
A Bass formula for Gorenstein injective dimension

Leila Khatami a and Siamak Yassemi b,c

a The Abdus Salam ICTP, Strada Costiera 11, 34100 Trieste, Italy
b Department of Mathematics, University of Tehran, P.O. Box 13145-448, Tehran, Iran

c School of Mathematics, IPM, P.O. Box 19395-5746, Tehran, Iran

Abstract

In this paper a generalized version of the Bass formula is proved for finitely
generated modules of finite Gorenstein injective dimension over a commutative
noetherian ring.

MSC: 13D05; 13H10

Introduction

In 1969, M. Auslander and M. Bridger (cf. [1]) introduced and studied the “G-
dimension” of a finitely generated module over a noetherian ring. This homological
invariant is a refinement of the classical projective dimension and shares some of its
nice properties. The dual notion of “Gorenstein injective dimension” was defined in
the mid nineties by E. E. Enochs and O. M. G. Jenda [10]. It can also be considered
as a generalization of the classical notion of injective dimension.

This paper deals with Gorenstein injective dimension of finitely generated mod-
ules. The main result (theorem 2.1) gives a Gorenstein injective version of the
classical “Bass formula” over a commutative noetherian ring.

Theorem 2.1 Let S be a commutative noetherian ring. If M is a finitely generated
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S-module of finite Gorenstein injective dimension, then

GidSM = sup{depthSp | p ∈ Supp(M) }.

As a corollary, in 2.2 we prove that over a commutative noetherian local ring R with
dimR− depthR ≤ 1, the equality GidRM = depthR holds for every finitely gener-
ated R-module M of finite Gorenstein injective dimension. This result generalizes
theorem 6.2.15 of [5], where the same formula is proved over a Cohen-Macaulay local
ring which admits a dualizing module.
In the last part of the paper we deal with another “Bass type” equation due to Is-
chebeck (cf. [14, 2.6]). Example 2.5 shows that a Gorenstein version of the formula
is not true, but we prove another generalization (proposition 2.6) which gives rise
to the following generalization of the classical Bass formula.

Corollary 2.7 Let φ : (R, m, k) → (S, n, l) be a local homomorphism of noethe-
rian local rings. If N is a finitely generated S-module of finite injective dimension
over R then depthR = idRN .

Convention. Throughout this paper, all rings are unitary, commutative and noethe-
rian. Furthermore, (R, m, k) denotes a local ring with maximal ideal m and residue
field k.

1 Basic Definitions

In this section we review basic definitions and properties of Gorenstein injective
dimensions. For details and proofs see [12] or [5].

Definition 1.1. An R-module M is said to be Gorenstein injective if and only if
there exists an exact complex of injective R-modules,

I = · · · → I2 −→ I1 −→ I0 −→ I−1 −→ I−2 −→ · · ·

such that the complex HomR(J, I) is exact for every injective R-module J and M is
the kernel in degree 0 of I.
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It is clear that every injective module is Gorenstein injective and therefore one
can construct a Gorenstein injective resolution of any module.

Definition 1.2. Let M be an R-module. A Gorenstein injective resolution of M is
an exact sequence

0 → M → G0 → G−1 → · · ·
such that Gi is Gorenstein injective for all i ≥ 0.
We say that the module M has Gorenstein injective dimension less than or equal to
n, GidRM ≤ n, if M has a Gorenstein injective resolution

0 → M → G0 → G−1 → · · · → G−n → 0.

It is clear that one always has

GidRM ≤ idRM.

The equality holds if idRM < ∞ (cf. [5, 6.2.6]).

Note that if the Gorenstein injective dimension is finite, then it can be computed
in terms of vanishing of the Ext functors (cf. [13, 2.22]).

Theorem 1.3. Let M be an R-module of finite Gorenstein injective dimension.
Then

GidRM = sup{i |Exti
R(J,M) 6= 0 for an R−module J with idRJ < ∞}.

2 Main Results

Recall that if a finitely generated module over a local ring has finite injective di-
mension then its injective dimension is equal to the depth of the base ring. This
is known as the Bass formula (cf. [3, 3.1.17]). In [5] Christensen has proved that
over a Cohen-Macaulay local ring with a dualizing module, one can replace injective
dimension with Gorenstein injective dimension. More recently, the result has been
proved over a local ring which admits a dualizing complex (cf. [7, 6.4]).

The following theorem, which is the main result of this paper, gives a Gorenstein
injective version of the Bass formula over an arbitrary commutative noetherian ring.
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Theorem 2.1. Let S be a ring and M a finitely generated S-module of finite Goren-
stein injective dimension. Then

GidSM = sup{depthSp | p ∈ Supp(M) }.

Proof. First assume that GidSM = 0. To prove the theorem in this case, it is enough
to show that depthSp = 0 for every prime ideal p ∈ Supp(M).

Suppose that depthSp > 0 for a prime ideal p ∈ Spec(S). Then pSp contains an
Sp-regular element, say x. Since M is a Gorenstein injective S-module, truncating
its complete injective resolution, we get an exact sequence

0 → N → I → M → 0

where I is an injective S-module.
Apply the functor HomSp(Sp/pSp,−) to the localization of the short exact sequence
above and use the fact that Ip is an injective Sp-module to get the following exact
sequence.

0 → Ext1Sp
(Sp/xSp,Mp) → Ext2Sp

(Sp/xSp, Np) → 0

But Ext2Sp
(Sp/xSp, Np) = 0 because pdSp

Sp/xSp = 1. Thus we have

Ext1Sp
(Sp/xSp,Mp) = 0.

On the other hand, the exact sequence

0 → Sp
.x→ Sp → Sp/xSp → 0

induces the following exact sequence.

Mp
.x→ Mp → Ext1Sp

(Sp/xSp, Mp) = 0

Nakayama’s lemma shows that p 6∈ Supp(M), which proves the desired formula for
a finitely generated Gorenstein injective module.

Now assume that GidSM = n > 0. By [7, 2.14], there exists a short exact
sequence

0 → K → L → M → 0,

where K is a Gorenstein injective S-module and idSL = GidSM = n.
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By Chouinard’s equality [4, 3.1], we have

idSL = sup { depthSp − width SpLp | p ∈ Supp(L) },

where by definition

width SpLp = inf { i |TorSp

i (Sp/pSp , Lp) 6= 0}.

Choose a prime ideal p ∈ Supp(L). The sequence

0 → Kp → Lp → Mp → 0

of Sp-modules and Sp-homomorphisms is exact.

Assume that p ∈ Supp(M). Applying the functor (− ⊗Sp Sp/pSp) to the se-
quence above, we get the exact sequence Lp/pLp → Mp/pMp → 0. By Nakayama’s
lemma Mp/pMp and therefore Lp/pLp is not zero. Hence width SpLp = 0 for every
p ∈ Supp(M).

If p 6∈ Supp(M), then Lp
∼= Kp. Localizing the complete injective resolution of

K to the prime ideal p, we get an exact sequences

· · · → I1 → I0 → Lp → 0,

where Ii’s are injective Sp-modules. Suppose that Ki is the kernel of the homomor-
phism Ii → Ii−1 in this complex.

For any Sp-module T of finite projective dimension t and for any positive integer
i, the modules ExtiSp

(T, Lp) and Exti+t
Sp

(T,Kt) are isomorphic. So they are both
zero modules since i + t > pdSp

T .
Using [6, 5.3] to get the second equality below, we have

0 = sup { i |Exti
Sp

(T,Lp) 6= 0, for some Sp−module T with pdSp
T < ∞}

= sup {depthSq − width SqLq | qSp ∈ Supp(Lp) }.

So depthSp − width SpLp ≤ 0 for every p ∈ Supp(L)\Supp(M).
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Therefore,

GidSM = idSL

= sup {depthSp − width SpLp | p ∈ Supp(L) }
= sup {depthSp − width SpLp | p ∈ Supp(M) }
= sup {depthSp | p ∈ Supp(M) }.

The following corollary is a local version of theorem 2.1 which generalizes Chris-
tensen’s Gorenstein version of Bass formula [5, 6.2.15]. We say that a local ring R

is almost Cohen-Macaulay if the inequality dimR− depthR ≤ 1 holds.

Corollary 2.2. Let (R, m, k) be an almost Cohen-Macaulay local ring and let M be
a finitely generated R-module. If GidRM < ∞ then

GidRM = depthR.

Proof. Use theorem 2.1 and the fact that over an almost Cohen-Macaulay ring, for
prime ideals p ⊆ q, the inequality depthRp ≤ depthRq holds (cf. [6, 3.1]).

The next corollary of theorem 2.1 is a change of rings result for Gorenstein
injective dimension. In lemma 2 of [15], Salarian, Sather-Wagstaff and Yassemi prove
that over a local ring, Gorenstein injective dimension “behaves well with respect to
killing a regular element”. Namely, if M is a finitely generated module over a local
ring (R, m, k) then GidRM < ∞ implies GidR/xRM/xM < ∞, where x is an R- and
M -regular element in m. The following corollary is the quantitative version of that
result.

Corollary 2.3. Let (R, m, k) be a local ring and M a finitely generated R-module.
If x ∈ m is an R- and M -regular element, then

GidR/xRM/xM ≤ GidRM − 1.

Furthermore, the equality holds when R is almost Cohen-Macaulay and GidRM is
finite.

Proof. If GidRM is not finite then the inequality is clear. Now assume that M has
finite Gorenstein injective dimension. To prove the desired inequality, it is sufficient
to use theorem 2.1 and the following facts.
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• Supp(M/xM) = { p/xR | p ∈ Supp(M) and x ∈ p }.

• If x ∈ p then depth (R/xR)p/xR = depthRp − 1.

The last part of the corollary is a consequence of corollary 2.2.

The following immediate corollary of 2.1 shows that finite Gorenstein injective
dimension does not grow under localization.

Corollary 2.4. Let S be a ring and M a finitely generated S-module. If p ⊆ q are
prime ideals and Mp has finite Gorenstein injective dimension then

GidSpMp ≤ GidSqMq.

Now we study another Bass type equality. In [14, 2.6], Ischebeck proves the
following formula from which the classical Bass formula can be recovered by setting
M equal to the residue field of the base ring.

Theorem Let (R, m, k) be a local ring and let M and N be finitely generated R-
modules. If idRN < ∞ then

depthR− depthRM = sup{i |Exti
R(M,N) 6= 0}.

It is natural to ask whether a Gorenstein injective version of this theorem is also
true. The answer is negative.

Example 2.5. Let (R, m, k) be a Gorenstein local ring which is not regular. Then k

has finite Gorenstein injective dimension but its projective dimension is infinite. If
in Ischebeck’s theorem, finite injective dimension could be relaxed to finite Gorenstein
injective dimension, then sup{i |Exti

R(k, k) 6= 0} would have to be finite, i.e. pdRk

would be finite, which is not true.

The following statement is a partial generalization of Ischebeck’s result in another
direction.

Proposition 2.6. Let φ : (R, m, k) → (S, n, l) be a local homomorphism of local
rings and let M be an R-module. For any finitely generated S-module N of finite
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injective dimension over R the following equality holds, provided that depthRM = 0
or M is a finitely generated R-module.

depthR− depthRM = sup{i |Exti
R(M, N) 6= 0}

Proof. Set idRN = t. If depthRM = 0 then there exists a short exact sequence

0 → k → M → C → 0

which induces a long exact sequence

· · · → Extt
R(M, N) → Extt

R(k, N) → Extt+1
R (C,N) → · · · .

Since Extt+1
R (C,N) = 0 and Extt

R(k, N) 6= 0 (cf. [2, 5.5]), we have ExttR(M,N) 6= 0
and then

sup{i |Exti
R(M, N) 6= 0} ≥ t.

The reverse inequality holds clearly. If M is finitely generated we use induction
on depthRM to prove the desired equality. If depthRM > 0 then there exists an
M -regular element x ∈ m. Using the long exact sequence induced by the exact
sequence 0 → M

.x→ M → M/xM → 0, the equality can be proved from the
induction hypothesis.

The following corollary of 2.6 is another generalization of the classical Bass for-
mula. The result has also appeared in [16, 5.2].

Corollary 2.7. Let φ : (R, m, k) → (S, n, l) be a local homomorphism of local rings.
For any finitely generated S-module N of finite injective dimension over R, the
following equality holds.

depthR = idRN

Proof. In 2.6, set M = R/m and use [2, 5.5].
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