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Common arguments for including applications papers in the Machine Learning

literature are often based on the papers' value for advertising success stories and

for morale boosting. For example, high-pro�le applications can help to secure

funding for future research and can help to attract high caliber students. However,

there is another reason why such papers are of value to the �eld, which is, arguably,

even more vital. Application papers are essential in order for Machine Learning to

remain a viable science. They focus research on important unsolved problems that

currently restrict the practical applicability of machine learning methods.

Much of the \science" of Machine Learning is a science of engineering.
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By this

we mean that it is dedicated to creating and compiling veri�able knowledge related

to the design and construction of artifacts. The scienti�c knowledge comprises the-

oretical arguments, observational categorizations, empirical studies, and practical

demonstrations. The artifacts are computer programs that use data to build mod-

els that are practically or theoretically useful. Because the objects of study are

intended to have practical utility, it is essential for research activities to be focused

(in part) on the elimination of obstacles that impede their practical application.

Most often these obstacles take the form of restrictive simplifying assumptions

commonly made in research. Consider as an example the assumption, common in

classi�er learning research, that misclassi�cation errors have equal costs. The vast

majority of classi�er learning research in Machine Learning has been conducted

under this assumption, through the use of classi�cation accuracy as the primary

(or sole) evaluation metric. Is this a reasonable assumption under which we should

be operating? The answer is unclear. It is di�cult to imagine a real-world classi�-

cation problem where error costs are equal, and researchers come in from the �eld

time after time citing problems dealing with unequal misclassi�cation costs. Never-

theless, we continue to press on with research on increasing classi�cation accuracy.

In the Machine Learning literature isolated studies suggest that it is possible to

weaken this assumption and still learn e�ectively (Turney 1997), but there have

been no comprehensive studies.

This is but one small example of a common simplifying assumption that may

be too strong. Of course it is not clear that even a very solid applications paper

pointing out the inapplicability of this assumption would be su�cient to convince

the �eld to shift its scienti�c paradigm (Kuhn 1970). In fact, with respect to

this particular example, it seems that research trails practice: commercial tools
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are now available that can be trained with sensitivity to error costs, even though

the Machine Learning literature has not addressed how to do so well. However, if

application-oriented papers were common in the Machine Learning literature, and

many of them cited a particular assumption as being too strong, then one would

hope that there would be su�cient pressure to study its applicability in greater

detail.

The applied/academic research cycle

One problem with writing an applications-oriented paper for the Machine Learn-

ing literature is that we have not agreed on what contributions are su�cient for

publication. To complicate matters, there is a deeply ingrained notion that \re-

search" and \applications" papers are categorically di�erent, as is evident even in

our discussion so far. However, the notion of such a dichotomy does not withstand

intense scrutiny. Upon considering the relative amounts of basic research and appli-

cations work in a variety of paper-producing scenarios, it becomes clear that there

is a smooth spectrum between pure applications work and pure academic research,

along which resides a continuum of 
avors of applied research.

Although most papers published in the literature of Machine Learning can be

placed at the academic end of the spectrum, much of the research allies itself ex-

plicitly with an application. At the applied end of the spectrum, as soon as the

application of the technology is not straightforward and the reasons why are in-

vestigated, research begins. Such research may uncover de�ciencies in the current

body of scienti�c knowledge that should be brought to light, so that subsequent

work can be directed to resolve them.

The value of applications work is clearest by viewing this spectrum not as a static,

linear categorization of research, but as a dynamic cycle through which research

problems progress. General methods emerge from the world of academic research

and practitioners apply them to real-world tasks. Often, problems that arise in the

applications cast light on insu�ciencies in previous research results. Subsequent

applied research proposes and implements ad hoc solutions to the problems, which

move further toward the academic end of the spectrum gaining generality and

losing the simultaneous focus on a variety of problematic issues that characterizes

applications work. Eventually, a problem maymove into the realm of pure research,

because it has become an accepted problem in the scienti�c paradigm, and it is no

longer necessary to attach application signi�cance to it (Kuhn 1970). A general

research solution can be picked up by practitioners, and the cycle will iterate driven

by additional feedback from the successes and failures of the applications.

We believe that in order for a science of engineering to remain viable, the ap-

plied/academic research cycle must be healthy. In particular, it is necessary that

the academic world receive feedback from the applications world. Our purpose here

is to contribute to the applied/academic cycle with a collection of papers that de-

scribe interesting, real-world applications of the technology and that indicate the

research needs and issues that arise.
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Contributions of applications papers

We would like to reemphasize our need as a scienti�c community to broaden our

view of the potential contributions of machine learning research papers. Tradi-

tionally, we have focused primarily on papers that contribute a new algorithm or

method, which is evident in the wording of the review forms for our conferences and

journals. Instead, we should ask papers to contribute to our scienti�c knowledge of

Machine Learning. Looking across the spectrum of di�erent degrees of application

orientation, it is clear that at the more academic end one would expect contribu-

tions to be centered on algorithms, methods, theory, and comparative empirical

studies on standard benchmark data sets. At the applied end of the spectrum, one

should expect contributions to include feedback on the utility of research results,

in-depth descriptions of new, practically important problems that cannot be solved

well with existing methods, areas of weakness in the body of scienti�c knowledge,

and occasionally good, but ad hoc, algorithms or methods that will be starting

points for future studies. In both cases, the presentations should be geared towards

the scienti�c contributions. The �rst question that editors, reviewers, and readers

ask should be \What is the contribution to the �eld?"

The papers in this special issue highlight needs for more research

In this special issue we present �ve papers that describe not only the application

domains and the machine learning methods employed, but also what has been

learned about important research problems that need to be addressed more fully.

Each paper points to several problems faced in its application(s) that were necessary

for success, but for which existing research is weak. Themes common to the set

of papers are readily apparent, and several points reinforce existing knowledge

(Fayyad, Piatetsky-Shapiro and Smyth 1996; Brodley and Smyth 1997; Langley

and Simon 1995).

Saitta and Neri (1998) de�ne and characterize the process of developing a \real-

world" machine learning application. They stress the importance of a user who

actively participates in the process and exploits the learned knowledge. They con-

trast this de�nition with that of testing algorithms on ready-to-use data sets, such

as those at the UC Irvine repository (Merz and Murphy 1997). They illustrate their

analysis with case study excerpts from four diverse applications: industrial trou-

bleshooting, reading speech spectrograms, educational modeling, and gene splice-

site recognition. While algorithm developers regularly evaluate the output of a

learning algorithm based on certain criteria (e.g., error rates, description length,

and running time), only the user is entitled to give the �nal judgment about the

usefulness of the results, according to the authors. They suggest that researchers

in the �eld of Machine Learning should concentrate more on unsolved problems in

the real world.

Saitta and Neri do a �ne job of discussing relevant related work, and although

this is not the �rst place where these themes appear, their pervasiveness is striking

in light of the lack of attention given to them by machine learning research. In par-
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ticular, in machine learning applications the majority of e�ort is spent on problem

engineering and on evaluation issues. The application and comparison of learning

algorithms is a relatively small part of the process.

Burl, Asker, Smyth, Fayyad, Perona, Crumpler and Aubele (1998) and Kubat,

Holte and Matwin (1998) present applications of machine learning techniques to the

problem of image classi�cation, for cataloging volcanoes on the planet Venus and for

detecting oil spills at sea. Both sets of authors found feature extraction and feature

engineering from images to be necessary; both have looked at ROC curves (Receiver

Operating Characteristic curves) in order to represent the tradeo�s between true

positive and false positive classi�cations; both had to deal with imbalanced class

distributions; both have had problems with the reliability of human labeling of

the training set examples, and both have found that simple cross-validation is

misleading and have used a variant of cross-validation for batched inputs called

leave-one-batch-out. Burl et al. mention that they would have liked to have had an

integrated software infrastructure to support data labeling and annotation, design

and reporting of experiments, visualization, classi�cation algorithm application,

and database support for image retrieval.

Lee, Buchanan and Aronis (1998) and Finn, Muggleton, Page and Srinivasan

(1998) present applications of machine learning techniques in scienti�c analysis

and discovery, for predicting chemical carcinogenicity and for pharmacological dis-

covery. The two papers concentrate on the need to represent problem-speci�c back-

ground knowledge for use by the learning program. Lee et al. show that although

standard learning algorithms can �nd rules that are accurate and understandable,

such algorithms are not su�cient as tools for discovery. Support for changes of

assumptions, for the use of di�erent vocabularies, and for the inclusion of semantic

constraints are necessary. Finn et al. use a learner that can represent structural

background knowledge. Compare this with other approaches that extract features

for a propositional language from the original representation (e.g., images).

Both of these scienti�c discovery applications made use of blindfold trials to help

evaluate the models. In the work on pharmacophore discovery, the domain experts

set up an explicit blindfold test to see whether Progol could rediscover a previously

published pharmacophore (it did). In the chemical carcinogenicity domain, there

was a general call to submit predictions for a new set of chemicals for which the

results of long-term bioassays were about to be released. These predictions were the

topic of a subsequent domain-speci�c workshop (the classi�er learned with guidance

from background knowledge performed extremely well).

In several of the accepted papers, the authors had to deal with small amounts

of data. This is in stark contrast with commercial data mining in areas such as

marketing where some claim that \data mining only makes sense when there are

large volumes of data. In fact, most data mining algorithms require large amounts

of data in order to build and train the models" (Berry and Lino� 1997, p. 6). Lee

et al. explain that the data are scarce because long-term animal bioassays take at

least two years and cost at least $2 million per chemical. The National Toxicology

Program database contains only about 340 chemicals with the panel's assessment of

their carcinogenicity based on results of long-term rodent studies. Similarly, Kubat
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et al. write that \images cost hundreds, sometimes thousands of dollars each," and

hence they worked with only nine carefully selected images containing 41 oil slicks.

A challenge to academic research

We hope that this special issue can help to stimulate additional research that will


esh out these areas of weakness and others pointed out by the collected papers.

It is important to emphasize that these lessons are very general, and are becoming

more and more apparent as machine learning technologies are being applied more

widely. In our own applied work, in fraud detection (Fawcett and Provost 1997),

telecommunications network diagnosis (Danyluk and Provost 1993), and scienti�c

discovery (Provost and Aronis 1996; Aronis, Provost and Buchanan 1996), the same

research needs are evident. The authors point to many other published applications

papers for further support. In order to obtain general, principled solutions, applied

researchers have been trying to push these di�cult problems toward the academic

end of the spectrum. We hope that we can help to convince those involved in

academic machine learning research to pull.
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With the opening essay we do not claim to be pushing the frontiers of the philos-

ophy of science. Rather we have tried to make it relevant to our current situation.

The general thesis was spawned and nurtured by many discussions with Bruce

Buchanan over the last ten years. We echo general points made by many others

when discussing the value of applications to the science of AI (e.g., Schorr and

Rappaport (1990), Smith and Scott (1992), Shrobe (1996)). Although developed

independently, many points of argument are strikingly similar to those of Lynn

Andrea Stein, who has written recently about the relationship between science and

engineering in knowledge representation and reasoning (Stein 1996).

If a machine learning algorithm were run on the unusual words in the accepted

papers, it would certainly notice that four out of �ve papers used the acronym

\SAR." In two papers (Kubat et al. 1998; Burl et al. 1998) it referred to Synthetic

Aperture Radar, while in the other two (Lee et al. 1998; Finn et al. 1998) it referred

to Structure-Activity Relationship. Despite the chance that the training set has

been over�t, we intend to include \SAR" in our future submitted papers to enhance

our acceptance rate.
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Notes

1. See also the discussion by Stein concerning knowledge representation and reasoning (Stein

1996).

2. We hope that the emergence of a new community (KDD), part of whose emphasis is on machine

learning research based on the needs of applications, is not an indication that �eld of Machine

Learning proper has spun o� tangentially from this vital cycle; however, the possibility deserves

consideration.
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