, thenrank(X) < m. Conse- = @(aly+ (1 - )Wy) 2" da = APD, " Pa
quently, rank(X D, X*) < m andrank(X(aL, + (1 — =  ®To(aly+ (1 - a)W,)0  a
)W) XT) < m. The fact thatX D,, X™ and X (aL;, + = \o7®D,, o7 da
(1—a)W,,)XT aren x n matrices implies that both of them = K(aLy+ (1—a)W,)Ka = AKD,Ka  (16)

are singular. In this case, one may first apply Principal Com-
ponent Analysis to remove the components corresponding twhere K is the kernel matrix,K;; = K(x;,X;). Let the

zero eigenvalues. column vectorsx!, a2, --- ,a™ be the solutions of equation
(16). For a test poink, we compute projections onto the
4 Kernel LSDA eigenvectors* according to

LSDA is a linear algorithm. It may fail to discover the in- m m
trinsic geometry when the data manifold is highly nonlinear — (v¥ - ¢(x)) = Y af(¢(x) - 6(x:)) = > afK(x,x;)
In this section, we discussion how to perform LSDA in Re- i=1 i=1

Eé?gglctrg[)}zernel Hilbert Space (RKHS), which gives rise towhereoziC is thei*" element of the vectax”. For the original

training points, the map can be obtainedsby= Ka, where

SupposeX = {x1,X2, " , Xt € X Is the training sam- th ; . : .
ple set. We consider the problem in a feature sfaaeduced th_ez element ofy is the one-dimensional representation of
by some nonlinear mapping Xi-
¢ X —=F 5 Experimental Results

For a proper chosea, an inner product,) can be defined In this Section, we investigate the use of LSDA on face recog-
on F which makes for a so-called reproducing kernel Hilbertnition. We compare our proposed algorithm with Eigenface

space (RKHS). More specifically, (PCA, [Turk and Pentland, 199}, Fisherface (LDA [Bel-
K humeuret al, 1997) and Marginal Fisher Analysis (MFA,
(6(x), o(y)) = K(x,y) [Yan et al, 200§). We begin with a brief discussion about

holds wherek((.,.) is a positive semi-definite kernel func- data preparation.
tion. Several popular kernel functions are: Gaussian ker- .
nel K(x,y) = exp(—|x — y|?/o?); polynomial kernel -1 DataPreparation

Kx,y) = (1 + (x,y))% Sigmoid kernelK(x,y) =  Two face databases were tested. The first one is the Yale data-
tanh((x,y) + «). basé, and the second one is the ORL dataBade all the
Given a set of vectorv; € F|i = 1,2,--- ,d} which are  experiments, preprocessing to locate the faces was applied
orthonormal (v;,v;) = &; ;), the projection ofy(x;) € F  Original images were normalized (in scale and orientation)
to thesevy, - - - , v4 leads to a mapping fromt’ to Euclidean  such that the two eyes were aligned at the same position.
spaceR? through Then, the facial areas were cropped into the final image for
T matching. The size of each cropped image in all the experi-
yi = ((vi, 0(x:)), (Va, d(x4)), -+, (Va, d(x4))) ments is 32« 32 pixels, with 256 gray levels per pixel. Thus,
We look for such{v; € F|i = 1,2,---,d} that helps "http://cvc. yal e. edu/ pr oj ect s/ yal ef aces/
{yili = 1,---,m} preserve local geometrical and discrim- yal ef aces. ht m

inant structure of the data manifold. A typical scenario is  2http://ww. cl . cam ac. uk/ Resear ch/ DTG
X=R",F=Rwithd << n < 6. attarchi ve/ f acesat agl ance. ht ni
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Figure 2: Sample face images from the Yale database. Forsdijhct, there are 11 face images under different lighting
conditions with facial expression.

Table 1: Recognition accuracy of different algorithms om Yale database

| Method | 2Train | 3Train | 4Train | 5Train |
Baseline | 43.4%(1024)| 49.4%(1024)] 52.6%(1024)] 56.2%(1024)
Eigenfaces| 43.4%(29) 49.4%(44) 52.6%(58) 56.2%(74)

Fisherfaces 47.29(10) | 64.9%(14) | 72.9%(14) | 78.8%(14)
MFA 47.7%(10) | 65.7%(14) | 74.1%(14) | 78.9%(14)
LSDA 56.5%(14) | 68.5%(14) | 74.4%(14) | 79.0%(14)

each image can be represented by a 1024-dimensional veaches the best performance almost always-afi dimen-
tor in image space. No further preprocessing is done. Difsions. This property shows that LSDA does not suffer from
ferent pattern classifiers have been applied for face recognthe problem of dimensionality estimation which is a crucial
tion, including nearest neighbdfurk and Pentland, 1991 problem for most of the subspace learning based face recog-
BayesiarfMoghaddam, 2002 and Support Vector Machines nition methods.
[Phillips, 1998, etc. In this paper, we apply nearest neighbor
classifier for its simplicity. In our experiments, the numbe
of nearest neighbors:) is taken to be 5. The parameteis ~ The ORL (Olivetti Research Laboratory) face database is
estimated by leave one out cross validation. used in this test. It consists of a total of 400 face images,
In short, the recognition process has three steps. First, wef a total of 40 people (10 samples per person). The images
calculate the face subspace from the training set of face imwere captured at different times and have different vamesti
ages; then the new face image to be identified is projecteticluding expressions (open or closed eyes, smiling or non-
into d-dimensional subspace; finally, the new face image issmiling) and facial details (glasses or no glasses). Thgésa
identified by nearest neighbor classifier. were taken with a tolerance for some tilting and rotatiorhef t
face up to 20 degrees. 10 sample images of one individual are
5.2 Face Recognition on Yale Database displayed in Figure 3. For each individu&l= 2,3, 4, 5) im-

The Yale face database is constructed at the Yale Center {@9€S are randomly selected for training and the rest are used
Computational Vision and Control. It contains 165 grayscal or testing. .

images of 15 individuals. The images demonstrate variation _ 1he experimental design is the same as before. For each
in lighting condition (left-light, center-light, rightight), fa- given!, we average the results over 20 random splits. The best
cial expression (normal, happy, sad, sleepy, surprised, arfesult obtained in the optimal subspace and the correspgndi

wink), and with/without glasses. Figure 2 shows some samdimensionality for each method are shown in Table 2.
ple images of one individual. As can be seen, our LSDA algorithm performed the best

For each individuall(= 2, 3,4, 5) images were randomly for all the cases. The Fisherface method performed com-
selected as training samples, and the rest were used for te§@ratively to LSDA as the size of the training set increases.
ing. The training set was used to learn a face subspace u¥oreover, the optimal dimensionality obtained by LSDA and
ing the LSDA, Eigenface, and Fisherface methods. Recogl_:|sherface is much lower than that obtained by Eigenface.
ni@ion was then performed in the subspaces. We repez_i'gegl_4 Discussion
this process 20 times and calculate the average recogniti
rate. In general, the recognition rates varies with the dime

5.3 Face Recognition on ORL Database

Beveral experiments on two standard face databases have
sion of the face subspace. The best performance obtained en systematically performed. These experiments have re-

these algorithms as well as the corresponding dimenstgnali aled a number of mte_restlng points: )
of the optimal subspace are shown in Table 1. For the baselinel. All the three algorithms (LSDA, MFA, and Fisherface)
method, we simply performed face recognition in the origina ~ Performed better in the optimal face subspace than in the

1024-dimensional image space. Note that, the upper bound ©riginal image space. This indicates that dimensionality
of the dimensionality of Fisherface is— 1 wherec is the reduction can discover the intrinsic structure of the face

number of individual§Dudaet al, 200d. manifold and hence improve the recognition rate.

As can be seen, our algorithm outperformed all other three 2. In all the experiments, our LSDA algorithm consistently
methods. The Eigenface method performs the worst in all  outperformed the Eigenface, Fisherface and MFA meth-
cases. It does not obtain any improvement over the baseline ods. Especially when the size of the training set is small,
method. It would be interesting to note that, when there are  LSDA significantly outperformed Fisherface. This is
only two training samples for each individual, the best perf probably due to the fact that Fisherface fails to accu-
mance of Fisherface is no longer obtained ina 1(= 14) rately estimate the within-class scatter matrix from only
dimensional subspace, but a 10-dimensional subspace. LSDA a small number of training samples.



and details.
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Figure 3: Sample face images from the ORL database. For ebfgts, there are 10 face images with different facial exgian

Table 2: Recognition accuracy of different algorithms om @RL database

| Method | 2Train | 3Train | 4Train | 5Train |
Baseline | 66.8%(1024)] 77.0%(1024)] 81.7%(1024)] 86.6%(1024)
Eigenfaces| 66.8%(79) | 77.0%(119) | 81.7%(159) | 86.6%(198)

Fisherfaces 71.3%(28) | 83.4%(39) | 89.6%(39) | 93.2%(39)
MFA 71.6%(37) | 84.1%(39) | 89.7%(39) | 93.1%(39)
LSDA 76.7%(39) | 85.0%(39) | 90.5%(39) | 93.6%(39)

3. Eigenface fails to gain improvement over the baseline. variants. InProc. 2005 Internal Conference on Computer
This is probably because that Eigneface does not encode Vision and Pattern Recognitio2005.

the discriminating information.

images into &-1 dimensional subspace.

6 Conclusion

We have introduced a novel linear dimensionality reduction
algorithm called Locality Sensitive Discriminant Analysi
(LSDA). For the class of spectrally based dimensionality re

In all the experiments, the optimal dimensionality ob-
tained by LSDA is always-1, wherec is the number of

classes. In practice, when the computational complex
ity is a major concern, one can simply project the fac

[Chung, 1997 Fan R. K. Chung. Spectral Graph Theoty

2nd edition, 2000.
[He and Niyogi, 200B Xiaofei He and Partha Niyogi. Lo-

volume 92 ofRegional Conference Series in Mathematics
AMS, 1997.

[Dudaet al, 200d R. O. Duda, P. E. Hart, and D. G. Stork.
€ Ppattern Classification Wiley-Interscience, Hoboken, NJ,

cality preserving projections. lAdvances in Neural In-
formation Processing Systems. MIT Press, Cambridge,
MA, 2003.

duction techniques, it optimizes a fundamentally différen [Moghaddam, 2002B. Moghaddam. Principal manifolds
criterion compared to classical dimensionality reductigr and probabilistic subspaces for visual recognitiéBEE
proaches based on Fisher’s criterion (LDA) or Principal Com  Transactions on Pattern Analysis and Machine Intelli-
ponent Analysis. The most prominent property of LSDA is  gence 24(6), 2002.

the Complete preservation of both discriminant and loca} ge. [Ph||||pS, 1998 P. J. Ph||||ps Support vector machines ap-

metrical structure in the data. For LDA, on the other hand, it
can only preserve the global discriminant structure, witiée

local geometrical structure is ignored. We have applied ou
algorithm to face recognition. Experiments on Yale and ORL
databases have been conducted to demonstrate the effective

ness of our algorithm.
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