
Loop Parallelization in the Polytope Model?Christian LengauerFakult�at f�ur Mathematik und Informatik, Universit�at Passau,D{94030 Passau, Germany. E-mail: lengauer@fmi.uni-passau.deAbstract. During the course of the last decade, a mathematical model forthe parallelization of FOR-loops has become increasingly popular. In thismodel, a (perfect) nest of r FOR-loops is represented by a convex polytopein Zr . The boundaries of each loop specify the extent of the polytope ina distinct dimension. Various ways of slicing and segmenting the polytopeyield a multitude of guaranteed correct mappings of the loops' operations inspace-time. These transformations have a very intuitive interpretation andcan be easily quanti�ed and automated due to their mathematical foundationin linear programming and linear algebra.With the recent availability of massively parallel computers, the idea of loopparallelization is gaining signi�cance, since it promises execution speed-upsof orders of magnitude. The polytope model for loop parallelization has itsorigin in systolic design, but it applies in more general settings and methodsbased on it will become a part of future parallelizing compilers. This pa-per provides an overview and future perspective of the polytope model andmethods based on it.1 IntroductionFifteen years ago, a �rst, restrictive form of massive parallelism received a name: sys-tolic array [23]. The restrictions, motivated by the desire to simplify and parametrizethe process of designing logic circuitry and borne out by the limitations of hardwaretechnology at the time, included a regular processor and interconnection topology,synchronous parallelism, only local point-to-point communication, and input/outputonly through border processors. In the years since, some of these limitations havebeen lifted. For example, certain modern programmable processor networks are asyn-chronously parallel, others permit limited broadcasting.In the Eighties, a model of computation emerged that makes it possible to syn-thesize guaranteed correct systolic arrays automatically: the polytope model. It cor-responds to a class of particularly uniform programs: nested FOR-loops with regu-larity restrictions on the loop indices. Its rich mathematical theory of mappings fromloops to processor networks permits a detailed classi�cation of systolic arrays with aquanti�cation of their properties (execution time, throughput, amount of processorsand communication, etc.) and, therefore, a calculational mechanizable selection ofmaximum-quality arrays. This and its intuitive geometric interpretation has madethis model increasingly popular|and also promising for the synthesis and analysisof more general forms of massive parallelism.? Corrected version. 1



The polytope model is a computational model for sequential or parallel programs:a program is modelled by a polytope, a �nite convex set of some dimensionalitywith 
at surfaces. The data dependences between the points (computations) in thepolytope must be regular and local. Drawing the dependences as arrows yields aregular, acyclic, directed graph: the data dependence graph. These properties requiredof the model (convexity, 
at surfaces, regularity of the dependences) restrict the setof programs that can be modelled. A set of, say, r perfectly nested loops with aconstant-time loop statement, with bounds that are linear expressions in the indicesof the enclosing loops and in the problem size, and with certain additional restrictionson the use of the loop indices can be represented by a polytope embedded in Zr :each loop de�nes the extent of the polytope in one dimension. When modellingsequential execution, the dimensions are \scanned", one at a time, to enumerate thepoints in the polytope. For a parallel execution, the polytope that represents thesource program|we call it the source polytope|is segmented into time slices, setsof points that can be executed concurrently. The parallelization methods based onthe polytope model address the problem of this segmentation. It can be formulatedas an a�ne mapping that transforms the source polytope into a target polytope thatcontains the same points, but in a new coordinate system in which some dimensionsare strictly temporal|i.e., scanning along them enumerates time|and the othersare strictly spatial|i.e., scanning along them enumerates space. (Usually, there isonly one temporal dimension. If there are several, they can be reduced to one.)This transformed polytope can then be used to synthesize chip layouts|the spatialdimensions de�ne a processor layout|or parallel loop programs.In principle, the synthesis process takes as input an algorithmic description thatdoes not specify concurrency or communication|usually a single-assignment or im-perative program|and maps the program's operations to space-time. The mappingpreserves the data dependences in the program and is usually chosen to ful�ll somee�ciency criteria|a typical one is execution time minimality with respect to thechoices possible in the model. The basis for an automatic synthesis with the poly-tope model was laid in the Sixties by the seminal paper of Karp/Miller/Winogradon uniform recurrences [21]. In the Seventies, Lamport was the �rst to apply thisapproach to the question of parallelizing compilation [24]. However, only in the earlyEighties, after the birth of the systolic array, was the idea picked up and developedfurther. Signi�cant contributions were made by Kuhn [22], Moldovan [32], Cap-pello/Steiglitz [8], Miranker/Winkler [31] and Quinton [36]. The dissertation of Raoin 1985 uni�ed these results in a theory for the automatic synthesis of all systolicarrays [42, 43].The polytope model is increasingly being recognized as useful for parallelizingloop programs for massively parallel architectures. Note that the parallelizationmethods based on this model are static, i.e., derive all parallelism before run time(at compile time). This has the advantage that no overhead of the discovery of paral-lelism is introduced at run time. However, one must still take care to avoid overheadfor the administration of parallelism; for more, see Section 3.2.The bene�t of the polytope model is that, at the price of certain regularity con-ditions, a very high standard of parallelization is made possible: an automatic or,in less regular cases, interactive mapping of programs or speci�cations to massivelyparallel processor networks. This mapping is guaranteed to preserve the desired2



behaviour of the source program (or speci�cation) and to yield massively parallelsolutions that are quanti�able, i.e., whose properties like execution time, throughput,number of processors and communication channels, memory requirements, etc. canbe stated precisely and compared. The synthesis can also be geared towards maxi-mizing e�ciency with respect to a given criterion like any of the requirements justmentioned. With the possibilities promised by new hardware techniques and com-puter architectures (increasing communication bandwidths and distances, decreasingcommunication cost, asynchronous parallelism in programmable processor arrays),the polytope method is undergoing extensions to encompass less restricted regularprocessor arrays, and more and more general source programs can be parallelizedthis way. However, the polytope model and the methods based on it are, by nature,restricted to nested loop programs. If a parallelization method is to be restricted,nested loop programs are a fruitful domain to aim at, because their parallelizationo�ers the possibility of an order-of-magnitude speed-up.The concepts of the polytope model are more explicit in single-assignment pro-grams than in imperative programs; imperative nested loop programs can be trans-formed to single-assignment programs [5, 17]. In a single-assignment format, algo-rithms that are now well understood in the polytope model can be described by aset of recurrence equations, each of the form:(8 x 2IS : v [f (x )] = Fv (w [g(x )]; : : :)) (�)The three dots in the argument list of the strict function Fv stand for an arbitrary but�xed number of similar arguments; v and w are indexed variables. The restrictionsimposed on the form of the index functions f and g and on the shape and propertiesof the index space IS were initially severe and became successively weaker:1. Uniform recurrence equations. In this initial version, the index domain IS is theintersection of a polytope with Zr , where r is the number of recurrences (ornested loops), and the indexing functions f (x ) and g(x ) are of the form x+d ,where d is a constant vector [21]. This enforces that data dependences betweenpoints in the polytope are point-to-point (x ) and local (d).2. A�ne recurrence equations. Here, the index functions are of the more generalform Ax+d , where A is a constant matrix and d is a constant vector [38, 39].This permits data sharing (if A is singular, i.e., de�nes a non-injective mapping).3. Piecewise linear/regular algorithms. Here, one permits the index domain to benot convex but partitioned into convex polytopes [12, 46]. This permits a se-quence of perfect loop nests instead of just one perfect loop nest.4. Linearly bounded lattices. Here, one does not embed into Zr but instead into anintegral a�ne transformation of it that need not be convex [50]. The intersec-tion of a polytope with an integer lattice is one special case. This enables theimposition of resource limitations, i.e., a partitioning of the parallel solution.2 An IllustrationWe present the polytope model and method with a simple example: polynomial prod-uct. We specify the problem (Section 2.1), present a source program (Section 2.2),3



present the source polytope (Section 2.3), transform it into a target polytope (Sec-tion 2.4), derive one synchronous and one asynchronous parallel program from it(Section 2.5), and touch on a couple of variations (Section 2.6).2.1 Speci�cationWe use Dijkstra's quanti�er format [14]. Let A and B be two polynomials of degreen in variable z , i.e.: A = (P k : 0�k�n : a[k ] z k )B = (P k : 0�k�n : b[k ] z k )Desired is the polynomial C[z ] of degree 2n de�ned by:C = AB = (P k : 0�k�2n : c[k ] z k )where:(8 k : 0�k�2n : c[k ] = (P i ; j : 0� i�n ^ 0� j �n ^ i+j =k : a[i ] b[j ]))2.2 A Source ProgramWe provide two programs that compute the coe�cients c[k ] from a[i ] and b[j ]: oneimperative, the other single-assignment.In the imperative program, we denote the loop statement with its vector (i ; j ) ofloop indices:for i = 0 1! nfor j = 0 �1! n(i ; j ) 9=;with8>><>>:(i ; j ) :if i=0 _ j =n ! c[i+j ] := a[i ] b[j ][] i 6=0 ^ j 6=n ! c[i+j ] := c[i+j ] + a[i ] b[j ]�Here, the outer loop increments its index from 0 to n, while the inner loop decrementsits index from n to 0 [4].In the single-assignment program|in this case, it is a set of a�ne recurrenceequations|we must use an auxiliary variable, say, C with an additional index tokeep track of successive updates of c:(8 j : 0� j �n : C [0; j ] = a[0] b[j ])(8 i : 0� i�n : C [i ;n] = a[i ] b[n])(8 i ; j : 0< i�n ^ 0� j <n : C [i ; j ] = C [i�1; j+1] + a[i ] b[j ])(8 k : 0�k�n : c[k ] = C [k ; 0])(8 k : n�k�2n : c[k ] = C [n; k�n])4
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RRRRR RRRRR RRRRR RRRRR RRRRRFig. 1. The index space (left) and the dependence graph (right).2.3 The Source PolytopeFigure 1 depicts the square polytope and the dependence graph. The only depen-dences between di�erent points of the polytope are introduced by the \pipelining"of computations of C . Copies of the values of a and b can be made available at everypoint that needs them.In linear programming, a polytope is described by a set of inequations. Eachinequation de�nes a halfspace of Zr ; the intersection of all halfspaces is the polytope.The points of our index space IS satisfy four linear inequations:2664�1 00 �11 00 13775 � ij � � 2664 00nn 3775 left border (lower bound of i)lower border (lower bound of j )right border (upper bound of i)upper border (upper bound of j ) i � 0j � 0i � nj � nWe denote the polytope de�ned by the set of inequations Ax � b by (A; b).The upper part of A is calculated from the lower bounds, the lower part from theupper bounds of the loops [4]. Both parts can be made lower-triangular, since thebounds of any loop must depend on the indices of enclosing loops only (they mayalso depend on the problem size).2.4 A Target PolytopeThe success of the polytope model is rooted in the existence of a mathematical theorywith which correctness-preserving space-time transformations of index spaces can bequanti�ed and selected according to given e�ciency criteria.Let IS be an r -dimensional polytope and consider the dependence graph (IS ;E ),where E is the edge set de�ning the dependences.{ Function t : IS ! Z is called a schedule if it preserves the data dependences:(8 x ; x 0 : x ; x 02IS ^ (x ; x 0)2E : t(x )< t(x 0))The schedule that maps every x 2IS to the �rst possible time step allowed bythe dependences is called the free schedule.5



{ Function a : IS ! Zr�1 is called an allocation with respect to schedule t if eachprocess it de�nes is internally sequential:(8 x ; x 0 : x ; x 02IS : t(x )= t(x 0)) a(x ) 6=a(x 0))This is the full-dimensional case, in which space takes up r�1 dimensions and time theremaining one dimension of the target polytope. One can also trade dimensions fromspace to time [27] and reduce multi-dimensional time to one dimension [42], endingup with fewer dimensions on the target than on the source side. A full-dimensionalsolution o�ers a maximum speed-up.Most parallelization methods based in the polytope model require the scheduleand allocation to be a�ne functions:(9 �; � : �2Zr ^ �2Z : (8 x : x 2IS : t(x ) = � x + �))(9 �; � : �2Zr�1�Zr ^ �2Zr�1 : (8 x : x 2IS : a(x ) = � x + �))The matrix T formed by � and � is called a space-time mapping:T = ��� �In the full-dimensional case, T is a square matrix and the requirement on the allo-cation is: jT j6=0. We call T (IS) the target space.The challenge is to �nd not only valid but also good-quality schedules andallocations|if possible, automatically. Herein lies the strength of the polytope method.Integer linear programming methods [34] can always determine a time-minimalschedule. A matching allocation is easily selected by checking the determinant with� for di�erent �. One can impose optimization criteria like a minimal number ofprocessors or channels, maximal throughput, etc. Note that the claim of optimalityis relative to:1. the data dependences of the source program (which might restrict parallelismneedlessly) and2. the requirements on the space-time mapping (here a�nity).Let us consider our example. Integer linear programming reveals that one time-minimal schedule is �1 0 �; a consistent processor-minimal allocation is �0 1 �. Thismakes the space-time mapping the identity|an example of the trivial case in whichthe space-time mapping is simply a permutation of the source coordinates and thesource loop nest can be parallelized directly [56, 60]. To make our illustration moreinteresting, we choose a di�erent allocation: �1 1 �. It is not processor-minimal. Fig-ure 2 depicts the according segmentations of the index space.The schedule slices the index space into parallel hyperplanes, i.e., subspaces whosedimensionality is one less than that of the index space. Each hyperplane representsone time slice. (This terminology suggests synchronous parallelism, but there is noneed for insisting on synchrony in the implementation.) The de�nition of the scheduleprescribes that the hyperplanes be not parallel to any edge of the dependence graph.The allocation segments the index space into parallel lines, i.e., subspaces ofdimensionality 1. Each line contains the points executed by a �xed processor. The6



Fig. 2. The index space partitioned by a minimal a�ne schedule (left) and a matchingallocation (right).consistency requirement for schedule and allocation prescribes that the lines gener-ated by the allocation be not parallel to the hyperplanes generated by the schedule.The most concise description of the parallel solution is the iteration vector [42,43]. This is the vector u that is parallel to the allocation lines (which are orthogonalto the allocation: � u=0), that points into the direction of the computation (� u>0),and whose length is the distance between adjacent points on an allocation line.In the case of polynomial product, the hyperplanes are also lines because r =2. There are n+1 times slices. We need a one-dimensional processor layout; ourparticular allocation speci�es a row of 2n+1 processors (n+1 is minimal). The linesinduced by our allocation happen to coincide with the dependences of C . That is,each C -element is only needed at one processor. Elements of A and B are needed atmore than one processor. The iteration vector is �1 �1�.Since the space-time mapping is invertible, the target polytope de�ned by it canbe described very easily. Say, the space-time mapping is T and the source polytopeis (A; b) in the coordinate system of IS . The target polytope must contain the samepoints as the source polytope but in a di�erent coordinate system, namely, in space-time coordinates: Ax � b= f T x = y g(AT�1) y � bIf T is unimodular, i.e., the matrix of T�1 has only integer elements, the targetpolytope is precisely the target space: (AT�1; b)=T (IS). If T is not unimodular,i.e., the matrix of T�1 has rational elements, the target polytope is only the convexhull of the target space: (AT�1; b) � T (IS). Some parallelization methods basedon the polytope model exclude non-unimodular transformations [26, 44], but this isoverly restrictive. There are ways of treating non-unimodularity (see Section 3.2).Consider our space-time mapping and its inverse:T = �1 01 1� T�1 = � 1 0�1 1�In the coordinate system on the target side, we choose to denote the time coordinate7



with t and the space coordinate with p (for \processor"). The set of inequations forthe target polytope under T is:2664�1 01 �11 0�1 13775 � tp � � 2664 00nn 3775 left borderlower borderright borderupper border t � 0p � tt � np � t+nFigure 3 depicts the target polytope.
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Fig. 3. The target polytope for the a�ne recurrence equations.2.5 Two Target ProgramsThe last step in the parallelization is to transform the target polytope back intoa loop program. In the full-dimensional case, the schedule dimension becomes asequential FOR-loop, the allocation dimensions become parallel FOR-loops.Before we can proceed with the transformation, we must choose the order of theloop nest of the target program. If we make the schedule dimension the outer-mostloop, we obtain synchronous parallelism. If we make it the inner-most loop, we obtainasynchronous parallelism.The synchronous target program. The synchronous program can be directlyread o� from the inequations for the target polytope. We use the occam keywordsseq and par for the temporal and spatial loop, respectively. Note that the processorlayout must be determined at every time step|and so must the termination of allprocessors (barrier synchronization [55]): 8



seq t = 0 1! npar p = t  1! t+n(t ; p�t)The loop statement speci�es the points of the source polytope but in the coordinatesof the target polytope. This correspondence is de�ned by the inverse of T :� ij � = T�1 � tp � = � tp�t �The asynchronous target program. The inequations for the target polytopemay not be suitable for the creation of loops: all inequalities may depend on all newloop indices|in our case, t and p|whereas loop bounds must depend on indicesof enclosing loops only. Here, this problem crops up when we want to synthesize anasynchronous program: the bounds of the outer loop index p are given with respectto the inner loop index t .We must transform the polytope (AT�1; b) to an equivalent one, (A0; b0) whosede�ning inequations refer only to the indices of enclosing loops. Several algorithmsfor calculating A0 and b0 have been proposed [1, 16, 44, 54]; most of them are basedon Fourier-Motzkin elimination [47], a technique by which one eliminates variablesfrom the inequalities. Geometrically, this projects the polytope on the di�erent axesof the target coordinate system to obtain the bounds in each dimension.To bound the target polytope only in the allocation dimension, we add the hor-izontal halfspaces p�0 and p�2n. Then we sort our six inequations such that the�rst three de�ne lower loop bounds and the last three upper loop bounds:26666664 0 �1�1 0�1 10 11 01 �1
37777775 � tp � � 26666664 00n2nn0

37777775 lower bound on plower bound on tlower bound on tupper bound on pupper bound on tupper bound on t p � 0t � 0t � p�np � 2nt � nt � pIn the program, multiple lower bounds are combined with the max function,multiple upper bounds with the min function:par p = 0 1! 2nseq t = max(0; p�n) 1! min(n; p)(t ; p�t)Here, the processor layout is determined only once. However, in the absence ofsynchrony, the data dependences must be enforced some other way. In a distributed-memory implementation, this is imposed by channel communications; in a shared-memory implementation, one must take other measures.9



Fig. 4. The index space segmented by the free schedule of the a�ne recurrence equations(left) and by the previous allocation, which is now processor-minimal (right).2.6 Other SchedulesThe free schedule. If we schedule every point as early as possible, given thedependence graph of Figure 1, we obtain the time slices depicted in Figure 4.The hyperplanes are creased, i.e., the free schedule is only piecewise a�ne:t(� ij �) = 8<:if i+j �n ! i[] i+j �n ! n�j�This schedule has the same length as the minimal a�ne schedule, but it requiresdouble as many processors and provides less load balance: the time slices are not ofequal length. So it is not of practical interest. But, in general, it pays to considerpiecewise a�nity. The free schedule is often piecewise a�ne and shorter than theminimal a�ne schedule. Piecewise a�nity is also used in allocations to fold processorlayouts for better processor usage [7, 12].Localization. In a distributed-memory implementation, one might prefer to avoidmultiple copies of a variable, e.g., to reduce storage requirements or, if the variableis updated, prevent inconsistencies. To achieve this, one can pipeline shared variableaccesses, which results in additional, arti�cial dependences. This process is calledlocalization [25]|or, if all shared variables of the program are being pipelined, alsouniformization, since then the resulting set of recurrence equations is uniform [38].We uniformize the recurrence equations for polynomial product by adding aux-iliary variables A and B to pipeline the accesses of a and b:(8 i : 0� i�n : A[i ;n] = a[i ])(8 i ; j : 0� i�n ^ 0� j <n : A[i ; j ] = A[i ; j+1])(8 j : 0� j �n : B [0; j ] = b[j ])(8 i ; j : 0< i�n ^ 0� j �n : B [i ; j ] = B [i�1; j ])(8 j : 0� j �n : C [0; j ] = A[0; j ]B [0; j ])(8 i : 0� i�n : C [i ;n] = A[i ;n]B [i ;n])(8 i ; j : 0< i�n ^ 0� j <n : C [i ; j ] = C [i�1; j+1] +A[i ; j+1]B [i�1; j ])(8 k : 0�k�n : c[k ] = C [k ; 0])(8 k : n�k�2n : c[k ] = C [n; k�n])10



The new dependence graph, on the old index space, is depicted in the left part ofFigure 5. The dependences of A point down, those of B point to the right.
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Fig. 5. The dependence graph of the uniform recurrence equations (left) and the time slicesof a minimal a�ne schedule (right).The additional dependences reduce the potential for parallelism. The new min-imal a�ne schedule is �1 �1�; it speci�es 2n+1 time slices (see the right part ofFigure 5). The allocation and the iteration vector can remain unchanged. This makesthe space-time mapping and its inverse:T = �1 �11 1� T�1 = � 1=2 1=2�1=2 1=2�The set of inequations for the target polytope under T is:2664�1=2 �1=21=2 �1=21=2 1=2�1=2 1=23775 � tp � � 2664 00nn 3775 left lower borderright lower borderright upper borderleft upper border 0 � t=2+p=20 � p=2�t=2t=2+p=2 � np=2�t=2 � nFigure 6 displays the resulting target polytope. Note that not all integer-valuedpoints correspond to a computation.Let us obtain the asynchronous program for this target polytope. To bound thepolytope only in the allocation dimension, we add the horizontal halfspaces p � 0and p � 2n. After sorting the inequations, we normalize each inequation for thecoordinate to be bounded:26666664 0 �1�1 �1�1 10 11 �11 1
37777775 � tp � � 26666664 002n2n02n

37777775 lower bound on plower bound on tlower bound on tupper bound on pupper bound on tupper bound on t p � 0t � �pt � p�2np � 2nt � pt � 2n�pHere, the correspondence between source and target coordinates is as follows:11
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Fig. 6. The target polytope for the uniform recurrence equations.� ij � = T�1 � tp � = � (t+p)=2(p�t)=2�In the target program, the inner loop step of 2 accounts for the \holes" in the targetpolytope: par p = 0 1! 2nseq t = max(�p; p�2n) 2! min(p; 2n�p)((t+p)=2; (p�t)=2)c0 c1 c2 c3 c4 � � �� � �- - - - � � � �a0 a1 a2b0 b1 b2Fig. 7. The systolic array based on the uniform recurrence equations.The distributed-memory version of this program requires no multiple copies ofa- or b-elements. Moreover, the propagation of the corresponding variables A and Brequires only connections between neighbouring processors. This is the systolic prin-ciple; the processor array for size n=2 is depicted in Figure 7. Circles represent the�ve processors, arrows represent unbu�ered communication channels. The variablesare distributed as they are needed at the �rst time slice (in which only the processorin the middle is active). All elements in the �gure, i.e., the location of the processors12



and data and the propagation direction and speed of the data are derivable from thespace-time mapping [37].Note that we have to be judicious in the choice of the dependences that weintroduce in a localization; it in
uences the amount of potential parallelism that isretained. E.g., when A is pipelined up rather than down in the dependence graph ofFigure 5, the minimal a�ne schedule has 3n+1 time slices.3 Recent Results and Current ResearchThis section provides some pointers to on-going research. No claim of completenessis made.3.1 ParallelizersOver a dozen systems, that are in some form or other related to the methods thatwe have described, have reportedly been implemented at di�erent sites during thelast decade. We shall only mention some modern representatives.ALPHA. One of the most comprehensive implementations of the polytope modeland method is the language Alpha developed at IRISA, Rennes [26]. In Alpha,one can specify a�ne and uniform recurrences directly and perform automatictransformations of the kind we have described. Alpha has a denotational se-mantics and can be viewed as a higher-order functional language for the specialpurpose of recurrence parallelization. For this reason, reduction operations havereceived special consideration in the design of Alpha [25].Crystal. The Crystal project at Yale University started out in the mid-Eightieswith a strong orientation towards the polytope model [10], but has since evolvedaway from it [11]. Now, Crystal is based on a more general equational theory[9]. This permits the treatment of more general source programs at the expenseof automation.HiFi. HiFi is being developed at Delft University of Technology. It is an envi-ronment for real-world applications in algorithm development and architecturedesign [51]. The application domain for which the system lends most supportat present covers models and methods for the design of regular architectures. Inthis domain, the polytope model is used extensively [19].PAF. This is the automatic FORTRAN parallelizer of Paul (A.) Feautrier [16].The system converts nested DO-loops to single-assignment form [17] and usesparametric integer programming [15] to �nd a time-minimal, not necessarilya�ne, shared-memory parallel schedule. The source loops need not be perfectlynested.Presage. The novelty of Presage [53] was that it dealt with violations of a�nity inthe polytope model|in particular with quasi-a�nity [52]. A quasi-a�ne map-ping is obtained by taking an a�ne mapping and coercing rational to integers.Quasi-a�ne space-time mappings enable a full trading of time versus space andcan lead to shorter schedules (with more processors) or fewer processors (withlonger schedules) than a�ne mappings [36].13



The Barnett compiler. This parallelizer generates distributed-memory parallel codefrom nested FOR-loops. The source program is �rst fed through a systolizer toobtain the target polytope. Both source program and target polytope are thenpassed on to a code generator that produces a machine-independent distributedprogram [4]. This program can then be translated to a target language, e.g.,occam 2 [35].3.2 Increasing Parallel Code E�ciencyWe said already in the introduction that parallelism modelled by polytopes is static.That is, the discovery of parallelism incurs no run-time overhead. We mentionedthat two choices can have a large impact on the e�ciency of the parallel imple-mentation: (1) the choice of recurrence equations (or loops), and (2) the choice ofspace-time mapping. In the latter, one has to choose one's optimization criterion ap-propriately. E.g., if communications are very expensive, communication optimizationtakes precedence over time or processor minimization.In this subsection, we are not concerned with these choices|although they area central issue|but with the run-time ine�ciencies that can occur in the parallelloop program after the recurrence equations and the space-time mapping have beenchosen. These ine�ciencies stem from the fact that one must determine \where" inthe index space or target space one is when executing the target loops.E�cient target loops. One problem is to establish the boundaries of the targetpolytope. We used min and max functions in the inner loop of most of our programs.In general, the loop boundaries tend to contain bigger and bigger case analyses forloops that are increasingly deep inside the loop nest. Also, we observed that, whenthe space-time mapping is not unimodular, holes appear in the target polytope.Holes that are \inside" the polytope (see Figure 6) can be bridged by non-unit loopsteps but holes at the boundaries require further case analyses in the boundarycomputation [2, 3, 30].The aim of parallelizing compilation is to avoid the run-time case analyses bymaking the respective decisions before run time. One idea that researchers are work-ing on at present is to segment the target space and generate one nest of loops foreach segment, rather than generating just one nest of loops and testing at run timefor the segment that is being scanned. This is, in general, a very complex problem.Control signals. A similar problem arises when several distinct operations must beapplied at one point at di�erent times of the execution. Then, one must be aware, ateach point in time, which is the current operation to be performed. This amounts toa segmentation of the index space. Again, one would like to pay as little as possibleat run time for the determination of the segment that one is scanning. Here, oneapproach has been to make the respective case analyses as cheap as possible bysupplying, in parallel with the data streams, additional streams of control signalsthat specify the operation. This way, the run-time tests reduce to tests for equalitywith a constant value. There are automatic methods for the synthesis of such controlsignals [48, 58, 59]. 14



3.3 Model ExtensionsIt seems natural to include parallelization methods based on the polytope modelinto compilers for massively parallel computers like the Connection Machine, theMaspar or transputer networks. Massive parallelism is only feasible if it containssome amount of regularity. The requirements of regularity imposed by the polytopemodel as presented here are more severe than need be. We have already discussedsome ideas for extensions of the model that allow for local violations of regularityand thereby increase the amount programming problems for which competitivelye�cient solutions can be obtained. Much research under way is on extensions, inorder to make the model feasible as an ingredient for parallelizing compilers.More general recurrence patterns. The trend is towards extending the polytopemodel to more general classes of recurrences: more general loop patterns (nestingviolations, less regular variable indexing, etc.), index domains whose extent is notcompletely determined at compile time, or data dependences that are not completelyspeci�ed at compile time.Resource constraints. There is also work on the imposition of realistic resourceconstraints. The �rst resource constraints studied were limitations of the dimension-ality of the processor layout (projection, e.g., [27, 43, 57]) or the number of processorsin a dimension (partitioning, e.g., [6, 13, 33, 49]). A di�erent reason for reducing thenumber of processors is to reduce the number of communications (data alignment,e.g., [20, 29, 41, 45, 60]). Other constraints recently considered are on the cache sizeand bus or communication bandwidth.More general communication patterns. Until recently, distributed computerso�ered local point-to-point communication as speci�ed with send and receive primi-tives. New massively parallel computers provide special facilities for, say, broadcast-ing information to some subset of processors or for remote point-to-point communi-cation. Taking advantage of these facilities in the send/receive paradigm may force aserious reorganization of the source program in order to achieve an e�cient mappingonto the architecture. New target language features are needed that can express avariety of communication patterns directly (e.g., [40]). The polytope model needs tobe extended to accommodate methods for a compilation of these patterns.4 ConclusionsThere are many di�erent models for parallel computation: Petri nets, process alge-bras, modal logics, partial order models, etc. The polytope model is distinguishedby the fact that it serves speci�cally to support parallelization methods.This illustration was intended to demonstrate that parallelization in the polytopemodel is not only possible but also very convenient. A territory of choices thatclearly reaches beyond the systolic principle can be characterized and quanti�edprecisely. Given an optimization criterion|in the illustration it was exclusively the15
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