Supporting Real-Time Traffic on Ethernet

Tzi-cker Chiueh Chitra Venkatramani

Computer Science Department
State University of New York at Stony Brook
Stony Brook, NY 11794-4400

{chiueh, chitra}@cs.sunysbh.edu

March 6, 1994

Abstract

Ethernet is the dominant local area network architecture in the last decade, and we
believe that it is going to play the same important role in the future because of its
cost-effectiveness and the availability of higher-bandwidth Ethernets. We propose and
evaluate a software-based protocol called RETHER that provides real-time performance
guarantee to multimedia applications without modifying existing Ethernet hardware.
RETHER features a hybrid mode of operation to reduce the performance impact on
non-real-time network packets, a race-condition-free distributed admission control mech-
anism, and an efficient token-passing scheme that protects the network against token
loss due to node failures. We have constructed a detailed simulator to model the behav-
ior of this protocol under various workloads and network configurations. The simulation
results and their analysis are presented in this paper, together with a discussion of the

practical implementation issues.

1 Introduction

Among the various types of media supported by multimedia information systems, digital audio
and video, also known as continuous media, require guaranteed transport bandwidth from the
underlying I/0O and communication subsystems. Of the two, the communications subsystem plays a
more critical role than the I/O component for the following two reasons. First, network resources in
modern computer systems are usually shared among multiple agents that are physically distributed.
This complicates the issue of guaranteeing network bandwidth because of the distributed decision-
making process; whereas in the case of I/0O, the allocation decision usually could be made in
a centralized fashion. Second, the performance variation of networking tends to be larger than
that of I/O. That is, a slight slip in network performance can easily overshadow any performance
guarantees provided by the I/O system. Hence, it is much more important to have a tight control
over the performance of the network subsystem than that of the I/O subsystem.

Despite the advocacy of high-speed networks such as FDDI and ATM in recent years, the
predominant architecture for local area networks is still based on Ethernet. We believe this situation
is going to stay the same till the end of this century due to the following technological advancements.
First of all, newer generations of Ethernets such as Grand Junction Networks’ 100Base-X and
HP’s 100Base-VG provide 100 Mb/sec bandwidth, which is comparable to the so-called high-speed
LANs, at a lower price. Second, the advent of switch-hubs has improved the scalability of the
Ethernet architecture by allowing the inter-connection of Ethernet segments into a local inter-
network. Therefore, even for servicing large-scale organizations, Ethernet still remain a viable
choice. Based on these two observations, we believe that Ethernet will continue to be the network
of choice in a LAN environment, at least at the leaves of a hierarchy of inter-networks.

Unfortunately, because the medium access protocol of Ethernet allows multiple nodes to com-
pete for access to the channel, it is inherently incapable of guaranteeing bandwidth to any particular
node. Although the Ethernet protocol specification has a provision for prioritized access arbitra-
tion, this mechanism doesn’t in itself offer guaranteed bandwidth to an arbitrary pair of nodes.
Besides, most commodity Ethernet controllers do not necessarily implement this feature. Therefore,
the major goal of this work is to develop a software-based protocol for existing Ethernet hardware
to provide real-time performance guarantees. This protocol is implementable as an enhancement
to the existing TCP/IP protocol suite and will work with any off-the-shelf Ethernet hardware and
device driver. As will become clear later, the constraint of using commodity networking hardware
significantly restricts the range of design possibilities for providing real-time performance guaran-
tees.

The proposed protocol is a combination of CSMA/CD and token passing mechanisms. We
will, henceforth, refer to it as the RETHER (Real-time ETHERnet) protocol. The basic idea
of RETHER is to operate the network with the CSMA/CD protocol when there are no real-
time sessions, and to switch it to a token passing medium access control protocol when real-time

connection requests do exist. The rationale behind this decision is to provide bandwidth guarantees

to real-time connections while minimizing the performance impacts on non-real-time traffic.

The rest of the paper is organized as follows : Section 2 describes previously proposed approaches
to support deterministic network services in a LAN environment. Section 3 describes the RETHER
protocol in detail. Section 4 describes the simulation methodology and the data structures used
in the simulator. Section 5 presents the simulation results and their detailed analysis. Section 6
discusses the implementation issues involved in modifying a generic UNIX network subsystem to
support the RETHER protocol. Section 7 concludes the paper with a summary of main research

results from this project and outlines the plan for future work.

2 Related Work

A few different schemes have been proposed to support real-time traffic on the Ethernet. In general,
there are two approaches to address the problem of providing bandwidth guarantees on a multiple
access communication medium — token passing and synchronous time division multiplexing. The
former uses a control packet called the foken to limit the media accessibility to the token holder,
whereas the latter uses absolute time to implicitly synchronize the accesses to the media among
the nodes on the network.

An enhanced token bus protocol is described in [CCG93]. In traditional token passing schemes,
the token-holding node transmits messages and then passes the token over to its successor in the
logical ring. In this new scheme, which they call the “Message/Token” protocol, each node is
associated with a unique Medium Access Control ID (MACID) and each message is tagged with
the MACID of the current token holder. Since the transmission medium is shared, each node
constantly monitors the messages flowing on the medium and determines if it is the next token
holder, based on the information in the so-called local predecessor table. During initialization,
each node is assigned at least one MACID. Multiple MACIDs may be associated with a node to
indicate that that node could hold a token that many times in one token-rotation cycle. One of the
nodes is elected to be the network manager, whose responsibilities include admission control, token
bus organization, initialization and maintenance. A new real-time connection request specifies the
required frequency of token visits to the network manager, which then decides whether this request
can be serviced according to the current bandwidth allocation.

The first problem with this method is that non-real-time data traffic suffers from the high latency
characteristics of a token bus network, even when there are no active real-time (RT) sessions. In
addition, the network manager could potentially become the system bottleneck and lead to more
message traffic on the network. Also, this scheme requires that every packet be broadcast because
the token is piggybacked to the packet. This increases the processing overhead at each node. Lastly,
the paper fails to address how a new token-passing schedule is generated on the introduction of a
new real-time connection without modifying the schedule of existing real-time connections.

A hybrid token-CSMA /CD protocol for integrated voice/data LANs is proposed in [SSC91],

[GW85]. Two implicit tokens — one for voice and one for data — circulate in the network simulta-
neously, but with different priorities. The network behaves like a token bus for voice traffic and
as a low-priority hybrid token-CSMA /CD channel for data traffic. The channel is slotted with the
slot size being an end-to-end transmission delay. All stations are assumed to be synchronized and
transmission starts at the beginning of a slot. The voice station in possession of the voice token
gets priority to transmit. If it has nothing to transmit, it holds on to the token for a period of time
called the token-holding time. During this time, the channel is idle. This is sensed by the data
stations, which compete for the channel using the CSMA/CD protocol. One of the data stations
possesses the data token and gets a higher priority over others in this phase. When there is a
collision on the channel, the node with the token continues to send data until all other nodes are in
their backoff phase. It then retransmits the packet without waiting, thereby getting collision-free
access to the channel. Once a token-holding node completes its transmission, it implicitly passes
the token to its successor. Each node counts the number of busy/idle transitions and determines
when its turn is. This avoids explicit control token passing. By suitably adjusting the token-holding
time, delay bounds can be guaranteed in this protocol. The problem, though, is that this method
has the requirement that all nodes in the network be synchronized. It is also not compatible with
off-the-shelf Ethernet hardware.

[JSTS92] describes one of many projects intended to explore what can be done with present-
day networks and protocols for multimedia applications like video teleconferencing. The scheme
relies on a real-time operating system called YARTOS. The protocol does not provide any reser-
vations/guarantees and is a best-effort strategy. This means that the protocol delivers the highest
quality possible given the current load in the network. It has been implemented over the IP layer
of the Internet Protocol suite and it dynamically adapts the conference frame rate to the band-
width available on the network. Two jitter control strategies, both of which compromise quality of
service, are described — When there is bursty data traffic on the network, audio/video synchrony is
compromised, and when there is continued data traffic on the network, the conference frame rate
is compromised.

Many other real-time LAN technologies are coming up recently to support real-time multimedia
applications [Dan93]. Among these are IEEE 802.9-based and related isochronous LANs. The IEEE
802.9 Working Group has developed a specification for the support of integrated voice and data in
the 10 Mbps range. The standard defines a unified access method that offers integrated voice and
data (IVD) services to the desktop for a variety of publicly and privately administered backbone
networks, such as FDDI and IEEE 802.x. A variant of this standard is the IsoENET announced
by IBM and National Semiconductor Corp. The IsoENET provides 96 out-of-band isochronous
64-Kbps subchannels besides the 10-Mbps Ethernet channel. The Ethernet MAC frames coexist
over the same physical medium as the isochronous voice and data, but each has a different format.
Also, IsoENET uses regular 10BASE-T star wiring, eliminating the need to recable. But, IsoENET
has its drawbacks, the major one being that hubs and PCs have to be fitted with new adapters.

All earlier approaches invariably assume a protocol structure that requires hardware support
in the form of either synchronized clocks or intelligent token manipulation which conflicts with our
original goal of supporting real-time traffic over commodity Ethernet hardware. In contrast, we
adopt a completely software-based approach, requiring changes only to the networking software.
The proposed RETHER protocol provides real-time guarantees by allowing the reservation of the
requested bandwidth whenever possible, and honoring the reservation at run time via a token
passing mechanism. Moreover, by observing the CSMA /CD protocol when there are no real-time
sessions, it also reduces the performance impact on non-real-time messages to the minimum. The
protocol assumes a decentralized control structure and does not require global synchronization

among the network nodes.

3 The RETHER Protocol

Before describing the proposed protocol, we will first outline the constraints under which the
RETHER protocol is designed:

e The protocol should be implementable based on existing networking hardware, i.e., off-the-
shelf Ethernet cards.

e The protocol should be implementable as an enhancement to existing UNIX-like communica-

tion subsystems.

e When there are no real-time sessions, performance should be at least as good as that of the

current Ethernet.

Because of the first constraint, the MAC protocol of the Ethernet card, namely CSMA /CD, cannot
be changed. But, if collisions are permitted, it would be very difficult to bound the time to
put a packet on the network link. This bound is required for real-time performance guarantees.
Hence, the RETHER protocol adopts a collision-free approach to regulate the network traffic and
is implemented as a software layer immediately above the MAC hardware. The RETHER protocol
satisfies the second constraint because it can be readily integrated into existing UNIX network
software implementations. The protocol satisfies the third constraint by adhering to the CSMA /CD
protocol when there is no real-time session on the network. Consequently, the RETHER protocol
has two modes of operation, Real-Time (RT) and Non-Real-Time (NRT), which are described in

the following two subsections.

3.1 Non-Real-Time Mode

In the non-real-time mode, the nodes compete for the channel according to the original CSMA /CD
protocol of the Ethernet. This protocol is implemented in all the Ethernet adapters available in

the market. The protocol is fair, performs well under light loads and deteriorates only as the load

on the network increases. In the RETHER protocol, all nodes remain in this mode until an RT
request arrives. The first such RT request causes the network to switch to the real-time mode.

Before starting a real-time connection, the initiating node must issue a reservation request
message to declare its intention. In case there is no real-time connection on the network, the
initiating node broadcasts a switch-to-RT-mode message. All nodes receive this message and set
their protocol modes to the real-time mode. They hold off sending data and await the completion
of transmission of the packet already in the transmission buffer of the network interface. When the
transmission buffer becomes empty, they each send an acknowledgement packet back to the sender
of the switch-to-RT-mode message. Once the broadcasting node receives the acknowledgements
from all the nodes, it generates a token and begins circulating it.

The acknowledgements are crucial to the success of this protocol for two reasons. First, ac-
knowledgements signify the nodes’ willingness to switch the network from the non-real-time to the
real-time operating mode. Second, the fact that acknowledgements are successfully sent out indi-
cates that the nodes do not have any pending packet in the backoff phase of the CSMA mode. The
latter is particularly important to the RETHER protocol because in typical Ethernet cards, the
software has no control over the data once the data has been put on the network interface’s buffers.

If more than one node generate the switch-to-RT-mode message simultaneously, only one of
them will be broadcast successfully by the CSMA protocol. On receiving the switch-to-RT-mode
message, other than the acknowledgement, each node won’t send out new packets until it receives
the control token. They will reject any switch-to-RT-mode request that the local processes may
have generated in the meantime and ignore any switch-to-RT-mode message that arrives after the

first one.

3.2 Real-Time Mode

Because this work is mainly concerned with supporting real-time connections on a local-area net-
work environment, we believe that bandwidth guarantee is much more important than delay and
jitter control in this context. Therefore, the RETHER protocol is designed specifically for pro-
viding bandwidth guarantee. We use a token passing mechanism to provide such a guarantee
because it does not require global synchronization and imposes fewer restrictions on the operating

environment. While designing this protocol, we make the following assumptions:

o Ethernet refers to a single Ethernet segment, but not multi-segment networks that span across

bridges or routers.

e Each real-time node has to specify the required transmission bandwidth in terms of the
amount of data it needs to send during a fixed interval of time, called the bandwidth allocation
interval. The bandwidth allocation interval is chosen to be 1/30 second, which reflects the 30

frames/sec bandwidth need of the target application, video-conferencing.

o

Y IR

O Non-Real-Time Node D Real-Time Node

Figure 1: Example Configuration of RT and NRT Subsets.

e An average constant bandwidth is reserved for each session. Any bandwidth variation caused

by video-compression is absorbed by sufficient buffering at either end.

e There is sufficient buffer space available at the destination node to allow for some jitter in

transmission.

e There is only one real-time request per node. This could be trivially generalized to multiple
real-time requests per node by treating these requests as virtual nodes that share one physical

node.

3.2.1 Basic Algorithm

In the real-time mode, the control token circulates among two sets of nodes with different rotation
frequencies — the real-time (RT) set and the non-real-time (NRT) set. The RT set consists of all
the nodes that require real-time connections, while the NRT set is comprised of all the nodes in
the network. That is, a node could receive the control token as an RT node or an NRT node.
Figure 1 shows a generic Ethernet segment, where Node 1, 2, and 3 are RT nodes and Node 1,
2, 3,... and 11 belong to the NRT set. Each RT node, once admitted, is guaranteed its reserved
bandwidth because the protocol imposes a maximum constraint on the token rotation time and the
token holding time for each RT node. In practice, the Mazimum Token Rotation Time (MTRT) is
equal to the bandwidth allocation interval. Part of the total bandwidth is reserved for NRT nodes
to prevent starvation. The Mazimum Token Holding Time (MT HT;) of each RT node is the sum
of the required bandwidth divided by the transmission bandwidth, and a fixed software overhead.

When a node in the RT subset receives the control token, it could send either a real-time
connection termination message or a unit of real-time data according to the the maximum token
holding time. At the end of a real-time token passing cycle, instead of passing the token back to the
first RT node, the last RT node, Node 3 in Figure 1 sends it to the nodes in the NRT subset. At this
time, the token is tagged with the difference between the MTRT and the sum of the actual token

holding times of the RT nodes in the current token rotation cycle, which represents the residual
bandwidth available for NRT nodes. When an NRT node receives the tagged token, it determines
if there is sufficient time to send a packet. If so, the node sends the packet, subtracts the tag’s
remaining time accordingly, and passes the token on to the next NRT node. If not, it notifies the
last RT node that in the next token rotation cycle it should be the first NRT node to receive the
token, and then passes the token back to the first RT node to start a new token rotation cycle.

For example, suppose the token is passed from the last RT node in Figure 1, Node 3, to the first
NRT node, Node 4, to Node 5 and so on. Suppose Node 8 determines that the remaining time on
the token is not sufficient to send the first packet on its transmission queue. It then notifies Node
3 that it is the first NRT node to receive the token in the next token rotation cycle, and passes
the token to the first RT node, Node 1, essentially restarting another token rotation cycle. In this
example, the order through which the token traverses the nodes is as follows: 1 -2-3-4-5-6
-7-1-2-3-8-9..... Therefore, the token could visit the RT nodes more frequently than the
NRT nodes, thus allocating more bandwidth to real-time than to non-real-time traffic.

To ensure that all existing real-time connections not be disturbed by new RT connections, the
system performs admission control for every new RT connection request. An important feature of
the RETHER protocol is that the admission control decisions are made in a distributed fashion
in that every node is responsible for determining whether the remaining network bandwidth is
sufficient for the network to admit new real-time connections, or alternatively to convert the node
itself into an RT node. To be able to make this decision, every node (RT or NRT) maintains the
list of RT nodes and their respective bandwidth requirements. The list is updated every time a
node joins or leaves the RT set via a broadcast message.

When a node receives a real-time connection request from a local process with a specified
bandwidth reservation, it checks the RT list to see if there is sufficient bandwidth remaining to
admit this real-time connection, i.e., converting itself into an RT node. A new connection with a
bandwidth reservation MT HT,.,, can be admitted if and only if

E MTHT;+ MTHT,e., + TByrr < MTRT (1)
1€theRT set
where T By gr is the minimum amount of bandwidth reserved for the NRT set. If so, it broadcasts its
node ID and the bandwidth requirement to all the other nodes, which can then add this information
to their RT list.

Because the admission decision is made locally, a race condition could arise in which more than
one node try to admit themselves. To resolve this race condition, the admission control decision
is made only when the control token is received. In other words, a process’ request to initiate
a real-time connection will not return until the associated node receives the control token in the
NRT mode. Suppose that there is a process in Node 1 and another in Node 3 that simultaneously
attempt to establish real-time connections. The node that receives the token first in the NRT

mode, say Node 1, gets to perform the admission control test first and broadcasts its reservation

message. All other nodes, after receiving this broadcast message, update their RT lists accordingly.
When Node 3 receives the token, it first checks a particular flag that indicates whether there is
any local reservation pending. If so, it performs the admission control test with the new RT list
that includes Node 1’s reservation. Although delaying admission control test to the time when the
token is received may seem to prolong the response time of the bandwidth reservation request, this
is actually not the case since a bandwidth reservation request is valid only when the associated
broadcast has been successfully sent out, which is possible only when the node holds the control
token.

Because acknowledgements are especially expensive in a token-passing environment, the protocol
doesn’t require other nodes to acknowledge the reservation broadcast message, unlike the switch-
to-RT-mode request. The protocol still functions correctly because it is possible to resolve the
inconsistency of the RT list due to the anomaly where some nodes did not receive the broadcast
message successfully. To guarantee the consistency of RT lists on all nodes, the most up-to-date
RT list is included within the token. Given the number of nodes on an Ethernet and the number of
RT nodes supportable with 10 Mb/sec, including the RT list in the 64-byte token seems reasonable.
After a node successfully joins the RT set, it updates the RT list in the token before passing it on.
When a node receives the token, it simply replaces its own RT list with the RT list in the token.
Therefore, eventually the RT lists of the network nodes will reach a consistent state. Although
there could be a window of temporary inconsistency, this is actually innocuous because the nodes
can have an effect on the network only when they hold the control token. But, a node’s RT list is
guaranteed to be consistent when it holds the control token!

When an RT node wants to terminate its real-time connection, it broadcasts a termination
message when it holds the token in the RT mode. All other nodes update their RT lists accordingly,
and do not need to return acknowledgements for the same reason described above. When the last
RT node decides to terminate its real-time connection, it sends a switch-to-NRT-mode broadcast
packet asking all nodes to switch back to the CSMA /CD mode. On receiving this message, all nodes
switch back to the non-RT mode. The last RT node that terminates its session is also responsible
for destroying the token. Again no acknowledgements are needed. However, since there won’t be a
circulating token to deliver the genuine RT list, in this case an empty set, to every node, it is possible
that some nodes may still think they are in the RT mode and wait for the control token when in
fact the network is in the NRT mode, i.e., CSMA/CD. To address this problem, the RETHER
protocol enforces a maximum interval between successive receipts of the control token in the NRT
mode by adjusting TBygrr in Equation (1) appropriately. A node will automatically switch to
the NRT mode whenever this timer expires. Consequently, it is not necessary to acknowledge the
switch-to- NRT-mode message because all the network nodes will eventually converge to the NRT

mode even though their RT lists may be temporarily inconsistent.

3.2.2 Reliability Concern

An important reliability issue is when the control token gets lost due to node failure. We solve this
problem by making each node responsible for monitoring the state of its logical neighbor. Each
node, after sending the token to its neighbor, will set an acknowledgement timer whose length is
equal to its neighbor’s token holding time, and expects to receive an acknowledgement before the
timer times out. If its neighbor is an RT node, its token holding time will be equal to its bandwidth
reservation period and if it is an NRT node, it will be one MTU time. When the acknowledgement
timer indeed times out, it assumes that its neighbor is dead and sends the token along with an
updated RT list, if necessary, to the node next to its neighbor.

A potential performance price associated with this token passing scheme is that each token
passing transaction requires twice as much time as one without acknowledgement. We address this
issue by piggybacking the acknowledgement to a node’s previous neighbor with the token passed
to its next neighbor. This is possible because Ethernet hardware supports multicast based on
the notion of group destination address. Also, because the network operates via a token passing
mechanism (no unexpected communication delay), and protocol processing is done by the interrupt
handler (no host scheduling problem), the time-out of the acknowledgement timer almost always
implies that the monitored node is dead. For example, in Figure 1, Node 1 would monitor Node 2
by awaiting an acknowledgement after sending the token to Node 2. If Node 2 were alive, it would
send its message first and then multicast the token to Node 1 and Node 3, its logical predecessor
and successor respectively. This token would serve as the acknowledgement without incurring extra
delay. If, on the other hand, Node 2 were dead, then Node 1 would time out, and regenerate and
send the token to Node 3 with an updated RT list that excludes Node 2.

4 Simulation

The simulator is an event-driven simulator and it simulates the RETHER protocol described in the
previous section. The non-real-time workload is characterized by two parameters—the packet size
and the packet arrival rate. We adopted the empirical measurement results described in [Ric90]
for the packet-size distribution. Although there is no well-accepted model for the inter-arrival time
distribution on an Ethernet, we choose a hyperexponential distribution proposed in [SS92] as an

approximation. The Cumulative Distribution Function (CDF) for the packet inter-arrival time is
F(t)=1— (ae”t/* 4 (1 — a)e ¥/*2) (2)

with a = 0.68, a; = 25.2 msec, and a3=235.2 msec. This model basically assumes that the packet
arrival process is a superposition of two Exponential distributions with different mean arrival times.
The time (in psec) to send a token and to send an MTU (Maximum Transmission Unit) packet

were measured on a real Ethernet. These and other constant values used in the simulation were —

TOKSENDTIME 680 /* time to send a token from one node to another*/

MTUSENDTIME 3450 /* time to send an MTU packet on the Ethernet */
MAXNODES 16 /* number of nodes on the network */
BANDWIDTH 10%1024%1024 /* 10 Mbps Ethernet bandwidth */

During the simulation, the token holding time includes the transmission time as well as the
associated software overhead that we obtained through measurement. Following is a list of events

types processed by the simulator :

TOKENARR : Arrival of a token,

RTTERMINATE : Termination of an RT session,

PROTOSW_CT : Protocol switch message (from CSMA to Token Passing),
PROTOSW_TC : Protocol switch message (from Token Passing to CSHMA),
PROTOACK : Acknowledgements for PROTOSW_CT,

RTUPDATE : Admission of a new RT session.

When each of these events occurs, the corresponding node processes the event as described in
the protocol and updates its associated state. The simulator maintains the following state data

structure for each node:

struct node {
struct RTnodes *RTlist; /* list of nodes in the RT set */
int RTneighbor;
int NRTneighbor;

int pendingFlag; /* TRUE if a local reservation is pending */
int protocolMode; /* current protocol - CSMA or Token Passing */
struct nonRTmsg *nonRTQ; /* queue of nonRT requests */
struct RTmsg *RTQ; /* queue of RT control messages */
struct rtstats *RTstats; /* list of stats of all RT sessions so far */
struct nonrtstats *nonRTstats; /* holds stats about nonRT messages */

s

struct RTnodes {
int nodeid; /* RT node id */
long bandwidth; /* time used in the 33 ms slot */

struct RTnodes *next;

};

RTQ is a queue of RT control messages while nonRTQ is a queue of NRT messages. They are
maintained separately because each node may be in the RT set and the NRT set simultaneously.

Each node also maintains a linked list of nodes currently in the RT set. Each of the entries in

10

this linked list indicates the bandwidth reserved for the corresponding real-time session. This data
structure is used by each node to make admission decision locally.

The data structure for the control token is

struct token {
char mode; /* RT or NRT token 7 */
long residualTimetoDeadline; /* time to deadline of the first RT node */

int mnextliRTnode; /* the NRT node to be serviced in next cycle*/

};

The mode field indicates if the token is circulating in the RT or NRT set. The residualTime-
toDeadline field is used to estimate the amount of time left for NRT message transmission and is
updated by the last RT node as well as by the NRT nodes who have received the token. It is only
used when the token is circulating in the NRT set. The nextNRTnode field holds the ID of the
NRT node which should receive the token when the token is passed from the RT set out to the
NRT set the next time around.

Because the RETHER protocol guarantees the required bandwidth for real-time connections
once they are admitted, we are mainly interested in investigating the performance impact of this
protocol’s overhead on NRT messages. The performance metric we use is the average latency of
NRT messages. With the above simulator, we were able to estimate the latencies of NRT messages

under various workload conditions. The parameters that we varied during the simulations were

e The number of RT sessions

The bandwidth reserved by each real-time connection

The NRT load on the network (modeled by the weight ‘a’ in the CDF of the hyperexponential

distribution)
e The maximum token rotation time, MTRT
e The maximum transmission bandwidth of Ethernet

All data used to plot the graphs are averaged over 80 runs, each of which is for a duration of 10
minutes and assuming that T Bygr is zero and the maximum NRT token holding time is an MTU

Ethernet packet. The results are presented and analyzed in Section 5.

5 Performance Analysis

This section presents the simulation results and their analysis. Section 5.1 estimates the time to
switch between different modes supported in RETHER. Because of the large number of possible
combinations of parameter values, we focus on a representative scenario described in Section 5.2,

for which the simulation results are analyzed in Section 5.3

11

5.1 Protocol Mode-Switch Time

It is important to estimate the time the network takes to switch from one protocol mode to the
other, because this has a significant effect on the latency experienced by non-real-time messages.
The time for the network to switch from the CSMA /CD mode to the Token-Passing mode consists
of two components: the time for each node to drain the messages already in the transmission
queue of the network interface before the switch-to- RT-mode message arrives, and the time for the
first RT node to collect the acknowledgements from the remaining nodes. Both components will
include the delays due to collisions on the Ethernet. Since it is difficult to simulate the complex
CSMA /CD backoff algorithm, we will use an analytical approach to estimate the time it takes for
the packet in the transmission buffer to be emptied and the time it takes a node to acknowledge
the switch-to-RT-mode message.

Suppose that when the switch-to-RT-mode broadcast message is received, each node’s trans-
mission queue contains an MTU packet, and that the acknowledgement packet is 64-byte long, the
minimum Ethernet packet length. When K nodes on an Ethernet want to send packets simultane-
ously, it has been shown in [And88| that the mean number of contention slots is

1 1-K
(1- %) (3)

and each contention slot is 51.2 usec. Therefore, for a 16-mode Ethernet segment, the average
delays for each non-RT node to drain an MTU packet and send an acknowledgement packet are
3,450+135=3,585 usec and 680+135 = 815 usec, respectively.

The time to switch from the Token-Passing to the CSMA mode when the last RT session
terminates can be easily estimated since no acknowledgements are needed, as explained in Section
3.2, and there will never be packets in the Ethernet transmission buffer in the Token-Passing mode.
When the last RT node broadcasts a switch-to-NRT-mode message, it doesn’t incur any collision
delay, since all the nodes are still in the Token-Passing mode. All nodes, on receiving the protocol
switch message, update their states and start operating in the CSMA mode. Hence, the time to
switch from the Token-Passing to the CSMA mode is the time required to send out one 64-byte-long

switch-to-NRT-mode message.

5.2 A Typical Scenario

The following is a description of a typical workload and we will analyze the results for this scenario

in more detail.
e The Ethernet consists of 16 nodes.
e In the Token-Passing mode, the MTRT is chosen to be 33.3 msec.

e The real-time sessions are video streams whose spatial resolution is 256x256.

12

Load =0.0
NRT Latency (ms)

2 Bw/Sess. = 0.3 Mbps
let04

s Bw/Sess. = 1.2 Mbps

2
1et+03

5

2
let+02 *

5 :

: e
Number of RT sessions
5 10 15

Figure 2: Number of RT Connections Vs.
NRT Message Latency, assuming that each
real-time channel reserves a fixed bandwidth,
Load = 0.0

Load = 1.0
NRT Latency (ms)

Bw/Sess. =0.3Mbps
1e+04 7 Bw/Sess = 0.6 Vibps
Lo BW/Sess 0.9 Mbps
5 ;' ;' N Bw/Sess. =1.2Mbps
2 “:'
1e+03 ; :
2 ;
i
1e+02 L

Number of RT sessions

10 15

Figure 3: Number of RT Connections Vs.
NRT Message Latency, assuming that each
real-time channel reserves a fixed bandwidth,
Load = 1.0

e The uncompressed data bandwidth required per session with 16-bit color and at 30 frames
per second would be 30 Mbps. With a compression ratio of 50:1, the amount of bandwidth
required per session would be 0.6 Mbps.

When applications reserve the network bandwidth, they have to specify the reservations in the
form of the amount of data transmitted within a period of time. There is a difference between 2 MB
every two seconds and 1 MB every one sec, although the average data rate is the same. The latter
is considered more strict than the former because the former gives more implementation flexibility.
To simplify our simulation, we assume that all real-time connections specify their bandwidth needs

in the form of data volume transmitted every 33.3 msec.

5.3 Results and Discussion

We are mainly interested in the impact of bandwidth reservation on the performance of the NRT
traffic. Hence, all plots have the average NRT message latency in msec on the Y-axis in a log
scale. The NRT message load on the network is controlled by adjusting the value of ‘a’ in the
hyperexponential distribution for the inter-arrival-times. The higher the value, the shorter the
average inter-arrival-time and hence, the heavier the load on the network. In the graphs, the value
of ‘a’ is used to indicate the load on the network.

In Figure 2 and 3, the effect of increasing the number of Real-time sessions is shown. Each

plot is for a constant bandwidth per session. Looking at the 0.3 Mbps line, we see that the knee

13

Constant Total Bandwidth Reserved

Load = 0.68
NRT Latency (ms) NRT Latency (ms)
Bw/Sess. = 0.3 Mbps Total Bw = 2.4 Mbps
2 ! B 2 ’ “fotal Bw = 3.6 Mbps
X ! “Total Bw=4.8 Mbps "
let04 T Bw/Sess. = 1.2 Mbps ! Total Bw=7.2Mbps ~~~
5 1e+03 — “Total Bw=9.0Mbps ~ ~
’!
2 5 ;
4
1e+03 /
4
5 2
2 1e+02
1e+02 '
| 5
¥
5 -
P
o / 2 e Ieiad
1et0l e
Number of RT sessions Number of RT sessions
5 10 15 5 10 15

Figure 4: Number of RT Connections vs. Figure 5: Number of RT Sessions vs. NRT

NRT Message Latency, assuming that each

real-time channel reserves a fixed bandwidth,

Load = 0.68

Message Latency, assuming that the total
real-time bandwidth reservation is fixed, Load

= 0.68

of the graph occurs at around 12 sessions and so, if more than 12 such sessions are operating
simultaneously, the performance of NRT traffic deteriorates rapidly. Similarly, the other lines
represent the performance of the network under different amounts of bandwidth reservation for
each real-time session. These two figures show the performance of the system under two extreme
distributions of the inter-arrival-times for NRT traffic. As the load increases, it can be seen that
the knees occur earlier, which means that fewer RT sessions can be supported without seriously
hurting NRT message latencies. Based on these graphs, one can determine the maximum number
of real-time sessions that can be supported while maintaining a reasonable performance level for
NRT traffic, taking into account both the real-time bandwidth reservation and the NRT traffic
load. Figure 4 also plots the latency versus the number of real-time sessions supported. The load
in this case is 0.68, which is used in [SS92] to model the generic workload on the Ethernet.

It is interesting to compare the NRT message latencies under a fixed total real-time bandwidth
reservation but with different numbers of real-time connections. This would show the effect of the
protocol overhead, namely token passing overhead, as the number of RT sessions increases. For
example, in all of the three figures above, the NRT message latency for the ”10-connection, each
0.3 Mbps” case is always greater than the ”5-connection, each 0.6 Mbps” case. The difference is
due to the token passing overhead and can be used as a measure of the price of providing real-time
performance. This is demonstrated in Figure 5 which is a plot of the latencies against the number

of RT sessions for different total bandwidths reserved. All plots have a positive slope indicating

14

Number of RT Sessions=4 Bandwidth per Session = 0.3Mbps

NRT Latency (ms) NRT Latency
8 Toad=00
5 7 7 Toad=068
, 6 Toad=10""
!
!
2 h 5
1e+03 4
5 / 3 /
1’ :ﬁl
; 25 ;
!
2 n 2
e
1e+02 A7 15
5
let01
2 e
- 8 e
1e+01 — AzgsE
=l 6
Bandwidth Reserved Number of RT Sessions
200 400 600 800 5 10 15
Figure 6: Total Real-Time Bandwidth Reser- Figure 7: Number of RT Connections vs.

NRT Message Latency, assuming a fixed

vation vs. NRT Message Latency, assuming a
bandwidth reservation for each real-time

fixed number of real-time channels
channel

that the latency increases with the number of RT sessions for the same total bandwidth reserved.
It can also be seen that the latency increases gradually with the number of RT sessions when small
fractions of the Ethernet bandwidth are reserved. However, the effect of the number of RT sessions
and hence, the protocol overhead, becomes more significant once larger fractions of the bandwidth
begin to be reserved. Again, 6 Mbps seems to be the threshold fraction of bandwidth for real-time
reservation before the protocol overhead starts to render the curve with a larger slope.

To get a better understanding of the global allocation of NRT and RT bandwidth, Figure 6
shows the effect of increasing the amount of real-time bandwidth reserved on the latencies for
different NRT loads. The number of RT sessions here is four and so the protocol overhead due
to token-passing is fixed. The X-axis shows the total amount of network bandwidth reserved for
real-time traffic. For our typical scenario, the effect of reserving 1.2 Mbps does not affect the
latency significantly event if the load on the Ethernet is increased. However, for the worst case,
where around 8.5 Mbps are reserved, the deterioration with load is significant. It can be concluded
from this graph that up to a maximum of 6 Mbps can be safely reserved without degrading the
performance of NRT messages significantly. But, this conclusion is only valid for 4 RT sessions
since more RT sessions under the same total real-time bandwidth will incur extra token passing
overhead.

Next, we measure the effect of the number of RT sessions (with each session reserving 0.3 Mbps

as in our typical scenario) on the NRT latencies for different NRT loads. Figure 7 shows the result

15

Bandwidth per Session = 0.6Mbps

NRT Latency (ms)

NRT Latency (ms)

Bandwidth per Session = 6%

2 MTRT =66 ms 100 Mbps Ethernet
] TMTRT=33T8 2 ! 10 Mbps Ethernet

1e+04 / i

5 / 1e+03

2 / 5
1e+03 /

5 / 2

2 1e+02

o sl let01

Number of RT sessions Number of RT sessions
Figure 8: Number of RT Connections vs.
NRT Message Latency, MTRT = 66 msec or
33 msec, Load = 0.68

Figure 9: Number of RT Connections vs.
NRT Message Latency, transmission band-
width is 100 Mb/sec or 10 Mb/sec, Load =
0.68

of this experiment. It seems that the difference among various NRT loads becomes significant only
when the amount of bandwidth reserved for real-time traffic becomes large.

We also studied the effect of increasing the MTRT to 66 msec and doubling the reserved band-
width in each real-time connection. Although the total real-time bandwidth requirements remain
the same, a larger MTRT reduces the token passing overhead since each RT node can transmit
twice as much data within a token rotation cycle. On the other hand, the NRT nodes receive
the token at later times than in the 33-ms MTRT case. That is, in the 66-ms MTRT case, the
NRT nodes have to wait a longer time on an average to receive the token. This effect is more
significant when small fractions of the total bandwidth are reserved. Only when the number of RT
sessions increases beyond a certain extent does the reduced token overhead make the 66-ms MTRT
case perform better. This effect is shown in Figure 8, where the latency of NRT messages in the
66-ms MTRT case are indeed reduced as compared to the 33-ms MTRT case only when there are
8 or more RT sessions. Below 8 RT sessions, the 33-ms MTRT case exhibits slightly smaller NRT
message delay because of faster toke rotation cycle. However, as explained earlier, larger MTRT’s
correspond to less stringent real-time bandwidth requirements. This graph, therefore, also demon-
strates the fundamental tradeoff between RT sessions’ real-time resolution requirements and the
latency experienced by NRT messages.

Lastly, we studied the effect of using a 100 Mbps Ethernet. Increasing network bandwidth only

reduces the raw transmission time of network packets but will not affect the software overhead for

16

message transmission. Therefore it would only slightly reduce the transmission time of a token
or an NRT packet since it is known that software overhead constitutes a significant percentage
of the overall message delay. The simulations were run by reducing the token and NRT message
passing time accordingly, and assuming that each real-time session consumes 6% of the raw network
bandwidth. The result is shown in Figure 9. Compared to the 10 Mbps Ethernet, the knee of this
graph has shifted to the right, which indicates that a greater number of RT sessions can be supported
on a 100 Mbps Ethernet for the same percentage of total real-time bandwidth reservation. However,

the shift is relatively small, which confirms the dominance of the software overhead.

6 Implementation Issues

A generic TCP/IP-based networking subsystem such as the one in BSD UNIX [SMMJ88] consists
of three software layers: Transport (TCP/UDP), Network (IP), and a device-dependent interface
software (IF). To implement the proposed protocol without hardware support, both the IP and IF
layers need to be modified. Also, a UDP-like transport layer would also have to be developed to
provide the transport service. The RETHER protocol adds six types of control packets:

Token
Acknowledgement
Switch_To_RT_Mode
Switch_To_NRT_Mode
Join_the_RT_Set
Leave_the_RT_Set

The first two types are point-to-point message transfers and the remaining four require broadcasting,
which could be readily supported by existing Ethernet hardware. These packets requires very
simple processing and could be handled directly in the interrupt handlers triggered by the network
interface, without the involvement of higher-layer software. To do this, these control packets should
be formatted as special Ethernet packets with appropriate Ethernet headers to be dispatched to

the appropriate handling routine.

ETHERTYPE_TOK
ETHERTYPE_ACK
ETHERTYPE_SW
ETHERTYPE_RT

are the four types of Ethernet packets, where the two protocol switch packets and the two RT
Set packets are both integrated in one routine. To support real-time communications, high-level
networking software must provide interfaces for applications to reserve the bandwidth needed for
these real-time connections. With the bandwidth reservation mechanism in place, there is no need

for flow control. Moreover, according to our study, current network hardware is so reliable that the

17

probability of packet loss due to random errors is very unlikely. In the case of real-time data streams,
retransmitted packets probably are not useful most of the time anyway. Therefore, we believe a
simpler transport layer interface and implementation such as UDP is actually more appropriate for
real-time connections. In addition, the IF and IP layer should implement two separate transmission
queues for RT and NRT messages in case the node is in the RT and NRT set at the same time.
While in the Token-Passing mode, the IF software needs to check whether the node currently holds
the token. If not, the data packet to be transmitted must be delayed until the token arrives.
When the protocol has to switch from the CSMA to the Token-Passing mode, the interrupt
handler corresponding to this type of packet should set the protocol mode flag, which indicates that
the network is no longer operating in the CSM A mode. The node then queues an acknowledgement
packet as the next message to be sent out. The Ethernet driver finishes the packet currently in the
middle of transmission, if any, and then schedules the acknowledgement packet as the next packet
for transmission. Any other messages will be sent out only on receipt of the control token or after
another protocol switch message arrives. In summary, all the required modifications to support
the RETHER protocol can be made at the lowest layers of the network subsystem. Most of these
modifications are rather simple. The higher software layers remain largely unaffected except that
they should provide mechanisms to access the features of the RETHER protocol, in particular,

bandwidth reservation.

7 Conclusion

The main thrust of this work is to develop a protocol that could provide performance guarantee to
real-time connections on top of existing Ethernet hardware. Constrained by off-the-shelf Ethernet
interfaces, we design a token-passing protocol that requires very simple processing and thus incurs
little protocol overhead when run by the host software. The RETHER protocol adopts a token
passing mechanism to guarantee real-time performance requirements and switches to the hardware-
supported CSMA /CD protocol when no such real-time connections exist. The rationale of this
hybrid approach is to minimize the impact of real-time connections on non-real-time traffic. One
of the difficulties in providing bandwidth reservation is that current Ethernet network hardware
doesn’t provide software a mechanism to cancel packets already sent to the network interface. As a
result, when the network is switching to the Token-Passing mode, explicit acknowledgements from
other network nodes are needed to signify both their willingness to cooperate and that the interface’s
transmission buffer is emptied. For other types of control messages, mechanisms are developed to
ensure that no acknowledgements be needed, thus significantly reducing the associated overhead.
We use a simulation approach to study the behavior of the RETHER protocol. Whenever
possible, the parameter values to the simulator are measured on a real network. The simulation is
focused on the token passing mode of the protocol. From the simulation results, the first conclusion

is that it is possible to use the proposed RETHER protocol to support multiple real-time sessions

18

on Ethernet. For real-time sessions that required 0.3 Mbps in average, it is possible to sustain
more than 14 sessions without seriously affecting the performance of NRT traffic. Also, from the
simulations, it can be concluded that given the assumed NRT workload, up to 60% of the 10Mbps
bandwidth of the Ethernet can be reserved using the protocol described, without seriously affecting
the NRT traffic. This conclusion holds regardless of the number of real-time connections.

Because the RETHER protocol is designed for a local area network setting, we believe bandwidth
guarantee is much more important than jitter and delay guarantees. However, to extend this
protocol to a local internetwork, i.e., one that extends across routers/gateways, these issues need to
be resolved. Currently, we are in the process of implementing the RETHER protocol in the network
subsystem of the BSD UNIX platform. Once the implementation is completed, actual performance
measurements will be compared to the results presented here to validate the simulation model. We
expect to include these results in the final form of this paper. In the future, we plan to extend this

work in the following ways:

Extension of the protocol to support multiple real-time connection requests per node

Extension of the protocol to run across bridges and routers

Enhancement of the protocol to utilize multiple Ethernet links simultaneously as a cost-

effective way of supporting multimedia applications

e A more general treatment of the reliability problem associated with nodes and links

19

References

[And88]

[CCG93]

[Dan93]

[GWS5]

[ISTS92]

[Ric90]

[SMMJ88]

$592]

[SSC91]

Andrew S.Tanenbaum. Computer Networks. Prentice-Hall Inc., 1988.

Cheng, Ting, Chung, Jen-Yao, and Georgiou, Christos J. Enhancement of Token Bus
Protocols for Multimedia Applications. Digest of Papers. COMPCON SPRING 1993,
pages 30-36, February 1993.

Daniel Minoli. Isochronous Ethernet : Poised for Launch. NETWORK COMPUTING,
pages 156-162, August 1993.

Gopal, P.M. and Wong, J.W. Analysis of Hybrid Token-CSMA /CD Protocol for Bus
Networks. Computer Networks & ISDN Syst., pages 131-141, September 1985.

Jeffay, K., Stone, D.L., Talley,T., and Smith, F.D. Adaptive, Best-Effort Delivery of
Digital Audio and Video Across Packet-Switched Networks. Network and Operating
Systems Support for Digital Audio and Video, pages 3—14, November 1992.

Riccardo Gusella. A measurement Study of Diskless Workstation Traffic on an Ethernet.
IEEFE Transactions on Communications, 38(9):1557-1567, September 1990.

Samuel J.Leffler, Marshall K.McKusick, Michael J.Karels, and John S.Quarterman. The
Design and Implementation of the 4.3 BSD UNIX Operating System. Addison-Wesley
Publishing Company, Inc., 1988.

S O Falaki and S-A Sorensen. Traffic measurement on a local area computer network.

Computer Communications, 15(3), April 1992.

Shieh, Meng-Tsong, Sheu, Jang-Ping, and Chen, Wen-Tsuen. Decentralized token-
CSMA /CD protocol for integrated voice/data LANs. Computer Communications, pages
223-230, May 1991.

20

