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Abstract

An approach that enables the acquisition of multidimensional NMR spectra within a single scan has been recently proposed and
demonstrated. The present paper explores the applicability of such ultrafast acquisition schemes toward the collection of two-dimen-
sional magnetic resonance imaging (2D MRI) data. It is shown that ideas enabling the application of these spatially encoded
schemes within a spectroscopic setting, can be extended in a straightforward manner to pure imaging. Furthermore, the reliance
of the original scheme on a spatial encoding and subsequent decoding of the evolution frequencies endows imaging applications
with a greater simplicity and flexibility than their spectroscopic counterparts. The new methodology also offers the possibility of
implementing the single-scan acquisition of 2D MRI images using sinusoidal gradients, without having to resort to subsequent inter-
polation procedures or non-linear sampling of the data. Theoretical derivations on the operational principles and imaging charac-
teristics of a number of sequences based on these ideas are derived, and experimentally validated with a series of 2D MRI results

collected on a variety of model phantom samples.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Two-dimensional (2D) spectroscopy plays a central
role in all contemporary applications of nuclear mag-
netic resonance (NMR) [1]. Although originally pro-
posed and established as a tool for carrying out
analytical characterizations on chemical and biochemical
samples [2,3]2D NMR probably finds its widest applica-
bility, in terms of overall measurements carried out,
within the context of magnetic resonance imaging
(MRI). In spite of the dissimilar information being
sought in 2D NMR and 2D MRI experiments, the basic
commonalties underlying these two methodologies are
well known [4,5]: in both cases pulse sequences are imple-
mented so as to correlate via a 2D Fourier transform,
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pairs of initial and final (Q;,£,) evolution frequencies
experienced by the spins. The difference between the
two realms lies mainly in the physical nature of the inter-
actions defining these two frequencies: whereas in analyt-
ical applications these are given by intrinsic shielding,
quadrupolar or spin-spin couplings defined by local
molecular environments, MRI strives to suppress this
internal information and replace it by artificial frequency
shifts dictated by externally applied magnetic field gradi-
ents. Though sharing a common ancestry in 2D Fourier
Zeugmatography [6], the internal vis-a-vis external char-
acter of the interactions being correlated in 2D NMR
and MRI have endowed these fields with divergent evo-
lutionary histories. Over the decades 2D NMR remained
remarkably close to the paradigm put forward by Jeener,
Ernst et al. [7], whereby the Q;-induced evolution is indi-
rectly monitored through a step-wise incrementation of
an associated time parameter ¢; while Q, is encoded by
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the usual physical acquisition time (#,). By contrast the
gradient-driven nature of the interactions correlated in
2D MRI coupled to the concepts of k-space and of its
non-Cartesian sampling using arbitrary gradient wave-
forms [4,8-10], endowed this branch of the spectroscopy
with a much higher data acquisition flexibility. This flex-
ibility arguably finds its ultimate expression in echo-pla-
nar imaging (EPI) [11,12], which together with its
daughter techniques can provide multidimensional
MRI images within a fraction of a second by successively
switching on and off the various magnetic field gradients
involved in their correlations. A number of alternatives
have also been proposed to ease the acquisition or pro-
cessing requirements demanded by the original EPI
scheme [13-15]. Still in all cases, these improvements
were based on the pioneering k-space ideas introduced
by Mansfield et al.

Over the years a number of attempts were made to
extend the time-savings that these “walk through
k-space” concepts granted to 2D MRI, toward acceler-
ating the acquisition of other kinds of 2D NMR exper-
iments. Only in those rare instances when the
interactions to be correlated could be manipulated with
nearly complete efficiency, did such efforts find applica-
bility within purely spectroscopic contexts [16-18]. Very
recently, however, we demonstrated an alternative route
to the single-scan acquisition of 2D NMR spectra,
whose principles are actually different from those of
EPI: these new ultrafast schemes replace the usual para-
metric #; encoding of the Q; frequencies to be moni-
tored, by an equivalent spatial encoding of the
interactions [19,20]. This is a procedure that unlike the
serial incrementation of #; values can be parallelized,
and thus completed within a single transient. Since the
nature of the interactions being correlated or of the
transfer processes taking place during the mixing por-
tion of the sequence are not relevant to this paralleliza-
tion of 2D NMR, it appears that this methodology
should be of a general nature. We have described in pre-
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vious publications comprehensive examples where this is
indeed born out in a variety of homo- and hetero-nu-
clear 2D/3D/4D NMR experiments [19-23]. The present
paper turns the focus to MRI and explores the potential
provided by these encoding principles toward the ultra-
fast acquisition of spatially resolved NMR information.

2. Theoretical basis of spatially encoded single-scan 2D
MRI

2.1. Spatially encoded single-scan MRI using discrete
pulses

As starting point to the present imaging discussion,
we illustrate in Fig. 1A one of the schemes we have re-
cently proposed for the single-scan acquisition of multi-
dimensional NMR spectra [19,20]. For the sake of
simplicity we have confined it to a single-channel 2D
acquisition, where the initial spatial encoding is carried
out by a train of frequency-shifted selective excitation
pulses applied in synchrony with a square-modulated
longitudinal gradient 0B,/0z = G.. These discrete excita-
tion RF pulses are spaced by constant time intervals
At), differing only by a constant frequency offset
AO=|0;— O;4,|. The discrete evolution times ¢,
evolved by the spins become then proportional to their
{z;},— 1,~, positions within the sample according to
ti(z;)) = C-(z; — zy,), where C is a spatio-temporal ratio
that for the indicated parameters can be written as
C = G.At,/AO. This procedure effectively ends up wind-
ing a spiral of spin-packets over the sample whose pitch
¢ depends on the internal evolution frequency ; that
acted on the spins: ¢(z) = Q11(z) = CQ(z; — zn,).
When considering a uniform ; value identical through-
out the sample, for instance the chemical shift or J-cou-
pling of a given chemical site, such overall phase
encoding amounts to a linear winding of the magnetiza-
tion. This winding is preserved throughout the mixing
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Fig. 1. Comparison between various spatially encoded schemes capable of affording 2D NMR spectra within a single transient. (A) Generic pulse
scheme of a 2D NMR spectroscopy experiment based on a discrete uniaxial encoding of the @, interactions using N; excitation pulses, and a
subsequent decoding relying on N, acquisition cycles. (B) Extension of the pulse scheme in (A) to an imaging setting, where the effective interaction
along the indirect domain is given by an unbalanced G, = G, excitation gradient and the direct-domain frequency encoding is imparted in a
conventional fashion by a blipped G, gradient. (C) Extension of the pulse scheme (B) to the case of a single continuous irradiation pulse. (D)
Adaptation of the chirped-pulse scheme in (C) to an acquisition involving oscillatory gradients, which avoids the need for data interpolation thanks
to the use of an arccos-type frequency-modulated RF pulse. In all cases wavy lines and dots represent the actual digitization of the signal as a
function of (k,1,); see text for additional details.
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period owing to the coherent nature of this process and
then, during the course of the acquisition, monitored
while in the presence of a longitudinal gradient G,.
Due to its suitable geometric dependence this gradient
can unravel the spiraled magnetization and lead to an
observable echo, whose position as a function of the
acquisition wavenumber k = [; G,(¢#)d¢ will then be gi-
ven by k= —CQ,. The k-axis thus becomes equivalent
to an indirect-domain v; frequency axis. Furthermore,
such k-driven unwinding process can be undone and re-
done numerous times by periodically reversing the sign
of G,, allowing one to imprint on this Q;-positioned
echo an Q, modulation proceeding as a function of #,.

These principles have been demonstrated experimen-
tally on a variety of spectroscopy experiments where Q;
and €, entailed internal free evolution frequencies,
homogeneous for all spins throughout the sample. In
an imaging application, however, the frequencies being
sought will be given by spatially dependent functions.
This in turn prompts the question of how could the prin-
ciples described in the preceding paragraph be useful for
the acquisition of spatial images. There are actually two
mechanisms whereby such imaging information might
appear encoded. One relates to the line shapes that dif-
ferent sample and gradient profiles may generate when
dealing with a sample of non-uniform constitution. This
is an effect whose application toward the acquisition of
spatially resolved spectral information has been dealt
with elsewhere [24]. The second mechanism, the one that
constitutes the basis of experiments presented in this
work, lies in a separate but important characteristic
defining 2D ultrafast NMR acquisitions: the repetitive
dephasing/rephasing processes that spins within individ-
ually excited slices undergo as a consequence of the gra-
dients’ actions. Indeed, whereas to a first approximation
it is possible to consider the various spin-packets excited
by the frequency-shifted train of RF pulses in Fig. 1A as
rigid magnetization vectors endowed solely with a posi-
tion-dependent precession, these spin-packets also pos-
sess time-dependent (or more rigorously, k-dependent)
amplitudes. Such dependence arises from the dephasing
that spins within any slice éz undergoing RF excitation
will experience under the action of the gradient, and is
responsible for the “enveloping” properties discussed
elsewhere in connection to the amplitudes of peaks in
ultrafast NMR [20,23].

These dephasing effects can provide a new approach
toward the acquisition of nD spatially localized MR
images in a single scan. To visualize how this comes to
happen consider the transformation of the spectrosco-
py-oriented scheme introduced in Fig. 1A, to the imag-
ing-oriented one presented in Fig. 1B. Two main
changes underlie this transformation: one is the incorpo-
ration of a net Q| = G, - z evolution frequency via the re-
moval of the gradient echo procedure previously
employed during the excitation; the other is the incorpo-

ration of an orthogonal gradient-driven frequency shift
Q, =G, 1 (r =x or y) for the sake of encoding, in a
usual k-incremented fashion, a second spatial dimension
during the course of the acquisition. Notice that remov-
ing the gradient echo conditions originally employed in
the excitation actually simplifies the protocol, as the ini-
tial G, gradient can now be applied in a constant manner
throughout the excitation. To analyze the state of the
spins at the conclusion of this excitation we shall assume
no chemical shift or J-coupling evolutions; given the ab-
sence of refocusing gradients during the excitation, the
applied train of RF pulses will then generate N; sequen-
tially excited spin-packets with average evolution phases

(D(z)) = Qi(z)) - t1(z;) = Gez; - C(z; — zw,)

At
=350 =), j=0 . Mi=1 (D)
and individual intra-slice dephasings
At
Ap(z) ~ 1(z) - Gelzy — 21| = 5 5 Galgy —2w) -0z (2)

Here we have assumed for simplicity that for every slice
its evolution time #,(z;) is much larger than the actual
RF pulse width,' and defined 6z =|z; — z; || = AO/G.
as the widths of the individually excited slices. An addi-
tional assumption worth introducing at this point is that
all excitation pulses used had identical shapes E(¢), lead-
ing in turn to identical intra-slice excitation profiles
P(6z) proportional to the Fourier conjugate of E(¢)—
sinc-type profiles for a train of rectangular pulses,
Gaussian profiles when using Gaussian-shaped pulses,
etc. The overall magnetization of the sample prior to
beginning the acquisition process can then be described
as

Ni—1

Mk =0) =" A(z)e) /1 - P(52)e™d(sz). (3)
j:() slice

The A(z;) coeflicients in this equation describe the con-
tributions arising from the individual spin-packets into
which the sample was partitioned by the selective excita-
tion train, and constitute in essence the voxel imaging
elements one is trying to obtain. Notice that these coef-
ficients are multiplied by phase factors ¢“?*? that, pos-
sessing a quadratic dependence on the position z;, will
not be refocused by the application of an acquisition
gradient. This will prevent the generation of a common
high-resolution k-echo throughout the sample, a feature
that may be fundamental in high-resolution spectros-
copy but not in an imaging context where no homoge-
neous frequency behavior is expected from the sample
as a whole anyhow. By contrast the linear dependence
of the slices’ dephasing on z;, embodied by the AP

! Violating such assumption simply shifts the resulting z-image by a
constant factor.
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phase factor, allows for the sequential imaging of the
sample via the application of the longitudinal acquisi-
tion gradient G, that progressively brings into focus
spin-packets corresponding to different z slices. Such
sequential refocusing and defocusing of the spin-packets
can be appreciated from calculating the magnitude of
the signals detected during the course of the acquisition,
as the sample accrues an extra k = f(; G,(¢')dt phase
factor:

| x z,—Z\l )oz lk(Ld(éz)

Ni—1
ZA z;)e e Z// ((32)
slice

(4)
The actual result of the intra-slice integral in this expres-
sion will depend on the P(dz) profile, and thereby on the
pulse shape employed to achieve the spatial encoding.
Yet for all normal excitation conditions this integral will
peak whenever the phase involved in its exponent fulfills

At
AO
at which point the detected signal will take a value pro-
portional to the sample’s profile: |S(k)| e |4(z;)|. It fol-
lows from these arguments that the refocusing gradient
successively probes the spins’ density |4 (zx)| at positions
AO 1

— = 6
Atl Gg ( )

A G2z —2n) + k=0 (5)

Zy :ZN1 —

This expression allows for a straightforward calculation
of the spatial resolution and field-of-view (FOV)
characteristics associated to this new image-retrieving
protocol: resolution will be limited to the width of the
excited slices 6z =|AO/G., while setting k to its
maximum absolute value ky.x =|G.Ta leads to
FOV = |AOG,T,/At,G2|.

Eq. (6) implies that when applying a train of frequen-
cy-shifted excitation pulses and subsequently a constant
decoding gradient G,, the acquisition k axis de facto un-
veils the conjugate z profile of the spins. Fig. 2 illustrates
this unusual procedure whereby a k& wavenumber effec-
tively becomes its conjugate z coordinate, with a numer-
ical 1D simulation based on integrating the Bloch
equations governing the behavior of a large number of
z spin-packets subject to the pulse sequence in Fig. 1B.
As can be appreciated the method’s faithfulness to the
original sample shape is acceptable, even if the resolu-
tion is somewhat coarse due to the discrete nature of
the excitation. The extension of this new imaging princi-
ple to single-scan 2D MRI is further illustrated with
experiments below.

2.2. Spatially encoded MRI using chirped pulses
The simple task demanded from the excitation-

gradient/RF-pulse combination in the scheme just
described—essentially that they succeed in imparting
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Fig. 2. Capability of the pulse sequence introduced in Fig. 1B to
spatially map a profile as a function of the 0< k= Gt < G,T,
acquisition wavenumber. (A) Assumed A(z) spatial profile for the
sample, given by 501 pixels spread over 18 mm. (B) Calculated |S (k)|
signal expected upon implementing on a sample with the 4 (z) profile in
(A), the sequence in Fig. 1B with the following parameters:
G, = 8.1 kHz/mm, N, =15 square excitation pulses, AO = 10 kHz,
At; =0.1 ms, G, = —16.2 kHz/mm, T, = 1 ms. In an actual 2D MRI
experiment this signal would correspond to the first of the 2N, echoes
monitored as a function of 7, which would then subject to an
additional G, encoding. The image in (B) resulted from numerically co-
adding the contributions arising from spin packets placed at different z
coordinates throughout the sample, each of them subject to a time-
propagation as dictated by their individual time-dependent Bloch
differential equations.

on spin-packets at different z coordinates a sequential
dephasing increasing linearly with position—implies
that several variants and improvements can be imple-
mented on the basic scheme depicted in Fig. 1B. One
of the most evident ones relates to the possibility of
reducing the duration of the discrete pulses employed
in the excitation scheme until taking them to a very
short—essentially J-like—pulse width limit. As no
gradient interruptions or reversals are involved in the
excitation protocol of Fig. 1B, assuming such J-pulse
limit eventually leads to replacing the original train of
frequency-shifted pulses by a single frequency-swept
pulse, a chirp pulse where the offset of the RF is linearly
varied from one extreme of the gradient-imposed
FOV to the other (Fig. 1C). Key acquisition parameters
in this chirp excitation mode will be the nutation
frequency Qrrg associated to the RF field, as well as
A0 _ 20

the rate R = llmOA—t1 &, Characterizing how rapidly

are frequency offsets being swept during the course of
the pulse.> The well-known adiabaticity parameter
o =|(Qrr)*/R| defines then the characteristics of the
sweep [25]. Within the context of an efficient excitation
this parameter is desired to be in the order of unity, as
neither a sudden passage (o < 1) nor an adiabatic sweep

2 Strictly speaking it is —R that defines the rate of the frequency
sweep. This is a consequence of Az, having a sign opposite to the time
defining the progress of the chirp pulse: the first z position to be excited
by this pulse will be subject to the maximum ¢; evolution time "™,
whereas the last z position will be characterized by 7; = 0.
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(a> 1) can provide for the sequential spatial excitation
and ensuing dephasing characteristics demanded by the
experiment. It follows that the objective of this chirped
excitation pulse is different from the frequency-swept
scheme recently discussed within the context of single-
scan 2D NMR spectroscopy, where the goal was to
implement an adiabatic inversion of the spins [26].

On attempting to describe the imaging methodology
that will arise from the action of a single frequency-
swept encoding pulse and of a subsequent gradient-dri-
ven decoding, it is convenient to partition the analysis
into two separate aspects. One involves deriving the
phases accumulated by the spins along the various
stages of the frequency-swept spatial encoding. A sec-
ond aspect involves describing the actual nutation effects
imparted by the RF field, and their optimization in
terms of maximizing the observed signal intensity. We
relegate this second aspect of the analysis to an Appen-
dix, and begin with the first of these accounts by disre-
garding the actual details of the spin nutation
altogether. To extend the discrete imaging principles
summarized in Egs. (1)—(6) to the case of a continuous
frequency-swept RF pulse we shall assume that, at any
given instant #;, the only consequence of applying a
pulse possessing an instantaneous offset O(¢) is to trig-
ger the excitation of all spins placed at a particular z
coordinate fulfilling O[#(z)] = G, - z. Two main differ-
ences need then be considered upon extending the previ-
ous discrete irradiation analysis, to the calculation of the
phases accumulated by spins excited under the action of
a chirped RF. One concerns the appearance of a new
contribution to the overall phase accrued by the spins,
which stems from the unavoidable phase incrementation
that a continuously frequency-swept RF undergoes over
the course of its pulsing. We denote this new additional
contribution as ¢puse. Taking into account that as the
excitation proceeds through the sample ¢y accumu-
lates while the corresponding #,(z) evolution times
become progressively smaller, such additional phase
incrementation can be written as

iy (2)
d)pulse (Z) = / O(t/) dt,
0
sty (2)
:/ [0; —R-{]dl
0
sty (2)
- / [0 + R (™ — 1)) dY (7)
0

where O; = G, * z; and Oy = G, - zr are the initial and final
frequencies of the chirp pulse, assumed to have proceeded
at a constant R rate over a time ™ = G./R(z; — z).
The z-dependence of ¢py1se derives from the fact that the
evolution times ¢, characterizing different z coordinates
are different: #,(z) = G./R(z — zr). Replacing this depen-
dence into Eq. (7) leads to

2 2

= %zf(zi — Z) + % [(Zi _Zf)z - (Z _Zf)z]' (8)

pulse (Z ) R 2R

A second difference arising in the frequency-chirp sce-
nario stems from the lack of discretely excited slices,
and therefore of the A¢ phase dispersion previously
associated to a slice of thickness dz (Eq. (2)). What will
still hold, however, is that spins at different coordinates z
will accumulate different precession phases due to the
differing times at which the gradient G, began acting
upon them. This phase follows from a continuous ver-
sion of Eq. (1), and yields
G2
P(z) = Q(z)  11(z2) = Gez - C(z — z1) = ?ez(z —z). (9)

Notice that in comparison with the discrete case the
inverse chirp rate R~ takes the place of At /AO, and
the final z¢ position replaces the last discrete coordinate
zy,. The overall signal intensity measurable upon wind-
ing spins with the phases in Egs. (8) and (9), and then
unwinding them with the usual k-z=| f(; G,(f)dt] -z
acquisition phase, will be

|S(k)| 08 / A(Z) . ei¢(z) . ei‘/’pulse(z) . eikz dz
all z

/ A(z) - ei‘p(")dz‘. (10)
all z

By contrast to the previous analysis this chirp-derived
signal is not made up of contributions arising from differ-
ent discrete slices, and therefore it is not possible to claim
a k-driven refocusing of the spins on the basis of intra-
slice arguments. On the other hand it is clear that the
action of the k wavenumber in this situation will not be
unlike the one detailed for the discrete excitation sce-
nario: the refocusing gradient G, will still bring spins at
adjacent z coordinates sequentially into focus, driving
the constructive interference between their magnetiza-
tions and thereby enabling a macroscopic measurement
of their associated A (z) profiles. A necessary and suffi-
cient condition for the kK wavenumber to create such con-
structive interference within the neighborhood of a given
z coordinate, is that the overall evolution phases of spins
at this particular z; position present a slowly varying
spatial dependence. Mathematically, this demands that
the phase @ (z) fulfill the stationary condition

o 0 [G? G: > 2
(a_> =% [W(Zi — o)t gp @A) - )
G2
+fZ(Z_Zf)+kZ:| =0. (11)

Simple algebra reveals that for a given k value the spins
fulfilling such condition lie at

R
—k
€

Zj — Zf —

: (12)
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Fig. 3. Idem as in Fig. 2, but this time assuming the application of a
frequency-chirped pulse sequence like the one introduced in Fig. 1C.
Parameters for such pulse sequence included G, =8.1 kHz/mm,
M =02ms, O;=-0;=75kHz, G,=-162kHz/mm, T,=
0.125 ms. The FOV resulting in (B) for such set of parametersis 23.1 mm.

thus yielding a continuous version of the refocusing con-
dition derived earlier in Eq. (5). Eq. (12) together with k’s
maximum absolute value k., = |G,T,|, can once again
be used to compute the total FOV = |RG,T,/G?|. A
derivation of the spatial resolution associated to the
chirped excitation on the other hand, is less straightfor-
ward than its discrete counterpart. Still it is possible to
invoke arguments connecting the second derivative of
the overall phase @ to the interval Az below which it is
not possible to distinguish the actual contribution of
individual spins, to derive a nominal resolution given by

Vz. (13)

Fig. 3 illustrates using once again 1D simulations
stemming from the numerical integration of z-dependent
Bloch equations, how the various arguments derived in
this paragraph enable a chirped RF excitation followed
by a refocusing gradient to map the spatial profile of
spins within a sample. In fact on comparing these results
with those calculated assuming a discrete excitation of
the sample (Fig. 2), one can notice that a finer spatial
resolution is born out. As further illustrated below, sim-
ilar improvements are observed on using chirp excita-
tion to carry out single-scan 2D MRI acquisitions on
model phantoms.

2.3. Spatially encoded MRI using FM pulses and
sinusoidal gradients

The preceding paragraphs demonstrate that non-
Fourier-transform methods relying on a chirped excita-
tion of the spins can be used to collect 1D NMR images.
The sequences in Figs. 1B and C incorporate these
principles along an indirect dimension, and couple it
to periodic gradient reversals and blipped frequency

encodings of the kind usually employed in EPI protocols
in order to build a 2D imaging scheme. A well-known
technical complication of all the resulting ultrafast
MRI schemes is associated with their reliance on rapidly
varying gradients, liable to induce strong eddy currents
and neural stimulation that limit their performance
and applicability [15]. Particularly challenging is the
application of square-wave modulated gradients of the
type proposed throughout the course of 7, in Figs. 1B
and C. Such complication can be alleviated by replacing
the square-wave modulation with a sinusoidal one, an
approach of widespread use in functional MRI [5,15].
Sinusoidal acquisition gradients, however, are also
known to impart distortions into EPI MRI images, as
they end up distributing data points in a non-uniform
manner along the k-axes. Obtaining non-distorted
images then requires a re-interpolation of the data into
a regular equidistant grid, or the less artifact-prone
but more challenging alternative of relying on non-uni-
form sampling dwells throughout the course of the data
acquisition. As we have discussed elsewhere such distor-
tions affect to a lesser extent spatially encoded tech-
niques like the ones presented in this work, which do
not rely on Fourier transforming k-domain data alto-
gether [27]. Still this approach would distort the time-
linearity of the decoded z coordinates implicit in Eq.
(12) for the case of a constant G, gradient; on using
sinusoidal decoding gradients of the form G, (¢)=
G,sin(nt/T,) for instance (Fig. 1D), the overall spatial
decoding in the sequence would proceed at a rate
k= G,T,/n[l —cos(nt/T,)] instead of at the usual
k=G, t.

The peculiar manner in which the imaging proceeds
in these spatially encoded experiments actually provides
a number of alternatives to reinstate the simple, desir-
able linearity relating the acquisition time ¢ with the po-
sition z of spins along the sample—even when
employing shaped acquisition gradients. A straightfor-
ward way to reinstate the z o< ¢ progression while avoid-
ing interpolation or non-linear sampling is to change the
offset sweep of the chirp pulse, from a constant rate R to
a time-dependent one. We derive next the frequency
modulation (FM) that would then have to be employed,
assuming for simplicity that a sinusoidal Gy(¢) gradient
is used over the course of the signal acquisition. A
straightforward way to derive the FM pulse that will
then be required follows from the realization that even
for the case of a general RF sweep, the condition in
Eq. (11) that defines the coordinates z being probed by
a particular wavenumber k can be recast as

—tH+k=0. (14)
z
Considering then Q,(z) = G.z as well as the wavenum-

ber k = %I1[1 — cos(nt/T,)] defined by a sinusoidal gra-
dient, translates this condition into
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G.T.

(15)

Requesting now a linear map of z by the acquisition
time ¢, t = a -z + b, and recalling that in our simplified
excitation model the offset O of the RF is always linearly
related to the z position of the excited spins according to
z = 0/G., enables the use of Eq. (15) for solving the
dependence that the chirped offset should exhibit as a
function of ¢;. The offset of the resulting FM pulse can
be summarized as
tl:| )

0; — O¢ [
——arcos |1 —
T

where {O;, Oy} are once again the initial and final offsets
of the frequency sweep defining the spatial range to be
explored according to FOV = (0;— Oy/G., and
|kmax| = |2G. T /7| is the maximum k-value probed by
the sinusoidal gradient. As discussed in connection to
Eq. (7), it is often convenient to describe the offset
dependence of an FM pulse as a function of the time
¢’ elapsed since its initiation: ¢ = #"* — ¢;. Since within
the present context the overall pulse duration #** is cho-
sen to fulfill GefM"™ = —kmax, Eq. (16a) can then be
rewritten in an experimentally more practical form

O; — O¢ 2
—i—T-arcos ——1].

Ge t) = — [1 — cos(mt/T,)].

Ge

o(t)) = Or + (16a)

kmax

1
tlil‘lax ( 6b)

Assumed Spatial Profiles

185

With regard to the spatial resolution associated with
this frequency modulated excitation, an analysis akin to
that leading to Eq. (13) reveals a position-dependent fre-
quency resolution given by

2-FOV

zf—z

Ae) = kmaX|Sin (7T FOV)

. (17)

Resolution is thus highest at the center of the sample
and undefined at the edges of the FOV when the rate
of sweep is the slowest, a drawback which can be ac-
counted for by choosing a sweep range (and thereby
an FOV value) larger than the object one is actually try-
ing to image.

Fig. 4 validates on the basis of numerical simulations
these arguments, by showing how sinusoidal acquisition
gradients coupled to the suitably tuned FM pulses aris-
ing from Eq. (16a) yield a faithful spatial description of
spin positions within a sample without further manipu-
lations. Indeed |S(k)| images shown in the right-hand
panels of this figure are plotted directly as a function
of the acquisition time #; notice that although such time
variable maps the acquisition kK wavenumber involved in
the spatial decoding non-uniformly, the corresponding
imaging features remain linear with respect to the spins’
z profiles.

Spatially Encoded/Decoded Signals

(FM excitation, sinusoidal acquisition gradients)
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Fig. 4. Idem as in Fig. 2, but this time assuming an arcos-type frequency modulation of the RF excitation pulse and sinusoidal decoding gradients as

depicted in Fig. 1D and Eq. (16a) (translated from rad s™' mm™!

into kHzmm™' units). Parameters assumed for such simulations included

G.=8.1 kHz/mm, O;=—0;y=100kHz, 77" =0.4ms, G, =—12.75kHz/mm (maximum amplitude of the half-sine waveform), and a data
acquisition time 7, = 0.4 ms sampled with a constant dwell of 2 ps. The FOVs resulting in the (B) panels for such parameters are 24.66 mm, while at
the same time corresponding to an overall k-span of 3.25mm~'. Notice the non-uniform spatial resolution displayed by the |S(k)| signals, as
evidenced by the slight asymmetries in the rising and edging slopes of their humps.
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2.4. Practical considerations

The previous paragraphs described a series of alterna-
tives that could yield 2D MR images within a single
scan, relying on a frequency-based encoding of the spins’
spatial positions during ¢, followed by repetitive de- and
re-coding processes during 7, based on bipolar gradients.
As echo planar imaging relies on technically similar
detection schemes for achieving this aim, a natural ques-
tion that arises is how do various practical aspects of
both methods compare. In this Section we focus on
two such characteristics, the signal-to-noise ratio (S/N)
and the gradient strength requirements, considering on
one hand spatially encoded sequences like the ones
introduced in Fig. 1B or C, and on the other a compa-
rable EPI scheme where the initial frequency-swept exci-
tation in either of these sequences is replaced by a single
n/2 pulse triggering the simultaneous evolution of all
spins. Furthermore for the sake of a meaningful com-
parison we shall assume no customized processing
(zero-filling, weighting) of the data, negligible 7 relaxa-
tion effects, and identical noise functions characterizing
both sets of time-domain data given by ¢, r.m.s. ampli-
tudes per unit spectral bandwidth, incorporating param-
eters such as the coil’s resistance, Q value, etc.

On pursuing a comparison between the practical
characteristics of both kind of sequences one needs to
address the fact that whereas in the spatially encoded
schemes the k-space (or time-domain) data is the image,
EPI schemes need to subject their S (k) signals to Fourier
transformation in order to obtain the z-domain image.
The S/N characterizing the final image at a particular
z, & Az/2 coordinate is then particularly simple to com-
pute in the spatially encoded (s-e) case. Indeed as men-
tioned in connection with Eq. (6) this technique will
provide time-domain signals that are directly propor-
tional to the spatial profiles; considering then that every
k-point is characterized by a ¢35 r.m.s. noise value S/N
in this kind of experiment becomes
(S/N)S_e _ |Ss-e(k)|_c AZs-e _ |A(Zk)|_‘CAZs—e, (18)

S S’
ON Oy

where Azg_. is the voxel size afforded by the spatial encod-
ing. EPI on the other hand, will measure for every k-point
signals arising from the complete sample volume:

SEPI(k):/H A(Z)eikZdZ. (19)

The image of the sample at a desired zy coordinate,
Igpi1(zp), results from subjecting this k-domain function
to the Fourier transform

kmdx .
Iepi(z0) = / Sep1(k)e 0 dk, (20a)
k

min

which given the discrete signal sampling involved be-
comes a sum over the N, digitized points

Ni/2—-1 A ‘
Tgpr (ZO) = Z {/ A (Z)el-mAk-z dZJ e imAkZy
m=—Ny /2 sample

~ Nk . AZEPI . A(Z())7 (20b)

Azgpr 1s now the voxel resolution of the method, given
by (Ak - N;)~'. As for the noise characterizing such pro-
file, this can be found by replacing the Sgpy(k) signal in
Egs. (20a) and (20b) with the random noise introduced
in the preceding paragraph. When implementing on this
random function the sum associated to the discrete Fou-
rier transform, the resulting noise amplitude increases as
the root of the number of added points

N(Z()) = \/Nk O'EPI. (21)
The overall S/N characterizing the EPI-derived images
can thus be summarized as

(S/N)EPI - \/]vk AZEPI |A EPI)l . (22)

A comparison between Egs. (18) and (22) suggests
that for identical Az spatial resolutions, S/N in tradi-
tional EPI MRI experiments will be higher than in our
new spatially encoded methods by a factor \/Nj. This,
however, would ignore the fact that whereas in conven-
tional Fourier schemes the reception system needs to
accommodate the complete frequency distribution
spanned by the FOV, images arise in the spatial encoding
scheme in a voxel-by-voxel fashion. Receiver bandwidths
thus need to extend over a G, - N Az range in the former
case, while spanning only G, - Az for the latter. The ratio
between the bandwidth-controlled noise factors in the
two schemes thus becomes (ctF!/6%°) = /Ny, leading
then to identical S/N for both kinds of acquisitions. Such
coincidence, however, does not mean that all practical
requirements for the EPI and the spatial encoding ap-
proaches end up being identical. In fact following the
various definitions and arguments given above, it can
also be shown that requesting identical FOV’s and Az’s
for both kinds of acquisition schemes leads to the condi-
tion k.5 = \/ITkkgl;; In other words, the spatial encod-
ing approach requires either longer sequences or more
intense gradients than currently available methods for
obtaining images of identical characteristics. This differ-
ence can be rationalized from the fact that whereas in
EPI experiments every Az voxel contributes to the k-
space signal throughout the course of all N detected
points, contributions from independent voxels in the spa-
tial-encoding experiment are unraveled in a k-sequential
point-wise manner.

Iep Zo

3. Results and discussion

The theoretical arguments presented in the preceding
sections were tested with a series of single-scan 2D MRI
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Fig. 5. Results obtained with different single-scan 2D imaging protocols when applied on the phantom illustrated on the right (illustrated for ease of
comparison as superimposed contour/grayscale plots). (A) Profile obtained upon using the discrete spatial encoding sequence in Fig. 1B, with G,
corresponding to a gradient applied along the z axis and G, to a gradient along the x direction. Experimental conditions were G, = 9.2 kHz/mm,
N, = 16, 0.1-ms-long square excitation pulses spaced AO = 10 kHz apart, |G,| = 13.5 kHz/mm, T, = 0.98 ms (plus 20 ps gradient switching times),
N, =20, and the x-encoding done by 40-ps-long half-sine gradient pulses with 2.4 kHz/mm maximum strength. Notice that as was the case for the
simulation in Fig. 2, this image evidences the discrete nature of the spatial encoding that took place along the z axis. (B) Idem as in panel (A) but
using the chirped spatial encoding version depicted in Fig. 1B. Spatially encoding/decoding parameters here included G, = 8.1 kHz/mm,
% = 0.28 ms, 0; = —Or =75 kHz, |G,| = 16.2 kHz/mm, T, = 0.152 ms (plus 16 ps gradient switching times), and an x spatial encoding done as in
(A). (C) EPI acquisition based on a pulse sequences analogous to that illustrated in Fig. 1B, but with the initial spatial-dependent encoding replaced
by a single hard nt/2 excitation pulse acting simultaneously on all spins in the sample. Acquisition parameters (using the notation given in Fig. 1B)
included |G,| = 9.2 kHz/mm, T, = 0.152 ms (plus 16 us gradient switching times), and an x spatial encoding as in (A). Sampling dwell times were in

all cases 4 ps.

experiments on a Bruker Avance 800 MHz NMR spec-
trometer equipped with an inverse probehead and a
triple-axis gradient.® Assayed in these tests were the dis-
crete and chirped pulse sequences introduced in Figs. 1B
and C, with the indirect-domain spatial encoding
executed with the aid of a longitudinal z gradient and
the direct ¢, frequency encoding with a transverse x one.
For the sake of comparison, 2D blipped EPI single-scan
images were also recorded. A variety of Matlab 6.5 soft-
ware programs (The MathWorks) were written for the
sake of reading, processing and simulating all these data.

Two kinds of phantoms were prepared for the tests,
both on the basis of conventional 5 mm NMR tubes.
One of phantoms incorporated a transverse heterogene-
ity in the form of an empty longitudinal capillary cen-
tered in an NMR tube filled with a D,O/H,O
solution. The second phantom was made up by three
contiguous layers of water-saturated polyacrilamide
gel; here the central layer was doped with CoCl, and
failed to appear in T,-weighted imaging experiments,
thus providing a longitudinal heterogeneity. Figs. 5
and 6 illustrate results obtained when the various sin-
gle-scan 2D MRI pulse sequences were applied to these
two phantoms. As can be appreciated the main features
of the phantoms are revealed by all the methods, even if
it is clear that the chirped RF and EPI protocols provide
the highest quality images. It is illustrative to compare

3 The high field and sophisticated multi-resonance equipment used
in these tests was the result of circumstantial availability, rather than
stemming from demands of the experiments themselves.

the relative sensitivity of these two experiments. Accord-
ing to the various acquisition parameters employed
(sweep rate R, excitation and acquisition gradients G,
G,, dwell time 4, filter bandwidth ¢7) Egs. (18) and (22)
predict that S/N in the EPI image shown in Fig. 5C
should be 1.8 times higher than in the spatially encoded
counterpart shown in Fig. 5B; the numerically measured
ratio between the relative sensitivities of both experi-
mental data, as judged by extracting different slices from
the corresponding image sets, came closer to 2.5. A sim-
ilar theoretical S/N estimate for the images reported in
Fig. 6 predicts that EPI’s sensitivity should be 1.5 times
higher than that of its spatially encoded counterpart,
while a numerical analysis of the experimental cross sec-
tions revealed this factor to be 1.4.

The purpose of the present study was to introduce a
new member to the family of methods available for fast
2D MR imaging. So far, this important goal could be
achieved by following basically two kinds of ap-
proaches. One of these involved executing a conven-
tional k-space encoding utilizing low excitation angles
and thereby supporting a very rapid repetition [28]; the
other involved an EPI-derived sampling of the complete
k-space data matrix based on continuous trains of mod-
ulated spin echoes [11]. The new approach that is hereby
described is comparable to EPI and its variants in that it
can provide multidimensional MRI images within a sin-
gle transient, but differs from all approaches hitherto
proposed in that it does not rely on the acquisition of
a k-space data matrix and on its subsequent Fourier
transformation, but rather on a spatial encoding of the
indirect-domain evolution. Although in terms of its
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Fig. 6. Idem as in Fig. 5, but this time with experiments implemented on the longitudinally inhomogeneous phantom schematized on the right. (A)
Contour plot obtained upon employing the chirped spatial encoding version depicted in Fig. 1C with parameters G, = 7.5 kHz/mm, /7 = 0.39 ms,
0; = — 0y =75 kHz, |G,| = 20 kHz/mm, T, = 0.152 ms (plus 16 ps gradient switching times). (B) Single-scan EPI image collected using the same
parameters as in Fig. 5C. The x spatial encoding and the rates of data digitization employed for both experiments were also as described in Fig. 5.

practical demands it is predicted by theory that this new
ultrafast 2D MRI acquisition mode may not perform as
efficiently as other existing rapid imaging techniques, it
is already clear that the excitation and acquisition
modalities described throughout the present work can
play important roles in various single-scan 2D spectros-
copy applications [29]. It is also worth noting that spa-
tial encoding offers promising opportunities to
compensate a variety of field and RF inhomogeneities
[30], a feature that can be easily incorporated into the
MRI protocol hereby described. A description of this
new compensation protocol will be given in an upcom-
ing publication.
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Appendix A. Derivation of optimal excitation conditions
for a linearly swept RF chirp pulse

From the standpoint of both MRI and NMR ultra-
fast acquisitions, the use of a continuous frequency-
swept RF irradiation offers a promising route to an
optimal spatial encoding of the interactions. The purpose
of such RF pulse should be to maximize during the
course of its sweep, the amount of observable magnetiza-
tion that is excited throughout the sample starting from
an initial My = I. reduced density matrix state. For the
simplest case of a linearly swept chirp pulse the parame-
ter defining a pulse’s performance is o= (Qrp)*/R,

depending on the nutation rate Qgp imparted by the
RF and on the rate R at which frequency offsets are
swept. Fig. 7 illustrates this feature by showing how the
average tilt angle # imparted by a chirped excitation pulse
on an inhomogeneously broadened sample, varies as a
function of the inverse sweep rate from 0 ~ 0 when the
sweep is fast compared to Qr (2 < 1: sudden passage),
to 0 = m when the sweep rate is very slow (« > 1: adia-
batic inversion). The conditions assumed throughout
Sections 2 and 3 of this study actually differ from any
one of these two extremes, as there it was assumed that
the chirped pulse applies a nearly complete 0 = n/2 nuta-
tion on the spins. For the sake of completion we present
in this Appendix how to achieve an optimized spin exci-
tation under such intermediate passage conditions.

T2

Average Nutation Angle 0 (rad)

0

. : .
0.0 0.9 1.8
R-1/2 ( ms)

Fig. 7. Average nutation angle 0 excited throughout the sample by a
chirped RF pulse defined by a sweep rate R = % plotted as a
function of R~ The square dots indicate results from numerical
calculations where an Qgrr=1kHz nutation field was swept for
different lengths of time from +75kHz above to —75kHz below
resonance, while a constant G, = 8.1 kHz/mm gradient was applied on
an 18 mm long sample. These calculations involved partitioning the
sample into a large number of individual z coordinates, and then
propagating within a common rotating frame the time evolution of

spins positioned at such differing coordinates.
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Several treatments on how to propagate the spin evo-
lution under the effect of a Hamiltonian incorporating
both a longitudinal gradient and a linearly swept RF
pulse have been presented in the literature [31]. These
treatments usually pertain adiabatic inversions rather
than transverse excitations, yet the two processes share
a common scenario and thus we found it convenient
to incorporate their existing conventions in this account.
According to these adiabatic sweep guidelines it is con-
venient to calculate the evolution of spins’ by imple-
menting a series of transformations whereby the initial
rotating-frame Hamiltonian*

t
Hrot—frame(t) =1, + QRF{COS \‘/ O(II) dl‘/J 1,
0

+sin U)IO(t’)dt’le}
=Gz, + QRF{cos {/OI[Oi —R-T7] dt’}]x
+sin{/0t[0i —R-{] dt’}ly} (A1)

is first transformed into a FM-frame to yield
Hem(t) = [@1 — O(0)]I. + Qrely, (A2)
and then into an effective-field frame driven at a rate
Qurlt) = /12 — O + L3y to yield
R - Qgp
H ff(t) =Q ff(l)]z +—F1,. (A3)
: : [Qar ()]

It is been shown by Haase et al. that the norm of this
effective Hamiltonian can be further reduced by rotating
it at a rate Q.y(7) about the 7. axis [32], leading to

~ R - Qrp .

Ht(t) = ———= {I, cos[a(t)] — I, sin[a(?)]}, (A.4)
[Qere (1))

where ¢ (1) = [Qe(2')dt’. The evolution operators driv-
ing these three transformations are in turn given by

Upn(f) = exp [i - ( /0 t 0(t/)d¢/> 1] (A.S)

_ . QRF
Uer(t) = exp {—1 - arctan [m] ~Iy} (A.6)
and
t
U.(t) = exp {L (/ Qeff(t’)dt’> -Iz], (A7)
0
respectively.

In spite of all these transformations the Hamiltonian
in Eq. (A.4) is still non-self-commuting and time-depen-
dent; most of its fast-oscillating behavior, however, has

4t here is the time elapsed since beginning the chirped excitation,
connected to the evolution #; mentioned elsewhere in the manuscript as
L= —t.

been accounted for by the various frame transforma-
tions. Its effects on spins evolving in its accelerated ref-
erence frame can therefore be approximated to first
order as

U(t) = exp {—i - /Heff(t’)dt’}, (A.8)

where the time integration runs through the course of
the frequency sweep. Applying these various interaction
transformations to an initial density matrix state pg = I_,
and extracting the coefficients multiplying the I, I,
terms in the resulting p(7) to calculate the transverse
magnetization that has been excited by the action of
the frequency chirp, leads then to

M, (1)| = sin {RQRF / % df}. (A.9)

Finally, we assume that the effects of the frequency
swept are only felt by spins when the pulse is approxi-
mately on-resonance; that is in the O ~ G - z neighbor-
hood, where Q.5~ Qrp. This enables an analytic
calculation of the time integral in Eq. (A.9) and predicts
an excited transverse magnetization

R &
|M | (t)] = sin {— sin (ﬁ> }
Qe R

An appealing aspect of this result is that in accordance
with the arguments put forward at the beginning of this
Appendix, it predicts an efficiency of the chirped excita-
tion that is dependent on the adiabaticity parameter
o = |(Qrr)*/R| rather than on the independent values

(A.10)
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Fig. 8. Optimal Qgp nutation fields (in kHz units) resulting from
calculations, as a function of chirp rate v/R for different sweep ranges
AO = |0; — Oj of the RF sweep. These AO defined in turn an FOV
[approx] 18 mm, as related by excitation gradients G, = 5.4, 8.1, and
10.8 kHz/mm for AO =100, 150, and 200 kHz respectively. Simula-
tions were carried out by propagating the Bloch equations (cf. Fig. 7)
and the optimal Qg was in each case defined as corresponding to the
RF that maximized the absolute value of the transverse magnetizations
excited throughout the sample.
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of R or Qry. A graphic analysis following from setting
the derivative of Eq. (A.10) to zero predicts that the
maximum transverse magnetization will be excited when
the adiabaticity parameter becomes o = 0.16.

In an effort to verify the validity of this prediction
extensive sets of numerical simulations were carried
out, focused on finding which nutation fields would
maximize the overall magnetizations excited in the pres-
ence of a constant gradient. Fig. 8 summarizes some of
these numerical investigations by plotting, for a variety
of sweep ranges and of gradient strengths, the Qg value
found to maximize the excited transverse magnetization
for different sweep rates R. In all cases a nearly perfect
linearity between to optimum Qg and /R is found
regardless of any other conditions; the maximum mag-
netization is usually excited when the chirped RF field
fulfills

(QrF)op ~ 0.26VR.

This value is ca. 35% smaller than the prediction above,
not an unreasonable deviation in view of the approxima-
tions involved in the theoretical analysis.

(A.11)
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