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Abstract

Large collections of scanned documents (books and jour-
nals) are now available in Digital Libraries. The most com-
mon method for retrieving relevant information from these
collections is image browsing, but this approach is not feasi-
ble for books with more than a few dozen pages. The recog-
nition of printed text can be made on the images by OCR
systems, and in this case a retrieval by textual content can
be performed. However, the results heavily depend on the
quality of original documents. More sophisticated naviga-
tion can be performed when an electronic table of contents
of the book is available with links to the corresponding
pages. An opposite approach relies on the reduction of the
amount of symbolic information to be extracted at the stor-
age time. This approach is taken into account by document
image retrieval systems.

In this paper we describe a system that we developed
in order to retrieve information from digitized books and
journals belonging to Digital Libraries. The main feature
of the system is the ability of combining two principal re-
trieval strategies in several ways. The first strategy allows
an user to find pages with a layout similar to a query page.
The second strategy is used in order to retrieve words in the
collection matching a user-defined query, without perform-
ing OCR. The combination of these basic strategies allows
users to retrieve meaningful pages with a low effort dur-
ing the indexing phase. We describe the basic tools used in
the system (layout analysis, layout retrieval, word retrieval)
and the integration of these tools for answering complex
queries. The experimental results are made on 1287 pages
and show the effectiveness of the integrated retrieval.

1. Introduction

After several years of massive digitization activities,
main libraries hold now large collections of digitized books
and journals. Some of these collections are available in In-
ternet, and accessible for free download. In these systems,
the retrieval of relevant documents is usually based on the
information provided by catalog cards (e.g. title, author, and
so on). Sometimes the document textual content is con-
verted by OCR and in this case the retrieval by (imprecise)
text content is possible with techniques derived from Infor-
mation Retrieval (IR) [1] (see Section 2 for an analysis of
some Internet digital libraries).

Document Image Retrieval (DIR) aims at finding rele-
vant document images from a corpus of digitized pages.
DIR is a research field that lies at the borderline between
classic IR and Content Based Image Retrieval (CBIR) [2].
The basic idea of document image retrieval is to find doc-
uments relying on document image features only. Relevant
sub-tasks include the retrieval of documents on the basis of
layout similarity [3], and the retrieval considering the tex-
tual content [4]. A recent survey [5] investigated past re-
search and future trends in document image retrieval. Most
work has been based on the processing of converted text
with IR-based techniques. Fewer methods approached the
retrieval by layout similarity, and related approaches have
been considered for document page classification.

In [6] a general framework for document image retrieval
has been proposed. The system allows users to retrieve doc-
uments on the basis of both global features of the page and
features based on blocks extracted by layout analysis tools.
Global features include texture orientation, gray level dif-
ference histogram, and color features. The block-based fea-
tures use a weighted area overlap measure between seg-
mented regions. More recently, the combination of global
(page-level) and local features has been furtherly investi-
gated for computing visual similarity between document
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Figure 1. A page in the MOA Digital Library presented to the user with two formats: as image (left)
and as text obtained by an OCR (right).

images for page classification [7]. In this approach a fixed-
size feature vector is obtained by extracting some specific
features in the regions defined by a grid superimposed to
the page. Similar grid-based methods are described in [8]
and in [9].

In order to overcome some problems related to the choice
of an optimal grid size, a page retrieval method based on
an MXY tree decomposition of the page has been recently
proposed in [3]. This method relies on an MXY tree [10]
built during image segmentation. In page indexing appro-
priate feature vectors describing both the global features
of the page and the MXY tree structure are stored in the
database. During retrieval, a query by example approach is
considered. To this purpose the user first selects one sam-
ple page by browsing the collection; afterwards a compari-
son of the query feature vector with vectors in the database
is performed with an appropriate similarity measure, and re-
trieved documents are shown to the user.

When dealing with the text the approaches can be clus-
tered into two main categories on the basis of the use of
OCR.

The first class of methods avoids the use of OCR and is
usually based on two steps [11, 12]. In the indexing step the
textual content of the document is encoded with some “ad-
hoc” method, and the characters are represented with ap-

propriate features without explicitly assigning a character
class to individual objects. In the retrieval step the relevant
documents are extracted from the database by encoding the
query with the same algorithm used during indexing, and
matching the query representation with the encoded docu-
ments. Some queries are based on a simple word matching
approach, whereas methods closer to IR identify the doc-
uments on the basis of distributions of word occurrences,
and rank the fetched documents with appropriate similar-
ity measures.

The second class of methods use OCR systems and the
approaches rely on the processing of the converted text to
find the information [13, 14]. In this case the systems must
cope with the recognition errors that are inevitably intro-
duced by the OCR. If errors in the retrieval task are allowed,
then the uncorrected OCR output can be considered as text
encoding and query matching has to deal with the previ-
ously mentioned errors. Two symmetric approaches can be
considered. The first strategy relies on query expansion, and
is based on the simulation of OCR errors during the retrieval
step, by searching for distorted versions of the query term
as well. For instance, when looking for the word “dog” it is
possible to look also for “dcg”, expecting an OCR confu-
sion between the “o” and the “c”. In the second approach,
the query is compared with the words in the stored doc-
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Figure 2. Browsing the MOA Digital Library: the index of journals (left), and the index of pages of one
journal issue (on right).

ument by using a matching strategy that takes into account
the “distance” (or dissimilarity) of two words. The latter ap-
proach is based on the computation of the string edit dis-
tance between the query and the strings in the database.
This approach has been adapted by introducing “ad hoc”
edit costs for most common OCR errors (e.g. [13]).

String edit distance can be used also when dealing with
symbolic encoding of text in OCR-free approaches. The
main problem of string edit distance based methods is the
computational cost when dealing with large collections of
documents. To speed-up the retrieval of similar words sev-
eral approaches try to efficiently solve the approximate
string matching problem (e.g. [15, 16]) which can be de-
fined as follows: “find the text positions that match a pat-
tern with up to h errors” [16]. Approximate string matching
can be of low interest when the user is interested in rank-
ing the words on the basis of their similarity with the query,
since defining a priori an appropriate value for h can be dif-
ficult in general cases. In this case ranking queries appear
more appropriate. The ranking query is a generalization of
k-nearest-neighbor query with a previously unknown result
set size k. The results of this query are ordered on the ba-
sis of the proximity with the query (similarly to k-nn query),
but there is no need to define in advance the number of ob-
jects to be retrieved.

Unfortunately, approaching ranking queries for strings
is computationally expensive, since all the words in
the collection should be compared with the query and
sorted. On the other hand ranking query has been effi-
ciently solved in vectorial spaces where points are stored
with multi-dimensional access methods (e.g. R-tree [17],
and X-tree [18]). To use techniques specific of vecto-
rial spaces in the domain of strings we need to formulate
the string matching problem in a vectorial space. In a re-
cent paper [4] we proposed a method for the retrieval
of words encoded by describing the character-like ob-
jects of the words with classes obtained by the unsuper-
vised learning of a Self Organizing Map (SOM [19]). The
encoded words are converted into a fixed-size representa-
tion that can be compared with the query by means of the
standard Euclidean distance.

In the present paper we describe the integration of the
word and layout indexing and retrieval in a unique frame-
work that can be used in Digital Library (DL) applications.
We first review most common paradigms exploited by Inter-
net DLs for document retrieval (Section 2). Section 3 is de-
voted to the description of the overall system, by briefly dis-
cussing the role of the various modules. In the next sections
we analyze individual modules, namely the layout analy-
sis (Section 4), the indexing and retrieval of page layout
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Figure 3. Browsing interface in the British Library web site. Thumbnails allow users to quickly iden-
tify pages.

(Section 5), and the indexing and retrieval of words (Sec-
tion 6). Section 7 is dedicated to the analysis of the inte-
gration between word retrieval and layout-based page re-
trieval. Finally, some experimental results are discussed in
Section 8, whereas the conclusions are in Section 9.

2. Retrieval in Digital Libraries

Several Digital Libraries made available in Internet parts
of their collections for free browsing and download. These
on-line libraries are good examples of the current technol-
ogy and their properties are of interest for the Document
Image Analysis research (DIA). In this section we briefly
review the most important features of some relevant web
sites.

The basic data that are provided to users are the catalog
contents. This information is available in most web sites of
libraries, and the exchange of catalog records has been stan-
dardized in the last decades through the OPAC (Online Pub-
lic Access Catalog) infrastructure [20]. From the DIA point
of view the most interesting libraries are those providing ac-
cess to digitized pages of their holdings. The differences are
related to the way users can find interesting documents, and
to the file formats supported. Three main digital libraries are
the subject of this analysis: Making of America (from Cor-
nell University Library), Gallica (from National Library of
France), and British Library.

The “Making of America” (MOA) digital library has
been built with a collaborative effort between Cornell Uni-

versity and the University of Michigan. In the follow-
ing we will refer to the Cornell Library (current URL:
“http://cdl.library.cornell.edu/moa”, see also [21]). MOA is
a well known digital library of primary sources in Ameri-
can social history. The Cornell site of MOA provides access
to 267 monograph volumes and over 100,000 journal arti-
cles. The MOA system allows users to view digitized pages
of the 19th century texts. The website is fine for brows-
ing the books, however images are in GIF format, the
resolution is low, and each image has to be downloaded in-
dividually. Most documents in the collection have been pro-
cessed with an OCR package without any check of the re-
sults. The text extracted with the OCR can be used for
retrieving relevant documents with a keyword-based in-
terface, although some OCR errors can affect the results
(Figure 1). In addition it is possible also to browse the doc-
uments by looking at the index of journals, or reading (for
each issue) the table of contents (Figure 2).

The “Gallica” digital library is the on-line service of the
Bibliothèque Nationale de France (the National Library of
France, current URL: “http://gallica.bnf.fr/”). The “Gallica”
web site contains a large collection that is regularly updated
adding new documents each month. Currently more than 15
millions of pages are available in digital format. Documents
are not limited to French language; there are also digitized
books in other languages. One interesting feature of this li-
brary is that entire books can be downloaded as a single
multi-page TIF or PDF file. In addition the tables of con-
tents of several books have been inserted in the site in order
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Figure 4. Tools and data structures of interest in the indexing step. The black node in the tree corre-
sponds to a text region.

to facilitate document browsing and retrieval.

Another interesting web site (at least for historical rea-
sons) is the site of the British Library that contains a
link to two scanned books of the Gutenberg’s Bible (cur-
rent URL:“http://prodigi.bl.uk/gutenberg”). The images are
high resolution, but should be downloaded individually. The
pages can be retrieved by selecting the appropriate Book of
the Bible, and looking for interesting pages in a thumbnails
page (Figure 3).

From this brief excursus about the retrieval mechanisms
exploited in current DLs it is clear that other approaches
could be useful.

One direction is the implementation of libraries with
high level information provided to users. An example of
this approach is the “Miguel de Cervantes” digital library
(current URL:“http://cervantesvirtual.com”) that proposes
large collections of manually transcribed (or checked) texts.
Older documents are also annotated with linguistic con-
tents. This approach is obviously very interesting from a
user point of view, but it is very expensive.

The opposite direction is exploited by document image

retrieval systems. With this approach the information about
the text and layout of scanned documents is indexed. The
user can retrieve the document images with queries involv-
ing both the text and the layout.

In the rest of this paper we describe a system using this
integrated retrieval approach.

3. System overview

The system described in this paper is built by combin-
ing several tools and algorithms that have been developed
in the last few years by our research group. The overall sys-
tem is designed in order to be able to index and retrieve in
an efficient way the information contained in scanned docu-
ments. From a functional point of view two main steps must
be considered: the indexing and the retrieval.

The general scheme of the indexing step is depicted in
Figure 4, where the following functional blocks are inter-
connected:

• The layout analysis tool is dedicated to page segmen-
tation, and the subsequent organization of the page
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Figure 5. Text lines and baselines in two document images.

blocks into a hierarchic data structure (the MXY tree).
Moreover, this tool discriminates the text regions from
those containing images. The procedures considered in
this step are described in Section 4.

• Each MXY tree is encoded into a vectorial represen-
tation that is appropriate for layout-based document
retrieval (Section 5). In addition each tree is entirely
stored for handling integrated queries (Section 7.2).

• From each text region the words are extracted and their
characters are segmented as well. The characters are
used to train the SOM map required for word encod-
ing (Section 6).

The tools employed in the indexing phase describe the
scanned pages through the information stored into three
main repositories (Figure 4): a collection of MXY trees (the
“MXY tree DB”), an encoding of MXY Trees (the “Lay-
out DB”), and an encoding of the words in the page (the
“Word DB”). The SOM map is stored as well in order to
represent the most common characters in the pages.

Given the information stored in the three databases and
in the SOM map, there are several retrieval strategies that
can be employed depending on user interests. These strate-
gies are graphically depicted in Figures 10, 13, 17, 18, and
will be described with more details in the rest of the pa-
per. The basic approaches are the following:

• Retrieval of pages on the basis of the layout similarity
(Section 4 and Figure 10). In this case the user chooses
one page, and the system retrieves the pages with a lay-
out similar to the user’s query.

• Retrieval of pages containing a user-defined word (the
position of the word in the page is shown as well). This
strategy is described in Section 6 and explained in Fig-
ure 13.

• Integrated strategies that combine the retrieval by lay-
out similarity and the word retrieval. These approaches
are described in Section 7. Two examples of these
strategies are:
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Figure 6. Connected components are first
found in a text line. Character objects are
computed from connected components.

– the retrieval of pages with a given layout, and
containing an user defined word (Section 7.1 and
Figure 17). This approach can be used, for in-
stance, for identifying pages corresponding to the
first page of a chapter.

– the retrieval of pages containing two (or more)
user-defined words in the same text block (Sec-
tion 7.2 and Figure 18). This method can be ap-
propriate when an user is interested in locating
pictures describing a given subject; in this case
the keyword “Figure” will be searched together
with a keyword related to the subject of interest.

In the following sections we analyze the most significant
parts of the system.

4. Layout Analysis

The two main retrieval methods described in this paper
are based on a symbolic representation of the page layout.
Each input image is first processed by a layout analysis tool
that is aimed at extracting homogeneous regions in the page.
The basic items that are extracted from the image are the
connected components, that are used in subsequent steps for
locating words and text lines, as well as for segmenting the
pages in homogeneous regions by building a tree-structure
representing the page layout (the MXY tree).

4.1. Text line processing

Connected components are found with a classical region
labeling algorithm, and several pieces of information are re-
tained after this step: the coordinates of the bounding box

of the component, the number of black pixels, and the Me-
dian value of Black horizontal Run lengths in the compo-
nent (MBR). The last value is a feature that, together with
the character height, is strongly related to the font family
and character attributes. From the computational point of
view this step is the most demanding, since all the pixel in
each image have to be read. All the subsequent steps work
with the list of connected components obtained in this step.
The original image is accessed, for word indexing, only in
the parts corresponding to connected components that most
likely contain characters.

Connected components are grouped together to find
the text lines in the page. To this purpose adjacent com-
ponents with similar height and similar MBR are grouped
together. Another feature that is checked is the inter-
component distance, that is related to inter-character
distance in text lines. To deal with variable size text (e.g. ti-
tles), the inter-character distance is adapted to each text
line, by taking into account the average distance be-
tween a horizontal neighborhood of the current charac-
ter. When a text line is found, an estimated baseline for it is
computed as well (see Figure 5 for an example of this pro-
cessing step in two pages).

It is well known that connected components are, in West-
ern languages, a good approximation of characters. The ex-
ceptions are due to accents (e.g. à .è), and dots over ’i’
and ’j’. In actual scanned documents broken and touch-
ing characters can give rise to wrong correspondences be-
tween connected components and characters. To reduce the
effect of broken characters we perform a simple process of
connected components merging by obtaining the Character
Objects (CO). The algorithm is based on merging the con-
nected components in the same text line with an overlap in
the vertical projection profile (Figure 6).

4.2. MXY tree building

In this Section we briefly describe the segmentation that
is obtained by using the MXY tree algorithm [10]. By
means of this description we will analyze in Section 4.3 the
improvement proposed in this paper that takes into account
font changes for recursively segmenting a page.

The XY tree ([22], [23], [24]) is a well-known top-down
method for page layout analysis. The basic method consists
in using thresholded projection profiles to split the docu-
ment into successively smaller rectangular blocks [23]. A
projection profile is the histogram of the number of black
pixels along parallel lines through the document. The blocks
are split by alternately making horizontal and vertical “cuts”
along white spaces that are found by using the thresholded
projection profile. The result of such segmentation can be
represented in a XY tree, where the root is for the whole
page, the leaves are for blocks of the page, whereas each
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level alternatively represents the results of horizontal (X-
cut) or vertical (Y-cut) segmentation.

Algorithm 1 XYTree (image, dir, vacuous)
Input:

image: input image.
dir: direction of cutting (H |V ).
vacuous: is a boolean that is true when image has been
obtained with a vacuous cut.

Output:
node: node of the X-Y tree corresponding to image.

begin
if IsSmall(image)

then return NULL
sub regions ← FindRegions(image,dir)
node ← AllocNode(image,dir)
dir ← ChangeDir(dir)
if sub regions = ∅ then

if vacuous = true
then return NULL;

else begin
node.child[0] ← XYTree(image, dir,true)
return node

end
end
i←0
foreach region ∈ sub regions begin

node.child[i] ← XYTree(region, dir,false);
i←i + 1

end
return node

end

Algorithm 1 will be used as a basis for analyzing the
variations of the XY tree segmentation method discussed
here. The input to the algorithm are the region to be ana-
lyzed (image), the cutting direction (dir), and vacuous, a
boolean that is true when image has been obtained with a
vacuous cut. A vacuous cut [22] corresponds to a node with
a unique child, that is required when a region must be cut
at consecutive levels in the same direction (e.g. a column
may be first cut horizontally into paragraphs, and again cut
in the same direction to break paragraphs into text lines).
At the first execution of XYTree, image corresponds to
the whole image to be segmented, dir can be H or V (de-
pending on the adopted strategy) whereas vacuous is set to
false.

The function IsSmall is used to stop the splitting pro-
cess when image is too small. Function AllocNode al-
locates the structure containing the node attributes (e.g. the
cutting direction), and depends on the actual implementa-
tion of the algorithm. node.child[i] denotes the i-th child
of node. ChangeDir changes the cutting direction, to al-
ternate the splitting at different levels of the tree.

Algorithm 2 Find Regions(image, dir) (Separators:
spaces)

Input:
image: Input image.
dir: Direction of cutting (H |V ).

Output:
sub regions: list of regions obtained by splitting
image.

begin
profile ← Projection(image,dir)
sub regions ← Cut(image, profile)
return sub regions

end

The main differences among various methods are
in the ways split regions are obtained by function
FindRegions. As shown in Algorithm 2, the extrac-
tion of regions is based on two processes: locating separa-
tors, and defining sub regions. Projection(image, dir),
calculates the thresholded projection profile of image in di-
rection dir. This procedure is the most expensive part of
the algorithm, since for each execution of XYTree we
need to consider all the pixels of the sub-image. One solu-
tion to this problem, that is employed also in our system,
is based on the computation of projection profiles by us-
ing bounding boxes of connected components instead of
single pixels [25].
Cut(image, profile) calculates the sub-regions com-

posing image on the basis of profile. By changing the pro-
cedure Cut different segmentation strategies can be imple-
mented.

In a recent paper [10] we proposed an extension of the X-
Y tree segmentation algorithm that takes into account cuts
along horizontal and vertical lines (an example of this seg-
mentation is shown in Figure 7). In the following we briefly
summarize the main algorithm (further details on the fea-
tures of cutting elements can be found in [10]).

As previously remarked the XY tree segmentation re-
quires two main operations. First, a set of potential cutting
elements is found in the region to be segmented. Second,
appropriate cutting elements are selected from the set pre-
viously defined.

The function FindRegions has been modified (Al-
gorithm 3) in order to deal also with lines. At each level,
the algorithm first tries to cut along lines, if no cutting
lines are found, appropriate spaces are searched in the im-
age. FindLines finds horizontal or vertical ruling lines,
and CutLine calculates the regions that are obtained by
splitting along lines. Similarly, FindSpaces, locates cut-
ting spaces by using thresholded projection profiles, and
CutSpace, calculates the corresponding regions.

In Algorithm 3, we consider only two kinds of separa-
tors: spaces and lines. By using these separators we obtain
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Figure 7. Example of MXY tree. (A): sample page (grey blocks correspond to homogeneous regions,
thick lines are cutting lines). (B) and (C): first and second segmentation levels. The corresponding
M-X-Y tree is shown in (D).

good results for a broad range of documents [10]. However,
some documents contain other kinds of separators, and dif-
ferent items can be separated by abrupt discontinuities in the
background colors, or by dashed lines. Another type of sep-
arator that is of interest when dealing with printed books is
a change in font size or attributes that identifies a seman-
tically different part (for instance the title of a Section or
one or more sentences that constitute a citation). The exten-
sion to these separators is described in the next section.

Algorithm 3 FindRegions (image, dir) (Separators:
spaces and lines)

Input:
image: Input image.
dir: Direction of cutting (H |V ).

Output:
sub regions: ordered list of regions obtained by splitting
image.

begin
lines ← FindLines(image,dir);
sub regions ← CutLine(image, lines);
if sub regions = ∅ then

spaces ← FindSpaces(image,dir);
sub regions ← CutSpace(image, spaces);

end
return sub regions

end

4.3. Font changes as separators

The purpose of this extension of the MXY tree segmen-
tation algorithm is the identification of separators between
different zones of a text block that are obtained by changes
in the font size or attributes. An example of this situation is
shown in Figure 8 where we show a column text where the
font features change several times.

The identification of cutting spaces is now performed
by evaluating a measure of the change in font size and at-
tributes that is computed for each horizontal white space.
In this way the overall segmentation algorithms is, in fact,
an integration between a bottom-up and a top-down algo-
rithms. The bottom-up text line detection algorithm pro-
vides some features that are used by the top-down MXY tree
algorithm. The obvious advantage of this algorithm (with
respect to other pure bottom-up algorithms) is the use of the
tree data structure for the subsequent retrieval of pages con-
sidering the layout similarity (Section 5).

In the bottom-up step we identify the text lines and com-
pute for each of them two simple features: the Median value
of Black horizontal Runs (MBR) and the Median value of
Character Height (MCH). These two values can be com-
puted directly for the features of the connected components
(Section 4.1) without requiring additional accesses to the
input image. Changes in MBR and MCH values suggest
changes in font attributes.

This font change is more robust than variations in the
size of horizontal white space between lines, or even than
the distance between consecutives baselines (in fact the dis-
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Figure 8. A text composed by several blocks with different font features. The distance between con-
secutive baselines is constant, however some features change. FD is the Feature Distance that is
obtained (Eq. 1) from ∆MCH and ∆MBR. WS denotes the height (in pixels) of the horizontal white
space.

tance between baselines in roughly constant for each pair of
text lines in Figure 8). We denote with FD the Font Dif-
ference that is computed for each horizontal white space as
follows: let ∆MCHi be the difference between the MCH
of the two text lines i and i + 1 (ad similarly for MBR).
We can then compute the FDi for space Si (enclosed be-
tween text lines i and i + 1) as described in Eq. 1, where
∆MCHi and ∆MBRi are defined in Eq 2.

FDi =
√

3 · ∆MCHi
2 + ∆MBRi

2 (1)

∆MCHi = MCHi − MCHi+1

∆MBRi = MBRi − MBRi+1
(2)

The multiplying factor before ∆MCHi is considered
in order to balance the contribution of ∆MCHi and of
∆MBRi. In Figure 8 we report a text block where the font
size and attributes change several times. By comparing the
values of FD and WS for each horizontal space it is possi-
ble to observe that the FD value measures in a more effec-
tive way font changes.

Algorithm 4 FindSpacesFD (image)
Input:

image: Input image.
Output:

sub regions: ordered list of regions obtained by splitting
image.

begin
spaces ← FindSpaces(image,H);
if NotUniform(spaces) then

sub regions ← CutSpace(image,spaces);
else

FD ← ComputeFD(spaces);
if NotUniform(FD) then

sub regions ← CutFD(image,FD);
else
sub regions ← image;

return sub regions
end

We used the FD value as a measure for locating and
identifying cutting spaces. To describe this new segmen-
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Figure 9. Examples of segmented pages obtained by the proposed method.

tation approach, we substitute the function FindSpaces
in Algorithm 3 with the function FindSpacesFD de-
scribed in Algorithm 4 (only when dealing with horizon-
tal spaces). The latter algorithm implements the strategy of
first looking for uniform horizontal spaces by using function
NotUniform, that computes the standard deviation of the
distribution of the widths of white spaces. When the stan-
dard deviation is low (spaces are uniformly distributed) we
search potential cut position by computing the FD value
for each space. The segmentation is then made along the
highest values of this measure of font change (using func-
tion CutFD). If no way of segmentation is found, then the
segmentation is stopped in this part of the tree. The corre-
sponding region will be assigned to a leaf in the MXY tree.
At the end of the segmentation each region is labeled on
the basis of its content as Text (T) or Image (I). This label-
ing is obtained by taking into account the size of the con-
nected components in the region, and the variation in MDR
values.

The segmentation strategy just outlined has several ad-
vantages with respect to the standard MXY tree algorithm.

• There is no need to fix some thresholds that define

when the recursive segmentation needs to be stopped.
In fact, this is decided by measuring the uniformity of
cutting spaces (or FD values in case of uniform spac-
ing).

• It is possible to break one of the limits of the clas-
sical XY decomposition algorithms: the segmentation
of objects that are enclosed in textual regions (for in-
stance text flowing around a picture).

Figure 9 reports two examples of segmented pages with
the features just mentioned (different font sizes, and nested
pictures). The left page contains a caption and two margina-
lia (at the bottom) that are close to upper objects but are well
segmented, since the MCH and MBR values in the lines
are different. The right page contains a figure that is larger
than the column width. In this case the figure is well seg-
mented (and also its caption) and the text column on the left
is only partially broken. In case of use of the standard MXY
tree algorithm the segmentation of this figure could be ob-
tained only by setting the stop threshold to a value close
to the interline distance. The effect on the processing of the
whole page would be an over-segmentation of the page, pro-
viding a region for each text line.
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Figure 10. Main programs and data structures used in the retrieval of documents on the basis of the
layout similarity.

5. Layout-based retrieval

The layout similarity is computed by considering the dis-
tance between feature vectors describing the page layout.
With reference to Figures 4 and 10 there are several opera-
tions involved in layout-based document retrieval. In the in-
dexing phase the page layout is encoded (Section 5.1) and
stored in “Layout DB”. When performing the retrieval, the
query page is first segmented and the corresponding layout
is encoded as well. Pages in the database are subsequently
ranked as described in Section 5.2.

Each feature vector contains two main groups of fea-
tures. The first group is related to global features that de-
scribe the position and size of the printed part of the page
with respect to the other pages contained in the same book.
The second group describes the layout of the page and is ob-
tained through an appropriate encoding of the MXY tree of
the page. The page similarity is computed with a combina-
tion of two measures that operate independently for each
group of features. In this section we describe the two parts
of the feature vector and the similarity measure that we in-
troduced in order to deal with this representation.

5.1. Layout encoding

The page layout is described by means of an MXY tree.
This description has been demonstrated to be adequate for
the classification of journal pages, where page layouts are
quite complex and MXY trees are usually composed by sev-
eral nodes [26]. When considering digitized books there are

HS

VLA

B CCB

A

Figure 11. A simple MXY tree with the cor-
responding blocks in the page. The page
bounding box is described in the root node.

some pages whose layout is made by a unique block. Typi-
cal examples are pages containing continuous text (the nar-
rative part of the book). Other pages composed by a sin-
gle text block contain, for instance, short dedications. These
layouts can be recognized with some features describing the
position and size of the printed part of the page with re-
spect to the whole book. The printed part of a page is rep-
resented in the MXY tree root (Figure 11). Heterogeneous
collections contain books with variable size. However, users
are usually interested in pages with a given layout indepen-
dently from the book size. The position and size of the root
of the tree representing each page are normalized with re-
spect to the bounding box of all the book pages. In so doing
we obtain features that are invariant with respect to differ-
ent book sizes and different book placements in the scan-
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Figure 12. A simple MXY tree and the bal-
anced tree patterns in the tree, with the cor-
responding occurrences.

ner.
The features can be computed in the following way. Let

(xbj
i , ybj

i ) and (xej
i , yej

i ) be the top-left and bottom-right
points of the bounding box of page Pi in book Bj . The
“book bounding box” can be simply computed by Equa-
tions 3:

XBj = min
Pi∈Bj

(xbj
i ) Y Bj = min

Pi∈Bj
(ybj

i )

XEj = max
Pi∈Bj

(xej
i ) Y Ej = max

Pi∈Bj
(yej

i )
(3)

The page location can be described by computing the

normalized position of the page center (xj
i = xbj

i
+xej

i

2 ,

yj
i = ybj

i
+yej

i

2 ) with respect to the “Book Bounding Box”
(Eq. 4):

xj
i = xj

i
−XBj

XEj−XBj yj
i = yj

i
−Y Bj

Y Ej−Y Bj
(4)

The normalized width (wj
i ) and height (hj

i ) of page Pi in
book Bj can be computed in the same fashion (Eq. 5):

wj
i = xej

i
−xbj

i

XEj−XBj hj
i = yej

i
−ybj

i

Y Ej−Y Bj
(5)

The MXY tree data structure is encoded into a fixed-size
feature vector for page classification by taking into account
occurrences of tree-patterns made by three nodes [26]. This
approach is motivated by the observation that similar lay-
outs frequently contain some common sub-trees in the cor-
responding MXY tree.

Trees composed by three nodes can have two basic struc-
tures. The first pattern has the root and two children (and
is denoted as balanced tree pattern). The second pattern
is made by the root, one child, and a child of the second
node (chain tree pattern). MXY tree nodes contain sym-
bolic attributes describing the purpose of the node. Internal
nodes represent the cut strategy considered: we can have
cuts along either spaces or lines in the horizontal direction
(HS, HL), or in the vertical direction (V S, V L). Leaves
correspond to homogeneous blocks in the page: text (T ),
image (I), horizontal line (hL), or vertical line (vL). Since
allowed node labels are in a fixed number, the number of

possible tree-patterns (denoted with TP ) is fixed as well.
In Figure 12 we show an example tree and the correspond-
ing balanced tree-patterns.

Under these hypotheses, similar pages have some tree-
patterns in common, and sometimes similar pages contain
the same number of occurrences of a given tree-pattern (for
instance table pages usually contain a large number of tree-
patterns with lines). Unfortunately, there are some patterns
that appear roughly in every document, and in this case
these patterns are not very useful for measuring page simi-
larities.

These peculiarities are very similar to the use of index
terms in classic Information Retrieval. We extended the vec-
tor model approach, used in IR for dealing with textual doc-
uments, to our representation based on tree-patterns. The
vector model of IR (see [1], Chapter 2) is based on a vecto-
rial description of the document textual contents. The vec-
tor items are related to the occurrences of index terms, that
usually correspond to words, in the document. Actual vec-
tor values are weighted in order to provide more importance
to most discriminant terms. One common approach relies
on the well known tf-idf weighting scheme. Basically, in-
dex terms that are present in many documents of the col-
lection have a lower weight since their presence is not dis-
criminant. In our approach the vector model is used to de-
scribe the page layout. To this purpose we use the MXY tree
representation, and occurrences of tree-patterns are consid-
ered instead of word-based index terms. The extension of
tf-idf weighting to this case is straightforward; the weight
assigned to the k-th tree-pattern in page Pi is computed by
the following equation:

wi,k = fi,k · log
(

N

nk

)
(6)

where fi,k is the frequency of the k-th tree-pattern in
the tree corresponding to page Pi normalized with respect
to the maximum tree-pattern frequency in the tree associ-
ated to page Pi, N is the total number of pages, and nk is
the number of pages containing the k-th tree-pattern.

5.2. Similarity computation

The similarity between two pages is computed by taking
into account the corresponding feature vectors that are com-
posed by two parts. The feature vector describing page Pi

in book Bj can be represented as depicted in Eq. 7.

�Pi = [T, L, I, xj
i , y

j
i , w

j
i , h

j
i , . . . wi,1, . . . , wi,k, . . . , wi,TP ]

(7)
The first seven values correspond to global fea-

tures. (T,L,I ) are binary values describing the tree root.
(xj

i , y
j
i , w

j
i , h

j
i ) describe the position and size of the tree
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Figure 13. Main programs and data structures used for word retrieval. In this example the input is
the query word “Africa”.

root (Eq. 4 and 5). The remainder of the vector con-
tains an encoding of the MXY tree associated to the page:
wi,k k = 0, . . . , TP are the weights associated to the oc-
currences of tree-patterns (Eq. 6).
The MXY tree of a page with a single block has a unique
node corresponding to a text block, a line, or an im-
age. These three cases are described with a mutual ex-
clusion in T,L,I values (for instance a text block is de-
scribed by T = 1, L = 0, I = 0). When the page contains
more blocks, then the root does not correspond to a sin-
gle block, and in this case the three values are all set to
zero.

The similarity between a query page q and a generic page
p in the database is computed by combining two similarity
measures for the two components of the feature vector. Let
F be the feature vector space, and �V ∈ F be a generic vec-
tor in F . We indicate with �VGL and �VXY the global and the
MXY-tree specific sub-vectors, respectively. Let �Q ∈ F and
�P ∈ F be the feature vectors corresponding to the query
page q and to the page p, respectively. The similarity be-
tween q and p can be computed by Eq. 8

Sim(�P , �Q) =
α · SimEuc(�PGL, �QGL) + β · SimCos(�PXY , �QXY )

(8)
The similarity between �PGL and �QGL is computed by

using the Euclidean distance between the two sub-vectors
(Eq. 9). The distance is divided by the maximum value that
can reached (

√
6) in order to bound the maximum value to

1, and this value is subtracted from 1 in order to obtain val-
ues close to 1 when the pages are similar and the two sub-
vectors are the same.

SimEuc(�PGL, �QGL) = 1 −
√∑7

i=1(PGL[i] − QGL[i])2
√

6
(9)

The similarity between the two sub-parts of the vector
describing the MXY tree is computed by taking into account
the cosine of the angle between the two vectors (Eq. 10)

SimCos(�PXY , �QXY ) =
�PXY ×�QXY

|�PXY |·| �QXY | =∑
T P

i=1
(PXY [i]·QXY [i])√∑

T P

i=1
PXY [i]2·

√∑
T P

i=1
QXY [i]2

(10)

The two parameters α and β are used in order to weight
the contribution of the two parts to the overall similarity
measure. Several tests have been made by varying the val-
ues of α and β as discussed in [3]. The main conclusion that
can be drawn from these experiments is the observation that
the retrieval algorithm is robust with respect to different val-
ues of α and β, and that good results can be obtained with
a wide range of values for α and β. In the integrated sys-
tem described here we set α = 0.5 and β = 0.5.

6. Word indexing and retrieval

Similarly to layout retrieval, word retrieval is composed
by an indexing phase (Figure 4) and by a retrieval one (Fig-
ure 13). In the indexing phase the textual parts of a page are
first segmented into words and then character objects (CO)
are extracted by locating connected components and group-
ing together overlapping components (see Section 4). This
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Figure 14. Two graphical representations of the trained SOM map. Left: 2D coordinates of the neu-
rons, showing the proximity of similar nodes. Right: some COs that are most similar to prototypes
corresponding to the output neurons.

process is not error-free and broken or touching characters
can be considered as CO. The COs of each word are la-
beled according to a clustering algorithm, so as to obtain a
fixed-size representation. In the retrieval phase a query word
is typed by the user and the system (using the LATEXpackage)
generates a query image that is encoded with the same algo-
rithm used in the indexing. Most similar words are found by
computing a simple Euclidean distance between the query
word and the words stored in the database.

6.1. Character clustering

Character-like coding is a well known approach for per-
forming text retrieval without OCR. The indexing algorithm
is composed by two main parts. In the first step character
objects are extracted from the document image. In the sec-
ond step each CO is described with a symbolic (a code)
or sub-symbolic (a feature vector) representation. Charac-
ter description is based on the clustering of similar charac-
ters. The main distinction between this step and an OCR
is that here the system does not try to assign the “right”
class to characters. In its simplest form the encoding can be
based on character shape coding that has been successfully
applied for Information Retrieval without OCR [11]. Char-
acter shape codes capture the main features of individual
characters without the computational cost of OCR. With a

more expensive approach a feature vector can be computed
for each CO, as described in a recent application to text re-
trieval [12].

In our system we use Self Organizing Maps (SOM [19,
27]) for character object clustering. The Self Organizing
Map is a special kind of artificial neural network that is
based on competitive learning algorithms, where the out-
put neurons of the network compete among themselves.
The SOM neurons are arranged in a two dimensional lat-
tice (feature map). Each neuron receives inputs from the
input layer and from the other neurons in the map. Dur-
ing learning the network performs clustering by means of a
competitive learning mechanism [27]. Each neuron has at-
tached one feature vector that can be thought as a proto-
type for the patterns associated to the corresponding clus-
ter. Moreover, each neuron is placed in a 2D space. At the
beginning of the learning neurons are placed in random po-
sitions, during learning the neurons are moved so as to re-
flect cluster similarity by means of distance in the map. Fur-
ther details on the learning process can be found in [27].

In our approach each CO is first scaled to fit a 8 by 10
grid. The 80 values that are computed from the pixel den-
sity in each item of the grid are used for CO representa-
tion. Similarly, the SOM prototypes are vectors with 80 el-
ements. With reference to Figure 14, we can see the infor-
mation associated to each neuron (i, j): the neuron position
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Figure 15. Top: the slices superimposed to
a query word obtained with LATEX. Bottom: a
word in the database with the corresponding
slices. Below each word we report the coordi-
nates of the SOM neurons corresponding to
each slice.

is given by MapX(i, j) and MapY (i, j) whereas its pro-
totype (Prot(i, j)) is graphically represented by the CO in
the training set that is closer to the 80-dimensional proto-
type vector.

One advantage of the use of SOM for CO clustering is
the spatial organization of the feature map that is achieved
after the learning process. Basically, more similar clusters
are closer than more different ones. Consequently the dis-
tance among prototypes in the output layer of the SOM can
be considered as a measure of similarity between charac-
ters in the clusters (see Figure 14 for an example).

6.2. Word encoding

When digitized words contain broken or touching char-
acters, two instances of a given word are not constrained to
have the same number of COs. This problem is solved in
OCR systems by checking the recognition results with ap-
propriate dictionaries. In our system, each CO is assigned
to one SOM neuron, and identified with the coordinates of
the neuron in the map. A word can therefore be represented

with a variable size vector corresponding to COs output
neurons.

This variation in string length is an obstacle to fast re-
trieval of words, and a string edit distance algorithm should
be considered for word retrieval. However, the use of string
edit distance for comparing word encodings is somehow
inappropriate, since we lose one of the main features of
original words: regardless of touching or broken charac-
ters the overall word size is nearly fixed in a given docu-
ment. This feature is considered in holistic keyword spot-
ting, where entire words are described with features that are
afterwards compared with a word representation during re-
trieval (e.g. [28]).

One simple approach in holistic word recognition is
based on zoning of the word (e.g. [29]). Zoning consists
in overlapping the word with a fixed-size grid, and comput-
ing some features (e.g. the density of black pixels) in each
grid region. One advantage of word zoning is the property
that individual characters are located “roughly” in the same
position in the grid regardless of touching or broken char-
acters in the word.

We extended this approach to convert a variable length
word encoding (obtained by CO extraction and SOM clus-
tering) into a fixed-size symbolic description (the expanded
string). The basic algorithm is the following one:

1. The COs in the word are located.

2. Each CO is labeled with the output neuron of the
trained SOM.

3. The word image is partitioned into a fixed number of
vertical slices. The number of slices (NS) is computed
on the basis of the word aspect ratio (N ) and ranges
from NS = 25 when N < 0.15 to NS = 6 when
N > 0.55.

4. Each slice gets the coordinates of the largest CO over-
lapping it.

After this step a fixed-length vector is assigned to each
word, though the length of the vector is larger than the orig-
inal word. This process is summarized in Figure 15.

We can formalize the construction of the encoding vec-
tor for a word Wi with a SOM map of size NxM as fol-
lows. We first define the “winning neuron” of the SOM for a
given CO, as the neuron whose prototype has the lowest dis-
tance with respect to the CO under consideration (Eq. 11),
where i, j are the indexes used to identify a neuron in the
output layer, and Prot(i, j) is the vector that corresponds
to the prototype assigned to the neuron (graphically indi-
cated as a character in Figure 14).

(ik, jk) = argminDist(CO(k), P rot(i, j))
i = 0, . . . , N − 1
j = 0, . . . , M − 1

(11)
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Figure 16. SOM neurons assigned to each CO of three words. The first word is a query image. The
other words are instances in the database.

Let NSlices(i, k) be the number of slices assigned to the
k−th CO of word Wi, and let MapX(i, j) and MapY (i, j)
be the position of the output neuron (i, j). The word Wi

(composed by n COs) can be represented by the vector re-
ported in Eq. 12).

�Wi = [MapX(i0, j0), MapY (i0, j0), . . . ,
MapX(i0, j0), MapY (i0, j0),
MapX(i1, j1), MapY (i1, j1), . . . ,
MapX(i1, j1), MapY (i1, j1),

. . .
MapX(in−1, jn−1), MapY (in−1, jn−1), . . . ,
MapX(in−1, jn−1), MapY (in−1, jn−1)]

(12)
Where MapX(ik, jk), MapY (ik, jk) is repeated

NSlices(i, k) times.
The vectors are compared with the query in the retrieval

step, as described in the next Section.

6.3. Computing word similarity

Two main operations are performed for retrieving the
words matching a given query (see Figure 13). First, a tex-
tual query is translated into one or more word images that
are encoded with the method described in Section 6.2. Sec-

ond, each image is compared with the word descriptions
that are stored in the database.

From a user point of view the queries are made to the
system with a simple text-based interface. Starting from
the ASCII word one “clean” word image is obtained with
LATEXsoftware. The clean image is corrupted with synthetic
noise (we use programs based on the Baird’s noise model)
in order to simulate actual distortions occurring in real
world. Note that this step is the unique point in the over-
all system that needs to be customized when changing the
set of documents considered, since the predominant font in
the text must be indicated. It is important to observe that the
SOM clustering is robust with respect to font changes. For
instance (Figure 16) the neurons corresponding to charac-
ters in the query word (W0) and in W2 are identical, though
the ’r’ and the ’a’ are quite different in the two words. In all
the experiments involving roman alphabet we use the stan-
dard LATEXfont, whereas with documents containing Gothic
text we changed the LATEXfont accordingly.

Each word image is represented into a fixed-size vec-
tor (as described in Section 6.2) and compared with vectors
in the database having the same length. Words with differ-
ent aspect ratios are unlikely to correspond to the query, and
consequently are not considered for the comparison. In the
top part of Figure 15 we can see one example of a proto-
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Figure 17. Integrated retrieval obtained by combining the score of layout similarity with the score
of word retrieval. The query is composed by a combination of a query word (in this case the word
CHAPITRE) and a page layout.

type word generated with LATEX.
Words in the database are ranked on the basis of the sim-

ilarity with the query word by comparing the corresponding
vectors with the Euclidean distance. In Figures 15 and 16
we can observe that the Euclidean distance between ex-
panded strings approximates the similarity between the cor-
responding words for two reasons. First, also in presence
of broken or touching characters the strings have the same
length and codes corresponding to well segmented charac-
ters are roughly in the same position in the string. Second,
the topology preservation feature of SOM maps allows us
to evaluate also the similarity between close clusters in the
output layer of the SOM, since closer nodes have lower dis-
tances. This is simplified in Figure 16 where the SOM neu-
rons associated with each CO of three words (W0 and W1

are shown in Figure 15) are identified. The first word corre-
sponds to the query generated by LATEX, whereas the other
are actual words. It is interesting to see that some characters
(for instance the ’a’s) are quite different in the font used for
query generation and in the actual font. However, the two
characters are mapped quite close.

The main weakness of this similarity evaluation is re-
lated to the processing of very noisy words. One of the more
interesting features of this method is the ability to adapt to
different fonts. For instance in [4] we show the results that
can be achieved when dealing with Gothic fonts.

7. Integrated Document Retrieval

We analyzed in the previous sections two basic tools that
can be used for retrieving relevant pages either on the ba-
sis of their layout or by looking for the words contained
in the indexed pages. In this section we describe the inte-

gration of these retrieval algorithms to provide additional
retrieval mechanisms to users. The methods proposed are
based on two main principles: first, it is possible to com-
bine the ranking of pages computed by the two previously
described methods, to obtain an overall score; second, it is
possible to use the layout information (represented by the
MXY tree) to establish a relationship between keywords
found in a page. The experimental results supporting this
integration will be described in Section 8.

Let us first summarize the sorting of pages and words in
the database on the basis of their similarity with respect to
a query page pq and a query word wq.

The layout retrieval associates a similarity measure to
each page in the database. During the indexing a feature
vector ( �Pi ) is associated to each page pi in the database
as described in Section 5.2. This feature vector is com-
puted also for the query page pq obtaining the vector �PQ.
The similarity of the query with each page in the database
is computed by Sim(�Pi, �PQ) (Eq. 8). The pages in the
database can thus be sorted on the basis of this similar-
ity value (higher values correspond to most similar pages).
This information is represented in vector LayPos[i] that as-
sociates to each page pi in the database its position. In par-
ticular the page pk such that LayPos[k] = 0 is the page
most similar to the query pq (usually, if pq is stored in the
database, then pk ≡ q).

Concerning words, the retrieval mechanism described in
Section 6.3 allows us to associate a distance between the
query word wq and each word wj in the database. A fea-
ture vector ( �Wj) is computed for each stored word and for
the query word ( �WQ). By computing the Euclidean dis-
tance between �WQ and �Wj it is possible to sort the words
in the database. In this case the lowest distance values cor-
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Figure 18. Integrated retrieval obtained by selecting pages where two user-defined keywords are in
the same region.

respond to most similar words, and it is possible to sort all
the pages as described by vector WordPos[j] (the word
Wh such that WordPos[h] = 0 is the word most similar
to the query). Each word wj in the database has some ad-
ditional information associated to it: the page containing it
(PWj) and its coordinates in the page (XWj , and Y Wj ).

7.1. Combining layout and words

The first integration strategy is based on a simple com-
bination of the scores obtained by the two methods previ-
ously described (Figure 17). The user formulates the query
by providing to the system two items: one page pq, that is
used for the layout retrieval, and one word wq, that is used
for word retrieval. The system provides as response to this
query a sorting of the pages on the basis of their similar-
ity to the combined query. This similarity is computed as
follows.

Given pq and wq, the system first computes the two simi-
larity vectors LayPos[ ] and WordPos[ ] with the indepen-
dent methods previously described. To each page it is sub-
sequently associated a new position in the integrated sorting
(CombPos[ ]). Let Fwi be the first word in page pi in vec-
tor WordPos (Fwi = argminWordPos[j] | Pwj = Pi),
we can then compute CombPos by Eq. 13.

CombPos[i] = LayPos[i] + WordPos[Fwi] (13)

By sorting the pages on the basis of increasing values of
CombPos it is possible to show to the user the pages in in-
creasing order of similarity with respect to the combined
query. This approach to combine the retrieval mechanisms
can be used for improving the layout retrieval by some key-
words related to the page. One example is the retrieval of
the pages corresponding to the start of a section. We will
discuss this example in Section 8.

7.2. Evaluating mutual position of retrieved words

An useful approach for locating relevant information is
the use of queries based on the retrieval of several keywords
(Figure 18). In Information Retrieval this task corresponds
to the search for documents containing all the specified key-
words (or a combination of these, depending on the query
formulation). In this case the retrieval is affected by the def-
inition of “document”, that can be a book, a journal, an arti-
cle, a page or even a sentence. In the case of document im-
age retrieval the most obvious resolution is the page, and
frequently this is the object that can be retrieved by multi-
ple keyword searches. However, when the layout informa-
tion is available, as in our system, other approaches can be
pursued.

As an example let us consider an user interested in the
retrieval of figures related to a given subject. In this case a
simple approach could be based on searching for pages con-
taining both the keyword “Fig.”, and one or more words de-
scribing the subject of interest. Obviously, one limit of this
approach is that in this way some false positives could be re-
trieved, since also pages with figures not related to the sub-
ject, but with the keywords in the text will be retrieved. To
solve this problem in our system there are some types of
combined queries. Some examples of queries (related to the
experiments reported in the next section) are the following:

• Find the pages containing the specified keywords.

• Find the pages where one text block contains all the
keywords (in this case it is possible also to display the
text block).

• Find the pages where one text block contains the spec-
ified keywords, and the block is in some relationship
with respect to another region (e.g. the text block is
“below” an image region).
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In order to solve all these queries the system must com-
pute a measure of the likelihood that a layout object (a page
or a text block) contains more user-defined words. In case
of word indexing by OCR an exact matching strategy could
answer to these queries with a boolean approach, by retriev-
ing the objects where all the query words match some ob-
ject. However, when searching for a word our system does
not provide a boolean answer, but a ranked list of words.
When searching for more keywords we can run the algo-
rithm several times (one for each word) and then integrate
the lists provided for each word in a way similar to the ap-
proach described in Section 7.1.

8. Experimental Results

In this section we discuss the experiments that have been
carried out for evaluating the performance of the integrated
retrieval described in Section 7. Experimental results of the
individual methods used for layout-based retrieval and for
word retrieval have been already reported in [3] and [4], re-
spectively.

The experiments reported below are representative of
typical queries that can be of interest for users of DLs. The
tests have been made in order to show the utility of inte-
grating more retrieval mechanisms into a single one. The
results are reported in terms of Precision-Recall plots (the
vertical axis corresponds to the Precision, and the horizon-
tal one to the Recall).

8.1. Dataset features

The experiments reported in this section have been made
on a dataset composed by books belonging to an existing
Digital Library. In particular we worked with two books
downloaded from the Gallica DL 1. The books contain a to-
tal of 1287 pages that can be divided into a few classes on
the basis of their layout. In Figure 19 we show the features
(and names) of some of the most significant classes.

8.2. Combining layout and words

The first experiments are aimed at evaluating the effec-
tiveness of the integration method described in Section 7.1.
From a user point of view an interesting feature is the re-
trieval of pages in a book that correspond to the beginning
of chapters. There are two ways to identify these pages:
by finding pages with a given layout (the page class is
named SecM2 in table 19), or by looking for the keyword
“CHAPITRE” (chapter in French). Figure 20 compares the

1 The pages correspond to the two books N0024670, and N0024671 that
can be downloaded also starting from the database page of DAS 2004
web page: www.dsi.unifi.it/DAS04.

results that can be achieved by using the layout-based ap-
proach (continuous line), and an integrated one (dashed
line). Since there are several pages with layout SecM2 we
used in turn each of them as a query page, and then we av-
eraged the Precision-Recall plots of each experiment to ob-
tain Figure 20.

The low performance of the layout-based method are im-
proved by using also the appropriate keyword. We must
notice that the results obtained using only word retrieval
(searching for pages containing the word “CHAPITRE”)
are better than both methods.
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"Layout"
"Combined"

Figure 20. Precision-recall plots related to
the combination of layout similarity and word
searching (Keyword: CHAPITRE, layout:
SecM2).

The retrieval mechanism described in Section 7.1 can
be used also for retrieving pages containing a figure. In
this case the query can be made by using the keyword
“Fig.” and one page containing a figure. In Figure 21 we
show the Precision-Recall plots that are obtained when us-
ing the keyword “Fig.” and pages of classes “ImageText2”
and “Text2Image” respectively. Also in this case the use of
the integrated method allows us to get better results with re-
spect to the use of the layout retrieval alone. The use of the
word based query (where we just look for pages contain-
ing the word “Fig.”) provides in this case worst results with
respect to the integrated approach. This is due to two rea-
sons: first, there are some words “Fig.” also in the body of
the text (for instance due to links to the figures in the text);
second, the keyword based retrieval locates also pages with
the other types of layout containing figures (see Table 19)
that are considered as errors.
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Name Description Example Name Description Example

Title Title page Sect0 Section type 0

Issue1 Issue page (1 column) SecS2 Section start page (2
columns)

SecM2 Section mark page (2
columns)

Text1 Text on one column.

Text2 Text in two columns Image Pages containing images
only

Text2Image Text in two columns and im-
ages in the text

ImageText2 Text in two columns and at
least one image

Figure 19. Some classes in the database (black rectangles correspond to images, gray ones corre-
spond to text regions). Classes containing images are Image, ImageText2, and Text2Image.

The reason why the layout retrieval is not very effective
with these experiments is due to the fact that there are some
sub-classes corresponding to the SecM2 class (for instance
the chapter title can be either on the left or in the right text
column), and to Text2Image and ImageTex2. One solu-
tion to this problem could be the use of tree-grammars for
query expansion (by producing additional query pages for
each page proposed by the user). To this purpose, it is pos-
sible to use the approach that we proposed for the problem
of page classification [30].

8.3. Evaluating mutual position of retrieved words

In order to evaluate the second integration strategy we
made a test that is aimed at retrieving figures related to a

given subject. To this purpose we performed a combined
search by looking for the join retrieval of pages contain-
ing both the subject related keyword and the word “Fig.”.
We compared four methods where the conditions checked
for answering the query have increasing complexity:

1. We return the pages containing both the keyword and
“Fig.”.

2. We return the pages where one region contains both
the keyword and “Fig.”.

3. We return the pages containing an image region just
over one region containing both the keyword and
“Fig.”.

4. We return the pages satisfying condition 3 and such
that a constraint is imposed on the region (that has to
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Figure 21. Precision-recall plots related to
the identification of pages containing a fig-
ure. Top: class “ImageText2”. Bottom: class
“Text2Image”.

be larger than higher) and to the mutual position of the
two words (“Fig.” has to be on the left of the other key-
word).

We performed a retrieval test with each of the four ap-
proaches just described and we looked for 16 keywords
(with a total of 26 figures related to them). At the end we
averaged the Precision-Recall plots that have been obtained
for each of the 16 queries obtaining the plot in Figure 22.
The continuous line corresponds to the most complex con-
ditions (number 4 in the previous list), and it is not surpris-
ing that it provides better results with respect to the other ap-
proaches. The intermediate plot corresponds to conditions
number 3, whereas the last plot corresponds to the simplest
approach (we just look for words in the same page). The
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Figure 22. Precision-recall plot for retrieving
figures related to a subject (captions contain-
ing a keyword).

plot related to condition number 2 (both words in a region)
is similar to the page plot, but it is always over it (the differ-
ence is only 1% so it is not possible to see both in the Fig-
ure).

8.4. Execution time

A document retrieval system can be effectively em-
ployed by an user only if the response times are not too high.
The performance of the proposed system cannot be simpli-
fied in a few values, since there are several factors that af-
fect the overall execution time. In this section we briefly an-
alyze the main steps involved in the system and report, for
each of them, the user time. By user time we mean the time
elapsed from the submission of a command to its comple-
tion. The machine considered in our experiments is a Per-
sonal Computer with a CPU AMD Athlon with a CPU fre-
quency of 1600 MHz, and equipped with 512 MBytes of
RAM. The operating system is a Debian Linux, and the ex-
periments have been made without other heavy processes
running.

As explained in Section 3 the two main steps are the in-
dexing and the retrieval of documents. Table 1 summarize
the user time for the principal tools in the indexing phase.
The most expensive tools are those directly involving the
image. In particular the location of connected components
and the location of horizontal and vertical ruling lines is
the most expensive step. The other heavy task is word lo-
cation and encoding that is based on the segmentation of
individual characters and their encoding by means of the
trained SOM. It is worth to remember that the SOM train-
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Main tool Execution time Notes Reference

Location of connected components
and horizontal / vertical lines 10 sec/page Section 4.1
MXY Tree building 2.33 sec/page Sections 4.2, 4.3
Layout encoding 12 sec Overall time for 1287 MXY

trees
Section 5.1

SOM Training 98 sec training with 10 pages Section 6.1
Word location and encoding 6.28 sec/page Section 6.2

Table 1. Execution time for the main tools during the indexing. Overall we processed 1287 pages
containing 706,768 words.

ing is made once for each collection, and it involves a few
pages. For instance for the experiments reported in Section
8 we trained the SOM with the words contained in 10 pages
only.

From a user point of view the most critical task is the re-
trieval one, whereas the indexing time is less important. The
user time for several retrieval strategies described in the pa-
per is reported in Table 2. During layout retrieval the query
page is compared with the MXY trees corresponding to the
whole dataset of 1287 by means of Eq. 8. The word re-
trieval is composed by two main steps: prototype genera-
tion by LATEXand word matching. The latter step allows also
to retrieve the word position in the page as well. It is useful
to point out that the first time is fixed and does not depend
on the number of stored words. The straightforward combi-
nation of layout and word retrieval only requires 7 seconds,
that are the sum of the individual processing times. Not sur-
prisingly, the most expensive task is the retrieval that takes
into account the combination of some word searches and
the retrieval of MXY trees from the ”MXY tree DB“ (as de-
scribed in Section 7.2).

9. Conclusions

In this paper we described a general system for the re-
trieval of document images belonging to digital libraries by
looking to image features only. There are three main contri-
butions of the paper.

First, we described a new segmentation algorithm that is
appropriate for dealing with digitized books and journals.
The method is an extension of the classic MXY tree algo-
rithm and allows to cut regions by looking for changes in
font attributes.

Second, we proposed two general approaches for in-
tegrating two algorithms previously presented for the re-
trieval of document images based on the layout and on the
presence of user-defined keywords. These integrated ap-
proaches have been tested with several experiments deal-
ing with scanned pages of two books.

Third, we described the overall system by showing the
relationships among different parts, and the flexibility of the
overall architecture to future expansions.

Although a large effort has been made in the last years
for building this system, the work is not yet concluded.
Concerning the layout retrieval some improvements are ex-
pected to be achieved by using tree-grammars for query ex-
pansion in order to take into account layout variations. Con-
cerning the word retrieval there are some problems to be
solved in the case of heavily broken and touching charac-
ters.

The development of this system has been possible for
the help provided by several people. We would like to ac-
knowledge the contributions of M. Ardinghi, L. Buccheri,
D. Cristofani, M. Lastri, S. Matucci, P. Tanganelli, for their
programming contributions. We are grateful also to the
partners of the EU-funded METAe project for the fruitful
project discussions that where the seed for some of the ideas
behind this system.
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