
A Case Study of Selected SPLASH-2 Applications and the SBT Debugging Tool

Ernesto Novillo and Paul Lu
Department of Computing Science

University of Alberta
Edmonton, Alberta, T6G 2E8

Canada�
ernie|paullu � @cs.ualberta.ca

Abstract

SBT is portable library and tool for on-line debugging
and performance monitoring of shared-memory parallel
programs using the single-program-multiple-data (SPMD)
model of parallelism. SPMD programs often use barriers to
synchronize threads of execution and to delimit the start and
end of different phases of computation. Through its useful
barrier constructs, dynamic performance warnings, and in-
tegration with hardware event counter libraries, SBT helps
programmers localize deadlocks and performance bottle-
necks in their parallel programs.

To demonstrate SBT’s applicability and usefulness, we
present a simple, case study performance analysis using
three programs from the SPLASH-2 suite. In addition, we
quantify the overhead incurred by the programs when they
are monitored with SBT, and conclude that the cost of the
instrumentation is negligible.
Keywords: parallel computing, debugger, performance
tuning, SPMD, barrier, SPLASH-2, hardware counters

1. Introduction

Parallel programming is generally accepted to be more
difficult than sequential programming. Issues such as syn-
chronization, shared data access, and deadlock must be ap-
propriately addressed to achieve correctness. As well, iden-
tifying the performance bottlenecks of a parallel program is
more complicated than for a sequential program; it is not
just a matter of which function consumes most of the exe-
cution time, but also the load balance or imbalance between
processors.

Programmers usually rely on parallel debuggers and
other tools to obtain information about their programs [4, 5].
Debuggers can give a good snapshot view of an execut-
ing program, but they do not always give an adequate

trace of the sequence of events leading to an error; they
concentrate on showing the current state of the program’s
data structures. Also, some parallel computers are batch-
scheduled (i.e., job queues), so the interactive use of de-
buggers becomes impractical or impossible. The infamous
printf() continues to be popular because it is portable,
it provides a transcript of the run-up to an error, and it works
for both interactive and batch jobs.

There are performance debugging tools as well (e.g.,
[7, 12]). However, they are often based on detailed and vo-
luminous trace generation and post-processing, or they can
have high runtime overheads. Even worse, a programmer
may not suspect that a particular phase of the computation
is a bottleneck and therefore will not investigate further. Of
course, for detailed performance debugging, after the bot-
tleneck has been localized to a specific phase, these tools
continue to be effective and valuable.

Ideally, the programmer should be able to quickly deter-
mine where a program is running into errors and dynami-
cally be informed about potential performance problems.

We have developed the SBT library [9, 8] to sup-
port some simple but useful on-line debugging and per-
formance monitoring of shared-memory, single-program-
multiple-data (SPMD) programs. Some parallel program-
ming styles, such as client-server, are not as likely to use
barrier synchronization, therefore SBT may not be suitable
for those programs.

Some of the goals that shape the design of SBT are:

1. On-line monitoring. All information produced by the
tool should be gathered, processed, and output (possi-
bly redirected to a file) at runtime. The goal is to keep
the programmer informed as the program executes.

2. Low probe effect. The cost of the inserted instrumenta-
tion, also known as the probe effect [6], should be kept
at a minimum.

3. Ease of use. Once the instrumentation is inserted, the

1 void thread_work()
2 {
3 N_BARRIER("Start Initialization"); /* Named barrier */
4
5 /* Code for initialization phase */
6
7 ...
8
9 N_BARRIER("End Initialization"); /* Named barrier */

10
11 /* Begin computation */
12 ...
13
14 BARRIER; /* Anonymous barrier */
15
16 for(i=0; i<STEPS; i++)
17 {
18 /* Iterative computation code */
19 ...
20
21 NL_BARRIER("End iteration"); /* Loop barrier */
22 }
23 }

Figure 1. Anonymous, Named, and Loop Bar-
riers in SPMD Programs.

Barrier "Start Initialization" reached.
...
-- normal program output --
...
Barrier "End Initialization" reached.
...
-- normal program output --
...
Barrier "End iteration" reached.
...

Figure 2. Sample output for the program in
Figure 1. Barriers are natural caliper and
watchpoints.

tool should provide information without requiring long
sequences of commands or mouse clicks. Also, the
instrumentation should be easily removed when it is
time to deploy the program for production runs.

4. Portability. The tool should not rely on any operating
system- or hardware-specific features to extract data
and produce information.

Typical SPMD programs are comprised of phases of ex-
ecution delimited by barriers. All processes execute the
same phase at the same time; once they have all com-
pleted the phase, they synchronize at a barrier. No pro-
cess can proceed beyond a barrier until all processes have
reached it. Consequently, barriers are natural places to in-
sert lightweight performance information collection code.
Barriers can be easily converted from synchronization-only
points to synchronization-and-instrumentation points. Code
that gathers, processes, and outputs performance informa-
tion can be easily added before the synchronization code.
Thus barriers become watchpoints in which information rel-
ative to the previous phase is shown to the user before the
next phase starts.

SBT is designed to help answer the following common
questions asked by parallel programmers:

1. Where is my program currently executing? If it is
deadlocked, where is it deadlocked?

2. What is the most computationally-intensive phase of
my program? Where are the bottlenecks?

3. Is there a load imbalance among threads within a
phase? Why is there a load imbalance?

By looking at the output from SBT, the programmer is
able to determine which phase is currently being executed.
After the program passes a barrier, the library outputs infor-
mation about the phase that has just ended, and about the
barrier itself. Failing to see output for a particular barrier
after a period of program inactivity, the programmer can de-
tect a deadlock in the current phase. Also, SBT produces the
information necessary to identify computationally-intensive
phases and the existence of a load imbalance. Then, SBT
can be used to find the underlying reasons for a load imbal-
ance.

The current version of the SBT library supports pro-
grams written in C/C++ with POSIX threads (Pthreads) and
SGI Irix’s sproc threads. SBT can also use one of three
libraries to access hardware performance counters: Perfor-
mance Counter Library (PCL) [1], Performance API (PAPI)
[2], and Irix’s libperfex [3].

2. Overview of SBT

We have developed the SBT library in order to pro-
vide the user with simple, on-line debugging and perfor-
mance information. After debugging and performance-
tuning the program, SBT’s information-gathering code can
be removed, via conditional compilation, for production
runs. Through the use of environment variables or com-
mand line options, users can control and focus the monitor-
ing efforts of SBT without recompiling their code.

Normally, barriers are anonymous, like locks and un-
locks, but SBT implements the simple concept of a named
barrier as a way to produce a low-noise trace of the progress
of a parallel program. In our experience, programmers of-
ten use calls to printf() to accomplish the same task.
A named barrier (invoked with the N BARRIER() macro)
at the beginning of, say, the initialization phase (line 3 in
Figure 1) produces the output "Start Initializa-
tion"; a different named barrier at the end of the phase
(line 9) produces the output "End Initialization".
Therefore, by watching the standard output of the pro-
gram, the programmer can see where the program is cur-
rently executing. If the end-of-phase message —in this case

"End Initialization"— is not seen, the program-
mer knows that either the phase of computation is long, or
a deadlock has occurred. Also, any user-defined output dur-
ing the phase is bracketed by the output of the named bar-
riers. Thus, named barriers label and associate output with
the corresponding phase of the program.

Anonymous barriers, like the one in line 14 of Figure 1,
produce output that is easily identified by their source code
file name and line number. Named barrier output, on the
other hand, is identified by the barrier’s name. There are no
other differences between named and anonymous barriers;
they are all capable of gathering and outputting the same
kind of information.

SBT introduces loop barriers, which are intended to
be used as phase delimiters inside loops. For loop barri-
ers, SBT accumulates information throughout all iterations
and outputs the cumulative data at the end of the execu-
tion, reducing the amount of noise the user receives from
the library. Line 21 of Figure 1 is a call to a loop bar-
rier. Loop barriers can be named or anonymous and are in-
voked with the NL BARRIER() and L BARRIER macros,
respectively.

All barriers provide natural caliper and watchpoints for
performance monitoring. For example, the program in Fig-
ure 1 might produce the output depicted in Figure 2. Each
barrier, seen as a caliper point, informs the user that a cer-
tain phase of the execution has been completed. A more
detailed output example will be discussed as part of Fig-
ure 4.

After compiling their parallel program to use SBT, users
can identify the barrier they wish to watch by setting an
environment variable (i.e., SBT WATCH) before execution
or passing a command line parameter when executing the
program. The barrier to watch can be specified by using
either its name or its line number. While the program is
executing, the following information will be dynamically
collected and selectively generated:

1. Phase time: The amount of wall-clock time spent be-
tween the barrier at the beginning of a phase and the
barrier at the end. All barriers, either implicitly or ex-
plicitly, represent the end of one phase and the start of
another phase. In this way, the most computationally-
intensive phases are easily identified, since they usu-
ally present the longest phase times.

2. Barrier time: The amount of time spent by the pro-
gram at a barrier. By definition, barrier time is the time
difference between when the first thread arrives at the
barrier and when the last thread arrives. Long barrier
times suggest that performance is being lost due to idle
threads at the barrier. Poor load balancing is a common
cause of long barrier times.

3. Thread inter-arrival time: The time difference be-
tween one thread’s arrival and the next thread’s arrival.
The order in which threads arrive at the barrier is also
noted. When locating load balancing problems, it can
be important to know the order of, and interval be-
tween, thread arrivals. A repeated pattern of arrivals
in which one thread is always last to arrive provides a
hint as to the cause of a load imbalance.

4. Hardware counter performance metrics: Depending
on the CPU architecture, information about cache
misses, graduated instructions, CPU cycles, floating-
point operations, etc., can be collected by hardware
counters.

Low-level performance counters can give insight as to
what might be the cause of a performance problem.
Poor memory locality, poor load balancing, and high
synchronization rates (i.e., poor granularity) can be re-
vealed by examining performance counters.

Regardless of whether they are being watched or not,
warnings are automatically issued for barriers that are par-
ticularly costly (e.g., barrier times longer than a user-
selectable threshold). The relevance and frequency of these
warnings can also be parameterized by user-controlled envi-
ronment variables or command line options. The flexibility,
configurability, and completeness (e.g., the various perfor-
mance metrics, automatic warnings) of SBT’s functionality
is what gives it value above and beyond what many pro-
grammers already do with printf()s in their code.

3. SPLASH-2 Examples

The Stanford Parallel Applications for Shared Memory
(SPLASH-2) suite is a set of applications developed as a
tool to compare the performance of different shared mem-
ory multiprocessors [11]. To illustrate SBT’s usefulness,
this section describes a port of some SPLASH-2 applica-
tions to Irix sproc threads, and shows performance mea-
surements obtained through the use of SBT. Although the
original SPLASH-2 codes leave room for optimizations (de-
pendent on the platform and threading library used), it is be-
yond the scope of this paper to actually improve the perfor-
mance of the applications. The motivation for using these
codes is solely to demonstrate the ease and usefulness of
instrumenting commonly-known programs with SBT.

Three of the eleven applications and kernels that com-
prise SPLASH-2 are ported: radix, LU decomposition, and
water- �

�
. These SPLASH-2 applications were selected be-

cause, pragmatically, they were the easiest codes to work
with. The performance measurements shown in this section
are all averages calculated from the output of five 4-process
runs. The system used to run the experiments is an SGI Ori-
gin 2100 with

�������
	
MHz MIPS R12000 processors and 1

GB of shared RAM. For further details on the applications
themselves, we refer the reader elsewhere [11, 8].

3.1 Radix Sort

The parallel version of radix, a sorting algorithm first
invented more than a century ago [13], comprises three
phases: build local histograms, build a global histogram,
and permute keys. Execution of the algorithm proceeds it-
eratively, analyzing one digit of an integer per iteration to
populate the histograms and then permuting the keys ac-
cordingly, starting with the least significant digit.

3.2 LU Decomposition

Another kernel included with the SPLASH-2 suite is par-
allel LU decomposition. This kernel decomposes a ma-
trix into its ��� form. The SPLASH-2 implementation of
parallel LU distributes work to processes using a 2D-block
scheme, by which the matrix is divided into square blocks
along both axes, and blocks are assigned to processes in an
interleaved fashion. Processes own and are responsible for
allocating and working on equal numbers of blocks, thus
reducing communication. In this context, the size of the
blocks is important, for it determines the runtime behavior
of the program in terms of cache misses and load balance.

3.3 Water

Water is an N-body molecular dynamics simulation; it
evaluates the forces and potentials that exist in a system
of water molecules in the liquid state over a user-specified
number of iterations or time-steps. This loop is called the
molecular dynamics loop. Gravitational forces and inter-
actions between and within the molecules are calculated at
every time-step and for every molecule. Also, the total po-
tential energy of the system can be computed and output
every user-specified number of time-steps.

The program consists of a sequence of tasks (or algo-
rithmic phases) and 7 barriers. Parallelism is available both
within and across tasks, meaning that individual tasks can
be executed in parallel, and that within a phase it is possible
to execute more than one task at the same time.

4. Overhead of Using SBT

Gathering and outputting performance data inevitably in-
curs some overhead that programmers have come to accept
as a price they pay in exchange for the information. SBT
is no different than other performance monitors in this re-
spect and also adds some overhead. This section quantifies

the overhead by comparing total wall-clock time of produc-
tion runs (i.e., without using SBT) and monitored runs with
different levels of tracing turned on.

For this experiment, all applications are timed through
the time program1 to retrieve total wall-clock times. To-
tal execution times taken from time include not only the
actual computation times, but also those of initialization of
SBT and the program’s data structures.

Two versions of each program are compiled — one
linked to the full version of SBT and the other linked to
the faster production version of the library (i.e., SBT com-
piled with the SBT OFF flag turned on). In addition, to-
tal execution times for the binaries linked to the full ver-
sion of SBT are taken from two kinds of runs: one us-
ing SBT NO DEBUG, which produces no performance in-
formation output —although the binary is capable of do-
ing it— and the other using SBT WATCH ALL, which
watches all barriers and thus maximizes the amount of out-
put from SBT. Normally, a user can use environment vari-
able SBT WATCH to turn on detailed performance monitor-
ing at selected barriers (named or anonymous), but setting
SBT WATCH ALL activates detailed monitoring of all bar-
riers.

Total execution times under the described conditions,
shown in Table 1, prove that the overhead incurred by using
SBT is negligible. The numbers shown in the table corre-
spond to executions using the following data sets: radix size
1024, Gauss distribution; LU block size

��� � ���
, contigu-

ously allocated; water- �
�

as expected by the program. The
instance that incurred the greatest absolute cost of all appli-
cations is LU decomposition of a

� 	���� � ��	����
matrix, which

increased its execution time by little more than 2 seconds,
going from 458.21 for the SBT OFF run to 460.52 for the
SBT WATCH ALL run. However, the 2 seconds account for
an increased time of only 0.5% over the SBT OFF run. Dif-
ferences between SBT NO DEBUG and SBT WATCH ALL
are bigger than between SBT OFF and SBT NO DEBUG.
When SBT WATCH ALL is used, there is more information
to process and output. Also, more system calls are involved
when hardware counters are used.

In three cases, the instrumented versions reported to-
tal execution times slightly smaller than the produc-
tion versions. The radix sort of 32 million keys
with SBT NO DEBUG is 250 milliseconds faster than the
SBT OFF version, and total execution times of water- �

�

with 12167 molecules speeds up as the level of instrumen-
tation grows. These differences, though surprising, are ex-
plained by inherent imperfections in the measurement pro-
cess. The fact that the differences are so small allows us to
consider the times to be practically identical.

1We refer to the time program, which is found in /usr/bin/time,
not the time built-in shell command.

Total Wall-clock Times (in seconds)
Application Data set SBT OFF SBT NO DEBUG SBT WATCH ALL

Radix Sort 16M 10.71 10.76 11.79
32M 21.97 21.72 22.53
64M 39.80 40.30 41.13

LU Decomposition ������������� 1.43 1.44 1.46
���	��
������	��
 8.80 8.83 8.87
�	��
�
����	��
�
 61.76 61.85 62.48

��	�	����
��	�	� 458.21 458.72 460.52

Water- �
�

8000 molecules 66.04 66.37 66.66
9261 molecules 86.91 87.09 87.36

10648 molecules 115.32 115.48 115.59
12167 molecules 149.41 149.18 148.74

Table 1. Total execution times of SPLASH-2 applications with SBT turned off and two different levels
of tracing on 4 processors. Averages of 5 runs.

Time (milliseconds)
Number of Phase 1 Phase 2 Phase 3

keys Local hist. Barrier 1 Global hist. Barrier 2 Permute Barrier 3
16M 730 210 10 10 5870 900
32M 1480 360 10 0 12520 610
64M 2890 740 10 10 21420 2220

Table 2. Radix phase and barrier times: 4 processors, radix 1024, Gauss distribution.

5. Phase Times Analysis

To direct the users’ attention to the most time-consuming
parts of a parallel program, SBT shows phase times, defined
as the amount of time between the barrier at the beginning
of a phase and the barrier at the end. This metric gives an
answer to Question 2 of Section 1. Users are quickly pre-
sented with a time breakdown of the execution that reflects
the different phases of the program at hand (discussed fur-
ther as part of Figure 4). Furthermore, bottlenecks become
more visible when phase times and thread inter-arrival times
are correlated. Suppose that at the end of a phase, one pro-
cess has a thread inter-arrival time that is as long as the
phase time; it is clear that while the last process was work-
ing, the others had to wait at the barrier.

All three SPLASH-2 codes are iterative: they are com-
prised of a number of phases that are executed inside a loop;
once the loop exits, the computation is completed. Also,
barrier information is always associated with the phase that
precedes the barrier. Each phase has a barrier marking its
end that is identified with the same number as that of the
phase. All phase time decomposition graphs are formed of
stacked columns where the bottom block represents phase
1, the second block from bottom to top is barrier 1, the third
block is phase 2, and so on.

5.1 Radix Sort

Phase times for radix sort are in Table 2. Accord-
ing to the normalized phase times shown in Figure 3, the

16M 32M 64M
0%

20%

40%

60%

80%

100%

Radix Sort − Normalized Phase Times

barrier 3

phase 3

barrier 2

phase 2

barrier 1

phase 1

Number of keys

Figure 3. Radix phase time decomposition: 4
processors, radix 1024, Gauss distribution.

first and second phases, build local histograms and build
global histogram, respectively —along with their associ-
ated barriers— account for approximately an average 12%
of the total execution time, whereas the third phase, per-
mute keys, proves to be the most time consuming. Using
these data points as a starting point, phase 3 might be the
first target for optimization.

The barrier times for barrier 3 present an uneven trend
across the three data set sizes. The normalized times de-
picted in Figure 3 tell us that barrier 3 takes approximately
15% of total time for 16 million keys, 5% for 32 million
keys, and 10% for 64 million keys. However, the absolute
barrier 3 times, shown in the last column of Table 2, present

1 SBT barrier watch in mdmain.c:52 "Done phase 1"
2 Barrier time: 13 ms
3 Phase time: 0.692 sec
4 Total time: 0.692 sec
5 ...
6
7 SBT barrier watch in interf.c:196 "Updated all forces"
8 Barrier time: 5860 ms
9 Phase time: 30.347 sec

10 Total time: 31.039 sec
11 Order of arrival:
12 inter from real
13 id thread init time
14 1 0ms 25.179s 23:35:09.610
15 0 593ms 25.772s 23:35:10.203
16 2 931ms 26.702s 23:35:11.133
17 3 4336ms 31.039s 23:35:15.470
18
19 SBT WARNING: barrier in interf.c:196 "Updated all forces"
20 (barrier: 5860 ms > 1000 ms, phase 1: 30.347s, from init: 31.039s)
21
22 SBT barrier watch in mdmain.c:61 "Done phase 2"
23 Barrier time: 8 ms
24 Phase time: 0.009 sec
25 Total time: 31.049 sec
26 ...
27
28 SBT barrier watch in mdmain.c:107 "Done phase 3"
29 Barrier time: 0 ms
30 Phase time: 0.000 sec
31 Total time: 31.050 sec
32 ...
33
34 SBT barrier watch in mdmain.c:114 "Done phase 4"
35 Barrier time: 1 ms
36 Phase time: 0.028 sec
37 Total time: 31.078 sec
38 ...
39
40 SBT barrier watch in interf.c:196 "Updated all forces"
41 Barrier time: 5401 ms
42 Phase time: 29.765 sec
43 Total time: 60.843 sec
44 Order of arrival:
45 inter from real
46 id thread init time
47 0 0ms 55.443s 23:35:39.873
48 1 127ms 55.570s 23:35:40.000
49 2 1510ms 57.080s 23:35:41.511
50 3 3764ms 60.843s 23:35:45.274
51
52 SBT WARNING: barrier in interf.c:196 "Updated all forces"
53 (barrier: 5401 ms > 1000 ms, phase 5: 29.765s, from init: 60.843s)
54
55 SBT barrier watch in mdmain.c:176 "Done phase 5"
56 Barrier time: 8 ms
57 Phase time: 0.025 sec
58 Total time: 60.869 sec
59 ...
60
61 SBT barrier watch in mdmain.c:240 "Done phase 6; next time-step"
62 Barrier time: 0 ms
63 Phase time: 0.000 sec
64 Total time: 60.869 sec
65 ...
66
67 SBT barrier watch in mdmain.c:207 "Computed potential energy"
68 Barrier time: 4975 ms
69 Phase time: 28.976 sec
70 Total time: 149.062 sec
71 Order of arrival:
72 inter from real
73 id thread init time
74 1 0ms 144.088s 23:37:08.518
75 0 149ms 144.237s 23:37:08.667
76 2 1379ms 145.615s 23:37:10.045
77 3 3447ms 149.062s 23:37:13.492
78
79 SBT WARNING: barrier in mdmain.c:207 "Computed potential energy"
80 (barrier: 4975 ms > 1000 ms, phase 18: 28.976s, from init: 149.062s)

Figure 4. Example Phase-by-Phase Trace:
Water �

�
output on 12167 molecules watch-

ing all barriers.

512x512 1024x1024 2048x2048 4096x4096
0%

20%

40%

60%

80%

100%

LU − Normalized Phase Times (contiguous allocation)

barrier 3

phase 3

barrier 2

phase 2

barrier 1

phase 1

Matrix size

Figure 5. LU phase time decomposition: 4
processors, contiguous block allocation, block
size

��� � ���
elements, matrix sizes ranging

from
��� � � ��� �

to
� 	���� � ��	����

.

512x512 1024x1024 2048x2048 4096x4096
0%

20%

40%

60%

80%

100%

LU − Normalized Phase Times (non−contiguous allocation)

barrier 3

phase 3

barrier 2

phase 2

barrier 1

phase 1

Matrix size

Figure 6. LU phase time decomposition: 4
processors, non-contiguous block allocation,
block size

��� �����
elements, matrix sizes rang-

ing from
��� � � ��� �

to
��	���� � � 	����

.

differences ranging from 310 milliseconds to 1610 millisec-
onds. These differences are small enough that they fit within
measurement error.

Two well-known characteristics of radix sort are re-
flected in the numbers of Table 2. First, shared memory
implementations have the advantage of allowing a cheap
computation of the global histogram during phase 2, espe-
cially when using a small number of processors. Second,
permuting keys during phase 3 requires an expensive all-to-
all communication [10].

5.2 LU Decomposition

LU decomposition is an iterative algorithm that works
from the “top left” corner of the matrix towards the “bot-
tom right” corner. Each iteration consists of three phases:
Factor diagonal block (phase 1), Update perimeter block
(phase 2), and Update interior blocks (phase 3) [8].

Aggregated Phase Times (seconds)
Contiguous Non-contiguous % Time

Matrix Size allocation allocation Increase
������������� 0.70 1.00 43%
���	��
������	��
 6.00 8.00 33%
�	��
�
����	��
�
 50.80 66.70 31%
�	��
�
����	��
�
 414.50 535.10 29%

Average % Time Increase: 34%

Table 3. LU Decomposition: aggregated
phase times and percentage increase of time
going from contiguous to non-contiguous
block allocation. Blocks of

��� � ���
elements.

Although a barrier at the end of phase 3 is not necessary,
adding a call to an SBT barrier at that point is useful to dis-
tinguish performance information relative to phases 1 and
3 of the algorithm. This extra barrier adds some overhead,
but at the same time allows the extraction of more precise
per-phase measurements.

As iterations are performed, the computation time re-
quired to complete phase 2 and phase 3 decreases. The fact
that these two phases get smaller as the loop progresses al-
lows us to be certain that the program is executing as ex-
pected. As more iterations are performed, processes have
fewer blocks to work on. We can use the phase time metric
from SBT to verify this fact.

Normalized phase times for LU decomposition show a
typical granularity issue: as the data set size increases, the
relative amount of time required for synchronization de-
creases. Figure 5 shows both absolute and normalized phase
times decomposing matrices on 4 processes using

��� � ���

element blocks that are allocated contiguously for each pro-
cess. The percentage of total execution time spent at the
barriers decreases from 30% for a

��� � � ��� �
matrix to 5%

for a
� 	���� � ��	����

matrix. These percentages are obtained
by adding each barrier’s corresponding percentage in the
normalized times shown in Figure 5.

The relative distribution of time among phases when
non-contiguous allocation of blocks is used (Figure 6) is
very similar to that of contiguous allocation. However,
the non-contiguous allocation method proves to hurt per-
formance; phase times consistently increase by an average
34% over the contiguous method, as shown in Table 3.

5.3 Water

Water is a more complex program that Radix and LU
decomposition. It spans more phases, three of which have
sub-phases. Also, one of the sub-phases to phase 6 is en-
closed inside an if statement and is only executed once.
The potential energy of the whole system is computed in
that sub-phase on the last iteration of the molecular dynam-

ics loop.
Figure 4 shows the output for the first two phases (be-

fore entering the molecular dynamics loop; lines 1 through
27) and the first iteration of the loop (lines 28 through 65).
The output is taken from a run on 12167 molecules, while
watching all barriers. In order to fit the Figure on one page,
thread inter-arrival times have been removed from the out-
put, except where SBT issued barrier time warnings. Nev-
ertheless, barrier times for those barriers range from 0 to 8
milliseconds, and thus thread inter-arrival times lack rele-
vance.

There are two barriers that quickly attract attention to
themselves because they exceed the default barrier time
of 1000 milliseconds: named barriers "Updated all
forces", with warnings in lines 19 and 52 of Fig-
ure 4, and named barrier "Computed potential en-
ergy", with warning in line 79. Also, these two barri-
ers mark the end of phases that consume an average of 29
seconds each (see lines 9, 42, and 69 of the Figure). Fur-
thermore, one of these phases is inside the molecular dy-
namics loop, hence it is executed 3 times. The sum of
these average phase times over the complete run (

� � � �

seconds for "Updated all forces" + 29 seconds for
"Computed potential energy") results in approx-
imately 145 seconds, where the total execution time is
roughly 150 seconds: in line 77, the last process to arrive
at the last barrier —process 3— does so 149 seconds af-
ter SBT is initialized at the beginning of the program (see
column "from init" corresponding to the last barrier
shown in Figure 4).

All the data SBT produced for the total execution are ag-
gregated in Figure 7. Note that for all data set sizes, the two
tasks associated with barriers"Updated all forces"
and "Computed potential energy", take more
than 80% of the total execution time.

There are a total of 2364 lines of code in this implemen-
tation of water. The function that calculates inter-molecular
forces is 150 lines long, and function POTENG() —which
calculates the potential energy of the system— has 138 lines
of code. SBT allows us to quickly identify the 288 lines out
of 2364 where we should initially focus any attempts to op-
timize this code.

6. Concluding Remarks

Debugging and performance-tuning parallel programs
are difficult tasks. By taking advantage of barrier calls that
are already present in the code, SBT inserts instrumenta-
tion to produce debugging and profiling information. Us-
ing SBT barriers, an SPMD parallel program generates a
low-noise trace of its execution at runtime. The cost of the
inserted instrumentation is negligible. We observed over-
heads in the range of 1% to 10% of total execution time. In

8000 9261 10648 12167
0%

20%

40%

60%

80%

100%

Water − Normalized Task Times

Other tasks

Update inter−
molecular forces

Compute potential
energy

Number of Molecules

S
ec

on
ds

Figure 7. Water �
�

most time-consuming
tasks.

addition, a non-instrumented version of the library can be
built through conditional compilation, and used for produc-
tion runs.

Traces generated by SBT help programmers locate
where their shared memory programs are spending their
time (or are hung due to a deadlock), and provide insight
as to why there may be performance problems. The begin-
ning and end of each computational phase is conveniently
labelled and automatically measured. When deadlocks oc-
cur, it is clear in which phase they are located. When bottle-
necks occur, the programmer can watch the relevant barrier
to gather more performance information.

Important metrics, such as phase time, barrier time, and
thread inter-arrival time at a barrier are automatically gath-
ered by SBT. If the metrics are outside of an expected range,
warnings are generated and the programmer is made aware
of a possible problem. Moreover, users can gain more in-
sight into issues such as load balancing and data locality by
directing SBT to generate hardware performance counter
information.

Using three SPLASH-2 applications as a case study, we
have shown the low overheads of using SBT. Also, we
have shown how, in particular, the phase-by-phase analy-
sis (made easier by SBT) can allow a parallel programmer
to quickly focus on the portions or phases of a program that
consume the most execution time.

The existing barriers in an SPMD program are natural
instrumentation and caliper points. It is possible, of course,
to do phase-by-phase analysis without using SBT (e.g., via
calls to gettimeofday() and printf()), but SBT
makes it much more convenient to insert the instrumen-
tation (via named and anonymous barriers) and to control
the amount of debugging output associated with each bar-
rier (via watchpoints and environment variables). Further-
more, it is possible to use low-level hardware performance

counters (discussed elsewhere [8]) to further tune the per-
formance of a program.

References

[1] R. Berrendorf and H. Ziegler. PCL - The Performance
Counter Library: A Common Interface to Access Hardware
Performance Counters on Microprocessors (Version 1.3).
Technical report, Central Institute for Applied Mathematics,
Research Centre Juelich GmbH, 1999.

[2] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A
Portable Programming Interface for Performance Evaluation
on Modern Processors. The International Journal of High
Performance Computing Applications, 14(3):189–204, Fall
2000.

[3] D. Cortesi et al. Origin2000 (TM) and Onyx2 (TM) Perfor-
mance Tuning and Optimization Guide. Silicon Graphics,
Inc., 1998.

[4] Etnus LLC. TotalView Multiprocess Debugger/Analyzer.
http://www.etnus.com/Products/ To-
talView/.

[5] M. Gerndt, B. Mohr, and B. Miller. Performance Analy-
sis and Tuning of Parallel Programs: Resources and Tools.
In Tutorial at Supercomputing 2000, Dallas, Texas, USA,
November 2000.

[6] C. E. McDowell and D. P. Helmbold. Debugging Concurrent
Programs. ACM Computing Surveys (CSUR), 21(4):593–
622, December 1989.

[7] B. Mohr, A. D. Malony, and J. E. Cuny. TAU. In G. V. Wil-
son and P. Lu, editors, Parallel Programming Using C++.
MIT Press, 1996.

[8] E. Novillo. On-line performance monitoring of shared mem-
ory parallel programs. Master’s thesis, University of Al-
berta, 2002.

[9] E. Novillo and P. Lu. On-Line Debugging and Performance
Monitoring Using Barriers. In Proceedings for the 15th
International Parallel and Distributed Processing Sympo-
sium (IPDPS), San Francisco, California, USA, April 2001.
Available at http://www.cs.ualberta.ca/˜paullu/SBT.

[10] H. Shan and J. P. Singh. Parallel Sorting on Cache-coherent
DSM Multiprocessors. In Proceedings Supercomputing ’99,
Portland, Oregon, USA, Nov. 1999.

[11] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In Proceedings of the 22nd Interna-
tional Symposium on Computer Architecture, pages 24–36,
Santa Margherita Ligure, Italy, June 1995.

[12] Z. Xu, J. R. Larus, and B. P. Miller. Shared-Memory Per-
formance Profiling. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming (PPOPP-97), volume 32, 7 of ACM SIGPLAN Notices,
pages 240–251, New York, New York, USA, June 18–21
1997. ACM Press.

[13] M. Zagha and G. E. Blelloch. Radix sort for vector multi-
processors. In Proceedings Supercomputing ’91, pages 712–
721, Nov. 1991.

