
TO APPEAR IN Proceedings International Conference on Software Maintenance (ICSM 2001), NOV. 2001. 1

OO Design Patterns, Design Structure, and Program Changes:
An Industrial Case Study

James M. Bieman Dolly Jain Helen J. Yang
Computer Science Department

Colorado State University
Fort Collins, Colorado 80523 USA

970-491-7096
bieman@cs.colostate.edu

Abstract

A primary expected benefit of object-oriented (OO) meth-
ods is the creation of software systems that are easier to
adapt and maintain. OO design patterns are especially
geared to improve adaptability, since patterns generally in-
crease the complexity of an initial design in order to ease
future enhancements. For design patterns to really provide
benefit, they must reduce the cost of future adaptation. The
evidence of improvements in adaptability through the use of
design patterns and other design structures consists primar-
ily of intuitive arguments and examples. There is little em-
pirical evidence to support claims of improved flexibility of
these preferred structures.

In this case study, we analyze 39 versions of an evolving
industrial OO software system to see if there is a relationship
between patterns, other design attributes, and the number of
changes. We found a strong relationship between class size
and the number of changes — larger classes were changed
more frequently. We also found two relationships that we
did not expect: (1) classes that participate in design pat-
terns are not less change prone — these pattern classes are
among the most change prone in the system, and (2) classes
that are reused the most through inheritance tend to be more
change prone. These unexpected results hold up after ac-
counting for class size, which had the strongest relationship
with changes.

Keywords Design patterns, object-oriented design, soft-
ware changes, adaptability.

1. Introduction

Inheritance, abstraction, and polymorphism are mecha-
nisms that should make adapting software easier and thus
lower the cost of reuse, maintenance, and enhancement.

Object-oriented (OO) design patterns represent a way to
structure groups of classes to solve commonly recurring
design problems. Each pattern allows some aspect of the
system structure to change independently of other aspects.
Thus, a system that is built out of patterns should be adapt-
able.

Evidence for the benefits of particular OO design strate-
gies tends to consist of intuitive arguments, examples, and
often the enthusiasm of a method’s proponents. For exam-
ple, the primary claim of Gamma et al’s popular book [9]
is that design patterns support reuse. The book describes
through discussion and examples how each of the 23 listed
patterns supports adaptability. The descriptions of the ben-
efits of design patterns are compelling, accounting, in part,
for the popularity of OO design patterns. However, there is
no demonstration of the adaptability benefits on actual com-
mercial software projects.

Although design patterns and other recommended design
structures are intuitively appealing, their actual use on real
systems determines their true benefits. And there is very lit-
tle empirical evidence of the claimed benefits of design pat-
terns and other design practices when applied to real devel-
opment projects.

Case studies or controlled experiments can demonstrate
the connections between design structure and external qual-
ity attributes such as maintainability or reliability. Briand
et al studied the relationship between particular design at-
tributes and fault proneness in both student and commer-
cial projects [2, 5]. The studies of student projects were
controlled experiments, while the studies of commercial
projects were case studies. Results indicate that classes that
are tightly coupled tend to be fault prone, while class cohe-
sion is not related to fault proneness. Briand et al did not
study maintenance issues such as changes or design pattern
use.

Prechelt and Unger et al conducted controlled exper-



iments involving student programmers. One experiment
found that pattern documentation increased programmer
maintenance productivity and reduced errors, while another
experiment was inconclusive [18]. Another experiment in-
volving professional programmers found that, in most cases,
maintenance time and/or maintenance effort was reduced
when design patterns were used [19].

Our work focuses on assessing the quality of software
designs, as well as developed software. We want to deter-
mine the relationship between design structures and external
quality factors such as reusability, maintainability, testabil-
ity, and adaptability. OO methods provide great flexibility
in modeling both requirements and designs. This flexibility
is a major reason for the popularity of OO methods, but flex-
ibility also increases the number of design choices.

Methods to assess OO design quality can help develop-
ers choose between alternative designs. We are interested
in raising the level of abstraction of OO design measures to
include architectural context, the role that a program unit
plays within a larger design structure. For example, a class
may play a role in a design pattern and/or an inheritance hi-
erarchy. This role represents its architectural context.

Most currently used OO design measures quantify prop-
erties of lower level design units such as classes, attributes,
methods etc. to evaluate the designs. Briand et al [2, 4,
3, 5] studied coupling and cohesion measures that quantify
OO software design quality. Their investigations of cou-
pling measures do not directly address the coupling between
classes that represent specific roles within architectural con-
texts such as design patterns [4]. Chidamber and Kemerer’s
OO metrics suite consist of class level measures, also with-
out addressing roles with specific context [7]. Our investiga-
tion includes quantification of design structures, constructs
used to design a system, ranging from the programming lan-
guage implementation entities (classes, methods, variables
etc.), and the design architecture and patterns used to con-
nect lower level units such as classes. Using these design
structures, we will be able to reason about the design and
hence software system in greater detail. Hence, in our study
we have used design patterns as a mechanism to quantify de-
sign structure and the architectural context of OO compo-
nents.

This case study examines an evolving commercial OO
system and looks at the relationship between design struc-
ture and software changes. Design structure is characterized
by a set of class-level measurements, and class participation
in inheritance relationships and design patterns. Changes is
measured in terms of a count of the number of times that a
class is modified over a period of time. We measure the de-
sign structure of an early version, and study the relationship
between the design attributes of this version and future sys-
tem changes.

Table 1. System Level Measurements. 191
classes in Version A are also in Version B.

Version Num. of Classes Lines of Code
A 199 �24,000
B 227 �32,000

2. System Under Study

The study is conducted on a medium size commercial OO
system implemented in C++. This development project took
place while the organization was in the process of adopting
OO methods. The system was developed with the support
of a version control system over a period of several years.
Experienced OO developers developed the system; they also
made use of OO design patterns. The version control system
allowed us to obtain multiple versions of the system and col-
lect data on the transformations between 39 versions. Our
focus has been the transformations between two specific ver-
sions of the system: version A, which is the first stable ver-
sion of the system, and version B, which is the final ver-
sion in our data set. Table 1 provides high-level information
about versions A and B. Version A consists of 199 classes
and approximately 24,000 lines of source code. Version B
has 227 classes with approximately 32,000 lines of code. Of
the 199 classes in Version A, 191 also appear in Version B.
The 191 classes that appear in both Version A and Version B
are the focus of this study. We extracted the object models
of versions A and B and used the object models for pattern
identification as well as metrics collection.

3. Case Study Hypotheses

Our major objective is to test whether the architectural
design context of a class can predict future changes to a
class. We want to demonstrate that the architectural design
context effects class change proneness after accounting for
the effect of single class properties such as class size. Thus
we also need to examine the relationship between single
class properties and change proneness. Here, we concen-
trate on class size. The specific hypotheses that we test via
the case study are as follows:

� H1: Larger classes will be more change prone. A larger
class has more functionality, thus there is a greater like-
lyhood that some functionality in the class will need to
be corrected or enhanced.

� H2: Classes participating in design patterns are less
change prone. Patterns are designed so that changes
are made via subclasses or by adding new participant
classes rather than modifying already present classes.

2



Patterns promote ease of change, hence the classes par-
ticipating in patterns should require fewer changes.

� H3: Classes that are reused through inheritance more
often will be less change prone. That is, classes with
more direct subclasses and more descendants will be
changed less often. We expect descendents to be added
or modified more frequently than ancestor classes.
This is because of the difficulty of modifying a class
with many descendants and subclasses — any change
to a superclass potentially affects a descendent.

We tested these hypothesis by analyzing the relationship
between measurements of both class design context and sin-
gle class properties of version A of the system and a count
of the number of changes to each class that occurred during
the transition from version A to version B.

4. Metrics Collection

We collected metrics on the entire system, individual
classes in the system, and the number of changes to each
class from version A to version B.

Assorted class-level metrics indicate internal properties
of a class and relationships between classes. Two metrics
are measures of class size:

� Total number of attributes (TotAtt): includes both in-
stance variables (non-static member data) and class
variables (static member data).

� Total number of operations (TotOp): includes both
instance methods (non-static member functions) and
class methods (static member functions).

Five metrics indicate properties of a class’s relationship with
other classes, either a property of an inheritance relationship
or visibility through the C++ friends construct:

� Number of friends methods (Friends).

� Number of methods that are overridden (MO).

� Depth of inheritance (DOI): indicates a class’s level in
a class hierarchy. A base class — a class with no super-
classes — has a DOI of zero.

� Number of direct child classes (DCC): a count of the
number of immediate subclasses.

� Number of descendents (Desc): a count of all classes
that are derived from the class either directly or indi-
rectly.

The size and relationship measures were applied only to the
classes in version A, since we are trying to identify the prop-
erties of the earlier version that can predict the number of

Table 2. Measured Values of Class Properties
of Version A. N = 191 classes.

Std. Med-
Variable Mean Dev. Sum Min Max ian
Changes 3.59 6.89 686 0 50 1
TotAtt 2.55 4.84 488 0 42 0
TotOp 11.03 14.36 2107 1 97 5
Friends 0.12 0.60 23 0 7 0

MO 2.01 2.56 384 0 21 2
DOI 0.98 0.86 187 0 4 1
DCC 0.77 5.14 147 0 61 0
Desc 1.00 5.70 191 0 67 0

changes that will later be applied. The Together tool and its
metamodel, a product of TogetherSoft Corp., produced the
class-level measurements.

We count the number of changes to each class that occur
in the transitions from version A to version B. This count
is a tally of the number of changes that are logged on the
version control system for each class during the 39 version
transition. Changes can be corrective, adaptive, perfective,
or preventive. Design patterns should aid in the last three
types of maintenance. As is the case with many industrial
systems, the system under study had no maintenance history
other than the comments in the code and the recollection of
the few system developers that we could find. Our initial
analysis of different classes of changes did not show any dif-
ferences between the change type. In this paper, we do not
classify the types of changes performed on the classes. Fu-
ture work will report on the effects on our results, if any, be-
tween the change types.

Table 2 displays a quick view of the distribution of the
measured values for each of the metrics. The maximum
numbers of operations for a class in Version A of the system
is 97 and minimum is 1; the maximum number of attributes
is 42 and minimum is 0. Version A had maximum depth of
inheritance of 4. The values of most of the metrics are not
normally distributed, since the medians do not even approx-
imate the means. As a result, we must either transform the
data or apply non-parametric statistical tests in our analysis.

5. Identifying Intentional Patterns

Although, in the worst case, finding patterns in object
models is intractable, several researchers show that patterns
can be identified quickly. For example, systems by Kramer
and Prechelt [12], Antoniol et al [1], and Keller et al [10]
demonstrate the feasibility of finding patterns in automated
design pattern recognition.

A manual approach to finding patterns is an alternative
to automated pattern recognition. For example, Shull, Melo

3



and Basili [20] use an inductive approach to identify custom
patterns in domain-specific systems.

In our research, we are looking for intentional patterns,
patterns that developers use in a deliberate, purposeful man-
ner. These patterns should be documented, and they should
have a effect on the number of changes, since adaptabil-
ity is the primary reason for using patterns — the indirec-
tion inherent in design patterns should reduce the number
of changes to existing classes. Changes should be limited
to adding new subclasses or other new classes that were not
part of the original pattern. Because we seek to find only in-
tentional patterns, we adopted a manual approach for pattern
recognition with the following steps:

1. Search for pattern names in the documentation of the
system. Developers are likely to document the pattern
functionality/role of the class or method so that a pat-
tern can be treated as a pattern during later develop-
ment or maintenance.

2. Identify the context of the classes identified in step 1 by
analyzing the object models. Once we find the classes
whose documentation specifies something relating to a
pattern name/role, we can look at the object models to
identify all the classes required to constitute a pattern.
We look for the links between classes that implement
the pattern.

3. Verify that the candidate pattern is really a pattern in-
stance. We examine the pattern implementation to look
for lower level details, for example, required delega-
tion constructs.

4. Verify the purpose of the pattern. We examine each
group of classes that represent a pattern candidate to
confirm that the classes and relations have the same
purpose as described by an authoritative pattern refer-
ence. We use the Gamma et al [9] book as the authori-
tative reference for this study.

Table 3 lists the patterns identified in version A of the
system and number of instances of each pattern; 18 classes
play roles in 16 pattern instances of four pattern types —
Singleton, Factory method, Proxy and Iterator patterns. The
identified patterns were not implemented exactly as speci-
fied by Gamma et al [9]. For example, we found four dif-
ferent implementations of singleton pattern. Though three
of the implementations were not the standard implementa-
tions for singleton, they were used in the system to provide
the functionality of singleton pattern.

6. Evaluating The Hypotheses

We first examine the data looking for trends, before a
detailed analysis of support for the hypotheses. Table 4

Table 3. Patterns Identified in Version A of the
System.

Pattern Name Number of Instances
Singleton 10

Factory Method 1
Proxy 1

Iterator 4

Table 4. Correlation coefficients of class met-
rics with respect to the number of class
changes (Changes).

Pearson Correlation Spearman Rank
Correlation

Metric Co-efficient �-Value Co-efficient �-Value
TotAtt 0.495 <.0001 0.15 0.0356
TotOp 0.839 <.0001 0.50 <.0001
Friends 0.178 0.014 0.38 <.0001

MO -0.043 0.555 -0.14 0.0606
DOI 0.354 <.0001 0.05 0.5219
DCC 0.158 0.029 0.29 <.0001
Desc 0.210 0.004 0.29 <.0001

shows the correlation relationships between the class met-
rics and the number of changes to a class (Changes) from
version A to version B of the system. The Pearson Correla-
tion is a parametric statistical test which requires normally
distributed interval or ratio data, while the Spearman Rank
Correlation is a nonparametric test which compares variable
rankings, and can be applied to ordinal data and to data that
is not normally distributed [14]. The coefficients describe
how a variable moves with Changes, and the �-values indi-
cate significance. The coefficients with magnitude greater
than 0.35, and �-values of less than 0.05 are in bold. They
represent values of greatest interest. A significance level of
less than 0.05 is a typical cutoff.

The size measure TotAtt clearly has coefficients of inter-
est. Classes with more operations appear to be more change
prone using either the Pearson or Spearman correlations.

Size, as measured by TotOp and TotAtt correlates to the
number of changes; the impact of TotOp is much greater
than that of TotAtt, especially when analyzed by the Spear-
man Rank Correlation. Since the data is not normally dis-
tributed, the Spearman Rank Correlation as the most rele-
vant analytical tool. Friends has the next highest significant
relationship, although Friends is not relevant to the origi-
nal hypotheses. The correlation analysis on the measures
related to reuse through inheritance (H3) shows some weak
relationships; further analysis will determine whether or not

4



to accept the hypothesis. This initial analysis provides no in-
formation concerning effects of pattern use on Changes. We
now examine support for the each of the hypotheses.

6.1. H1: Are larger classes more change prone?

The total number of operations in a class (TotOP) is the
size metric with the strongest significant relationship with
change proneness. Figure 1 displays a scattergram and a
fitted line plot based on a regression analysis produced by
Minitab. This analysis clearly shows that classes with more
operations tend to require more changes. The significance
of this relationship is indicated by the low �-value from the
Spearman Rank Correlation analysis indicated in Table 4.
We can reject the null hypothesis for H1, and accept H1.
Larger classes, measured by the number of operations, are
more change prone.

Figure 1. Scattergram of the total number of
operations (TotOp) versus the total number of
changes (Changes) with regression analysis
results and fitted line plot.

6.2. H2: Are pattern classes less change prone?

Figure 2 clearly shows that most of the classes that do
not participate in a pattern require very few changes — 75%
of the non-pattern classes are changed at most once, while
classes that take part in patterns tend to require comparably
many more changes.

Although pattern classes appear to be more change prone,
we need to see whether this is a result of a third factor. We
know that larger classes — classes with more operations —

Figure 2. Box plots of the distribution of
Changes for classes that play roles in pat-
terns (PP = 1) versus classes that do not par-
ticipate in patterns (NPP = 0).

are more change prone; we need to see if pattern classes are
larger. Figure 3 shows that pattern classes are larger. Thus,
we need to adjust our analysis to account for the influence
of size.

Figure 3. Box plots of the distribution of class
size as measured by TotOpp for classes that
play roles in patterns (PP = 1) versus classes
that do not participate in patterns (NPP = 0).

We control for the effect of class size by using change
density rather than the total number of changes. Change
density is the changes per operation (Changes=TotOp). Fig-
ure 4 shows that the difference in change density between
pattern classes and non-pattern classes is less than when
we used the total number of changes. However, pattern
classes still show more changes per operation than non-
pattern classes. This relationship is more visible when we
remove one outlier in Figure 4, a pattern class with unusu-
ally large number of changes per operation. Figure 5 shows

5



distributions of change density without the outlier.

Figure 4. Box plots of the distribu-
tion of change density as measured by
Changes/TotOpp for classes that play roles
in patterns (PP = 1) versus classes that do
not participate in patterns (NPP = 0). There
is one obvious outlier — a non-pattern class
with 6 changes per operation.

Figure 5. Box plots of the distribution of
change density for pattern classes (PP = 1)
versus non-pattern classes (NPP = 0) without
the outlier shown in Figure 4.

We clearly cannot reject the null hypothesis for H2;
the pattern classes are more change prone than non-pattern
classes. We reverse the hypothesis to see if there is support
for the null hypothesis:

:H2: Classes participating in design patterns are more
change prone.

First we analyze the data to determine the appropriate sta-
tistical methods. We determine if the data is normally

Figure 6. Anderson-Darling Normality test for
Change Density.

distributed to see whether to apply parametric or non-
parametric methods to test the hypothesis.

Figure 6 shows the results of applying the Anderson-
Darling Normality Test to determine whether the observed
values of change density follows a normal distribution. The
Anderson-Darling test measures how far the plot points
fall from the fitted line in a probability plot. The ob-
served values of change density do not follow a normal
distribution. We applied the logarithmic transformation
log(Change Density + 1) to better fit a normal distribu-
tion. However the improvement is not great enough to war-
rant the use of parametric tests such as a T-Test to compare
the change density of pattern classes to that of non-pattern
classes. Rather, we apply non-parametric methods.

We apply the Mann-Whitney test, a non-parametric two
sample rank test of the equality of two population medians,
and the corresponding point estimate and confidence inter-
val [14]. This test allows us to reject the null hypothesis of
:H2, our original H2, with a significance of 0.0003. We
conclude that classes that participate in design patterns are
more change prone.

6.3. H3: Are classes that are reused through inher-
itance more often less change prone?

The correlation analysis, shown in Table 4, on the mea-
sures related to reuse through inheritance (H3) shows some
weak relationships. However, the most significant and rele-
vant relationships conflict with H3: classes with more chil-
dren (DCC) or more descendents (Desc) are changed more,
not less; the coefficient of 0.29 is not strong but it is very
significant. The relationship between depth of inheritance

6



(DOI) and Changes is very small and not significant accord-
ing to the Spearman Rank Correlation. In summary, the
significant relationships support rather than refute the null
hypothesis. Thus, we reject the hypothesis: classes that
are reused more through inheritance are not less change
prone.

7. Further Analysis

7.1. Relative Impact of Design Properties on
Changes

The hypothesis tests indicate that classes with more oper-
ations and classes that participate in design patterns are more
change prone. Classes with higher DCC and Desc also ap-
pear to be more change prone, with apparently less effect.

We evaluate the relative impact of these design proper-
ties on the number of changes by applying a regression anal-
ysis, which is an analysis of covariance [16]. We first ran
a regression analysis using Changes as the dependent vari-
able. The independent variables include the metrics with
significant Spearman rank correlations in Table 4 — TotOp,
Friends, DCC, and Desc — along with a variable Pattern,
which is set to 1 for classes that play a role in a pattern,
and set to 0 for classes that do not play a role in patterns.
The standardized residuals from this model is not normally
distributed, so we transformed the data using a logarithmic
transformation to both TotOp and Changes. Using the trans-
formed data, TotOp and Pattern are significant predictors.
Friends, DCC, and Desc are not significant predictors with
P-values of 0.530, 0.094, and 0.095, which are well above
the 0.05 cutoff.

We provide further details describing our analysis of the
relative effect of the two significant variables — pattern par-
ticipation (Pattern) and TotOp. This analysis uses Pattern
as the factor in the analysis, TotOp is the covariant, and
Changes is the dependent variable. A regression model rep-
resents the relationship; Figure 7 shows the distribution of
standardized residuals from the model. It is clearly not nor-
mally distributed, thus we again perform logarithmic trans-
formations to both TotOp and Changes and run another re-
gression model. Figure 8 shows normally distributed stan-
dardized residuals after the transformation. The regression
equation is

log(Changes + 1) =

�0:453 + 0:910 log(TotOp + 1) + 0:174Pattern

with R2 = 58%, Pattern = 1 for pattern classes, and Pat-
tern = 0 for non-pattern classes. Clearly class size as indi-
cated by the number of operations has a much greater effect
on Changes than pattern participation.

We added the interaction factor Pattern � log(TotOp +
1) in another model to see if the affect of the interaction

Figure 7. Anderson-Darling Normality test for
standardized residuals for factors Pattern and
TotOp.

was significant. The P-value for the interaction factor was
greater than the cutoff significance level of 0.05. Thus we
ignore the interaction factor.

By fixing the value for Pattern at either 0 or 1, we can
create two equations — one for non-pattern classes and one
for pattern classes:

Non-Pattern Classes:
log(Changes + 1) =

�0:453+ 0:910 log(TotOp + 1)

Pattern Classes:
log(Changes + 1) =

�0:279+ 0:910 log(TotOp + 1)

Both of the equations have a slope of 0.910 with an intercept
difference of 0.174. We transform back to the original scale
to get the following equations:

Non-Pattern Classes:
Changes = 0:352(TotOp + 1)0:91 � 1

Pattern Classes:
Changes = 0:526(TotOp + 1)0:91 � 1

The ratio between the number of changes in pattern partic-
ipants versus the number of changes in non-pattern partici-
pants is constant as the number of operations increase.

7.2. What About Friends?

The Spearman Rank Correlation in Table 4 indicates that
classes with more friend functions (Friends) tend to be more

7



Figure 8. Anderson-Darling Normality test for
standardized residuals for factors Pattern and
TotOp after log transformations to TotOp and
Changes.

change prone. This relationship is significant, but the co-
efficient is only 0.38. Further, Friends did not contribute
to the regression analysis when compared to TotOp or pat-
tern participation. One reason is that there were few classes
with friend operations. Note that Briand et al [2, 5] found
the number of friend operations to be a predictor of fault
proneness. Additional data is needed to evaluate the effect
of friend functions on change proneness.

7.3. Trends That Disappear

An initial look at the data for depth of inheritance (DOI)
as displayed in Figure 9 shows an interesting trend. Base
classes, classes with DOI = 0, are changed more than classes
at depth 1 or 2. The number increases as inheritance depth
reaches 4 or 5. However, this trend disappears when we ac-
count for the effect of class size by using change density in-
dicated by the number of changes per operation. Figure 10
displays the distribution of changes per operation for classes
at different inheritance depths. This interesting trend was
just a side-effect of the much greater effect of class size.

7.4. Discussion

The case study data includes many instances of the sin-
gleton pattern, and classes that play roles in the singleton
pattern outnumber the classes that play roles in other pat-
terns. The singleton pattern represents design reuse, the
reuse of a solution to the problem of insuring that there can
be only one instance of a particular class. Perhaps, singleton

Figure 9. Distribution of Changes at different
inheritance depths. The apparent relation-
ship disappears after accounting for class
size.

pattern use does not affect the change proneness of its par-
ticipants. We also found that the designers used variants of
Singleton that may have made it more difficult for mainte-
nance programmers to adapt these classes.

Each design pattern is aimed to make specific changes
easier. A design pattern can also make other changes more
difficult. Thus, the benefit of using design patterns is real-
ized only if the actual changes match the ones supported by
the patterns in the system. Thus, one reason for our results
may be that the use of design patterns was detrimental, be-
cause the actual changes did not match the patterns that were
put in place in the earlier version. Determining if one can
use the right patterns — patterns that actually reduce future
maintenance effort — is an open research question. Only by
looking at the actual use of design patterns in real projects
can we determine if they have a positive or negative effect
on maintainability.

8. Threats to Validity

An adequate study should be valid for the population of
interest [22]. We assess four types of threats to the valid-
ity of this empirical study: construct validity, content valid-
ity, internal validity and external validity. Construct validity
refers to the meaningfulness of measurements [11, 17] — do
the measures actually quantify what we want them to? To
validate the meaningfulness of measurements, we need to
show that the measurements are consistent with an empiri-
cal relation system, which is an intuitive ordering of entities
in terms of the attribute of interest [8, 13, 15]. The depen-
dent variable in this study, a count of changes is an intuitive

8



Figure 10. Distribution of change density
(Changes per operation) at different inheri-
tance depths. The outlier shown in Figure 4
is excluded. The trend in Figure 9 is nearly
gone after accounting for class size.

measure of an aspect of maintenance effort. However, not
all changes are equal, but a large number of changes over a
series of 39 versions should minimize the impact of change
effort variability. Further study can determine the distribu-
tion of effort per changes; actual change effort data was not
available for this study.

Content validity refers to the “representativeness or sam-
pling adequacy of the content... of a measuring instru-
ment” [11]. The content validity of this research depends
on whether the individual measures of design structures and
maintainability adequately cover the notion of design qual-
ity and maintainability respectively. The count of changes
quantifies only one aspect of maintenance effort in our em-
pirical study. The various structural metrics quantify various
aspects of the system and should capture the notion of de-
sign quality. The development of measures that completely
capture the design quality of object-oriented software is an
ongoing research activity.

Internal validity focuses on cause and effect relation-
ships. The notion of one thing leading to another is ap-
plicable here and causality is critical to internal validity.
The statistical results show that design structures like oper-
ations, number of descendants, pattern use, etc. are related
to changes in the system. Such statistical results only pro-
vide empirical evidence, they do not account for causality.
Demonstrating causality requires more than illustrating sta-
tistically significant relationships. We need to show tempo-
ral precedence — evidence that cause precedes effect, and
demonstrate a theory that defines a mechanism for the rela-

tionships [6, 21]. In our study the design measures were col-
lected from software developed before the change activity,
and there are causal explanations for the effect on changes,
which were expressed as hypothesis. Our analysis rejects
hypotheses H2 and H3 and shows strong support for the
null hypotheses. Before we accept these null hypotheses,
we need to demonstrate internal validity for the relationship.
We will need a good theory to support them and further data.

External Validity refers to how well the study results can
be generalized beyond the study data. The study is based on
a single system, undocumented patterns in the system are not
identified and developers might have had inadequate knowl-
edge about design patterns. It does represent one sample of
an industrial development project during their transition to
OO methods. Virtually all case studies exhibit weak exter-
nal validity. Additional case studies conducted in different
environments are necessary to determine the generality of
the relationships.

9. Conclusions

The goal of this research was to use an industrial case
study to explore the relationship between design structures
in object-oriented software and development and mainte-
nance changes. The study included several design factors
that can potentially affect maintenance efforts. We investi-
gate the general notion of design structure, and examine the
relationship between class size, inheritance, design pattern
use and changes. Our main results are as follows:

� Class size can predict the number of changes. Classes
with a greater number of operations are changed the
most. This result reinforces the common belief that
component size is a dominant factor in predicting
change effort.

� Classes that play roles in design patterns are changed
more often than other classes. The case study data
does not show that design patterns support adaptability.
An informal analysis suggests that pattern participant
classes provide key functionality to the system, which
may explain why these classes tend to be modified rel-
atively often.

� Classes that are reused through inheritance tend to be
changed more, rather than less, frequently. A change to
a class with many descendants is effectively a change to
all descendant classes. Thus, future changes are likely
to become more difficult and regression test effort will
surely be increased, since classes that descend from a
changed class will need re-testing.

These results are from one case study, which represents one
development environment, one application, and group of de-

9



velopers. Further studies are needed to compare results in
different domains.

Although limited to one case study, the results do have
some practical consequence for maintenance practice. Our
result that size can predict changes supports common beliefs
concerning class size and can help in predicting the num-
ber of changes. Our other results show that commonly held
beliefs about patterns and inheritance are not supported by
the case study data. A practical consequence is that we pro-
vide good reason to be skeptical about maintenance effects
of new practices. We are now working to identify key rea-
sons for the counter-intuitive results. Future work should
provide some very practical guidelines to improve program
maintainability when using design patterns and inheritance.

10. Acknowledgements

This work is partially supported by U.S. National Sci-
ence Foundation grant CCR-0098202, and by a grant from
the Colorado Advanced Software Institute (CASI). CASI is
sponsored in part by the Colorado Commission on Higher
Education (CCHE), an agency of the State of Colorado.
Storage Technology Corporation provided software, tools,
and computer resources for this study. The Statistics Dept.
of Colorado State University providing valuable help with
our statistical analyses. Finally, we thank Giulio Antoniol
for his insights on design pattern recognition.

References

[1] G. Antoniol, R. Fiutem, and L. Cristoforetti. Using metrics
to identify design patterns in object-oriented software. Proc.
IEEE-CS Software Metrics Symp. (Metrics’98), 1998.

[2] L. Briand, J. Daly, V. Porter, and J. Wüst. A comprehensive
empirical validation of design measures for object-oriented
systems. Proc. Int. Software Metrics Symp. (Metrics’98),
pages 246–257, 1998.

[3] L. Briand, J. Daly, and J. Wüst. A unified framework for co-
hesion measurement in object-oriented systems. Empirical
Software Engineering, 3(1):65–117, 1998.

[4] L. Briand, J. Daly, and J. Wüst. A unified framework for cou-
pling measurement in object-oriented systems. IEEE Trans.
Software Engineering, 25(1):91–121, 1999.

[5] L. Briand, J. Wüst, S. Ikonomovski, and H. Lounis. In-
vestigating quality factors in object-oriented designs: an in-
dustrial case study. Proc. Int. Conf. Software Engineering
(ICSE’99), pages 345–354, 1999.

[6] D. Campbell and J. Stanley. Experimental and Quasi-
Experimental Designs for Research. Houghton Mifflin Co.,
Boston, 1966.

[7] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE Trans. Software Engineering,
20(6):476–493, June 1994.

[8] N. Fenton and S. Pfleeger. Software Metrics - A Rigorous and
Practical Approach Second Edition. Int. Thompson Com-
puter Press, London, 1997.

[9] E. Gamma, R. Helm, J. R., and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-
Wesley, Reading MA, 1995.

[10] R. Keller, R. Schauer, S. Robitaille, and P. Pagé. Pattern-
based reverse-engineering of design concepts. Proc. Int.
Conf. on Software Engineering (ICSE’99), pages 226–235,
1999.

[11] F. Kerlinger. Foundations of Behavioral Research, Third
Edition. Harcourt Brace Jovaonvich College Publishers, Or-
lando, Florida, 1986.

[12] C. Krämer and P. L. Design recovery by automated search
for structural design patterns in object-oriented software.
Proc. Working Conf. on Reverse Engineering, pages 208–
215, 1996.

[13] D. Krantz, R. Luce, P. Suppes, and A. Tversky. Foundations
of Measurement, volume I Additive and Polynomial Repre-
sentations. Academic Press, New York, 1971.

[14] J. McLave and T. Sincich. Statistics, Eight Edition. Prentice-
Hall, 2000.

[15] J. Michell. An Introduction to the Logic of Psychological
Measurement. Lawrence Erlbaum Associates, Inc., Hills-
dale, New Jersey, 1990.

[16] J. Neter, M. Kutner, C. Nachtshein, and W. Wasserman. Ap-
plied Linear Statistical Models, Fourth Edition. Irwin, 1996.

[17] J. Nunnally. Psychometric Theory, Second Edition.
McGraw-Hill, New York, 1978.

[18] L. Precheld and B. Unger. A series of controlled experi-
ments on design patterns methodology and results. Proc.
Softwaretechnik ’98., 1998.

[19] L. Prechelt, B. Unger, M. Philippsen, and W. Tichy. Two
controlled experiments assessing the usefulness of design
pattern information in program maintenance. Submitted to
IEEE Trans. Software Engineering, March 2000.

[20] F. Shull, W. Melo, and V. Basili. An inductive method
for discovering design patterns from object-oriented soft-
ware systems. Technical Report UMCP-CSD CS-TR-3597
or UMIACS-TR-96-10, University of Maryland, Computer
Science Dept., 1996.

[21] L. Votta and A. Porter. Experimental software engineering:
A report on the state of the art. Proc. 17th Int. Conf. Software
Engineering (ICSE’95), 1995.

[22] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Reg-
nell, and A. Wesslen. Experimentation in Software Engi-
neering: An Introduction. Kluwer Academic Publishers,
Boston/Dordrecht/London, 2000.

10


