
Supporting Real-Time Tra�c on EthernetTzi-cker Chiueh Chitra VenkatramaniComputer Science DepartmentState University of New York at Stony BrookStony Brook, NY 11794-4400fchiueh, chitrag@cs.sunysb.eduMarch 6, 1994AbstractEthernet is the dominant local area network architecture in the last decade, and webelieve that it is going to play the same important role in the future because of itscost-e�ectiveness and the availability of higher-bandwidth Ethernets. We propose andevaluate a software-based protocol called RETHER that provides real-time performanceguarantee to multimedia applications without modifying existing Ethernet hardware.RETHER features a hybrid mode of operation to reduce the performance impact onnon-real-time network packets, a race-condition-free distributed admission control mech-anism, and an e�cient token-passing scheme that protects the network against tokenloss due to node failures. We have constructed a detailed simulator to model the behav-ior of this protocol under various workloads and network con�gurations. The simulationresults and their analysis are presented in this paper, together with a discussion of thepractical implementation issues.

1 IntroductionAmong the various types of media supported by multimedia information systems, digital audioand video, also known as continuous media, require guaranteed transport bandwidth from theunderlying I/O and communication subsystems. Of the two, the communications subsystem plays amore critical role than the I/O component for the following two reasons. First, network resources inmodern computer systems are usually shared among multiple agents that are physically distributed.This complicates the issue of guaranteeing network bandwidth because of the distributed decision-making process; whereas in the case of I/O, the allocation decision usually could be made ina centralized fashion. Second, the performance variation of networking tends to be larger thanthat of I/O. That is, a slight slip in network performance can easily overshadow any performanceguarantees provided by the I/O system. Hence, it is much more important to have a tight controlover the performance of the network subsystem than that of the I/O subsystem.Despite the advocacy of high-speed networks such as FDDI and ATM in recent years, thepredominant architecture for local area networks is still based on Ethernet. We believe this situationis going to stay the same till the end of this century due to the following technological advancements.First of all, newer generations of Ethernets such as Grand Junction Networks' 100Base-X andHP's 100Base-VG provide 100 Mb/sec bandwidth, which is comparable to the so-called high-speedLANs, at a lower price. Second, the advent of switch-hubs has improved the scalability of theEthernet architecture by allowing the inter-connection of Ethernet segments into a local inter-network. Therefore, even for servicing large-scale organizations, Ethernet still remain a viablechoice. Based on these two observations, we believe that Ethernet will continue to be the networkof choice in a LAN environment, at least at the leaves of a hierarchy of inter-networks.Unfortunately, because the medium access protocol of Ethernet allows multiple nodes to com-pete for access to the channel, it is inherently incapable of guaranteeing bandwidth to any particularnode. Although the Ethernet protocol speci�cation has a provision for prioritized access arbitra-tion, this mechanism doesn't in itself o�er guaranteed bandwidth to an arbitrary pair of nodes.Besides, most commodity Ethernet controllers do not necessarily implement this feature. Therefore,the major goal of this work is to develop a software-based protocol for existing Ethernet hardwareto provide real-time performance guarantees. This protocol is implementable as an enhancementto the existing TCP/IP protocol suite and will work with any o�-the-shelf Ethernet hardware anddevice driver. As will become clear later, the constraint of using commodity networking hardwaresigni�cantly restricts the range of design possibilities for providing real-time performance guaran-tees.The proposed protocol is a combination of CSMA/CD and token passing mechanisms. Wewill, henceforth, refer to it as the RETHER (Real-time ETHERnet) protocol. The basic ideaof RETHER is to operate the network with the CSMA/CD protocol when there are no real-time sessions, and to switch it to a token passing medium access control protocol when real-timeconnection requests do exist. The rationale behind this decision is to provide bandwidth guarantees1

to real-time connections while minimizing the performance impacts on non-real-time tra�c.The rest of the paper is organized as follows : Section 2 describes previously proposed approachesto support deterministic network services in a LAN environment. Section 3 describes the RETHERprotocol in detail. Section 4 describes the simulation methodology and the data structures usedin the simulator. Section 5 presents the simulation results and their detailed analysis. Section 6discusses the implementation issues involved in modifying a generic UNIX network subsystem tosupport the RETHER protocol. Section 7 concludes the paper with a summary of main researchresults from this project and outlines the plan for future work.2 Related WorkA few di�erent schemes have been proposed to support real-time tra�c on the Ethernet. In general,there are two approaches to address the problem of providing bandwidth guarantees on a multipleaccess communication medium { token passing and synchronous time division multiplexing. Theformer uses a control packet called the token to limit the media accessibility to the token holder,whereas the latter uses absolute time to implicitly synchronize the accesses to the media amongthe nodes on the network.An enhanced token bus protocol is described in [CCG93]. In traditional token passing schemes,the token-holding node transmits messages and then passes the token over to its successor in thelogical ring. In this new scheme, which they call the \Message/Token" protocol, each node isassociated with a unique Medium Access Control ID (MACID) and each message is tagged withthe MACID of the current token holder. Since the transmission medium is shared, each nodeconstantly monitors the messages
owing on the medium and determines if it is the next tokenholder, based on the information in the so-called local predecessor table. During initialization,each node is assigned at least one MACID. Multiple MACIDs may be associated with a node toindicate that that node could hold a token that many times in one token-rotation cycle. One of thenodes is elected to be the network manager, whose responsibilities include admission control, tokenbus organization, initialization and maintenance. A new real-time connection request speci�es therequired frequency of token visits to the network manager, which then decides whether this requestcan be serviced according to the current bandwidth allocation.The �rst problemwith this method is that non-real-time data tra�c su�ers from the high latencycharacteristics of a token bus network, even when there are no active real-time (RT) sessions. Inaddition, the network manager could potentially become the system bottleneck and lead to moremessage tra�c on the network. Also, this scheme requires that every packet be broadcast becausethe token is piggybacked to the packet. This increases the processing overhead at each node. Lastly,the paper fails to address how a new token-passing schedule is generated on the introduction of anew real-time connection without modifying the schedule of existing real-time connections.A hybrid token-CSMA/CD protocol for integrated voice/data LANs is proposed in [SSC91],2

[GW85]. Two implicit tokens { one for voice and one for data { circulate in the network simulta-neously, but with di�erent priorities. The network behaves like a token bus for voice tra�c andas a low-priority hybrid token-CSMA/CD channel for data tra�c. The channel is slotted with theslot size being an end-to-end transmission delay. All stations are assumed to be synchronized andtransmission starts at the beginning of a slot. The voice station in possession of the voice tokengets priority to transmit. If it has nothing to transmit, it holds on to the token for a period of timecalled the token-holding time. During this time, the channel is idle. This is sensed by the datastations, which compete for the channel using the CSMA/CD protocol. One of the data stationspossesses the data token and gets a higher priority over others in this phase. When there is acollision on the channel, the node with the token continues to send data until all other nodes are intheir backo� phase. It then retransmits the packet without waiting, thereby getting collision-freeaccess to the channel. Once a token-holding node completes its transmission, it implicitly passesthe token to its successor. Each node counts the number of busy/idle transitions and determineswhen its turn is. This avoids explicit control token passing. By suitably adjusting the token-holdingtime, delay bounds can be guaranteed in this protocol. The problem, though, is that this methodhas the requirement that all nodes in the network be synchronized. It is also not compatible witho�-the-shelf Ethernet hardware.[JSTS92] describes one of many projects intended to explore what can be done with present-day networks and protocols for multimedia applications like video teleconferencing. The schemerelies on a real-time operating system called YARTOS. The protocol does not provide any reser-vations/guarantees and is a best-e�ort strategy. This means that the protocol delivers the highestquality possible given the current load in the network. It has been implemented over the IP layerof the Internet Protocol suite and it dynamically adapts the conference frame rate to the band-width available on the network. Two jitter control strategies, both of which compromise quality ofservice, are described { When there is bursty data tra�c on the network, audio/video synchrony iscompromised, and when there is continued data tra�c on the network, the conference frame rateis compromised.Many other real-time LAN technologies are coming up recently to support real-time multimediaapplications [Dan93]. Among these are IEEE 802.9-based and related isochronous LANs. The IEEE802.9 Working Group has developed a speci�cation for the support of integrated voice and data inthe 10 Mbps range. The standard de�nes a uni�ed access method that o�ers integrated voice anddata (IVD) services to the desktop for a variety of publicly and privately administered backbonenetworks, such as FDDI and IEEE 802.x. A variant of this standard is the IsoENET announcedby IBM and National Semiconductor Corp. The IsoENET provides 96 out-of-band isochronous64-Kbps subchannels besides the 10-Mbps Ethernet channel. The Ethernet MAC frames coexistover the same physical medium as the isochronous voice and data, but each has a di�erent format.Also, IsoENET uses regular 10BASE-T star wiring, eliminating the need to recable. But, IsoENEThas its drawbacks, the major one being that hubs and PCs have to be �tted with new adapters.3

All earlier approaches invariably assume a protocol structure that requires hardware supportin the form of either synchronized clocks or intelligent token manipulation which con
icts with ouroriginal goal of supporting real-time tra�c over commodity Ethernet hardware. In contrast, weadopt a completely software-based approach, requiring changes only to the networking software.The proposed RETHER protocol provides real-time guarantees by allowing the reservation of therequested bandwidth whenever possible, and honoring the reservation at run time via a tokenpassing mechanism. Moreover, by observing the CSMA/CD protocol when there are no real-timesessions, it also reduces the performance impact on non-real-time messages to the minimum. Theprotocol assumes a decentralized control structure and does not require global synchronizationamong the network nodes.3 The RETHER ProtocolBefore describing the proposed protocol, we will �rst outline the constraints under which theRETHER protocol is designed:� The protocol should be implementable based on existing networking hardware, i.e., o�-the-shelf Ethernet cards.� The protocol should be implementable as an enhancement to existing UNIX-like communica-tion subsystems.� When there are no real-time sessions, performance should be at least as good as that of thecurrent Ethernet.Because of the �rst constraint, the MAC protocol of the Ethernet card, namely CSMA/CD, cannotbe changed. But, if collisions are permitted, it would be very di�cult to bound the time toput a packet on the network link. This bound is required for real-time performance guarantees.Hence, the RETHER protocol adopts a collision-free approach to regulate the network tra�c andis implemented as a software layer immediately above the MAC hardware. The RETHER protocolsatis�es the second constraint because it can be readily integrated into existing UNIX networksoftware implementations. The protocol satis�es the third constraint by adhering to the CSMA/CDprotocol when there is no real-time session on the network. Consequently, the RETHER protocolhas two modes of operation, Real-Time (RT) and Non-Real-Time (NRT), which are described inthe following two subsections.3.1 Non-Real-Time ModeIn the non-real-time mode, the nodes compete for the channel according to the original CSMA/CDprotocol of the Ethernet. This protocol is implemented in all the Ethernet adapters available inthe market. The protocol is fair, performs well under light loads and deteriorates only as the load4

on the network increases. In the RETHER protocol, all nodes remain in this mode until an RTrequest arrives. The �rst such RT request causes the network to switch to the real-time mode.Before starting a real-time connection, the initiating node must issue a reservation requestmessage to declare its intention. In case there is no real-time connection on the network, theinitiating node broadcasts a switch-to-RT-mode message. All nodes receive this message and settheir protocol modes to the real-time mode. They hold o� sending data and await the completionof transmission of the packet already in the transmission bu�er of the network interface. When thetransmission bu�er becomes empty, they each send an acknowledgement packet back to the senderof the switch-to-RT-mode message. Once the broadcasting node receives the acknowledgementsfrom all the nodes, it generates a token and begins circulating it.The acknowledgements are crucial to the success of this protocol for two reasons. First, ac-knowledgements signify the nodes' willingness to switch the network from the non-real-time to thereal-time operating mode. Second, the fact that acknowledgements are successfully sent out indi-cates that the nodes do not have any pending packet in the backo� phase of the CSMA mode. Thelatter is particularly important to the RETHER protocol because in typical Ethernet cards, thesoftware has no control over the data once the data has been put on the network interface's bu�ers.If more than one node generate the switch-to-RT-mode message simultaneously, only one ofthem will be broadcast successfully by the CSMA protocol. On receiving the switch-to-RT-modemessage, other than the acknowledgement, each node won't send out new packets until it receivesthe control token. They will reject any switch-to-RT-mode request that the local processes mayhave generated in the meantime and ignore any switch-to-RT-mode message that arrives after the�rst one.3.2 Real-Time ModeBecause this work is mainly concerned with supporting real-time connections on a local-area net-work environment, we believe that bandwidth guarantee is much more important than delay andjitter control in this context. Therefore, the RETHER protocol is designed speci�cally for pro-viding bandwidth guarantee. We use a token passing mechanism to provide such a guaranteebecause it does not require global synchronization and imposes fewer restrictions on the operatingenvironment. While designing this protocol, we make the following assumptions:� Ethernet refers to a single Ethernet segment, but not multi-segment networks that span acrossbridges or routers.� Each real-time node has to specify the required transmission bandwidth in terms of theamount of data it needs to send during a �xed interval of time, called the bandwidth allocationinterval. The bandwidth allocation interval is chosen to be 1/30 second, which re
ects the 30frames/sec bandwidth need of the target application, video-conferencing.5

1

9

2 38 10 11 7

5

6

4

Non-Real-Time Node Real-Time NodeFigure 1: Example Con�guration of RT and NRT Subsets.� An average constant bandwidth is reserved for each session. Any bandwidth variation causedby video-compression is absorbed by su�cient bu�ering at either end.� There is su�cient bu�er space available at the destination node to allow for some jitter intransmission.� There is only one real-time request per node. This could be trivially generalized to multiplereal-time requests per node by treating these requests as virtual nodes that share one physicalnode.3.2.1 Basic AlgorithmIn the real-time mode, the control token circulates among two sets of nodes with di�erent rotationfrequencies { the real-time (RT) set and the non-real-time (NRT) set. The RT set consists of allthe nodes that require real-time connections, while the NRT set is comprised of all the nodes inthe network. That is, a node could receive the control token as an RT node or an NRT node.Figure 1 shows a generic Ethernet segment, where Node 1, 2, and 3 are RT nodes and Node 1,2, 3,... and 11 belong to the NRT set. Each RT node, once admitted, is guaranteed its reservedbandwidth because the protocol imposes a maximum constraint on the token rotation time and thetoken holding time for each RT node. In practice, the Maximum Token Rotation Time (MTRT) isequal to the bandwidth allocation interval. Part of the total bandwidth is reserved for NRT nodesto prevent starvation. The Maximum Token Holding Time (MTHTi) of each RT node is the sumof the required bandwidth divided by the transmission bandwidth, and a �xed software overhead.When a node in the RT subset receives the control token, it could send either a real-timeconnection termination message or a unit of real-time data according to the the maximum tokenholding time. At the end of a real-time token passing cycle, instead of passing the token back to the�rst RT node, the last RT node, Node 3 in Figure 1 sends it to the nodes in the NRT subset. At thistime, the token is tagged with the di�erence between the MTRT and the sum of the actual token6

holding times of the RT nodes in the current token rotation cycle, which represents the residualbandwidth available for NRT nodes. When an NRT node receives the tagged token, it determinesif there is su�cient time to send a packet. If so, the node sends the packet, subtracts the tag'sremaining time accordingly, and passes the token on to the next NRT node. If not, it noti�es thelast RT node that in the next token rotation cycle it should be the �rst NRT node to receive thetoken, and then passes the token back to the �rst RT node to start a new token rotation cycle.For example, suppose the token is passed from the last RT node in Figure 1, Node 3, to the �rstNRT node, Node 4, to Node 5 and so on. Suppose Node 8 determines that the remaining time onthe token is not su�cient to send the �rst packet on its transmission queue. It then noti�es Node3 that it is the �rst NRT node to receive the token in the next token rotation cycle, and passesthe token to the �rst RT node, Node 1, essentially restarting another token rotation cycle. In thisexample, the order through which the token traverses the nodes is as follows: 1 - 2 - 3 - 4 - 5 - 6- 7 - 1 - 2 - 3 - 8 - 9 Therefore, the token could visit the RT nodes more frequently than theNRT nodes, thus allocating more bandwidth to real-time than to non-real-time tra�c.To ensure that all existing real-time connections not be disturbed by new RT connections, thesystem performs admission control for every new RT connection request. An important feature ofthe RETHER protocol is that the admission control decisions are made in a distributed fashionin that every node is responsible for determining whether the remaining network bandwidth issu�cient for the network to admit new real-time connections, or alternatively to convert the nodeitself into an RT node. To be able to make this decision, every node (RT or NRT) maintains thelist of RT nodes and their respective bandwidth requirements. The list is updated every time anode joins or leaves the RT set via a broadcast message.When a node receives a real-time connection request from a local process with a speci�edbandwidth reservation, it checks the RT list to see if there is su�cient bandwidth remaining toadmit this real-time connection, i.e., converting itself into an RT node. A new connection with abandwidth reservation MTHTnew can be admitted if and only ifXi2theRTsetMTHTi +MTHTnew + TBNRT �MTRT (1)where TBNRT is the minimumamount of bandwidth reserved for the NRT set. If so, it broadcasts itsnode ID and the bandwidth requirement to all the other nodes, which can then add this informationto their RT list.Because the admission decision is made locally, a race condition could arise in which more thanone node try to admit themselves. To resolve this race condition, the admission control decisionis made only when the control token is received. In other words, a process' request to initiatea real-time connection will not return until the associated node receives the control token in theNRT mode. Suppose that there is a process in Node 1 and another in Node 3 that simultaneouslyattempt to establish real-time connections. The node that receives the token �rst in the NRTmode, say Node 1, gets to perform the admission control test �rst and broadcasts its reservation7

message. All other nodes, after receiving this broadcast message, update their RT lists accordingly.When Node 3 receives the token, it �rst checks a particular
ag that indicates whether there isany local reservation pending. If so, it performs the admission control test with the new RT listthat includes Node 1's reservation. Although delaying admission control test to the time when thetoken is received may seem to prolong the response time of the bandwidth reservation request, thisis actually not the case since a bandwidth reservation request is valid only when the associatedbroadcast has been successfully sent out, which is possible only when the node holds the controltoken.Because acknowledgements are especially expensive in a token-passing environment, the protocoldoesn't require other nodes to acknowledge the reservation broadcast message, unlike the switch-to-RT-mode request. The protocol still functions correctly because it is possible to resolve theinconsistency of the RT list due to the anomaly where some nodes did not receive the broadcastmessage successfully. To guarantee the consistency of RT lists on all nodes, the most up-to-dateRT list is included within the token. Given the number of nodes on an Ethernet and the number ofRT nodes supportable with 10 Mb/sec, including the RT list in the 64-byte token seems reasonable.After a node successfully joins the RT set, it updates the RT list in the token before passing it on.When a node receives the token, it simply replaces its own RT list with the RT list in the token.Therefore, eventually the RT lists of the network nodes will reach a consistent state. Althoughthere could be a window of temporary inconsistency, this is actually innocuous because the nodescan have an e�ect on the network only when they hold the control token. But, a node's RT list isguaranteed to be consistent when it holds the control token!When an RT node wants to terminate its real-time connection, it broadcasts a terminationmessage when it holds the token in the RT mode. All other nodes update their RT lists accordingly,and do not need to return acknowledgements for the same reason described above. When the lastRT node decides to terminate its real-time connection, it sends a switch-to-NRT-mode broadcastpacket asking all nodes to switch back to the CSMA/CDmode. On receiving this message, all nodesswitch back to the non-RT mode. The last RT node that terminates its session is also responsiblefor destroying the token. Again no acknowledgements are needed. However, since there won't be acirculating token to deliver the genuine RT list, in this case an empty set, to every node, it is possiblethat some nodes may still think they are in the RT mode and wait for the control token when infact the network is in the NRT mode, i.e., CSMA/CD. To address this problem, the RETHERprotocol enforces a maximum interval between successive receipts of the control token in the NRTmode by adjusting TBNRT in Equation (1) appropriately. A node will automatically switch tothe NRT mode whenever this timer expires. Consequently, it is not necessary to acknowledge theswitch-to-NRT-mode message because all the network nodes will eventually converge to the NRTmode even though their RT lists may be temporarily inconsistent.8

3.2.2 Reliability ConcernAn important reliability issue is when the control token gets lost due to node failure. We solve thisproblem by making each node responsible for monitoring the state of its logical neighbor. Eachnode, after sending the token to its neighbor, will set an acknowledgement timer whose length isequal to its neighbor's token holding time, and expects to receive an acknowledgement before thetimer times out. If its neighbor is an RT node, its token holding time will be equal to its bandwidthreservation period and if it is an NRT node, it will be one MTU time. When the acknowledgementtimer indeed times out, it assumes that its neighbor is dead and sends the token along with anupdated RT list, if necessary, to the node next to its neighbor.A potential performance price associated with this token passing scheme is that each tokenpassing transaction requires twice as much time as one without acknowledgement. We address thisissue by piggybacking the acknowledgement to a node's previous neighbor with the token passedto its next neighbor. This is possible because Ethernet hardware supports multicast based onthe notion of group destination address. Also, because the network operates via a token passingmechanism (no unexpected communication delay), and protocol processing is done by the interrupthandler (no host scheduling problem), the time-out of the acknowledgement timer almost alwaysimplies that the monitored node is dead. For example, in Figure 1, Node 1 would monitor Node 2by awaiting an acknowledgement after sending the token to Node 2. If Node 2 were alive, it wouldsend its message �rst and then multicast the token to Node 1 and Node 3, its logical predecessorand successor respectively. This token would serve as the acknowledgement without incurring extradelay. If, on the other hand, Node 2 were dead, then Node 1 would time out, and regenerate andsend the token to Node 3 with an updated RT list that excludes Node 2.4 SimulationThe simulator is an event-driven simulator and it simulates the RETHER protocol described in theprevious section. The non-real-time workload is characterized by two parameters{the packet sizeand the packet arrival rate. We adopted the empirical measurement results described in [Ric90]for the packet-size distribution. Although there is no well-accepted model for the inter-arrival timedistribution on an Ethernet, we choose a hyperexponential distribution proposed in [SS92] as anapproximation. The Cumulative Distribution Function (CDF) for the packet inter-arrival time isF (t) = 1� (ae�t=�1 + (1� a)e�t=�2) (2)with a = 0.68, �1 = 25.2 msec, and �2=235.2 msec. This model basically assumes that the packetarrival process is a superposition of two Exponential distributions with di�erent mean arrival times.The time (in �sec) to send a token and to send an MTU (Maximum Transmission Unit) packetwere measured on a real Ethernet. These and other constant values used in the simulation were {TOKSENDTIME 680 /* time to send a token from one node to another*/9

MTUSENDTIME 3450 /* time to send an MTU packet on the Ethernet */MAXNODES 16 /* number of nodes on the network */BANDWIDTH 10*1024*1024 /* 10 Mbps Ethernet bandwidth */During the simulation, the token holding time includes the transmission time as well as theassociated software overhead that we obtained through measurement. Following is a list of eventstypes processed by the simulator :TOKENARR : Arrival of a token,RTTERMINATE : Termination of an RT session,PROTOSW_CT : Protocol switch message (from CSMA to Token Passing),PROTOSW_TC : Protocol switch message (from Token Passing to CSMA),PROTOACK : Acknowledgements for PROTOSW_CT,RTUPDATE : Admission of a new RT session.When each of these events occurs, the corresponding node processes the event as described inthe protocol and updates its associated state. The simulator maintains the following state datastructure for each node:struct node {struct RTnodes *RTlist; /* list of nodes in the RT set */int RTneighbor;int NRTneighbor;int pendingFlag; /* TRUE if a local reservation is pending */int protocolMode; /* current protocol - CSMA or Token Passing */struct nonRTmsg *nonRTQ; /* queue of nonRT requests */struct RTmsg *RTQ; /* queue of RT control messages */struct rtstats *RTstats; /* list of stats of all RT sessions so far */struct nonrtstats *nonRTstats; /* holds stats about nonRT messages */};struct RTnodes {int nodeid; /* RT node id */long bandwidth; /* time used in the 33 ms slot */struct RTnodes *next;};RTQ is a queue of RT control messages while nonRTQ is a queue of NRT messages. They aremaintained separately because each node may be in the RT set and the NRT set simultaneously.Each node also maintains a linked list of nodes currently in the RT set. Each of the entries in10

this linked list indicates the bandwidth reserved for the corresponding real-time session. This datastructure is used by each node to make admission decision locally.The data structure for the control token isstruct token {char mode; /* RT or NRT token ? */long residualTimetoDeadline; /* time to deadline of the first RT node */int nextNRTnode; /* the NRT node to be serviced in next cycle*/};The mode �eld indicates if the token is circulating in the RT or NRT set. The residualTime-toDeadline �eld is used to estimate the amount of time left for NRT message transmission and isupdated by the last RT node as well as by the NRT nodes who have received the token. It is onlyused when the token is circulating in the NRT set. The nextNRTnode �eld holds the ID of theNRT node which should receive the token when the token is passed from the RT set out to theNRT set the next time around.Because the RETHER protocol guarantees the required bandwidth for real-time connectionsonce they are admitted, we are mainly interested in investigating the performance impact of thisprotocol's overhead on NRT messages. The performance metric we use is the average latency ofNRT messages. With the above simulator, we were able to estimate the latencies of NRT messagesunder various workload conditions. The parameters that we varied during the simulations were� The number of RT sessions� The bandwidth reserved by each real-time connection� The NRT load on the network (modeled by the weight `a' in the CDF of the hyperexponentialdistribution)� The maximum token rotation time, MTRT� The maximum transmission bandwidth of EthernetAll data used to plot the graphs are averaged over 80 runs, each of which is for a duration of 10minutes and assuming that TBNRT is zero and the maximumNRT token holding time is an MTUEthernet packet. The results are presented and analyzed in Section 5.5 Performance AnalysisThis section presents the simulation results and their analysis. Section 5.1 estimates the time toswitch between di�erent modes supported in RETHER. Because of the large number of possiblecombinations of parameter values, we focus on a representative scenario described in Section 5.2,for which the simulation results are analyzed in Section 5.311

5.1 Protocol Mode-Switch TimeIt is important to estimate the time the network takes to switch from one protocol mode to theother, because this has a signi�cant e�ect on the latency experienced by non-real-time messages.The time for the network to switch from the CSMA/CD mode to the Token-Passing mode consistsof two components: the time for each node to drain the messages already in the transmissionqueue of the network interface before the switch-to-RT-mode message arrives, and the time for the�rst RT node to collect the acknowledgements from the remaining nodes. Both components willinclude the delays due to collisions on the Ethernet. Since it is di�cult to simulate the complexCSMA/CD backo� algorithm, we will use an analytical approach to estimate the time it takes forthe packet in the transmission bu�er to be emptied and the time it takes a node to acknowledgethe switch-to-RT-mode message.Suppose that when the switch-to-RT-mode broadcast message is received, each node's trans-mission queue contains an MTU packet, and that the acknowledgement packet is 64-byte long, theminimum Ethernet packet length. When K nodes on an Ethernet want to send packets simultane-ously, it has been shown in [And88] that the mean number of contention slots is(1� 1K)1�K (3)and each contention slot is 51.2 �sec. Therefore, for a 16-mode Ethernet segment, the averagedelays for each non-RT node to drain an MTU packet and send an acknowledgement packet are3,450+135=3,585 �sec and 680+135 = 815 �sec, respectively.The time to switch from the Token-Passing to the CSMA mode when the last RT sessionterminates can be easily estimated since no acknowledgements are needed, as explained in Section3.2, and there will never be packets in the Ethernet transmission bu�er in the Token-Passing mode.When the last RT node broadcasts a switch-to-NRT-mode message, it doesn't incur any collisiondelay, since all the nodes are still in the Token-Passing mode. All nodes, on receiving the protocolswitch message, update their states and start operating in the CSMA mode. Hence, the time toswitch from the Token-Passing to the CSMA mode is the time required to send out one 64-byte-longswitch-to-NRT-mode message.5.2 A Typical ScenarioThe following is a description of a typical workload and we will analyze the results for this scenarioin more detail.� The Ethernet consists of 16 nodes.� In the Token-Passing mode, the MTRT is chosen to be 33.3 msec.� The real-time sessions are video streams whose spatial resolution is 256x256.12

Load = 0.0

Bw/Sess. = 0.3 Mbps
Bw/Sess. = 0.6 Mbps
Bw/Sess. = 0.9 Mbps
Bw/Sess. = 1.2 Mbps

NRT Latency (ms)

Number of RT sessions
5

1e+01

2

5

1e+02

2

5

1e+03

2

5

1e+04

2

5 10 15Figure 2: Number of RT Connections Vs.NRT Message Latency, assuming that eachreal-time channel reserves a �xed bandwidth,Load = 0.0
Load = 1.0

Bw/Sess. = 0.3 Mbps
Bw/Sess. = 0.6 Mbps
Bw/Sess. = 0.9 Mbps
Bw/Sess. = 1.2 Mbps

NRT Latency (ms)

Number of RT sessions5

1e+01

2

5

1e+02

2

5

1e+03

2

5

1e+04

5 10 15Figure 3: Number of RT Connections Vs.NRT Message Latency, assuming that eachreal-time channel reserves a �xed bandwidth,Load = 1.0� The uncompressed data bandwidth required per session with 16-bit color and at 30 framesper second would be 30 Mbps. With a compression ratio of 50:1, the amount of bandwidthrequired per session would be 0.6 Mbps.When applications reserve the network bandwidth, they have to specify the reservations in theform of the amount of data transmitted within a period of time. There is a di�erence between 2 MBevery two seconds and 1 MB every one sec, although the average data rate is the same. The latteris considered more strict than the former because the former gives more implementation
exibility.To simplify our simulation, we assume that all real-time connections specify their bandwidth needsin the form of data volume transmitted every 33.3 msec.5.3 Results and DiscussionWe are mainly interested in the impact of bandwidth reservation on the performance of the NRTtra�c. Hence, all plots have the average NRT message latency in msec on the Y-axis in a logscale. The NRT message load on the network is controlled by adjusting the value of `a' in thehyperexponential distribution for the inter-arrival-times. The higher the value, the shorter theaverage inter-arrival-time and hence, the heavier the load on the network. In the graphs, the valueof `a' is used to indicate the load on the network.In Figure 2 and 3, the e�ect of increasing the number of Real-time sessions is shown. Eachplot is for a constant bandwidth per session. Looking at the 0.3 Mbps line, we see that the knee13

Load = 0.68

Bw/Sess. = 0.3 Mbps
Bw/Sess. = 0.6 Mbps
Bw/Sess. = 0.9 Mbps
Bw/Sess. = 1.2 Mbps

NRT Latency (ms)

Number of RT sessions5

1e+01

2

5

1e+02

2

5

1e+03

2

5

1e+04

2

5 10 15Figure 4: Number of RT Connections vs.NRT Message Latency, assuming that eachreal-time channel reserves a �xed bandwidth,Load = 0.68
Constant Total Bandwidth Reserved

Total Bw = 2.4 Mbps
Total Bw = 3.6 Mbps
Total Bw = 4.8 Mbps
Total Bw = 7.2 Mbps
Total Bw = 9.0 Mbps

NRT Latency (ms)

Number of RT sessions

1e+01

2

5

1e+02

2

5

1e+03

2

5 10 15Figure 5: Number of RT Sessions vs. NRTMessage Latency, assuming that the totalreal-time bandwidth reservation is �xed, Load= 0.68of the graph occurs at around 12 sessions and so, if more than 12 such sessions are operatingsimultaneously, the performance of NRT tra�c deteriorates rapidly. Similarly, the other linesrepresent the performance of the network under di�erent amounts of bandwidth reservation foreach real-time session. These two �gures show the performance of the system under two extremedistributions of the inter-arrival-times for NRT tra�c. As the load increases, it can be seen thatthe knees occur earlier, which means that fewer RT sessions can be supported without seriouslyhurting NRT message latencies. Based on these graphs, one can determine the maximum numberof real-time sessions that can be supported while maintaining a reasonable performance level forNRT tra�c, taking into account both the real-time bandwidth reservation and the NRT tra�cload. Figure 4 also plots the latency versus the number of real-time sessions supported. The loadin this case is 0.68, which is used in [SS92] to model the generic workload on the Ethernet.It is interesting to compare the NRT message latencies under a �xed total real-time bandwidthreservation but with di�erent numbers of real-time connections. This would show the e�ect of theprotocol overhead, namely token passing overhead, as the number of RT sessions increases. Forexample, in all of the three �gures above, the NRT message latency for the "10-connection, each0.3 Mbps" case is always greater than the "5-connection, each 0.6 Mbps" case. The di�erence isdue to the token passing overhead and can be used as a measure of the price of providing real-timeperformance. This is demonstrated in Figure 5 which is a plot of the latencies against the numberof RT sessions for di�erent total bandwidths reserved. All plots have a positive slope indicating14

Number of RT Sessions = 4

Load = 0.0
Load = 0.2
Load = 0.4
Load = 0.68
Load = 1.0

NRT Latency (ms)

Bandwidth Reserved

1e+01

2

5

1e+02

2

5

1e+03

2

5

2.00 4.00 6.00 8.00Figure 6: Total Real-Time Bandwidth Reser-vation vs. NRT Message Latency, assuming a�xed number of real-time channels
Bandwidth per Session = 0.3Mbps

Load = 0.0
Load = 0.68
Load = 1.0

NRT Latency

Number of RT Sessions
6

8

1e+01

1.5

2

2.5

3

4

5

6

8

5 10 15Figure 7: Number of RT Connections vs.NRT Message Latency, assuming a �xedbandwidth reservation for each real-timechannelthat the latency increases with the number of RT sessions for the same total bandwidth reserved.It can also be seen that the latency increases gradually with the number of RT sessions when smallfractions of the Ethernet bandwidth are reserved. However, the e�ect of the number of RT sessionsand hence, the protocol overhead, becomes more signi�cant once larger fractions of the bandwidthbegin to be reserved. Again, 6 Mbps seems to be the threshold fraction of bandwidth for real-timereservation before the protocol overhead starts to render the curve with a larger slope.To get a better understanding of the global allocation of NRT and RT bandwidth, Figure 6shows the e�ect of increasing the amount of real-time bandwidth reserved on the latencies fordi�erent NRT loads. The number of RT sessions here is four and so the protocol overhead dueto token-passing is �xed. The X-axis shows the total amount of network bandwidth reserved forreal-time tra�c. For our typical scenario, the e�ect of reserving 1.2 Mbps does not a�ect thelatency signi�cantly event if the load on the Ethernet is increased. However, for the worst case,where around 8.5 Mbps are reserved, the deterioration with load is signi�cant. It can be concludedfrom this graph that up to a maximum of 6 Mbps can be safely reserved without degrading theperformance of NRT messages signi�cantly. But, this conclusion is only valid for 4 RT sessionssince more RT sessions under the same total real-time bandwidth will incur extra token passingoverhead.Next, we measure the e�ect of the number of RT sessions (with each session reserving 0.3 Mbpsas in our typical scenario) on the NRT latencies for di�erent NRT loads. Figure 7 shows the result15

Bandwidth per Session = 0.6Mbps

 MTRT = 66 ms
 MTRT = 33 ms

NRT Latency (ms)

Number of RT sessions5

1e+01

2

5

1e+02

2

5

1e+03

2

5

1e+04

2

5 10Figure 8: Number of RT Connections vs.NRT Message Latency, MTRT = 66 msec or33 msec, Load = 0.68
Bandwidth per Session = 6%

100 Mbps Ethernet
10 Mbps Ethernet

NRT Latency (ms)

Number of RT sessions5

1e+01

2

5

1e+02

2

5

1e+03

2

5 10Figure 9: Number of RT Connections vs.NRT Message Latency, transmission band-width is 100 Mb/sec or 10 Mb/sec, Load =0.68of this experiment. It seems that the di�erence among various NRT loads becomes signi�cant onlywhen the amount of bandwidth reserved for real-time tra�c becomes large.We also studied the e�ect of increasing the MTRT to 66 msec and doubling the reserved band-width in each real-time connection. Although the total real-time bandwidth requirements remainthe same, a larger MTRT reduces the token passing overhead since each RT node can transmittwice as much data within a token rotation cycle. On the other hand, the NRT nodes receivethe token at later times than in the 33-ms MTRT case. That is, in the 66-ms MTRT case, theNRT nodes have to wait a longer time on an average to receive the token. This e�ect is moresigni�cant when small fractions of the total bandwidth are reserved. Only when the number of RTsessions increases beyond a certain extent does the reduced token overhead make the 66-ms MTRTcase perform better. This e�ect is shown in Figure 8, where the latency of NRT messages in the66-ms MTRT case are indeed reduced as compared to the 33-ms MTRT case only when there are8 or more RT sessions. Below 8 RT sessions, the 33-ms MTRT case exhibits slightly smaller NRTmessage delay because of faster toke rotation cycle. However, as explained earlier, larger MTRT'scorrespond to less stringent real-time bandwidth requirements. This graph, therefore, also demon-strates the fundamental tradeo� between RT sessions' real-time resolution requirements and thelatency experienced by NRT messages.Lastly, we studied the e�ect of using a 100 Mbps Ethernet. Increasing network bandwidth onlyreduces the raw transmission time of network packets but will not a�ect the software overhead for16

message transmission. Therefore it would only slightly reduce the transmission time of a tokenor an NRT packet since it is known that software overhead constitutes a signi�cant percentageof the overall message delay. The simulations were run by reducing the token and NRT messagepassing time accordingly, and assuming that each real-time session consumes 6% of the raw networkbandwidth. The result is shown in Figure 9. Compared to the 10 Mbps Ethernet, the knee of thisgraph has shifted to the right, which indicates that a greater number of RT sessions can be supportedon a 100 Mbps Ethernet for the same percentage of total real-time bandwidth reservation. However,the shift is relatively small, which con�rms the dominance of the software overhead.6 Implementation IssuesA generic TCP/IP-based networking subsystem such as the one in BSD UNIX [SMMJ88] consistsof three software layers: Transport (TCP/UDP), Network (IP), and a device-dependent interfacesoftware (IF). To implement the proposed protocol without hardware support, both the IP and IFlayers need to be modi�ed. Also, a UDP-like transport layer would also have to be developed toprovide the transport service. The RETHER protocol adds six types of control packets:TokenAcknowledgementSwitch_To_RT_ModeSwitch_To_NRT_ModeJoin_the_RT_SetLeave_the_RT_SetThe �rst two types are point-to-point message transfers and the remaining four require broadcasting,which could be readily supported by existing Ethernet hardware. These packets requires verysimple processing and could be handled directly in the interrupt handlers triggered by the networkinterface, without the involvement of higher-layer software. To do this, these control packets shouldbe formatted as special Ethernet packets with appropriate Ethernet headers to be dispatched tothe appropriate handling routine.ETHERTYPE_TOKETHERTYPE_ACKETHERTYPE_SWETHERTYPE_RTare the four types of Ethernet packets, where the two protocol switch packets and the two RTSet packets are both integrated in one routine. To support real-time communications, high-levelnetworking software must provide interfaces for applications to reserve the bandwidth needed forthese real-time connections. With the bandwidth reservation mechanism in place, there is no needfor
ow control. Moreover, according to our study, current network hardware is so reliable that the17

probability of packet loss due to random errors is very unlikely. In the case of real-time data streams,retransmitted packets probably are not useful most of the time anyway. Therefore, we believe asimpler transport layer interface and implementation such as UDP is actually more appropriate forreal-time connections. In addition, the IF and IP layer should implement two separate transmissionqueues for RT and NRT messages in case the node is in the RT and NRT set at the same time.While in the Token-Passing mode, the IF software needs to check whether the node currently holdsthe token. If not, the data packet to be transmitted must be delayed until the token arrives.When the protocol has to switch from the CSMA to the Token-Passing mode, the interrupthandler corresponding to this type of packet should set the protocol mode
ag, which indicates thatthe network is no longer operating in the CSMA mode. The node then queues an acknowledgementpacket as the next message to be sent out. The Ethernet driver �nishes the packet currently in themiddle of transmission, if any, and then schedules the acknowledgement packet as the next packetfor transmission. Any other messages will be sent out only on receipt of the control token or afteranother protocol switch message arrives. In summary, all the required modi�cations to supportthe RETHER protocol can be made at the lowest layers of the network subsystem. Most of thesemodi�cations are rather simple. The higher software layers remain largely una�ected except thatthey should provide mechanisms to access the features of the RETHER protocol, in particular,bandwidth reservation.7 ConclusionThe main thrust of this work is to develop a protocol that could provide performance guarantee toreal-time connections on top of existing Ethernet hardware. Constrained by o�-the-shelf Ethernetinterfaces, we design a token-passing protocol that requires very simple processing and thus incurslittle protocol overhead when run by the host software. The RETHER protocol adopts a tokenpassing mechanism to guarantee real-time performance requirements and switches to the hardware-supported CSMA/CD protocol when no such real-time connections exist. The rationale of thishybrid approach is to minimize the impact of real-time connections on non-real-time tra�c. Oneof the di�culties in providing bandwidth reservation is that current Ethernet network hardwaredoesn't provide software a mechanism to cancel packets already sent to the network interface. As aresult, when the network is switching to the Token-Passing mode, explicit acknowledgements fromother network nodes are needed to signify both their willingness to cooperate and that the interface'stransmission bu�er is emptied. For other types of control messages, mechanisms are developed toensure that no acknowledgements be needed, thus signi�cantly reducing the associated overhead.We use a simulation approach to study the behavior of the RETHER protocol. Wheneverpossible, the parameter values to the simulator are measured on a real network. The simulation isfocused on the token passing mode of the protocol. From the simulation results, the �rst conclusionis that it is possible to use the proposed RETHER protocol to support multiple real-time sessions18

on Ethernet. For real-time sessions that required 0.3 Mbps in average, it is possible to sustainmore than 14 sessions without seriously a�ecting the performance of NRT tra�c. Also, from thesimulations, it can be concluded that given the assumed NRT workload, up to 60% of the 10Mbpsbandwidth of the Ethernet can be reserved using the protocol described, without seriously a�ectingthe NRT tra�c. This conclusion holds regardless of the number of real-time connections.Because the RETHER protocol is designed for a local area network setting, we believe bandwidthguarantee is much more important than jitter and delay guarantees. However, to extend thisprotocol to a local internetwork, i.e., one that extends across routers/gateways, these issues need tobe resolved. Currently, we are in the process of implementing the RETHER protocol in the networksubsystem of the BSD UNIX platform. Once the implementation is completed, actual performancemeasurements will be compared to the results presented here to validate the simulation model. Weexpect to include these results in the �nal form of this paper. In the future, we plan to extend thiswork in the following ways:� Extension of the protocol to support multiple real-time connection requests per node� Extension of the protocol to run across bridges and routers� Enhancement of the protocol to utilize multiple Ethernet links simultaneously as a cost-e�ective way of supporting multimedia applications� A more general treatment of the reliability problem associated with nodes and links

19

References[And88] Andrew S.Tanenbaum. Computer Networks. Prentice-Hall Inc., 1988.[CCG93] Cheng, Ting, Chung, Jen-Yao, and Georgiou, Christos J. Enhancement of Token BusProtocols for Multimedia Applications. Digest of Papers. COMPCON SPRING 1993,pages 30{36, February 1993.[Dan93] Daniel Minoli. Isochronous Ethernet : Poised for Launch. NETWORK COMPUTING,pages 156{162, August 1993.[GW85] Gopal, P.M. and Wong, J.W. Analysis of Hybrid Token-CSMA/CD Protocol for BusNetworks. Computer Networks & ISDN Syst., pages 131{141, September 1985.[JSTS92] Je�ay, K., Stone, D.L., Talley,T., and Smith, F.D. Adaptive, Best-E�ort Delivery ofDigital Audio and Video Across Packet-Switched Networks. Network and OperatingSystems Support for Digital Audio and Video, pages 3{14, November 1992.[Ric90] Riccardo Gusella. A measurement Study of Diskless Workstation Tra�c on an Ethernet.IEEE Transactions on Communications, 38(9):1557{1567, September 1990.[SMMJ88] Samuel J.Le�er, Marshall K.McKusick, Michael J.Karels, and John S.Quarterman. TheDesign and Implementation of the 4.3 BSD UNIX Operating System. Addison-WesleyPublishing Company, Inc., 1988.[SS92] S O Falaki and S-A Sorensen. Tra�c measurement on a local area computer network.Computer Communications, 15(3), April 1992.[SSC91] Shieh, Meng-Tsong, Sheu, Jang-Ping, and Chen, Wen-Tsuen. Decentralized token-CSMA/CD protocol for integrated voice/data LANs. Computer Communications, pages223{230, May 1991.
20

