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Abstract. In this paper, we considersystem-level synthesisas the problem of optimally mapping a task-level
specification onto a heterogeneous hardware/software architecture. This problem requires (1) theselection of
the architecture(allocation) including general purpose and dedicated processors, ASICs, busses and memories,
(2) themappingof the specification onto the selected architecture in space (binding) and time (scheduling), and
(3) the design space exploration with the goal to find a set of implementations that satisfy a number of constraints
on cost and performance. Existing methodologies often consider a fixed architecture, perform the binding only,
do not reflect the tight interdependency between binding and scheduling, do not consider communication (tasks
and resources), or require long run-times preventing design space exploration, or yield only one implementation
with optimal cost. Here, a model is introduced that handles all mentioned requirements and allows the task of
system-synthesis to be specified as an optimization problem. The application and adaptation of an Evolutionary
Algorithm to solve the tasks of optimization and design space exploration is described.

Keywords: System-synthesis, hardware/software partitioning, design space exploration, evolutionary algorithms.

1. Introduction

The enormous progress in VLSI and CAD technology to support automated logic and
high level synthesis throughout this decade has helped design engineers to shorten the
time-to-market of new products drastically. As a consequence, more complex designs
can be developed in shorter time. The time saved may be used to investigate different
implementations using automated synthesis tools what is frequently calleddesign space
exploration. Going hand in hand, one can recognize a shift in the interest in the realm
of CAD research to climb one level higher in the abstraction hierarchy by investigating
automated synthesis starting at thesystem level. Although there is no common definition
of what system-level synthesis means, the following characterization might fit: System-
level synthesis can be described as a mapping from a behavioral description where the
functional objects possess the granularity of tasks, procedures, or processes onto a structural
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specification with structural objects being general or special purpose processors, ASICs,
busses and memories.

When searching for a sophisticated design methodology, there are many tradeoffs which
have to be examined, and the high mutual dependency of different design criteria as well
as the uncertainty of the estimated quality of underlying synthesis tools make it hard to
explore the design space automatically.

1.1. Optimization Methodology

The proposed optimization methodology treats the problem of optimizing the mapping
a specification based on a data flow graph at the task-level onto a heterogeneous hard-
ware/software architecture. This problem requires (1) theselection of the architecture
(allocation) among a specified set of possible architectures, (2) themappingof the speci-
fication onto a selected architecture in space (binding) and time (scheduling), and (3) the
design space exploration with the goal to find a set of implementations that satisfy a number
of constraints on cost and performance.

The novelty of our approach consists of

• providing a new system-level specification/architecture modelfor heterogeneous hard-
ware/software systems in which the underlying architecture is not fixed a priori but a
set of architectures that should be investigated can be specified using a graph-theoretic
framework,

• formulating a new formal definition for system-level synthesisincluding steps (1)–(2),

• applying Evolutionary Algorithms to system-level synthesisand showing that they can
perform steps (1)–(3) in a single optimization run.

Furthermore, we show that Evolutionary Algorithms are a good candidate for system-level
synthesis because they a) iteratively improve apopulation(set) of implementations, b) they
do not require the quality (cost) function to be linear (e.g., area-time product), c) they do
not suffer from long run-times if the quality of an implementation (fitness function) can be
computed efficiently, and d) they are known to work “well” on problems with large and
non-convex search spaces.

Below, we give a short summary of existing approaches to system-level synthesis.

1.2. Existing Approaches to System-Level Synthesis

There exist already many different approaches to system-level synthesis that may be clas-
sified according to their class of input specifications:

• Control-dominant specification: Methods in this class consider control-dominated spec-
ifications, e.g., communicating sequential processes [4], [24], C-code [13] and exten-
sions thereof [9] or finite-state-machine based specifications, e.g., [15]. In the mapping
phase, (static) scheduling of tasks and communications cannot be done due to non-
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determinism of execution times. Here, estimation mainly depends on profiling and
simulation.

• Data flow-dominant specification: Methodologies in this class consider data flow spec-
ifications, e.g., data flow graphs [16], precedence- and taskgraphs or parallel languages,
e.g., UNITY [1]. The approach in [12] belongs to the same category, however, with
extensions to allow for operations with non-deterministic execution times.

Tightly coupled with the class of input specifications is the scope oftarget architectures:

• Dedicated control & data path in VLSI: [19], [18], [25] are approaches to partition a
functional specification for high-level synthesis. The target architecture is in most cases
a dedicated hardware architecture including a control path and a data path.

• Multi-chip dedicated VLSI architecture: Some methodologies do focus on multichip
VLSI solutions, e.g., [17]. All functionality is mapped onto a dedicated multi-chip
architecture including busses.

• Hardware/Software Architectures: In the realm of hardware/software architectures,
most approaches consider the target architecture to be fixed, e.g., [16] (one processor and
custom hardware communicating via memory-mapped I/O), [9] (one RISC processor
and one or more given custom blocks and predefined HW-modules that communicate
by memory coupling using a single CSP type protocol), or [12] (one programmable
component and multiple hardware modules communicating with each other using one
system bus, the processor being the master). In [6], also the allocation of components
is considered as a task of the mapping process.

Finally, different approaches can be classified according to their optimization model
and procedure: Most of these mentioned methodologies consider system-level synthesis
as apartitioning problem. Partitioning techniques have been applied for many different
problems in hardware synthesis, e.g., [5], [19], [18], [25]. There, the goal is in most cases
to meet chip capacity and time constraints. Most of these approaches present a clustering-
based approach. In [17], multichip modules are considered, however no programmable
components are allowed. In some clustering based approaches like [1], only the space
mapping (binding) is considered.

Finally, optimization methods can be classified into

• exact methods: These methods include enumerative search techniques and approaches
based on integer linear programming. In [6], e.g., a tool based on enumeration is used
to find Pareto-implementations. These approaches suffer from long run-times and are
only worth investigating if the estimation of costs and performance can be proven to be
highly accurate, and if the number of objects is rather small.

• heuristics: In [12], Gupta presents a heuristic for hardware/software partitioning where
all functionality is initially mapped to hardware with the goal to move as much function-
ality as possible into the processor such that performance constraints remain guaranteed.
Henkel et al. [9] present an approach that starts with an initial partition in software and
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Figure 1. Overview of the proposed optimization methodology: a) data flow graph based specification, b) mapping
constraints, c) architecture template, d) optimization methodology, e) implementations.

moves functionality to hardware until timing constraints are met. They use simulated
annealing in an inner optimization loop and, adapt estimated parameters in an outer
loop. Recently, the approach described in [6] has been improved from formerly us-
ing global enumeration techniques to applying evolutionary strategies for design space
exploration [7]. However, the approach does not treat the problems of modeling and
mapping of communications (zero-delay shared-memory model assumed).

1.3. Overview

Figure 1 gives an overview of our optimization methodology, see also [23].
The specification consists of a data flow graph similar problem graph (see Fig. 1a), an

architecture template (see Fig. 1c), user-defined mapping constraints (see Fig. 1b) and an
optimization procedure (see Fig. 1d) using an Evolutionary Algorithm (EA). An Evolu-
tionary Algorithm works onpopulations of individuals Ji , i = 1, . . . , N whereN is called
size of the population, and each individual codes an implementation of the problem graph
including an architecture and a mapping of nodes in the problem graph in space (binding) to
that architecture. The Evolutionary Algorithm consists of an optimization loop that applies
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the principles ofreproduction, crossoverandmutationto the strings that code implemen-
tations. The purpose is to iteratively find better populations: Each individual in an actual
populationPk is ranked by evaluation of afitness functionthat gives a measure how good
an implementation is in terms of cost and performance, Pareto-point (yes/no), etc. The
Evolutionary Algorithm terminates after a certain numberkmax of generated populations
and outputs those implementations with the best fitness values.

Example 1. Figure 1e shows some individuals out of a populationPk of implementations.
Shown is the binding of nodes of the problem graph in Fig. 1a including the binding of
functional nodes to functional resources (RISC, hardware modules HWM1 and HWM2)
and the binding of communication nodes (shaded nodes) to bus resources (shared bus,
point-to-point bus). The scheduling of nodes is not shown. Note that each individual of a
population may code a different architecture.

We will introduce a fitness function calledPareto-rankingfor performing design space ex-
ploration in a single optimization run. The Pareto-optimal solutions (architecture, binding,
schedule) are output and can be displayed graphically in the form of a Ganttchart.

This is an overview of the contents of forthcoming sections: First, the new specification
model including the problem graph and the architecture specification will be formally de-
fined. It is explained how to model costs, delays, bus- and pin-constraints, how to model
single-chip systems, multiple chip solutions, communication, and resource sharing (Sec-
tion 2). The tasks of the Evolutionary Algorithm including the coding of implementations,
the definition of useful fitness functions for evaluating the quality of an implementation, and
the description of the genetic operators are outlined in Section 3. The realistic example of
a video codec is used in Section 4 as a case study to explain our optimization methodology
and to show its performance.

The complete methodology is part of the CodeSign framework at ETH Zurich. In Sec-
tion 5, we explain how the proposed methodology is embedded in the framework and
propose directions for further work.

2. Modeling Algorithms and Architectures

2.1. Specification

The specification model consists of three main components:

• The problem that should be mapped onto an architecture as well as the class of possible
architectures are described by means of a universaldependence graph G(V, E).

• The user-defined mapping constraints between tasks and architectures are specified in a
specification graphGS(VS, ES). Additional parameters which are used for formulating
the objective functions and further functional constraints may be assigned to either
nodes or edges ofGS.
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Figure 2. A data flow graph (a) and the corresponding problem graph (b).

• Associated with nodes and edges of the specification graph are activations which char-
acterize the allocation and binding.

At first, the (well known) concept of a dependence graph is used to describe the problem
as well as architectures on different levels of abstraction.

Definition 1. [Dependence Graph] Adependence graphis a directed graphG(V, E). V is
a finite set of nodes andE ⊆ (V × V) is a set of edges.

For example, the dependence graph to model the data flow dependencies of a given
specification will be termedproblem graph GP = (VP, EP). Here,VP contains nodes
which model either functional operations or communication operations. The edges inEP

model dependence relations, i.e., define a partial ordering among the operations.

Example 2. One can think of a problem graph as the graph obtained from a data flow graph
by inserting communication nodes into some edges of the data flow graph (see Fig. 2).
These nodes will be drawn shaded throughout the following examples.

Now, the architecture including functional resources and busses can also be modeled by
a dependence graph termedarchitecture graph GA = (VA, EA). VA may consist of two
subsets containing functional resources (hardware units like an adder, a multiplier, a RISC
processor, a dedicated processor, or an ASIC) and communication resources (resources
that handle the communication like shared busses or point-to-point connections. An edge
e ∈ EA models a directed link between resources. All the resources are viewed aspotentially
allocatablecomponents.

Example 3. Figure 3a) shows an example of an architecture consisting of three functional
resources (RISC, hardware modules HWM1 and HWM2) and two bus resources (one
shared bus and one unidirectional point-to-point bus). Figure 3b) shows the corresponding
architecture graphGA.
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Figure 3. An example of an architecture (a), and the corresponding architecture graphGA (b).

Figure 4. An example of a multi-chip architecture (a) and the corresponding chip graphGC (b).

In addition, in a next level of abstraction one may define a dependence graph termedchip
graph GC(VC, EC) whose nodes correspond to integrated circuits and off-chip communi-
cation resources.

Example 4. Figure 4a) shows an example of a multi-chip architecture consisting of
two integrated circuits CHIP1 and CHIP2 and a bi-directional point-to-point bus resource.
Figure 4b) shows the corresponding chip graphGC.

Note that in the above example, architecture and chip graph are examples only. Next, it
is shown how user-defined mapping constraints can be specified in a graph based model.
Moreover, thespecification graphwill also be used to definebindingandallocationformally.

Definition 2. [Specification Graph] Aspecification graphis a graphGS(VS, ES) consisting
of D dependence graphsGi (Vi , Ei ) for 1 ≤ i ≤ D and a set ofmapping edges EM . In
particular,VS = ⋃D

i =1 Vi , ES = ⋃D
i =1 Ei ∪ EM and EM = ⋃D−1

i =1 EMi , whereEMi ⊆
Vi × Vi +1 for 1 ≤ i < D.

Consequently, the specification graph consists of several layers of dependence graphs and
mapping edges which relate the nodes of two neighboring dependence graphs. These layers
correspond to levels of abstractions, for example problem description (problem graph),
architecture description (architecture graph) and system description (chip graph). The edges
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Figure 5. An example of a specification graphGS.

represent user-defined mapping constraints in the form of a relation: “can be implemented
by”.

Example 5. Figure 5 shows an example of a specification graph using the problem graph
of Example 2 (left), the architecture graph of Example 3 (middle) and the chip graph of
Example 4 (right). The edges between the two subgraphs are the additional edgesEM1 and
EM2 that describe all possible mappings. For example, operationv1 can be executed only
onvRISC. Operationv2 can be executed onvRISC or vHW M2.

Note that it can be useful to map communication nodes of the problem graph to functional
resources: If both predecessor and successor node of a communication node are mapped
to the same functional resource, no communication is necessary and the communication is
internal. In this case, the communication can be viewed to be handled by the functional
resource.

Also, communicationv7 can be executed byvB R1 or within vRISC or vHW M1. It can also
be seen, that the specification allows the RISC processor, the hardware modules HWM1,
HWM2 and the communication modules BR1, BR2 to be implemented in CHIP1. The
communication BR1 can either be handled by CHIP1 or by the off-chip bus OCB.

This way, the model of a specification graph allows a flexible expression of the expert
knowledge about useful architectures and mappings.

In order to describe a concrete mapping, i.e., animplementation, the termactivationof
nodes and edges of a specification graph is defined. Based on this definition,allocation,
bindingandschedulingwill formally be defined in the next subsection.
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Definition 3. [Activation] Theactivationof a specification graphGS(VS, ES) is a function
a: VS ∪ ES 7→ {0, 1} that assigns to each edgee ∈ ES and to each nodev ∈ VS the value 1
(activated) or 0 (not activated).

The activation of a node or edge of a dependence graph describes its use. In the examples
introduced so far, all nodes and edges of the problem graph contained inGS were necessary,
i.e., activated. The determination of an implenentation can be seen as the task of assigning
activity values to each node and each edge of the architecture graph and/or chip graph. An
activated mapping edge represents the fact that the source node is implemented on the target
node.

2.2. System Synthesis

Now, the term implementation will be formally defined as well as the main tasks of synthesis,
namelyallocation, binding, andscheduling.

Definition 4. [Allocation] An allocation α of a specification graph is the subset of all
activated nodes and edges of the dependence graphs, i.e.,

α = αV ∪ αE

αV = {v ∈ VS | a(v) = 1}

αE =
D⋃

i =1

{e ∈ Ei | a(e) = 1}

Definition 5. [Binding] A bindingβ is the subset of all activated mapping edges, i.e.,

β = {e ∈ EM | a(e) = 1}

Definition 6. [Feasible Binding] Given a specificationGS and an allocationα. A feasible
bindingβ is a binding that satisfies

1. Each activated edgee ∈ β starts and ends at an activated node, i.e.,

∀e = (v, ṽ) ∈ β : v, ṽ ∈ α

2. For each activated nodev ∈ αV with v ∈ Vi , 1 ≤ i < D, exactly one outgoing edge
e ∈ VM is activated, i.e.,

|{e ∈ β | e = (v, ṽ), ṽ ∈ Vi +1}| = 1

3. For each activated edgee = (vi , vj ) ∈ αE with e ∈ Ei , 1 ≤ i < D

• either both operations are mapped onto the same node, i.e.,

ṽi = ṽj with (vi , ṽi ), (vj , ṽj ) ∈ β



32 BLICKLE, TEICH, AND THIELE

• or there exists an activated edgeẽ = (ṽi , ṽj ) ∈ αE with ẽ ∈ Ei +1 to handle the
communication associated with edgee, i.e.,

(ṽi , ṽj ) ∈ αE with (vi , ṽi ), (vj , ṽj ) ∈ β

It is useful to determine the set of feasible allocations and feasible bindings in order to
restrict the search space of the optimization procedure.

Definition 7. [Feasible Allocation] Afeasible allocationα is an allocation that allows at
least one feasible bindingβ.

The next theorem shows that the calculation of a feasible binding and therefore the test
of an allocation for feasibility is hard. This result will influence the coding of allocation
and binding in the Evolutionary Algorithm.

THEOREM1 The determination of a feasible binding is NP-complete.

Proof. See appendix.

Finally, it is necessary to define aschedule. Let delay(v, β) denote the execution time
of the operation associated to nodev of a problem graphGP. In order to be as general as
possible at this point, we suppose that the execution time depends on a particular binding
β. In other words, the execution time of an operation depends on the resource where it is
going to be executed.

Definition 8. [Schedule] Given a specificationGS containing a problem graphG1 = GP, a
feasible bindingβ, and a functiondelaywhich determines the execution timedelay(v, β) ∈
Z+ of a nodev ∈ VP. A scheduleis a functionτ : VP 7→ Z+ that satisfies for all edges
e = (vi , vj ) ∈ EP:

τ(vj ) ≥ τ(vi ) + delay(vi , β)

τ (vi ) may be interpreted as the start time of the operation of nodevi ∈ VP. For example,
the execution time of a communication node denotes the number of time units necessary
to transfer the associated data on the bus resource it is bound to. Usually, these values
depend not only on the amount of data transferred but also on the capacity of the resource,
for example the bus width and the bus transfer rate. Therefore, the delay may depend on
the actual binding. The special case of aninternal communicationis described in the next
example.

Example 6. Consider the case that the delay values of a nodevi ∈ VP only depend on
the binding of that particular node. Then the delay values can be associated with the edges
EM1 (see Fig. 6). The execution times of all operations on different resources are shown.
For example, operationv3 takes 8 time units if executed on the RISC(vRISC) but 2 time
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Figure 6. An example of an implementation from the specification given in Fig. 5.

units if mapped to the hardware module HWM1. Note that internal communications (like
the mapping ofv5 to vRISC) are modeled to take zero time.

Definition 9. [Implementation] Given a specification graphGS, a(valid) implementationis
a triple(α, β, τ ) whereα is a feasible allocation,β is a feasible binding, andτ is a schedule.

Example 7. Figure 6 shows an implementation of the specification depicted in Fig. 5. The
nodes and edges which are not allocated are shown dotted as well as the edgese ∈ EM that are
not activated. The allocation of nodes isαV = VP ∪ {vRISC, vHW M1, vB R1, vC H I P1} and the
binding is β = {(v1, vRISC), (v2, vRISC), (v3, vHW M1), (v4, vRISC), (v5, vB R1), (v6, vRISC),

(v7, vB R1), (vRISC, vC H I P1), (vB R1, vC H I P1), (vHW M1, vC H I P1)}. This means that all archi-
tecture components are bound to CHIP1.

Note that communication modeled byv6 can be handled by the functional resourcevRISC

as both predecessor node(v2) and successor node(v4) are mapped to resourcevRISC. A
schedule isτ(v1) = 0, τ(v2) = 1, τ(v3) = 2, τ(v4) = 21, τ(v5) = 1, τ(v6) = 21,
τ(v7) = 4.

2.3. The Task of System Synthesis

With the model introduced previously, the task of system synthesis can be formulated as an
optimization problem.
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Definition 10.[System Synthesis] The task ofsystem synthesisis the following optimization
problem:

minimize f (α, β, τ ),
subject to

α is a feasible allocation,
β is a feasible binding,
τ is a schedule, and
gi (α, β, τ ) ≥ 0, ∀i ∈ {1, . . . , q}.

The constraints onα, β andτ define the set of valid implementations. Additionally, there
are functionsgi , i = 1, . . . , q, that together with the objective functionf describe the
optimization goal.

Example 8. Let the specification graphGS consist of a problem graphGP and an
architecture graphGA only. Consider the task of latency minimization under resource
constraints, i.e., an implementation is searched that is as fast as possible but does not exceed
a certain costMAXCOST. To this end, a functioncost: VA 7→ Z+ is given which describes
the cost(ṽ) that arises if resourcẽv ∈ VA is realized, i.e., ifṽ ∈ α. The limit in costs is
expressed in a constraintg1(α, β, τ ) = MAXCOST−∑ṽ∈α cost(ṽ). The corresponding
objective function may bef (α, β, τ ) = max{τ(v) + delay(v, β)) | v ∈ VP}.

The objective function may be arbitrary complex and reflect the specific optimization
goal. Likewise, the additional constraintsgi can be used to reduce the number of potential
implementations. In the next section, some examples of refinements are introduced.

2.4. Examples of Model Refinement

So far, we introduced our basic ideas of modeling the task of system synthesis. This model
has been shown to be concise, useful, and universal as it can handle a broad range of
mapping problems.

In the following, several examples of model refinements are discussed that may be nec-
essary to model a certain design style or a particular design goal. These refinements will
consider the modeling of program memory, resource sharing and chip boundaries.

2.4.1. Model for Resource Sharing

A simple cost model was given in Example 8 that only considers the cost of realizing a
certain hardware module. In the following, a more detailed model is introduced that takes
program size or chip area into account. For simplicity, it is assumed that a specification
consists only of a problem graphGP and an architecture graphGA.
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Definition 11.[Cost] The functioncb: VA 7→ Z+ describes the basic costcb(ṽ) that arises
if resourceṽ ∈ VA is realized.

The following definition reflects additional costs that occur if more than one functionality
is mapped to the same resource. These costs can for example model program memory or
chip area that is specific for each different task.

Definition 12.[Addcost] The functionca: EM 7→ Z+ describes for each edgee = (v, ṽ) ∈
EM the additional cost of implementing nodev ∈ VP on resourcẽv ∈ VA.

However, there are often different tasks that can share the same program memory or share
the same hardware area. In this case, summing up additional costs is not appropriate. As a
remedy, so-calledtypesare defined.

Definition 13. [Types] The node setVP is partitioned intotypes Ti ∈ T , i.e., each node
belongs exactly to one type from among the set of types.

The additional costs of all nodes of the same typeTi mapped onto the same resource
ṽ ∈ VA cause only additional costs

ct (Ti , ṽ) = max{ca(e) | e = (v, ṽ) ∈ β ∧ v ∈ Ti }

With these definitions, a more realistic modeling of the cost of an implementation is
possible. In particular, the costc(α, β) of an implementation may now be computed by

c(α, β) =
∑

ṽ∈α∩VA

ch(ṽ, β)

wherech(ṽ, β) specifies the cost for each allocated hardware component, i.e.,

ch(ṽ, β) = cb(ṽ) +
∑

Ti ∈T :(v,ṽ)∈β∧v∈Ti

ct (Ti , ṽ)

This way, a constraint on a resourcev ∈ α ∩ VA can be specified that limits the maximum
cost for this resource toMAXCOSTv, i.e., limits the maximum program size or chip area:

gv = MAXCOSTv −ch(ṽ, β)

Similarly, a constraint on the total cost of the implementation can be expressed by

g = MAXCOST−c(α, β)

Example 9. Figure 7 demonstrates the use of function types to model costs of shared
resources. One function type is defined in Fig. 7b).T1 = {v1, v3}, all other nodes belong
to a dedicated function type, i.e.,T = {T1, {v2}, {v4}, {v5}, {v6}, {v7}}. As an example the
calculation of the cost of the resource RISC(ch(vRISC, β1)) is carried out for the particular
bindingβ1 given by the implementation in Fig. 7c).
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Figure 7. Modeling of resource sharing (program memory or hardware modules) by definition of types for sharing.

Let the additional costs for implementing nodev1 on the RISC resource beca(v1, vRISC) =
10 and that ofv3 on the RISC resource beca(v3, vRISC) = 12. As both nodes are implemented
by the same resource, the additional costs are reflected by the type costs, i.e.,

ct (T1, vRISC) = max{ca(v1, vRISC), ca(v3, vRISC)}
= max{10, 12} = 12

The additional cost of implementing operationv5 is ca(v5) = 1. As there is no other node
that belongs to the same type asv5, the type cost calculate to

ct ({v5}, vRISC) = max{ca(v5, vRISC)} = max{1} = 1

Furthermore, assume the basic cost for realizing RISC arecb(vRISC) = 1000. Then, the
total cost of resource RISC becomes

ch(vRISC, β1) = cb(vRISC) +
∑

T∈{T1,{v5}}
ct (T, vRISC)

= cb(vRISC) + ct (T1, vr isc) + ct ({v5}, vRISC)

= 1000+ 12+ 1 = 1013

2.4.2. Model for Chip Boundaries

Module and bus costs strongly depend on whether a system is implemented on a single chip
or on a board using multiple chips. Costs and delay values depend on the selection of a
layout macro-cell in case of single-chip design or on the package and die specification in
case of a multiple-chip design.
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The selection of a chipset can easily obtained by introducing a dedicated level of ab-
straction, the chip graphGC (as in Example 4). It is thereby assumed that a chip is only a
container for all resources that are mapped to it and that all these resources operate concur-
rently. Similarly an off-chip bus (as in Example 4) is only a bundle of wires. The possible
sequentialization of operations or communications is done by mapping of operations inGP

to resources inGA. Therefore, the specification graphGS consists of a problem graphGP,
an architecture graphGA and a chip graphGC.

As an example, we explain how to model the number of pins in order to specify an upper
boundPINLIMIT of pins for a chip.

The number of pins necessary can be split into a fixed partpinc (e.g., for power supply)
and a part that depends on the number of off-chip communications. LetVB(v̄, β) be the set
of nodesṽ ∈ VA that imply a communication of chip̄v ∈ VC to the outside, i.e.,

VB(v̄, β) = {ũ ∈ VA| ∃ṽ ∈ VA, ū ∈ VC with

(ũ, ū), (ṽ, v̄) ∈ β ∧ ((ū, v̄), (ũ, ṽ) ∈ α ∨ (v̄, ū), (ṽ, ũ) ∈ α)}
Assume furthermore a functionwidth: VA 7→ Z+ that assigns to each node of the archi-
tecture graph the width of a bus that is modeled by this node. Then the number of pins
required for a chip̄v is given by

pin(v̄) = pinc(v̄) +
∑

ṽ∈VB(v̄,β)

width(ṽ)

The limitation of pins toPINLIMIT v̄ of a chipv̄ can now be expressed by the following
constraint:

g = PINLIMIT v̄ − pin(v̄)

Example 10. Consider the specification of Example 5. The width for the bus resources
may bewidth(vB R1) = width(vB R2) = 16, the number of the fixed pins of CHIP1pinc = 2.
Furthermore, assume a constraint that limits the number of pins of CHIP1 to 20, i.e.,
g = 20− pinvC H I P1

.
Consider now the implementation shown in Fig. 8a) with bindingβa. For sake of clarity,

only the architecture graphGA and the chip graphGC are shown and the problem graph
GP is omitted. The set of nodes that imply communications to the outside of CHIP1 is
VB(vC H I P1, βa) = {vB R1, vB R2}. The pins of CHIP1 then calculate to

pin(vC H I P1) = pinc(vC H I P1) +
∑

ṽ∈VB(vC H I P1,βa)

width(ṽ)

= 2 + width(vB R1) + width(vB R2) = 2 + 16+ 16 = 34

Hence, the implementation in Fig. 8a) violates the constraint asg = 20− pin(vC H I P1) =
−14 < 0.

On the other hand, the implementation in Fig. 8b) with bindingβb does satisfy this
constraint. AsVB(vC H I P1, βb) = {vB R2}, the pins of CHIP1 calculate to

pin(vC H I P1) = pinc(vC H I P1) +
∑

ṽ∈VB(vC H I P1,βb)

width(ṽ)

= 2 + width(vB R2) = 2 + 16 = 18,
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Figure 8.Two implementations of the specification of Fig. 5: a) violating the pinlimit constraintpin(vC H I P1) ≤ 20
and b) satisfying the pinlimit constraintpin(vC H I P1) ≤ 20.

yielding g = 20− 18 = 2 ≥ 0.

3. Optimization Method

In this section, the application of an Evolutionary Algorithm (EA) is described to solve the
problem of system synthesis as specified by Definition 10. The Evolutionary Algorithm
is responsible for the determination of allocations and bindings. The schedule for each
allocation and binding is then computed by a scheduling heuristic. The key to this division
of work (see Fig. 9) is motivated by the fact that the search space for these tasks is large and
discrete and already the determination of a feasible binding is NP-complete (see Theorem 1).
Hence, for reasonable problem sizes exact methods are intractable. As there are good
heuristics available for solving the scheduling problem for a given allocation and binding,
it is not necessary to load the EA with this task.

In the remainder of this section, the basic principles of Evolutionary Algorithms are
explained, then the coding of implementations as individuals is described. After that, a
fitness function calledPareto-rankingthat is particularly useful for design space exploration
will be introduced.

3.1. Principle of Evolutionary Algorithms

The Evolutionary Algorithm (EA) is a probabilistic optimization method based on the
model of natural evolution. It is characterized by the fact that a numberN of potential
solutions (calledindividuals Ji ∈ J, whereJ represents the space of all possible individuals)
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Figure 9. The decoding of an individual to an implementation.

of the optimization problem simultaneously sample the search space. Thispopulation
P = {J1, J2, . . . , JN} is modified according to the natural evolutionary process: after
initialization, selection and recombination are executed in a loop for a fixed number of
iterations. Each run of the loop is called a generation andPk denotes the population at
generationk.

The selection operator is intended to improve the average quality of the population by
giving individuals of higher quality a higher probability of survival. Selection thereby
focuses on the search on promising regions in the search space. The quality of an individual
is measured by a fitness functionF : J 7→ R. Various selection methods exist (see e.g., [3]).

Recombination changes the genetic material in the population either by crossover or by
mutation in order to exploit new points in the search space. Depending on the problem
to be solved, various codings for EAs exist, e.g., the individuals are represented by bit
strings, vectors of integers or reals, trees, graphs. The choice of coding determines also the
recombination operator.

3.2. Coding of Implementations

To obtain a meaningful coding for the task of system synthesis, one has to address the
question how to handle infeasible allocations and infeasible bindings suggested by the EA.
Obviously, if allocations and bindings may be randomly chosen, a lot of them can be infea-
sible. In general, there are two different methods to handle these invalid implementations:

• Punishing: one can punish these “bad” individuals with a penalty value. This leads to
discarding these individuals during the following selection phases. But depending on
the specification, a lot of possible allocations and bindings might be infeasible. This
would result in a needle-in-the-haystack search, and the EA would reveal a very bad
performance.

• Repairing: on the other hand, one could “repair” invalid allocations and bindings with
some mechanism and incorporate domain knowledge in these repair mechanisms. But
as the determination of a feasible allocation or binding is NP-complete, this would
result in solving a NP-complete task for every individual to be repaired.
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These considerations have lead to the following compromise: The randomly generated
allocations of the EA are partially repaired using a heuristic. Possible complications detected
later on during the calculation of the binding will be considered by a penalty.

A specification graphGS may consist ofD subgraphsGi , 1 ≤ i ≤ D corresponding to
D − 1 mapping tasks. In order to handle these mapping tasks the allocation and binding of
the levels is done sequentially from level 1 to levelD − 1 (see Algorithm 1). In each level,
three steps are executed:

• First, the allocation of nodesVi +1 is decoded from the individual and repaired with a
simple heuristic (the functionnodeallocation()),

• next the binding of the edgese ∈ EMi is performed (the functionbinding()), and

• finally, the allocation is updated in order to eliminate unnecessary nodesv ∈ Vi +1 from
the allocation and add all necessary edgese ∈ Ei +1 to the allocation (the function
updateallocation()).

Algorithm 1: (Decoding)

Input: The individualJ consisting of allocationsalloci ,
repair allocation priority listsL Ri, binding order listsL Oi ,
and binding priority listsL Bi (v), for all 1 ≤ i < D.

Output: The allocationα and the bindingβ if both are feasible,
({}, {}) if no feasible binding is represented by the individualJ

decode(J):
α ← V1 ∪ E1

β ← {}
for i ← 1 to D-1 do

ᾱ ← nodeallocation(alloci (J), L Ri(J))

β̄ ← binding(L Bi (J), L Oi (J), ᾱ)

if β̄ = {}
return ({}, {})

endif
β ← β ∪ β̄

α ← α ∪ updateallocation(ᾱ, β̄)

od
return (α, β)

One iteration of the loop results in a feasible allocation and binding of the nodes and
edges ofGi to the nodes and edges ofGi +1. If no feasible binding could be found, the
whole decoding of the individual is aborted.

In the following, the three functions nodeallocation(), binding(), and updateallocation()
are explained in detail.
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3.2.1. The Function nodeallocation()

The allocation of nodes is directly encoded in the chromosome, i.e., for each leveli there
exists a vectoralloci that contains a vector element for each nodev ∈ Vi +1 that codes the
activation ofv, i.e.,a(v) = alloci [v]. This simple coding might result in a many infeasible
allocations, e.g. 77% of randomly generated allocations of the specification in Example 5
(for the first mapping level fromGP to GA) lead to infeasible allocations. Due to this fact
a simple repair heuristic is applied. This heuristic only adds new nodesv ∈ Vi +1 to the
allocation and reflects the simplest case of infeasibility that may arise from not-executable
functional nodes:

Consider the setVBi ⊆ Vi that contains all nodes that can not be executed, because not a
single corresponding resource node is allocated, i.e.,VBi = {v ∈ Vi | ∀ṽ ∈ Vi +1 : (v, ṽ) ∈
EMi ∧ a(ṽ) = 0}. To make the allocation feasible (in this sense) for eachv ∈ VBi , at most
oneṽ ∈ Vi +1 is added, until feasibility in the sense above is achieved. This way, the number
of infeasible allocations for the first mapping level of Example 5 could be reduced to 6.5%.

Algorithm 2: (Allocation)

Input: The allocationalloci and repair allocation
priority list L Ri of individual J

Output: The allocationα

allocation(alloci , L Ri):
α ← {}
forall ṽ ∈ Vi +1 do

if (alloci [ṽ] = 1)

α ← α ∪ {ṽ}
endif

od
VBi ← not bindablenodes(α)

ṽr ← first(L Ri)

while (VBi 6= {}) do
if (VBi 6= not bindablenodes(α ∪ {ṽr })

α ← α ∪ {ṽr }
VBi ← not bindablenodes(α)

endif
ṽr ← next(L Ri)

od
return α

The order in which additional resources are added has a large influence on the resulting
allocation. For example, one could be interested in an additional allocation with minimal
costs or with maximum performance. As this depends on the optimization goal expressed
in the objective functionf the order should automatically be adapted. This will be achieved
by introduction of arepair allocation priority list LRi coded for each mapping level in the
individual. In this list, all nodesv ∈ Vi +1 are contained and the order in the list determines
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Figure 10.The decoding of an allocation.

the order the nodes will be added to the allocation. This list also undergoes genetic operators
like crossover and mutation and can therefore be optimized by the Evolutionary Algorithm.

In summary, Algorithm 2 is obtained to decode the allocation of nodes.

Example 11.Consider the specification of Example 5. In Fig. 10, the allocation information
for the first mapping level as stored in the individual is shown (left). The direct decoding
of the allocation string yields the allocationα = {vB R1, vHW M1}. This allocation is not
valid as there exists no allocated resource for executingv1, v2 ∈ GP. This allocation is
then repaired using the repair allocation priority list.vHW M1 andvB R1 belong already to
the allocation. The allocation ofvRI SC resolves the conflict for bothv1 or v2, hence it is
allocated. The rest of the list is then ignored, as no node remains with a conflict.

Note that a different repair allocation priority list may result in a different allocation. If
the entries ofvRISC andvHW M2 are swapped in the list, bothvHW M2 andvRISC would be
allocated as the allocation ofvHW M2 only solves the conflict forv2 but not forv1. This
would code a more “lavish” allocation.

3.2.2. The Function binding()

A binding for each allocated nodev ∈ Vi is obtained by activating exactly one of its outgoing
edgese ∈ EMi . The problem of coding the binding lies in the strong inter-dependence of the
binding and the current allocation. As crossover or mutation might change the allocation, a
directly encoded binding could be meaningless for a different allocation. Hence, a coding
of the binding is of interest that can be interpretedindependentlyof the allocation. This is
achieved in the following way:

For each nodev ∈ Vi , a list is coded as allele that contains all sucessor nodesṽ ∈ Vi +1 of
v, i.e.,(v, ṽ) ∈ EMi . This list is seen as a priority list and the first nodeṽk with ek = (v, ṽk)

that gives a feasible binding is included in the binding, i.e.,a(ek) := 1. The test of feasibility
is directly related to the definition of a feasible binding (Definition 6). Details are given
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in the two algorithms. Note that it is possible that no feasible binding is specified by the
individual. In this case,β is the empty set, no schedule can be computed, and the individual
will be given a penalty value as fitness value.

Algorithm 3: (Binding)

Input: The binding priority listsL Bi (v) ∀v ∈ Vi , the
binding order listL Oi , and the allocationα of an individualJ.

Output: The bindingβ, or {} if no feasible binding was decoded.

binding(L Bi , L Oi , α):
β ← {}
forall listelementsu ∈ L Oi ∩ α do

e′ ← nil
forall listelementsũ ∈ L Bi (u) ∩ α do

if (is valid binding((u, ũ), β, α))

e′ ← (u, ũ)

break
endif

od
if (e′ = nil)

return {}
else

β ← β ∪ {e′}
endif

od
return β

Example 12. Figure 11 shows an example of a binding as it is coded in the individual
for the first mapping level of the specification from Example 5 (Fig. 5). The binding order
specified by the listL O1 is v1, v4, v2, v3, v6, v5, v7. The binding priority lists for all nodes
are also shown. For example, the priority list for nodev6 implies to bindv6 to the resource
BR2 (point-to-point bus). If this is not possible, it should be bound to HWM2 and if this
is also not possible it should be bound to the RISC and so on. As the allocation from
Example 11 does not contain HWM2 and BR2, this node is finally bound to RISC.

Algorithm 4: (Check for Valid Binding)

Input: The edgee = (v, ṽ) ∈ VMi ,
the already computed bindingβ and allocationα

Output: true if e can be included to the binding,falseelse.

is valid binding(e = (v, ṽ), β, α):
forall ê = (w, v) ∈ Ei ∩ α do

forall w̃: (w, w̃) ∈ β do
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Figure 11. An example of the coding of a binding and the resulting binding using the allocation of Fig. 10. The
obtained architecture is the one depicted in Fig. 6 of Example 7.

if (ṽ 6= w̃ ∧ (w̃, ṽ) 6∈ Ei +1)

return false
endif

od
od
forall ê = (v, w) ∈ Ei ∩ α do

forall w̃: (w, w̃) ∈ β do
if (ṽ 6= w̃ ∧ (ṽ, w̃) 6∈ Ei +1)

return false
endif

od
od
return true

3.2.3. The Function updateallocation()

In this function, nodes of the allocation that are not used will be removed from the allocation.
Furthermore, all edgese ∈ Ei +1 are added to the allocation that are necessary to obtain a
feasible allocation.

Algorithm 5: (Update Allocation)

Input: The current allocationα and bindingβ
of the mapping level



SYSTEM-LEVEL SYNTHESIS USING EVOLUTIONARY ALGORITHMS 45

Output: The updated allocation, i.e., the allocation where unnecessary
nodes are removed from an necessary edges are added to the
allocation.

updateallocation(α, β):
forall ṽ ∈ Vi +1 ∩ α do

if 6 ∃v ∈ Vi : (v, ṽ) ∈ β

α ← α\{ṽ}
endif

od
forall e = (u, v) ∈ Ei ∩ α do

ẽ ← (ũ, ṽ) with (v, ṽ), (u, ũ) ∈ β

α ← α ∪ {ẽ}
od
return α

Example 13. Consider the allocation and binding of Example 11 and 12, respectively.
No nodeṽ ∈ VA is removed from the allocation, as no unnecessary nodes have been
allocated. The computing of the edgesṽ ∈ EA leads to the following set that is added to
the allocation:αE = {(vRISC, vB R1), (vB R1, vRISC), (vHW M1, vB R1), (vB R1, vHW M1)}. For
example, the edgee = (v3, v7) ∈ EP results in the allocation of edge(vHW M1, vB R1) ∈ EA

as nodev3 is bound to resourcevHW M1 and nodev7 is bound to resourcevB R1.

These algorithms describe in detail the transformation of an individual into an allocation
α and a bindingβ. Now, bothα andβ are used as input to the scheduler to obtain the
complete implementation.

3.3. Scheduling

In this section, the tasks of a scheduler are briefly described and a new simple heuristic to
obtain iterative (pipelined) schedules (for acyclic graphs) is presented, because these arise
typically in data flow-dominant systems. As the allocation and binding is fixed when the
scheduler is invoked, only the task of latency minimization under resource constraints is
discussed.

A scheduler assigns to each nodev ∈ VP of the problem graphGP a start timeτ(v)

such that the overall execution time (latency) is minimized. Additionally, all precedence
constraints and resource constraints must be fulfilled. The scheduler introduced here is
based on a list scheduler, see e.g., [8]. List scheduling denotes a class of constructive
scheduling heuristics that successively plan those tasks that have no unplanned predecessors
and thereby consider resource constraints. List scheduling is able to schedule a non-
cyclic task graph and generates non-iterative schedules. However, in data flow-dominant
applications iterative (periodic) schedules are of interest. This is due to the fact that usually
the operations specified by the problem graph are executed repeatedly. Iterative schedules
are characterized by the fact that the schedule repeats after a certain time (called periodP).
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Figure 12.An allocation and binding of the specification graph of Example 5.

Example 14. Consider the specification graph of Example 5 with the allocation and binding
shown in Fig. 12. An iterative schedule is given in Fig. 13. The period of the schedule
is P = 4 as it repeats every four time units. However, the latency isL = 8: Calculation
of one data set (drawn as unfilled rectangles) starts at time 0 with operationv1 andv2 and
finishes with operationv4 at time step 8. Note that the operationsv4 starting at time step 3
andv7 starting at time step 0 executed in the first period belong to the previous data set.

The basic idea of our iterative scheduling heuristic is to remove edges (dependencies)
from the problem graph such that the non-iterative list scheduler can be used.

The detailed algorithm works as follows: First, a non-iterative schedule is obtained using
a list scheduler. In this initial try, all operations belong to the same iteration interval
ϕ(v) = 1, ∀v ∈ VP. Then, all operations that end later than the minimum periodPmin are
moved into the next iteration interval. “Moving” an operationv corresponds to the deletion
of all precedence constraints on that operation, i.e., to remove all edgese ∈ {e = (u, v) ∈
GE | τ(v) + delay(v, β) > Pmin}. The new problem graph (with some edges removed) is
scheduled again using a list scheduler. The latency of this schedule is then equivalent to
the periodP of the iterative schedule. This procedure repeats until the current period is
greater than the previous one. A parameter of the algorithm limits the maximum number
of iteration intervalsϕmax to be used.

Pmin may be computed as the maximum occupation of any resource. As allocation and
binding is already fixed, this value computes to

Pmin = max
ṽ∈α

∑
v∈VP∧(v,ṽ)∈β

delay(v, β) (1)
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Figure 13.An iterative schedule for the allocation and binding of Fig. 12.

Figure 14.Non-iterative schedule of the allocation and binding of Fig. 12 obtained with list scheduling.

Details of the scheduling algorithm can be found in [2].

Example 15. Consider again the allocation and binding of Fig. 12. The minimum period
calculates toPmin = max{1, 1 + 1 + 1, 2, 3 + 1} = 4. A non-iterative schedule is given in
Fig. 14. According to the proposed scheduling heuristic, operationsv4 andv7 are moved
into the next iteration, i.e., the edges(v3, v7) and(v6, v4) are removed from the problem
graphGP in Fig. 12. Note that the edge(v7, v4) is not removed, as both operations belong to
the same iteration interval. If the modified problem graph is scheduled again, the schedule
of Fig. 13 is obtained. As the period of this schedule is optimal, the calculation is finished.

3.4. Fitness Function and Constraint-Handling

In the preceding paragraph the coding of an individual was presented. The quality of an
implementation and the optimization goal for the Evolutionary Algorithm will be discussed
by describing the calculation of the fitness function.
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According to Definition 10, the task of system-synthesis is described as an optimization
problem. As the particular optimization goal depends on the specific design problem, the
objective function is designed individually for each problem. However, the restriction of
a feasible allocation and binding still needs to be considered. The repairing heuristics
introduced in the previous section already capture a large part of infeasible allocations and
bindings. The remaining infeasible implementations are handled by penalty terms. Hence,
the fitness functionF to be minimized can be given as

F(J) =
{

xa(J)pa + xb(J)pb : xa( j ) = 1 ∨ xb(J) = 1
F ′(J) : else

(2)

The p values are the penalty terms, i.e.,pa is the penalty term for an infeasible allocation
andpb for a infeasible binding. The boolean variablesx denote whether the corresponding
constraint is violated or not, e.g.,xa(J) = 0 if the allocation is feasible andxa(J) = 1
if the allocation is infeasible. The values for the penalty termspa and pb should be
chosen such that any infeasible allocation or binding has a larger fitness value than any
feasible implementation. The modified fitness functionF ′(J) has to reflect the additional
constraintsgi . For this purpose numerous methods for constraint-handling can be applied
(see, for example, [20]). Here, only the case ofPareto-optimizationwill be considered.
Examples of other fitness functions and design goals are discussed in [2].

Usually, in system-synthesis many different criteria have to be optimized, for example,
cost of an implementation, data-throughput, power consumption, maintainability. The
concept of Pareto-optimality gives a measure of concurrently comparing implementations
to several criteria.

Definition 14.[Pareto-points] A pointJi is dominatedby point Jk if point Jk is better than
or equally good asJi in each criteria, denotedJi Â Jk. A point (implementation) is said to
be Pareto-optimal (or Pareto-point) if it is not dominated by any other point.

Example 16. Consider the trade-off between costc and speed (periodP) of an implemen-
tation. Fig. 15 shows a typical design-space exploration. The implementations are marked
by crosses. Pareto-points are located at the origins of the horizontal and vertical lines that
separate regions of dominated design points.

An Evolutionary Algorithm allows to determine the Pareto-set in a single optimization
run as the EA operates on populations. The necessary preconditions (fitness function and
selection scheme) will be discussed next.

In [11], a Pareto-ranking scheme is proposed for multi-modal optimization. Thereby, the
fitness of an individualJ is determined by the number of individuals of the population that
are better in at least one criterion than individualJ (Definition 14), i.e.,

F ′(J) =
∑

i =1,...,N,J 6=Ji

{
1 : Ji ≺ J
0 : else

(3)

All Pareto-points in the population have an (optimal) fitness of zero. Note that the fitness
of an individual depends on the population.
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Figure 15. Design space with Pareto-points (see also Table 3). Pareto-points are located at the origins of the
horizontal and vertical lines.

Example 17. As an example for Pareto-optimization, consider the case of two-dimensional
optimization with the criteria costc(α, β) and periodP(τ ). We obtain the fitness function:

F ′(J) =
∑

i =1,...,N,J 6=Ji

1 : (c(J) > c(Ji ) ∧ P(J) ≥ P(Ji ))

1 : (c(J) ≥ c(Ji ) ∧ P(J) > P(Ji ))

0 : else
(4)

Here,c(J) is used as an abbreviation ofc(α(J), β(J)) and the dependence ofα andβ on
the individualJ is explicitly denoted byα(J), β(J). Similar P(J) stands forP(τ (J)).

3.5. Parameters of the Evolutionary Algorithm

In order to apply an Evolutionary Algorithm successfully to a specific optimization problem,
several parameters have to be adjusted. Most important are the coding mechanism and the
fitness function that have been described above. For understanding its functionality, the
selection scheme and recombination mechanism are briefly outlined.

The selection method should maintain a high diversity in the population, i.e., not only
the particular fitness value of an individual is of interest (as in standard selection schemes),
but also its phenotypical “uniqueness”. This means that many copies of a good individual
should be avoided but different individuals with a good fitness value should be preserved.
This is usually achieved by replacing the most “similar” individual out of a randomly chosen
crowd of the population by the new individual if it has a better fitness. The “similarity”
introduces a new selection criterion and makes a metric necessary to define similarity.
Herein, this metric is the number of differently bound functional nodes. The particular
selection method used herein is calledrestricted tournament selection[14].
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Figure 16.Behavioral specification of a video codec for video compression.

The specific encoding of an individual makes special crossover and mutation schemes
necessary. In particular, for the allocationsαi uniform crossover is used [21] that randomly
swaps a bit between two parents with a probability of 50%. For the lists (repair allocation
priority lists L Ri, binding order listsL Oi and the binding priority listsL Bi (v)), order based
crossover (also named position-based crossover) is applied (see e.g., [22, 10]). Order based
crossover ensures that only permutations of the elements in the chromosomes are created,
i.e., parts of the list of the parents are combined and repaired such that a legal permutation
is obtained. The probability of crossover is 50%. The construction of the individuals makes
further repairing methods unnecessary.

A mutation of an allocationαi consists in simply swapping the allocation bit with a
probability of 50%. The mutation operator for the lists creates a new permutation of a list
by swapping two randomly chosen elements of the list. Mutation is applied to 20% of the
individuals of a population.

4. Case Study

4.1. Problem Specification

We explain our methodology using the example of a video codec for image compression
using the H.261 standard. Its block diagram is shown in Fig. 16.

The behavioral specification is refined to the problem graph shown in Fig. 17 (coder).
The synthesis problem is restricted to single level of hierarchy, i.e., only the mapping of the
problem graphGP to the architecture graphGA is examined. Motion estimation is done
by the block matching operation (BM), the block subtraction is named DIFF (difference)
and the block addition REC (recover). Additionally, the quantization is split up into thresh-
old calculation (TH) and quantization (Q). The operations are performed on macro blocks
and each communication node represents a transmission of one macro block. However,
the block matching operation needs in average three macro blocks of the previous frame
for its operation. This is symbolized by a “3” in the corresponding communication node
(node 17).
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Figure 17.Problem graph of the video coder in Fig. 16. Functional nodes are symbolized by squares, communi-
cation nodes by circles.

Figure 18.Problem graph of the video decoder.

The coder is usually combined with a decoder. Its problem graph is depicted in Fig. 18.
Basically, it consists of the lower part of the loop of the coding algorithm. However, the
motion compensation vector has to be extracted from the input data after the run-length
decoding operation (RLD). As the amount of transmitted data is small as compared to the
size of a macro block, the transmission is assumed to take zero time (symbolized by a “0”
in communication node 48).

The complete graph is mapped onto a target architecture shown in Fig. 19. The architecture
consists of three shared busses with different data rates, two memory modules (a single and
a dual ported memory), two programmable RISC processors, a signal processor (DSP),
several predefined hardware modules (namely a block matching module (BMM), a module
for performing DCT/IDCT operations (DCTM), an subtract/adder module (SAM) and a
Huffman coder (HC)), and I/O devices (INM and OUTM).

The basic idea behind this architecture set is the allowance of a wide range of possible
implementations. The three busses are modeled to be alternatively used, as each module is
intended to have only a single bus connector. This can be easily done when constructing
the specification graph. Only the BM-module may use two ports of which one is dedicated
to one port of the (potentially used) dual ported frame memory (DPFM). This special point-
to-point bus allows a fast architecture to be synthesized. The risc processors (RISC1 and
RISC2) as well as the signal processor (DSP) are capable of performing any functional
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Figure 19.Architecture template of architectures to implement the problem graph of the video codec. The values
in brackets give the basic costcb of each resource.

operation. However, the DSP executes the operations faster and is more expensive in
acquisition. The other hardware modules are dedicated to special groups of operations.
For example, the DCTM can only perform the three operations DCT, IDCT, and IDCTD.
Possible mappings and delays of all modules are shown in Table 1. Furthermore, several
communication operations may be internal, i.e., handled by functional resources. The
mappings of communication nodes to resources are specified in Table 2.

The cost of an implementation is simply reflected by the sum of the costs of the allocated
hardware (see Example 8). The cost of each module is given in brackets in Fig. 19.

The number of possible bindings is 1.9 · 1027. This demonstrates the intractability of
enumerative or exact methods to explore the search space.

4.2. Optimizing Architectures

Now, we aim to perform a design space exploration. For this purpose, the Pareto-ranking
function introduced in Example 17 is used. The fitness value directly gives the number
of implementations that dominate an individualJ and the Pareto-implementations have a
fitness value of zero. Note that the Pareto-points determined in the way above are only
Pareto-points according to the current population. In order to obtain many Pareto-optimal
implementations, the population size is chosen asN = 100. The Pareto-set found in a
single optimization run after 200 generations is shown in Table 3 and depicted in Fig. 15.
Shown are the design points of the final population. One can see that whole design space
is covered and several Pareto-points have been obtained.

In general, there is no evidence that the Pareto-points obtained above are the true Pareto-
points of the problem. Surprisingly, all points in Table 3 turn out to be true Pareto-points
of the problem.

Figure 20 shows the Ganttchart and the architecture of the fastest implementation found.
The minimal period of the implementation is obviously determined by the execution time
of the block matching module (BMM).

The cheapest implementation is shown in Fig. 21. There are no surprises here as the
cheapest way to implement the codec algorithm is to use the cheapest module capable of
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Table 1.The mapping of the functional nodes to architectural
nodes.

Node Operation Resource/ Resource/ Resource/
# Delay Delay Delay

1 IN INM/0
31 IND INM/0
14 OUT OUTM/0
36 OUTD OUTM/0
2 BM BMM/22 DSP/60 RISC/88
3 RF FM/0 DPFM/0

37 RFD FM/0 DPFM/0
12 SF FM/0 DPFM/0
39 SFD FM/0 DPFM/0
4 LF HC/2 DSP/3 RISC/9

38 LFD HC/2 DSP/3 RISC/9
5 DIFF SAM/1 DSP/2 RISC/2
6 DCT DCTM/2 DSP/4 RISC/8

10 IDCT DCTM/2 DSP/4 RISC/8
34 IDCTD DCTM/2 DSP/4 RISC/8
7 TH HC/2 DSP/8 RISC/8
8 Q HC/1 DPS/2 RISC/2
9 IQ HC/1 DSP/2 RISC/2

33 IQD HC/1 DSP/2 RISC/2
11 REC SAM/1 DSP/2 RISC/2
35 RECD SAM/1 DSP/2 RISC/2
13 RLC HC/2 DSP/8 RISC/8
32 RLD HC/2 DSP/8 RISC/8

handling all functionalities, the cheapest bus and the cheapest memory module.
As a final example, consider the Pareto-point with costc = 280 and periodP = 78. The

Ganttchart and architecture are shown in Fig. 22.
In this section, a real-world synthesis problem has been considered, the synthesis of an

architecture for a H.261 video codec. The complexity of the problem is realistic and typical
for system-level synthesis. The methodology is able to simultaneously select the architec-
ture (allocation), perform the assignment of operations to resources (binding) and annotate
starting times to operations (scheduling). The implementation of the model is based on Evo-
lutionary Algorithms. Remarkable is the fact that the EA is capable of exploring the design
space and identifying the Pareto-points of a synthesis problem in a single optimization run.

5. Summary and Conclusions

An approach to system-level synthesis for data flow-dominant hardware/software systems
has been presented. Contrary to existing approaches the architecture is not fixed and the
mapping problem is not just understood as a simple binary hardware/software partitioning
problem. We use a graph-theoretic framework to describe algorithms, sets of architectures
and user-defined mapping constraints. The architectures can be single- or multiple-chip
architectures. Resource sharing and limited pin numbers are considered as well as maximal
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Table 2. The mapping of the communication nodes to architectural
nodes.

Comm. Res./ Res./ Res./ Res./ Res./ Res./
Node # Delay Delay Delay Delay Delay Delay

15 SBF/1 SBM/2 SBS/3
16 SBF/1 SBM/2 SBS/3
17 SBF/3 SBM/6 SBS/9 PTP/1
18 SBF/1 SBM/2 SBS/3 RISC/0 DSP/0
19 SBF/1 SBM/2 SBS/3 RISC/0 DSP/0
20 SBF/1 SBM/2 SBS/3 RISC/0 DSP/0
21 SBF/1 SBM/2 SBS/3 RISC/0 DSP/0
22 SBF/1 SBM/2 SBS/3 RISC/0 DSP/0 HC/0
23 SBF/1 SBM/2 SBS/3 RISC/0 DSP/0 HC/0
24 SBF/1 SBM/2 SBS/3 RISC/0 DSP/0
25 SBF/1 SBM/2 SBS/3 RISC/0 DSP/0
26 SBF/1 SBM/2 SBS/3
27 SBF/1 SBM/2 SBS/3 RISC/0 DSP/0
28 SBF/1 SBM/2 SBS/3 RISC/0 DSP/0 HC/0
29 SBF/1 SBM/2 SBS/3
30 SBF/0 SBM/0 SBS/0
40 SBF/1 SBM/2 SBS/3
41 SBF/1 SBM/2 SBS/3 RISC/0 DSP/0 HC/0
42 SBF/1 SBM/2 SBS/3 RISC/0 DSP/0
43 SBF/1 SBM/2 SBS/3 RISC/0 DSP/0
44 SBF/1 SBM/2 SBS/3
45 SBF/1 SBM/2 SBS/3
46 SBF/1 SBM/2 SBS/3 RISC/0 DSP/0
47 SBF/1 SBM/2 SBS/3

Table 3.Implementations obtained as Pareto-points in
a single run of the Evolutionary Algorithm.

J1 J2 J3 J4 J5 J6

PeriodP 22 42 54 78 114 166
Costc 350 340 330 280 230 180

cost and latency constraints. Furthermore, a capacity constraint can be formulated for each
resource. Communication delays are modeled dependent on selected busses, bus-widths
and transfer rates.

The main optimization loop contains an Evolutionary Algorithm. Based on populations of
implementations, it performs a parallel search for optimal architecture selection and binding
in each iteration. For each architecture and binding, a resource-constrained schedule is
computed using a scheduling heuristic. Then, the fitness function is evaluated for each
implementation. In case of Pareto-ranking, the design space can be explored in one single
optimization run.

We claim that the combination of an Evolutionary Algorithm for architecture selection
with an heuristic scheduler after architecture selection and binding is a promising approach
to system-level synthesis. Finally, Evolutionary Algorithms can be easily parallelized. This
is a topic of future investigation.
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Figure 20.Ganttchart and architecture of the fastest implementation (costc = 350, periodP = 22).

The optimization methodology presented here is part of the CodeSign project at ETH
Zurich. Due to space requirements, the underlying design framework Code-Sign could not
be explained here, e.g., specification based on Petri-nets, simulation, applied synthesis and
estimation tools. At the current state of implementation, the design parameters are extracted
from synthesized library components using commercial tools (Synopsys, Xilinx, etc.). The
design data for the video codec have been elaborated in cooperation with Siemens AG,
Munich, Germany.

Appendix

Proof of Theorem 1. Obviously, the test of a binding for feasibility can be done in
polynomial time, see Def. 6. Now, the Boolean Satisfiability problem will be polynomially
reduced to the determination of a feasible binding.

At first, let us suppose that Boolean variables are associated to the mapping edgese ∈ EM .
Moreover, ife ∈ β, then the corresponding variable is 1 (true), ife 6∈ β, the variable is 0
(false). Now, it is shown how to construct a specification graph from a given set of clauses
such that a feasible binding yields values for the Boolean variables which make all clauses
true iff there is a solution.

Instead of using(a ∨ b ∨ · · ·) = 1 for the clauses we transform equations of the dual
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Figure 21.Ganttchart and architecture of the cheapest implementation (costc = 180, periodP = 166).

form (c ∧ d ∧ · · ·) = 0 into a specification graph. The specification graph contains two
dependence graphsG1 andG2 only and all nodes and edges ofG1 andG2 are allocated.
The necessary components for building the specification graph are given in Fig. A.1. Any
set of clauses can now be represented as follows:

1. For any variable in the set of clauses use a structure like in Fig. A.1a.

2. For any clause withn literals usen − 1 times the structure in Fig. A.1d concatenated
and linked to the variable structures constructed in step 1 by structures like Fig. A.1b.

3. Use structures as in Fig. A.1c to guarantee that all clauses are true.

It can be seen that there is a one-to-one correspondence between a solution to a given
satisfiability problem and a feasible binding in the corresponding specification graph.
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