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ABSTRACT

In noncooperative networks users make control decisions that optimize their indi-
vidual performance objectives. Nash equilibria characterize the operating points
of such networks. Nash equilibria are inherently inefficient and exhibit subop-
timal network performance. Focusing on routing, a methodology is devised for
overcoming this deficiency, through the intervention of the network manager.
The manager controls part of the network flow, is aware of the noncooperative
behavior of the users and performs its routing aiming at improving the overall
system performance. The existence of mazimally efficient strategies for the man-
ager, i.e., strategies that drive the system into the global network optimum, is
investigated. Necessary and sufficient conditions for the existence of a maximally
efficient strategy are derived, and it is shown that they are met in many cases
of practical interest. The maximally efficient strategy is shown to be unique and
it 1s specified explicitly. Such a strategy does not exists when the population of
users is infinite, or when the users employ suboptimal shortest-path routing. For
these cases, an optimal strategy of the manager is determined.
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1. Introduction

Control decisions in large scale networks are often made by each user independently, ac-
cording to its own individual performance objectives.! Such networks are henceforth called
noncooperative, and game theory [MYE91, FUD92] provides the systematic framework to
study and understand their behavior. The operating points of a noncooperative network
are the Nash equilibria of the underlying game, that is, the points where unilateral devia-
tion does not help any user to improve its performance. Game theoretic models have been
employed in the context of flow control [BOV8T7, HSIA91, ZHA92, ALT94, KOR95], rout-
ing [ECO91, ALT93, ORD93] and virtual path bandwidth allocation [LAZ95] in modern
networking. These studies mainly investigate the structure of the Nash equilibria and pro-
vide valuable insight into the nature of networking under decentralized and noncooperative
control.

Nash equilibria are inherently inefficient [DUBS86] and exhibit, in general, suboptimal
network performance. This deficiency can be overcome with the intervention of a network
agent, namely the network designer or manager, that architects the network so that the
resulting equilibria are efficient according to some systemwide criterion. In essence, the
designer /manager architects the Nash equilibria by setting the rules of the networking game.
Seen under this light, the idea is related to the economic theory of implementation in Nash
equilibrium [HURS&5]. In the context of computer networking, various methods have been

proposed for architecting Nash equilibria:

e Through pricing mechanisms. This method has been studied extensively in the context

!The term “user” is purposely left ambiguous. It may refer to a network user itself or, in case that the
user’s traffic consists of multiple connections, to individual connections that are controlled independently.
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of queueing systems [KLE67, NAO69, ADI74, MEN90], where it was observed that,
by levying tolls, a system can regulate the decisions made by its noncooperative users.

[ts applicability to the future Internet is discussed in [COC93].

e By regulating service disciplines. In [SHE94] it is shown that a proper queue scheduling

discipline can guarantee an equilibrium point with desirable properties.

e Through proper network design. In [KOR94] it is shown that, by making appropriate
topology design and capacity allocation decisions, the network designer can choose a

systemwide efficient equilibrium.

The above approaches demand either the addition of a new component to the networking
structure, such as prices, or else a priori design decisions on the resource configuration
and/or the service disciplines of the network. In the present study, we propose a method for
architecting noncooperative equilibria in the run time phase, i.e., during the actual operation
of the network. This approach is based on the observation that, apart from the flow generated
by the self-optimizing users, typically, there is also some network flow that is controlled by
a central entity, that will be referred to as the “manager.” Typical examples are the traffic
generated by signaling and/or control mechanisms, as well as traffic of users that belong to
virtual networks. The manager attempts to optimize the system performance, through the
control of its portion of the flow.

The role of the manager in a noncooperative network is investigated using routing as a
control paradigm. The network is shared by a set of noncooperative users, each shipping
its flow in a way that optimizes its individual performance objective. The noncooperative
routing scenario applies to various modern networking environments. The Internet Protocol
(IPv4), for example, provides the option of source routing [ISI81], that enables the user to
determine the path(s) its flow follows from source to destination. This option allows the user
to choose a routing strategy that satisfies its individual perfomance objective. Similarly, the
current I[P Next Generation (IPv6) Specification provides for source routing with enhanced
capabilities [DEE95]. Another example is the flexible routing service as specified in the
Q.1211 CCITT Recommendation for the standardized capability set of Intelligent Networks
(IN CS-1) [GAR93]. One of the goals of this service is to route calls over particular facilities
based on the subscriber’s routing preference list or distribution algorithm.? Flexible routing

was one of the services that were successfully implemented in Ameritech’s AIN 0.0 technical

2The target services of IN CS-1 apply to the setup/release phase of a call. It is expected, however, that
these services will be extended to the active phase of a call. For example, Bellcore’s AIN Release 1 target
extends flexible routing services to the active phase of a call.
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trial, in April 1992 [RUS93]. Also, Bell Atlantic’s AIN configuration will provide complete
routing control to the customer.

The manager has the following goals and capabilities: (i) it aims to optimize the overall
network performance according to some systemwide efficiency criterion, and (ii) it is cog-
nizant of the noncooperative behavior of the users and performs its routing based on this
information. The first property makes the manager just another user, whose performance
objective coincides with that of the network. The second property, however, enables the
manager to predict the response of the noncooperative users to any routing strategy that
it chooses, and hence determine a strategy that would pilot them to an operating point
that optimizes the overall network performance. Instead of reacting to the routing strategies
of the users, the manager fizes this optimal strategy and lets the users converge to their
respective equilibrium. This is a typical scenario of a Stackelberg game [OWES82, MYE91],
where the manager acts as a leader, that imposes its strategy on the self-optimizing users
that behave as followers.> Stackelberg strategies have been investigated in the context of
flow control in [DOUSY], and routing in [ECO90]. In these references, however, the leader
was a selfish user concerned about its own rather than the system’s performance.

We investigate the optimal strategy of the manager. In particular, we address the fol-
lowing question: is there a routing strategy of the manager that drives the system into the
network optimum, i.e., to the point that corresponds to the solution of a routing problem, in
which the manager has full control over the entire flow offered to the network? Intuitively,
one would expect that the manager cannot enforce the network optimum, since it controls
only part of the flow, while the rest is controlled by noncooperative users. Surprisingly, this
study shows that in many cases the manager does have this capability.

The methodology is developed for a system of parallel links, which, as explained in
the sequel, is well-suited for modeling typical configurations in modern networking. We
derive necessary and sufficient conditions that guarantee that the manager can enforce an
equilibrium that coincides with the network optimum, and indicate that these conditions are
met in many cases of practical interest. In other words, the manager is often able to achieve,
through limited control, the same system performance as in the case of centralized control.
Moreover, when these conditions are satisfied, we show that there exists a unique strategy of
the manager that drives the system to the network optimum, specity its structure explicitly,
and comment on its scalability properties.

Three different configurations of followers will be considered. The first is the case of a

single follower, that corresponds to the simplest Stackelberg routing game, where except

3The terms “manager” and “leader,” as well as “users” and “followers,” will be used interchangeably.
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for the manager there is another, self-optimizing, entity that controls its own flow. The
second is the general case of multiple followers, that is, an arbitrary but finite number of
noncooperative users. The third is the case of simple followers, which corresponds to two
interesting scenaria, namely, an infinite population of users, and a finite population that
employs simple, suboptimal, shortest-path routing.

The outline of the paper is the following. In Section 2 we present the parallel links model
and formulate the problem. Section 3 gives an outline of the main results. In Section 4 we
briefly describe the structure of the network optimum and Nash equilibrium. The single-
follower problem is addressed in Section 5, and the multiple-follower extension is presented in
Section 6. In Section 7 we address some practical issues related to the proposed management
scheme. The special case of simple followers is discussed in Section 8. Finally, Section 9

summarizes the results and delineates their implications.

2. Model and Problem Formulation

We consider a set Z = {1,..., 1} of users, that share a set £L = {1,..., L} of communication
links, interconnecting a common source to a common destination node. The users are non-
cooperative, in the sense that each user routes its flow in a way that optimizes its individual
performance objective. Apart from the flow generated by the noncooperative users, there is
also some flow whose routing is controlled by a central network entity, i.e., the manager. The
manager is cognizant of the noncooperative behavior of the users and performs its routing
based on this information, in a way that optimizes the overall network performance. For the
sake of uniform notation, the manager will also be referred to as user 0. Let 7o = 7 U {0}.
Let ¢ be the capacity of link [, ¢ = (¢1,...,¢p) the capacity configuration, and C' =
>iec € the total capacity of the system of parallel links. We assume that ¢ > ... > ¢p.
Each user 7 € Ty has a throughput demand that is some process with average rate r' > 0.
Without loss of generality, we assume that the throughput demands of the noncooperative
users satisfy: 11 > 12 > ... > rl. Let r = ¥,c7 r' denote the total throughput demand of the
noncooperative users, and R = r + r% the total demand offered to the network. We assume
that the system of parallel links can accommodate the total demand, i.e., that R < C.
User ¢ € Ty ships its flow by splitting its demand r' over the set of parallel links. Let
/i denote the expected flow that user ¢ sends on link /. The user flow configuration f* =
(fi,..., ft)is called a routing strategy of user i and theset F' = {f' ¢ RV : 0 < fi < ¢, [ €
L; Yier fi = r'} of strategies that satisfy the user’s demand is called the strategy space of
user 7. The system flow configuration f = (f° f',... f7) is called a routing strategy profile

and takes values in the product strategy space I' = @;ez, F".
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The grade of service that the flow of user ¢ € Zj receives is quantified by means of a cost
function J' : F' — IR. J'(f) is the cost of user ¢ under strategy profile f; the higher J*(f)
is, the lower the grade of service provided to the flow of the user. Various general classes of
routing cost functions have been considered in [ORD93]. In the present paper, we consider

cost functions that are the sum of link cost functions:

JHE) = iR, JiE) = [T, 1€L, (2.1)
lel
where f; = (f2, fL,..., f{), and Ty(f;) is the average delay per unit of flow on link / and

depends only on the total flow f; = Y ez, fi on that link. In particular, we concentrate on

the M/M/1 delay function:

! fi<e
) =4 a—f 7T (2.2)

o0, lecl

Egs. (2.1) and (2.2) imply that Ji(f)/r' is the average time-delay that the flow of user s
experiences under strategy profile f. Similarly, J(f)/R, where:

=y rm=y 2 (23
i€Ty lec ¢l i
is the average time-delay experienced by the total flow offered to the network.

The total cost J(f) of the network depends only on the link flow configuration (f1,..., f1).
Since Y, file; — fi)~! is a convex function of (fi,..., fr), there exists a unique link flow
configuration (fy,...,fr) — with ff > 0 and ¥, f7 = R — that minimizes the total cost.
This is the solution of the classical routing optimization problem, where the routing of all
flow in the network is centrally controlled, and will be referred to as the network optimal link
flow configuration, or for simplicity as the network optimum. The Kuhn-Tucker optimality
conditions [LUES4], imply that (f,..., f7) is the network optimum if and only if there exists
a (Lagrange multiplier) A*, such that for every link [ € L:

¢

A= ———— it ff >0, 2.4
(= f7)? l (24)
1
A< — it ff=0. (2.5)
al
Let J* denote the minimal total cost, that is achieved at the network optimum (fy, ..., ff).

Then, for any strategy profile f € F', we have J(f) > J*.
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2.1 Validity of the Parallel Links Model

Systems of parallel links, albeit inherently simple, represent an appropriate model for seem-
ingly unrelated networking problems. Consider, for example, a network in which resources
are preallocated to various routing paths that do not interfere. Such scenaria are common
in modern networking. In broadband networks bandwidth is separated among different vir-
tual paths, resulting effectively in a system of parallel and noninterfering “links” between
source/destination pairs. Another example is that of internetworking, in which each “link”

models a different subnetwork.

2.2 Noncooperative Users

Each user ¢ € T aims to find a routing strategy f' € [ that minimizes its cost J°, or
equivalently its average time-delay. This optimization problem depends on the routing
decisions of the manager and the other users, described by the strategy profile f=* =
(FOFL, .. FL L fD) since J¢ is a function of the system flow configuration f.

As already explained, the routing strategy of the manager is fixed, as long as the set of
noncooperative users and their throughput demands do not change. Throughout this section
we assume that the manager employs strategy f°, according to some criterion that will be
presented in the sequel. Fach noncooperative user, on the other hand, adjusts its routing
strategy to the actions of the other noncooperative users, in order to minimize its cost. This
self-optimizing mode of operation leads to a dynamic behavior that can be modelled as a
noncooperative game. Any operating point of the network is a Nash equilibrium of this
game, i.e., a strategy profile f~° of the noncooperative users, from which no user finds it
beneficial to unilaterally deviate. These operating points depend on the manager’s strategy
f°. Hence, given that the manager employs strategy f°, strategy profile f=° € F7%is a Nash

equilibrium of the user routing game if:

f' € arg min J'(g', f™), €T (2.6)
giErT

From the perspective of the users, the manager merely reduces the capacity of each link
[ by fP. Therefore, the user routing game is equivalent to the routing game in a system of
parallel links with capacity configuration ¢ — f°. As shown in [ORD93], this routing game
has a unique Nash equilibrium. Hence, any strategy f° of the manager induces a unique

Nash equilibrium £79 of the noncooperative users, that will be denoted by N°(f).
Given a strategy profile f=* of the other users in Z, the cost of user i, as defined by

eqgs. (2.1) and (2.2), is a convex function of its strategy f'. Hence, the minimization problem
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in (2.6) has a unique solution. The Kuhn-Tucker optimality conditions, then, imply that f!
is the optimal response of user 7 to f=% if and only if there exists a (Lagrange multiplier) \',

such that, for every link [ € £, we have:
c — fz_i
(0 — )

: 1 :
A< . if fi=0, 2.8
e f (2.8)

A if fi >0, (2.7)

where f' = 2 ieTo\ i} fl] is the total flow that all users except the i-th send on link /.
Therefore, f=° € F'7°is the Nash equilibrium of the self-optimizing users induced by strategy
O of the manager, if and only if there exist A’, i € 7, such that the optimality conditions
(2.7)—(2.8) are satisfied for all © € 7.

The function N° : F© — F~° that assigns to each strategy of the manager the induced
equilibrium of the user routing game is called the Nash mapping. From [KOR94, Theorem
3.3], it follows that the Nash mapping is continuous.

2.3 The Role of the Manager

The manager has knowledge of the noncooperative behavior of the users, that enables it to
determine the Nash equilibrium N°(f?) induced by any routing strategy f° that it chooses.
Being a central network entity, the manager either has the necessary information available, or
can obtain it by monitoring the behavior of the users. This way, the manager can determine a
routing strategy of its own flow that gives rise to a Nash equilibrium that is optimal, according
to some systemwide efficiency criterion. Therefore, the manager acts as a Stackelberg leader,
that imposes its strategy on the self-optimizing users that behave as followers. The presence
of sophisticated users that can acquire information about the self-optimizing behavior of the
other users and become Stackelberg leaders, in order to optimize their own performance,
is in general undesirable [SHE94]. The manager, however, aims at optimizing the overall
network performance, thus it plays a social rather than a selfish role.

The goal of the manager is to find a routing strategy of its own flow that drives the system
to the network optimum, i.e., a strategy f° such that if f=° = NO(f°), then >z, fi = fr for
all { € £. Any such strategy of the manager achieves the minimal total cost J* and, therefore,
leads to the most efficient utilization of network resources. Using economics terminology, this
is a problem of Nash implementation of mazimal efficiency [COC93]. A general description of
Nash implementation of social choice functions — a special case of which is maximal efficiency

— can be found in [HURS85]. Accordingly, let us introduce the following:
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Definition 2.1 Let f° € F° be a strategy of the manager and £=° = N°(f%). Strategy £° is
called maximally efficient if it achieves the network optimum, i.e., if Yz, fi = f7 for all

lel.

Continuity of the Nash mapping implies that J(f°, N°(f?)) is continuous in f* € F°, thus
it attains its minimum in the compact set #°. Therefore, an optimal strategy of the manager
always exists. Existence of a maximally efficent strategy, however, cannot be guaranteed in
general. Evidently, if a maximally efficient strategy exists, then it is an optimal strategy of
the manager.

In the following sections, we derive necessary and sufficient conditions that guarantee
existence of a maximally efficient strategy of the manager. Moreover, provided that these
conditions are met, we show that the maximally efficient strategy of the manager is unique
and we specify its structure explicitly. Before we proceed with the analysis, let us present

an informal summary of the main results.

3. Outline of Results

1. In the special case of a single user, the manager can always enforce the network opti-

mum, and we specify its maximally efficient strategy.

2. In the general case of any finite number of users, the manager can enforce the network
optimum if and only if its demand is higher than some threshold r°, in which case we

specify the manager’s maximally efficient strategy.

3. The threshold r° is feasible, in the sense that the total demand of the users plus r° is
lower than the total capacity of the network. Thus, for every set of users (whose total
demand r is less than the total capacity (') there are managers that can enforce the

network optimum.

4. In heavily loaded networks it is “easy” for the manager to enforce the network optimum
(i.e., the threshold r? is small).

5. As the number of users increases, it becomes harder for the manager to enforce the

network optimum (i.e., the threshold r° increases).

6. The higher the difference in the throughput demands of any two users, the easier it
becomes for the manager to enforce the network optimum. Conversely, the threshold

r% is highest when the demands of all users are equal.
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7. In the case of an infinite number of users, the manager cannot, in general, enforce the
network optimum. For this case, we derive the structure of an optimal strategy of the

manager, and a simple algorithm to determine it.*

4. Preliminary Structural Results

The structure of the Nash equilibrium in a system of parallel links shared by I noncooperative
users has been investigated in [ORD93, KOR94]. The results of these references can be
readily applied to characterize the structure of the network optimum (fy,..., f;) and the
Nash mapping VY : F© — ['=°, In this section we briefly present the related results without
proofs.

Let us first consider the network optimum (f;, ..., f7). The flow f;" on link [, is decreasing
in the link number [ € L. Therefore, there exists some link L*, such that f > 0 for [ < L*
and f =0 for [ > L*. The threshold L* is determined by:

GL* < R< GL*-|—17 (4.1)
where:
-1 -1
Gr=Yco—vaS e, 1=2.....L (4.2)
n=1 n=1
L
Gl :0, GL-I—I = ch:C
n=1

Note that ¢; > ¢;11 implies that G; < Giyq for all [ € L.
Using the optimality conditions (2.4)—(2.5), it can be easily verified that:

Cl—fz*ZClH—fl*-Ha I=1,....L -1, (4-3)

with equality holding if and only if ¢; = ¢;41. Moreover, writing eq. (2.4) as VvV *(¢; — f]) =
V€, and summing over any set of links A C {1,...,L*}, we have:

* Z:ZEA\/C_Z ]2 *
A\ = l—zm(q_m L AC{L,... L7, (4.4)

4This result applies also to the case of a finite number of users that employ suboptimal shortest-path
routing.



Achieving Network Optima Using Stackelberg Routing Strategies 10

Finally, the network optimum (f;, ..., ff) is given by [KOR94]:

x cl_(Zﬁilcn_R)ﬁ ’ l:lw“?[]* (45)
0 Cl=L"+1,.... L

Let us now consider the Nash equilibrium £7% = N9(f°) of the users that is induced
by strategy f° of the manager. In order to characterize the structure of £7°, it suffices to
determine the best reply ' of user 7 € 7 to the strategies of the other users and the manager
that are described by f~/. For any link [, let ¢} = ¢; — ;" denote the residual capacity of
the link as seen by user 7. Then, f* can be determined as the network optimum for a system

of parallel links with capacity configuration ¢ = (c!,...,c}). Therefore, assuming that:
¢ >clyy, l=1,...,L—1, (4.6)

the flow ff is decreasing in the link number [ € £. This implies that there exists some link

L', such that f{ > 0 for [ < L' and f/ =0 for [ > L'. The threshold L' is determined by:

where, similarly to eq. (4.2):
R -1
T= S -l S e, =2, (1.8)
n=1 n=1
L .
G =0, Gip=dd =C— R,
n=1

where R~ = R — r' is the total flow offered to the network by all users in Z; except for
user ¢. Note that (4.6) implies that Gf < G, for all [ € L.

Similarly to eq. (4.5), the best reply f' of user ¢ to strategy profile f=* of the other users
in Zy is given by:

fi = Szt Ve - (1.9)

Eqs. (4.8) and (4.9) indicate that the information user ¢ needs to determine its best reply f
to any strategy profile f=* is the residual capacity ¢! seen by the user on every link [ € £,

and not a detailed description of £=*. In practice, information about the residual capacities
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can be acquired by measuring the link delays through an appropriate estimation technique.

5. Single-Follower Stackelberg Routing Game

In this section we consider the simplest case of a Stackelberg routing game, where the network
is shared by a single self-optimizing user (I = 1) and the manager. The simplicity of this
model will allow us to elucidate both the intuition behind the structure of the manager’s
maximally efficient strategy and the methodology to derive it. Moreover, the results of this
section provide the foundation for the analysis of the general Stackelberg routing game that
will be carried out in the following section.

We start by investigating the structure of a maximally efficient strategy f° of the manager,

provided that one exists. Let ' = A°(f°) be the best reply® of the follower to f°. Then:

fi=f+f=f, leL. (5.1)

Let us first show that the flow f! the follower sends on link [ is decreasing in the link
number / € £. Assume by contradiction that, for some n, we have 0 < f} < f;.,. Then, the
optimality conditions (2.7)—(2.8) imply that:

| e I

+ < + )
Cn41 — f;+1 (Cn-l—l - f$+1)2 Cn — f; (Cn - fﬁ)Z

which is a contradiction, since ¢, — f > ¢,q1— friyy (by(4.3)) and f},, > f, (by assumption).
Therefore, there exists some link L', such that f! > 0for / < L' and f! =0 for [ > L', that
is, the follower sends its flow precisely over the links in {1,..., L'}. Furthermore, (4.3) and
fi > fl imply that for any link I, we have ¢ = ¢;— f'+ f' > ciq1 — fi1 + [l = ¢4, that
is, the residual link capacities as seen by the follower preserve the order of the link capacities
themselves. Hence, the threshold L' is determined by (4.7), with 7 = 1, as explained in
Section 4. In view of eq. (5.1), it is evident that L' < L*.
The optimality conditions (2.4)—(2.5) for (f5,..., ff) and (2.7)-(2.8) for f' imply:

. 712
i:izlﬂl Lme{l,....['}

1 *
cl ¢ Cm — I

°In the single-follower case, the Nash mapping N : F' — F! is, in fact, the best reply function of the
follower.
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and taking m = 1, we have:
% c %
fl=fr- é(f1 — ), 1=1,..., LY (5.2)

which, together with Zf;l fi=rt give:

Ll
* C *
fl=fi =g (=) =1L (5.3)
n=1"%n n=1

Hence, given that the follower sends its flow over the links in {1,..., L'}, the strategy of the

leader is given by:
Ll *_7,1
0 CIZ:":Lllifn 5 121,...,[/1
fl = Zn:l n ° (54)
fl* 5 l:L1+17...7[J

According to eq. (5.4), if the leader knows a priori the set of links {1,..., L'}, over

which its strategy f° will force the follower to send its flow, then: (i) on every link [ that

will not receive any flow from the follower, it sends flow f, and (ii) it splits the rest of

its flow (r® — ZlL:[/l-I-l = lel fi —r') among the links that will receive flow from the

follower, proportionally to their capacities. Condition (4.7), however, depends on the leader’s

strategy f° and cannot provide a priori knowledge about the threshold L' to the leader. In

the sequel, we derive an alternative condition to determine L', that is independent of the

leader’s strategy. To that end, let us define:

-1 f* -1
H=> ;——’lzcn, 1=2,...,L, (5.5)
n=1

n=1 c

L
H1 :0, HL_|_1 - Zf;z :R
n=1

Using eqs. (2.4) and (4.2), it is easy to see that:

G/ A [=1,...,L~
T AL e , (5.6)
R =L +1,...,L
thus:
H<Hy, 1=1,... L. (5.7)

We are now ready to prove the following:

Lemma 5.1 Suppose thal there exists a mazimally efficient strateqy £° of the manager. Let
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f1 = NO(fY), and {1,..., L'} be the set of links | for which f} > 0. Then:
HLl < Tl S HL1-|—1- (58)

Proof: See Appendix A.

Remark: [t can be easily verified that (5.8), together with (5.7), gives:

c {
L (=YY<, =1, L (5.9)

Zg%:l Cn n=1
CL1_|_1 L1+1 ¥ 1 %
ZL1+1 ‘ ( Z fo=1)2 Jiig- (5.10)
n=1 n n=1

The expression on the left-hand-side of (5.9) and (5.10) is the flow that the manager sends
on link [ € {1,..., L' + 1}, under the assumption that link / is the last link used by the
follower. Therefore, L' is the last link [, for which that assumption leads to f! = f— f? > 0.
Indeed, if the manager assumed that the last link used by the follower is L' + 1, then (5.10)

would imply f}41+1 < 0, which would contradict the assumption.

Since H; is independent from the manager’s strategy f°, for all [, condition (5.8) is also
independent of f°. Furthermore, in view of (5.7), it determines the threshold L' uniquely.
Therefore, it a maximally efficient strategy of the manager exists, then it is unique and is
given by eq. (5.4) and (5.8). To establish existence of the maximally efficient strategy of the
manager, it suffices to show that f° given by (5.4) and (5.8) is such that:

(i) f% is an admissible strategy of the manager, i.e., f? > 0,1 € L, and Y e, ff = r°, and

(ii) ', with f} given by (5.2) for [ < L', and f! = 0 for [ > L', is the best reply of the
follower to 9, i.e., f! = NO(f?).

The proof is presented in the following theorem that gives the main result of this section.

Theorem 5.2 In the single-follower Stackelberg routing game, there exvists a unique maxi-

mally efficient strategy £° of the leader that is given by:

Zi; fa—r! =1
FE S U , (5.11)
fl* 5 l:L1+17...7[J
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where L' is determined by:

Hpo < vt < Hpigq. (5.12)

Proof: From H;: < r' < R = Hp«yy, we conclude that L' < L*. From Hj:yq > r! and (5.5)
we have 251:1 [z > r'. Therefore, eq. (5.11) implies that ff > 0 for [ < L'. Nonnegativity of
f{ for I > L' is immediate. Furthermore, it is easy to verify that 3. ff = Y fi—rt = 1°.
Thus, f° is an admissible strategy of the manager.

We now proceed to show part (ii) above, i.e., that f' is the best reply of the follower to
strategy f° of the manager. For all | < L', (5.9) gives fP < fr, thus f! = ff — ff > 0.
Moreover, > e f = ', by eq. (5.2). Hence, f' € F'. Let us now show that the residual

capacities seen by the follower satisfy:

o >cyq, =1, L—1 (5.13)

For [ > L', this is immediate from (4.3). Moreover, from eq. (5.11), we have:

D e SR

G =q g =1
Zn:l cn

N A (5.14)

Y

Since ¢; > ¢141, (5.13) holds for I < L'. Finally, for I = L', we have ¢;, = ¢p1 — f2 >
e — Jin 2 e — Jiiq = e — f21+1 = c}:1+1, where the first inequality follows from
i1 < ffi, and the second from (4.3). Thus, inequality (5.13) holds. This implies that
the best reply of the follower to f° has the threshold structure of f!, where the respective
threshold, say N*', is determined by G < r! < G}VH—I' To show N' = L', it suffices to
show that G7, < rt < G}:1+1. This is proven in Lemma A.1 in Appendix A. Therefore, to

establish that f' = NV°(f?), it remains to be shown that:
1 1

Cl cm
= (@ et

Using eqgs. (5.14) and (5.2), this is equivalent to showing:
C| . Cy
(= fi)? (em—10)

which holds due to the optimality conditions (2.4)—(2.5) for (f5,..., f), since L' < L*. This

concludes the proof of the theorem.

’ lvme {17"'7L1}7

a

The above theorem indicates that, for a single follower, the leader can always enforce
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the network optimum, independently of the relative sizes in terms of throughput demands
of the leader and the follower. In other words, it is enough for the manager to control a
nonzero portion of the network flow, in order to “tame” a single selfish user. As will be seen
in the following section, this might not be the case in the presence of multiple self-optimizing

users.

6. Multi-Follower Stackelberg Routing Game

Let us now proceed with the general Stackelberg routing game, where an arbitrary, but finite,
number [ of self-optimizing users share the system of parallel links. The following lemma
describes the maximally efficient strategy of the manager — provided that one exists — as well
as the corresponding Nash equilibrium of the noncooperative users. Later, we will derive
necessary and sufficient conditions that guarantee existence of a maximally efficient strategy

of the manager.

Lemma 6.1 In a multi-follower Stackelberg routing game, if there exists a mazimally effi-

cient strateqy f° of the leader, then it is unique and is given by:

L’ f —T
fl _clz e i (]l_l)fl*v le[’v (61)

ZEIZ Zn 1 CTL

where, for every user i € I, L' is determined by:
HLi < Ti S HLi_|_1, (62)

and for every link | € L, Ty = {i € T : 1 < L'} and I; = |I;|. In that case, the equilibrium
strateqy f' of user 1 € I is described by:

L'L
f .
Z. f—cznln =1,
0 Cl=Li41,....L

Conversely, if £° described by (6.1) and (6.2) is an admissible strategy of the leader, then it

is its maximally efficient strategy.

Proof: Assume that there exists a maximally efficient strategy f° of leader, and let 70 =

NO(£9). Then, following precisely the proof of eq. (5.4) in the single-follower case, one can
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show that for every ¢ € 7 we have:

fz_i = fz* - f; = Zi;cn 7 " ' ’ (6-4)
fl* 5 l:LZ‘I_l??L

and eq. (6.3) follows. Precisely as in the single-follower case, it can be seen that, for any
i € Z, (4.6) holds, thus the threshold L' is determined by (4.7). Moreover, using eq. (6.4),
one can show that (4.7) implies (6.2). Finally, using eq. (6.3) and Y ;cr. ff = f7, € L,
eq. (6.1) is immediate.

Suppose now that f given by (6.1) and (6.2) is an admissible strategy of the leader. If
for all € 7, ' is given by (6.3), it is easy to see that 3,7, f/ = f7, | € L. Therefore, it
suffices to show that £=° = A°(f?), or equivalently, that f’ is the best reply of follower i € 7
to the strategy profile f=* of the other followers and the manager. It is easy to verify that
for any link [ € £ eq. (6.4) holds. Observe that this is the maximally efficient strategy of
the leader in a single-follower Stackelberg game where the follower has demand r' and the
demand of the leader is R, according to Theorem 5.2. Following precisely the proof of that
theorem, one can show that f* is indeed the best reply of user 7 € T to f=°.

a

Note that, if a maximally efficient strategy of the manager exists, then the induced Nash
equilibrium of the followers, as described by eq. (6.3) and (6.2), has precisely the same
structure with the best reply of the follower in the single-follower case, that is given by

eq. (5.3) and (5.8).
Remarks:

(i) f° given by (6.1) and (6.2) might fail to be an admissible strategy of the leader; it
merely decreases/increases the capacity of link [ € £ when f is positive/negative.
From the previous proof, it follows that, even if f° is nonadmissible, f=° with f* given

by eq. (6.3) for 7 € 7 is the induced Nash equilibrium of the followers.

(ii) Under eq. (6.3), {1,..., L'} is the set of links that receive flow from follower i € Z.
Thus, Z; is precisely the set of followers that send flow on link [ € £. Since H; = 0 < r?,
t € 7, all users send flow on link 1, that is, 7y = 7.

(iii) For every link [ € £ such that Z; = (), eq. (6.1) gives f{ = f}.

(iv) Since r* > r'*1 (6.2) implies L' > L'+ for all 1 < I, and Z;;y C Z; for all I < L.
Furthermore, since r* < R = Hyx 4, (6.2) implies that L' < L*, 1 € T.
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Let us now investigate the admissibility of f°. To this end, observe that:

*

lif? = ZZc Zflf, +Zfl

=1 i€7] Zn 1 Cn

I L
= ZZC nlf Z]lfl*_l_ro_l_zri
=1 =1

i=11=1 n= 1Cn
I I L

= 2> =2 i+t =0t (6.5)
=1 n=1 =1

since Y21, 25;1 =k Iff. Thus, f°is admissible if and only if f* > 0, for all [ € £. Let

us now show that this condition can be relaxed to f > 0. It suffices to show the following:

Lemma 6.2 Consider the (possibly nonadmissible) strateqy f° of the leader, that is given by
eq. (6.1) and (6.2). For every link 1 > 1, we have:

I <o=f,<o.

Proof: Suppose that f < 0. Eq. (6.1), then, gives:

quh—mﬁq]—mﬁ (6.6)

Lz
€7, 2n=1Cn ¢ Ci1’

since fi"/er < fii/ci-1, as implied by the optimality conditions (2.4)—(2.5) for (f7,..., f).
If 7,y = I, then f?, < 0 is immediate from (6.6). Assume that Z;_y \ Z; # 0. For all
¢ € i1 \ I;, we have L' = [ — 1, and using inequality Hy: < r', one can verify that:

L '
Yz S — S
L <
=1 Cn C—1

, 1t €14 \I].

Summing this inequality over all 7 € Z;_; \ Z;, and adding it to (6.6), we obtain:

Lt *_ri * *
DI Ry AL S SNy A AV S YA =Y

L’L
€Ty 2on=1Cn Cr—1 Cr—1 o1’
thus f, < 0.
O

The previous lemma, together with Lemma 6.1, implies that a maximally efficient strategy

of the leader exists if and only if f{ given by eq. (6.1) is nonnegative. The following lemma
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shows that f is an increasing function of the throughput demand r° of the leader. This
monotonicity property is used in the sequel to establish that a maximally efficient strategy

of the leader exists if and only if its demand is sufficiently large.

Lemma 6.3 Let f{ be as in eq. (6.1). Then, [} is a continuous increasing function of the
throughput demand r° € [0,C — r] of the leader.

Proof: The proof is given in Lemmata B.1 and B.2, in Appendix B.

a

Remark: If 7 = C'—r, then R = C and the network becomes saturated. Allowing, however,
r? to take this value is a mere technicality that will be used in the proof of the following

theorem. Note that when the network is saturated, f = ¢ for every link [ € L.

We are now ready to prove the main result of this section that is given in the following:

Theorem 6.4 There exists some r°, with 0 < r° < C' —r, such that the leader in a multi-
follower Stackelberg routing game can enforce the network optimum if and only if its through-

pul demand r° satisfies r® < r® < C —r. Then, the mazimally efficient strateqy of the leader
is given by eq. (6.1) and (6.2).

Proof: Recall that even if f° is nonadmissible, it satisfies the demand constraint of the
leader, according to eq. (6.5). By virtue of Lemma 6.2, this implies that at r° = 0 we have
2 <0, since fP > 0 would imply ff >0, for [ =2,..., L, and the demand constraint of the
leader would be violated.

Suppose now that r° = C' —r. Then f} = ¢, [ € L, and from eq. (5.5) we have H; = 0,
for [ € £, while Hyy = R. Thus, L' = L for every follower : € Z. Therefore:

I Ji—r
o———(——————————

fi = e ===l (- )f; = (1= r/C) >0,

where positivity of f{ follows from r < C.

Since f{ is continuous increasing in [0,C' — r], nonpositive at r® = 0 and positive at
r? = C — r, there exists a unique r° € [0, — r), such that f? = 0 at r® = r°. Thus, f{ >0
if and only if % € [r°, C' — r), and the result follows.

a

As seen by the previous proof, the threshold r° of the leader is the unique solution of the
equation “fY(r%) = 0”7 in r° € [0,C — r). Since f} is an increasing function of r°, this

equation can be easily solved using standard numerical techniques.
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The above theorem implies that, for any finite set of followers with total demand r that
does not exceed the total capacity C of the system, there is always a (feasible) leader, with
r® <% < C — r, that can enforce the network optimum. Moreover, when r — ', we have
r® — 0, meaning that in heavily loaded networks it suffices to control just a small portion of
the flow in order to drive the system into the network optimum. Even though this behavior
might seem surprising, it has a rather intuitive explanation. In the heavy load region, the
average delay increases rapidly to infinity, thus small changes in the flow configuration result
in drastic changes of the average delay. Therefore, although the leader controls only a small
part of the total flow, it has the power to steer the network to the desired network optimum.
This result is quite encouraging, because it is in heavily loaded networks where the presence
of a manager/leader is particularly important.

The threshold r° on the leader’s throughput demand depends on the number and the
throughput demands of the followers. This dependence is investigated in the following sec-

tion.

6.1 Properties of the Leader Threshold r°

Let us first examine the dependence of r° on the number of followers, when their throughput
demand r is fixed. To simplify the formulation of the problem, we concentrate on followers
with identical throughput demands, i.e., with r* = 7 for all 7,5 € Z. This class of followers
will be referred to as identical followers, and the special structure of their Nash equilibrium
has been investigated in [ORD93]. The following proposition shows that as the number of

followers increases, it becomes harder for the leader to enforce the network optimum.

Proposition 6.5 Suppose that the followers are identical and their total throughput demand
r is fized. Then, the minimum throughput demand r° that enables the leader to enforce the

network optimum (f7,..., ff) is nondecreasing in the number of followers.

Proof: By the definition of r°, it suffices to show that, with the demand 7° of the leader
fixed, f? is nonincreasing in the number of followers. Let f° and f° be the strategy of the
leader, given by eq. (6.1) and (6.2), when there are I and I 4 1 followers, respectively. Note
that in both cases the network optimum (ff,..., ff) is the same, since it depends on the
total throughput demand R = r° + r, and not on the number of followers. Therefore, H; is
the same in both cases, for all [ € L.

Since the followers are identical, their associated thresholds are equal, according to (6.2).
Let L' and L' be the thresholds when there are I and I + 1 followers, respectively. In the
former case, the demand of each follower is r/I and in the latter r/(I 4 1). Therefore, (6.2)
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implies that L* > L' > L'. From eq. (6.1), we have:

Lt *
f_{)_M_(]_l)

= T 1
C1 Zn:l Cn, C1 &] Zn:l Cn 5]

iR _ Ui o

Hence, to prove f{ > flo, we have to show:

IS fo-r IXE v SRR

Lt [1 = i1
Zn:l Cn Zﬁ:l Cn Zﬁ:l Cn “

(6.7)

The expression on the right-hand-side of (6.7) is nonpositive, since f;/e; > f7/e, for all
[ < L*, as implied by the optimality conditions for (f,..., f;). Therefore, it suffices to
show that: R
IS fr—r IS fr—r
Shien Zﬁ; ¢
Since (6.8) holds trivially for L' = L', we only need to consider the case L' > L'. Without
loss of generality, assume that r=1r'—1. Then, (6.8) is equivalent to:

(6.8)

r L'-1 « L1-1
* !
72D o=y e =Hp,
I — Cri ~—
n=1 n=1

which is true, by the definition of the threshold L. This concludes the proof.

a

Let us now concentrate on the dependence of r° on differences of the demands of the
followers, when their total throughput demand r is fixed. The following proposition shows
that the higher the difference in the throughput demand of any two followers, the easier it

becomes for the leader to enforce the network optimum.

Proposition 6.6 Suppose that the total throughput demand r of the followers is fized. Then,
for any two followers j and k, the minimum throughput demand r° that enables the leader to

enforce the network optimum (f7, ..., f1) is nonincreasing in |r? —r*|. Therefore, r° attains

its mazimum value when all followers are identical.

Proof: Suppose that 7/ > r* and let f° be the strategy of the leader given by eq. (6.1). It
suffices to show that if the demands of the followers become r/ 4+¢ and r* —e, 0 < & < 7%, and
£0 is the resulting strategy of the leader — according to eq. (6.1) — then flo > fY. Since the
total demand of the followers is fixed, the network optimum (f;,..., f;) and the threshold
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L" of every follower ¢ € T\ {7, k} remain the same. Therefore, it suffices to show that:

SE fr—ri—e YE kg
oe) = S —— + =g, (6.9)
n=1 %n n=1 -1

is an nondecreasing function of ¢ € [0, 7"].
Note that L’ and L* in eq. (6.9) are also functions of . In particular, (6.2) implies that
L7 is nondecreasing and L* nonicreasing in ¢. Then, it is easy to see that there exists a finite

number of points a; < ... < ayps in (0,7%), such that:

(i) for all ¢ in the same interval [0, 1], (s @mgr), m = 1,..., M — 1, (aas, "], both the

thresholds L’ and L* remain the same, and

(ii) at any point a,, either L7 is increased, or L* is decreased.

Clearly, ¢ is continuous in every interval [0, 1], (apm, Qmy1], m = 1,..., M — 1, (ap, 7F].
Using precisely the same technique as in the proof of Lemma B.1 in Appendix B, it is easy to
see that ¢ is also continuous at every point «,,,, m = 1,..., M. Therefore, it is a continuous
function of ¢ € [0,7*]. Hence, to show that it is also nondecreasing, it suffices to show that
it is nondecreasing in every (a,,, a,,+1] interval, where the thresholds L7 and L* are fixed.
But this is immediate from eq. (6.9), since L7 > L* implies that e(1/ Zﬁil o — 1/ e)

is nondecreasing in . This completes the proof.

a

Let us now demonstrate the properties of r°, established in the previous propositions,
by means of a numerical example. We consider a system of parallel links with capacity
configuration ¢ = (12,7,5,3,2,1), shared by [ identical followers with total demand r. The
threshold r° of the leader is depicted in Figure 1 as a function of r, for various values of I. In
the same figure, we also show the saturation line “r®+r = C”. From the figure, one can see
that r® always lies below the saturation line, in accordance with Theorem 6.4. Furthermore,
r increases with the number of users.

From the same figure, we observe that in the light load region (i.e., when the total demand
r of the followers is low compared to the total capacity (') r® increases with r, that is, the
higher the demand of the followers, the more difficult it becomes for the leader to drive
the system to the network optimum. In the moderate and heavy load regions, on the other
hand, r% is decreasing in r. This behavior has been explained in the discussion following
Theorem 6.4.

Note that in the light load region, the curves for the various values of I have a common

part. This behavior can be explained as follows. In the corresponding load region, r is such
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Figure 1: Leader threshold as a function of total follower demand.

that the followers send their flow only on the link with the highest capacity, i.e., on link 1.

Therefore, fY = f — r and it is independent of the number of followers I, thus so is r°.

7. Practical Considerations

In this section we discuss some practical issues regarding the proposed mechanism of enfore-

ing the network optimum by means of the manager’s routing strategy.

7.1 Scalability

Assume that the manager can enforce the network optimum, i.e., that its throughput de-
mand satisfies 7% > r% According to Lemma 6.1, the manager can determine its maximally
efficient strategy £ by eq. (6.1) and (6.2). In order to do so, it must have information about
the throughput demand r* of every user i € Z, and about the network optimum (f7, ..., f5).
The network optimum can be readily computed from eq. (4.5) and (4.1), given the total load
R offered to the network. Hence, the manager needs only information about the through-
put demand of every user. If user flows are accepted by means of some admission control

6 Fach time a user

mechanism, this information can be readily available to the manager.
arrives to or departs from the network, the manager can simply adjust its strategy to the
maximally efficient one, using the information about the throughput demand of that user.
In that sense, the proposed mechanism of enforcing the network optimum by means of the

manager’s routing strategy is scalable.

SOtherwise, it has to obtain estimates of the user loads through measurements.
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7.2 Achieving the Threshold °

An important question that arises from the present work is whether and how the manager
can satisfy the necessary and sufficient condition that allows it to drive the system to the
network optimum. As indicated by Proposition 6.5, the minimum demand r° that enables
the manager to enforce the network optimum decreases with the number of noncooperative
users. Therefore, one way to achieve this threshold is to provide incentives to “small” users
to join “larger” (but still self-optimizing) network entities, such as Virtual Networks. It
is worth noting that, while bifurcated routing might seem impractical in the single (small)
user case, a VN control entity can implement (optimal) bifurcation by routing the flow of
different VN users over its various paths.

An alternative way to achieve the loading threshold r® is to provide incentives to the
(noncooperative) users to join a “social” entity (e.g., a “social” VN), that is, one whose flow
is directly controlled by the manager. This way, not only the number of noncooperative
users is reduced, but also the total flow controlled by the manager is increased.

A key question is, then, what are the possible incentives that would persuade a user to
join such larger network entities. One way to achieve this is through appropriate pricing
mechanisms. A user may decide to join a VN controlled by the manager, for example,
provided that lower prices would compensate for loosing control of its flow. Moreover, the
manager has the flexibility to provide different grade of service to the various VNs (or users)
it controls, by routing their flow over different paths, while still implementing the maximally
efficient strategy for the total flow it controls. The manager can, then, charge a VN (or user)
according to the grade of service that it receives. Since pricing is one of the key factors for
the deployment of future broadband/multimedia networks, investigating such mechanisms

is a challenging problem for future research.

8. Simple-Follower Stackelberg Routing Game

In the previous sections we have assumed that the behavior of each user is mandated by the
desire to minimize an individual cost function, namely, its average time-delay. In practice,
however, users often employ simpler, suboptimal routing strategies, due to complexity con-
siderations. Many typical routing schemes, for example, send flows through shortest paths
(paths of minimal delay), without accounting for delay derivatives or bifurcating flows. This

motivates the following:

Definition 8.1 A user is said to be simple if it routes its flow through links (or paths) of

minimal delay.
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In this section, we consider a system of parallel links shared by a set of simple users and
the manager. The Nash equilibrium of a set of simple users sharing a system of parallel
links with capacity configuration ¢ is unique with respect to the total link flows [ORD93].
Therefore, the set of simple followers can be viewed as a single follower that routes its
flow over links of minimal delay. Based on this observation and for the sake of simplicity,
throughout this section we adopt the notation of the single simple follower case, keeping in
mind that the analysis applies for any number of simple followers. For instance, the total
flow sent by the simple followers on link  will be denoted by f}.

Suppose that the manager employs a strategy f© € F°. Then, the simple followers are
presented with a system of parallel links with capacity configuration ¢ — f°. Therefore, their
induced Nash equilibrium” f' = A°(f°) is unique — in total link flows — and the corresponding

necessary and sufficient conditions require the existence of some A!, such that [KOR94]:

1
a—fP—fY

1 .
5, if =0, (8.2)

Moo= T = it f!>0, (8.1)

Mo< T =

for all 1€ £. From (8.1)-(8.2), it is easy to see that users that route according to the
optimality conditions (2.7)-(2.8) become simple as their population grows to infinity and
their individual demands become infinitesimally small, while their total demand remains r.
This is the typical scenario in a transportation network.

Recall that, when the followers are identical, as their number increases, it becomes more
difficult for the manager of enforce the network optimum (Proposition 6.5). Since the case
of simple followers is equivalent to that of an infinite number of identical self-optimizing
followers, one would expect that it corresponds to the worst case scenario for the manager.
Indeed, let us now explain that in the simple-follower case the manager cannot force, in
general, the network optimum (f;, ..., f7), independently of its throughput demand. To see
this, assume that ¢; > ¢;4q1 for all links [, and that the throughput demand of the simple
followers is r > f;. Suppose that a maximally efficient strategy f° of the manager exists,
and let f' = NO(f%). Since r > f; > f7, [ € L, it is evident that the simple followers ship
their flow over at least two links, say m and n, in £. Then, (8.1) implies ¢, — f = ¢, — 7,
while the optimality conditions for (ff,..., f[) give ¢, — f5 > ¢, — fr. Therefore, for any
r? € [0,C — r), the manager cannot force the network optimum, i.e., a maximally efficient

strategy of the manager does not exist. Intuitively, the simple followers, by equating the

"By abuse of notation, throughout this section A® denotes the Nash mapping in the simple-follower case.
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delay on all links they send their flow to, do not allow the manager to drive the system to
the network optimum.

In view of this negative result, in the remaining of this section, we concentrate on the
problem of determining an optimal strategy of the manager, that is, a strategy f° ¢ F° that
minimizes the total cost J(f°, N°(£f°)).® Let us start with the following:

Lemma 8.2 There exists an optimal strategy of £° of the leader, such that, if f* = N°(f°),
then, for every link | € L, we have:

fhi >0 = fl>0. (8.3)

Proof: Let f° be an optimal strategy of the leader and f1= NO(£9). Assume that £ is such
that (8.3) does not hold. Based on fo, we will construct another optimal strategy f° of the
leader that satisfies (8.3).

Let us first assume that there exists exactly one link n, such that fé =0 and JE%-H > 0.
Then (8.1) and (8.2) give:

N

Cn — fg S Cpn41 — f73_|_1 - 7}L_|_1 < Cpn41 — f73_|_1- (84)

Consider now a strategy f° of the leader, such that:
fgzcn—cnﬂ—l—fgﬂ, f73+1 :Cn+1_cn+ﬁ?7 (8.5)

=10 lel\ {n,n+1}.

Using (8.4) and (8.5), it is easy to verify that 0 < f < ¢,, 0 < fY; < ¢uy1, and
Sier I = Sier flo = 1% i.e., % is an admissible strategy of the leader. Throughout this
proof, “hat” values will refer to strategy £0 of the leader, while “non-hat” values to strategy
. For example, ¢ denotes the residual capacity of link [ as seen by the simple users when

the leader employs strategy fo. Eq. (8.5) implies that:
¢ = 6711+17 C7lz+1 = ¢, (8.6)

g =¢, lelL\{nn+1}

8Using the methodology developed in [KOR94], it is easy to show that the Nash mapping is continuous
in the case of simple followers. Hence, the total cost is a continuous function of the manager’s strategy and,
therefore, a minimizing strategy £ € F¥ exists.
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In other words, the followers are presented with exactly the same residual link capacities
under both f° and fo, but with the roles of links n and n + 1 interchanged. Therefore, if
! = NO(fY), we have:

N

fgL: $+1>07 f71+1:f7}b:07 (8.7)
fllzfllv ZEE\{nvn—l_l}

Egs. (8.6) and (8.7) imply that J! = J}_I_l, o = Jl = 0 and, therefore, J' = J'. Let
us now consider the cost of the leader. Note that eqgs. (8.6) and (8.7), together with the
optimality conditions (8.1)-(8.2), imply T, = An_|_1 <7, = wi1, while the delays on all
other links are the same under both £ and f0. Thus, using eq. (8.4), we get:

A

JO— J% = (¢ — py1) (T — T,) < 0.

Therefore, J < J and since f° is an optimal strategy of the leader, we conclude that J = j,
i.e., % is also an optimal strategy. Note that f° satisfies (8.3).

Similarly, if f° is such that f! = No(fo) violates (8.3) in more than one link, we can
construct inductively an optimal strategy f° of the leader so that (8.3) is satisfied.

Let f° be an optimal strategy of the leader, such that the Nash equilibrium f* = A°(f9) of
the simple followers satisfies (8.3). Then, there exists some link L' € £, such that f} > 0 for
all links [ < L', and f! =0 for all [ > L'. The previous lemma implies that we can restrict
our attention to strategies of the leader, such that the Nash equilibrium of the followers has
precisely this threshold structure. In the sequel, we derive an algorithm to determine such
an optimal strategy of the leader.

Suppose that f° is an optimal strategy of the leader, f' is the Nash equilibrium of the
simple followers and {1,..., L'} the set of links [ with f} > 0. Then, eq. (8.1) gives:

Ll

)‘1 — 1 1 .
Zﬁ:l Cn — Zﬁ:l(f% + 1Y)

(8.8)
Therefore, (f°, ') is a solution to the following optimization problem:

LR+
Py ) )

subject to:
Zﬁﬂcn_ n1(f1‘|‘f0) _
1 yee s

-+ 1= : (8.10)
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Zgzl Cn — Zﬁlzl(f% + fg)

a—(+ )< = L l=L'+1,...,L, (8.11)
Ll
Y fi=r (8.12)
=1
L
Y =" (8.13)
=1
fi>0,l=1,..., LY fl=01=L"+1,...,L, (8.14)
=20, 1=1,...,L (8.15)

According to eq. (8.8), constraints (8.10)—(8.11) are precisely (8.1)—(8.2), which guarantee
that £1 = NO(f9).
Consider now the following optimization problem, with respect to the total link flow

configuration (f1,..., fr):

Lof
min (8.16)
(f1,e1) =1 ¢ — fl
subject to:
Zg: Cn — Eg: Jfu
Cl_fl: L JE ! ) 1_17"'7[/17 (817)
a—fi < : JE = l=L" 41, L (8.18)
Ll
S h> (8.19)
=1
L
S =R, (8.20)
=1
fi>0, [=1,...,L. (8.21)

Let P1(L') denote the problem described by (8.16)—(8.21), and J*(L') the cost at its optimal
solution, provided that one exists. If P1(L') is infeasible, define J*(L') = co. The cost to
be minimized in P1(L') is a convex function of (fi,..., f), therefore, if an optimal solution

exists, it is unique. Let (f1,..., fr) be the optimal solution of P1(L'). For any strategy f°
of the leader, such that:

! !
Y=Y fi—-r (8.22)
=1 =1

0<fP<fi, l=1,.... L, (8.23)

fi=f, I=0"4+1,...,1L, (8.24)
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it is easy to verify that, if f* is such that f}' = f; — f for all [ € L, then (f° f') is a solution
to the optimization problem (8.9)—(8.15). Moreover, for any solution (f° ') of problem
(8.9)-(8.15), (f1,..., fr) with fi = f + f! for all [ € £ is a solution of problem P1(L').

If % is an optimal strategy of the leader, such that f' = NV°(f°) satisfies (8.3), then the
above analysis shows that the link flow configuration (f1,..., fr) with f; = f + f} for all
[ € L is the solution of P1(L'), for some L' € L. Then, for any L' € £, such that:

L' € arg r]?é%‘]*(N% (8.25)

the optimal solution of P1(L') is an optimal link flow configuration and any f? satisfying
(8.22)—(8.24) is an optimal strategy of the leader. Therefore, an algorithm to determine an
optimal strategy f° of the leader is the following:

1. For every N € L, solve problem P1(N).
2. Find an L' that satisfies (8.25).

3. Let (ft,...,ff) be the optimal solution of P1(L') and choose any f° according to
(8.22)(8.24).

For any N € L, problem P1(N) can be solved using standard convex programming
techniques [LUE84]. In Appendix C, we present a simple iterative algorithm to solve P1(N)
— or determine that it is infeasible — that is based on the explicit solution of the general

single-user routing optimization problem (see Section 4).

9. Conclusions

The practical inability to achieve global cooperation in many modern networking environ-
ments, typically results in an inefficient use of the network resources. This situation might be
prohibitive for future broadband networks that are expected to support numerous resource
consuming applications, such as multimedia. In recent years, a number of methods have
been proposed to overcome this problem. These methods improve the network performance
either through proper design of the resource configuration and/or the service disciplines of
the network, or by introducing some “external” component such as prices.

We proposed a new method for improving the performance of noncooperative networks.
This approach calls for the intervention of a social agent, namely the network manager,
that tries to optimize the network performance, through the limited control that it routinely

employs during the run time phase of the network. Specifically, we considered a network



Achieving Network Optima Using Stackelberg Routing Strategies 29

manager that acts as a Stackelberg leader. The manager controls only part of the network
flow, and is cognizant of the presence of noncooperative users. Considering a system of
parallel links, we showed that, by controlling just a small portion of the network flow, the
operating point of the system can often be driven into the network optimum. In particular,
we demonstrated that a maximally efficient strategy always exists in heavily loaded networks,
i.e., the manager can enforce maximal efficiency when it is most needed. When the users
employ suboptimal shortest-path routing, or when their population is infinite, the manager
cannot, in general, drive the system to the network optimum. For this class of users, we
derived the structure of an optimal strategy of the manager and proposed a simple algorithm
to determine it.

It should be noted, though, that our analysis depends on the specific structure of the
model. The extent to which these results can be generalized is an important subject for
further research. Nonetheless, the ability to obtain efficient strategies for simple networking
models has, per se, important implications. We indicated, for example, that systems of
parallel links appropriately model scenaria that become common in modern networking.
Indeed, current practices tend to decrease the degrees of freedom in networks, as is the case,
for example, when bandwidth is separated among virtual paths. The present work indicates
that such practices make the network less vulnerable to the deficiencies of noncooperation.
This is yet a further indication of the potential benefit of decoupling complex structures in

a network.
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APPENDIX

A. Single-Follower Stackelberg Routing Game

In this appendix we give the proofs of some of the results in Section 5. Recall that, it the
manager employs the strategy f° given by eq. (5.4), then the residual capacity seen by the

follower on any link [ < L' is:

D (e R

G =q i =1

U A (A.1)

Y

Proof of Lemma 5.1: Since the follower sends its flow precisely over the linksin {1,..., L'},
we have G}, < r! < GL1_|_1
Let us first show that Hy: < r'. Using eqgs. (4.8) and (A.1), r' > G}, is equivalent to:

L'-1 L'-1 o — f* Pl
1>[Z_:lcn \/@Z\/—] nl(n fn)—l_ ,

or:
! L' L'—1 !
ri /e Z C, > [Z Cn — \/CIn Z \/_] Z — ). (A.2)
n=1 n=1 n=1
Since L' < L*, taking A = {1,..., L'} in eq. (4.4), we get:
Ll
V= L=V (A.3)

Zg (en = 13)
Thus, (A.2) is equivalent to:

1-1 1-1

= DIRENCED SV B

Let us now proceed to show that r' < Hpi . If Jiig =0, then L™ = L' and Hpigy =
R > 1!, by (5.6). Therefore, we concentrate on the case where f71,; > 0. Using egs. (4.8)
and (A.1), r' <G}, is equivalent to:

_ _ 1
r <Z n lgn e —A/CLi41 — fL1+IZ\/_\/Z m —I_r,
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or, after some algebraic manipulation, to:

2 71 1

1 251: Cp — f; L d *

rt < * l }Zg ) Zc”_z(c”_fn)7
Cripr — fL1.|_1 Zn:1 \/Cn n=1 n=1

and, using eq. (A.3), equivalent to:

1 1 X S
T'l < _ Cp — M A4
- CL1-|-1 _ le+1 )\* nZ::l /)\* ( )
Since fii 4 >0, eq. (2.7) gives cpipy — fiaiy = \Jeri41/A%, and (A.4) is equivalent to:
1 Lt ! GL1
P | Y e = e D Ve | = e = Hpa, (A.5)
VAT erigy |n=1 n=1 VA4
O

Let us now proceed with the following lemma that is used in the proof of Theorem 5.2.

Lemma A.1 Consider the strategy f° of the manager that is given by (5.11) and (5.12).
Then, we have G < 1" < Gpayy.

Proof: From (5.12), we have Hp: < r' < Hjiyq. As explained in the proof of Theorem 5.2,
L' < L*. Then, as shown in the proof of Lemma 5.1, Hr: < r' is equivalent to G}, < r'.

Let us now show that:

7“1 S GlLl-I—l' (A6)

As seen in the proof of Lemma 5.1, if f71,; > 0, then (A.6) is equivalent to r' < Hpiyy.
Therefore, we only need to establish (A.6) in the case where f7,., > 0. In that case, (A.6)

is equivalent to (A.4). Furthermore, (2.8) implies that ¢z — f7i, = epipn < yJepip /A
Thus, to show (A.4) it suffices to show (A.5), which holds true.

B. Multi-Follower Stackelberg Routing Game

In this appendix we present the proof of Lemma 6.3. The proof is given in the following two
lemmata. The first establishes that f° given by eq. (6.1) and (6.2), is a continuous function

of the leader’s demand r°, while the second shows that f{ is an increasing function of r°.

Lemma B.1 The (possibly non-admissible) strategy £° of the leader, given by eq. (6.1) and
(6.2), is a continuous function of r° € [0,C —r].
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Proof: Following the methodology developed in [KOR94], it can be shown that the network
optimum (f5,..., f;) is a continuous function of the total throughput demand R € [0,C)
and, therefore, of the demand r° € [0, C'—r) of the leader. Furthermore, it can be easily seen
that (f,...,fr) is continuous at r° = C' — r, i.e., at the point where the network becomes
saturated, where f;* = ¢, for all links [ € £. Then, eq. (5.5) implies that, for every [ € L,
H, is a continuous function of r® € [0,C — r].

Taking A = {1,...,L*} in eq. (4.4), we get VI* = X, ve/( ¢/ — R). Thus, \* is
increasing in r%,? and eq. (5.6) implies that H; is a decreasing function of r® € [0,C — 7],
for all [ = 1,...,L*. Then, from (6.2), the threshold L' is a nondecreasing (integer-valued)
function of ¥, for all 7 € Z. Since there is a finite number of followers ¢ and L° takes values

in a finite set, this implies that there exists a finite number of points a; < ... < ap in

(0,C —r), such that:

(i) for all 7 in the same interval [0, cq], (m, @mg1], m = 1,..., M — 1, (ap,C — 1] the

threshold L° of every follower ¢ € 7 remains constant, and

(ii) at any point a.,, there exists at least one follower j € 7, for which the threshold
changes from L’ to L7 + 1,'° i.e., according to (6.2):
J

] LI * a,
P = Hopalon) = 3 filo) — 22D 7 (B.1)

CLJ+1 n=1

M -1

(apm, C — 7], since (ff,..., f;) is continuous in r° and all thresholds L' are constant in each

The strategy f° is continuous in every interval [0, a1, (@, @my1], m = 1

9o ey 9

such interval. Therefore, we have to show that it is also continuous at every point a,,
, M.

Let 5 be a follower for which the threshold L changes to L/ +1 at r° = «,,,. Without loss
of generality, assume that j is the only user for which the threshold changes at this point.

m=1,...

By its definition in (6.2), L’ is left-continuous at a,, and so is f°:

L' el ) i
lim flo(ro) — f?(am) — ¢ Z Yot folo,)

It
70 Tam €1 Zn:l Cn

- (]l - 1)f1*(05m)7 lel.

If Z; is the set of followers that send flow on link [ when r® € (a,_1, ], then for

% € (Qm, amy1] the set of followers that send flow on link [ € £\ {L7 + 1} is the same, while

“Note that in view of (4.1), L* is nondecreasing with r°.

1076 simplify the analysis, we assume that ¢; > ... > ¢, so that H; < Hyyq, forall [ = 1,...  L*; cases
where ¢; = ¢;41, for some link [, can be handled based on elementary reasoning.
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for link L7 + 1 it is Zp,,; U{j}. By continuity of (f;,..., f}), for every link [ € £\ {L’ + 1},

we have:

L' g« o LI41 rx — gyl
lim flo(ro):q Z Zn:l n(am) r _I_CZZn:l fn(am) r —(]l—l)f[*(am)v

L Li+1
r0lam €T\ {5} 2 ri=1 Cn Yon=1 Cn
while for link L7 + 1:
ZUZ1 “(ay) — 7t SEHL () — i
%lm fLJ-l—l(r )= criq Z = Z e = L7§-|—1 _]Lﬂ+lfzj+1(am)‘
T lOlm Z'GILJ+1 Z?’L:l CTL Z?’L:l Cn

Therefore, to establish continuity at r° = «,,,, we need to show that:

St falow) =1 S falom) — 17

L3 Li+1
Zn:l cn Zn:-ll— cn

Y

ZLJ:-I-I f* a . rj
CLip1— ! ng_lm) = [Liy1(am).

Zn:l cn
It can be easily verified that both the above equations are equivalent to eq. (B.1). Thus,

0 is also continuous at every point a,,, m = 1,..., M, and this concludes the proof of the

lemma.

a

Lemma B.2 Let f{ be as in eq. (6.1). Then, [ is an increasing function of the throughput
demand r° € [0,C — r] of the leader.

Proof: Let «,,, m = 1,..., M, be as in the proof of the previous lemma. Since f} is
continuous in 7° € [0, C' — r], in order to show that it is an increasing function, it suffices to
show that it is increasing in every interval [0, o1], (@m, amy1], m=1,..., M —1, (apr, C —7],
where the threshold L' of every follower ¢ is constant. Let us concentrate on the case

0 € (@, Qmy1]. From eq. (6.1), f) can be written as:

L’ I ;
2on=1tn _ Z rt
LI

I
Zn:l Cp, =1 Zn:l Cp,

I-1 L * *

0 =1 tn f1
Y SR B.2

fl CI i:l [Zﬁlzl cn Cl —I_ CI ( )

Since, as shown in the proof of Lemma B.1, A\* increases with r°, eq. (2.4) implies that f,

0

[ =1,...,L* is increasing in r’. Therefore, the second term in eq. (B.2) is increasing in

% € (U, @my1]. Solving eq. (2.4) with respect to f/, after some algebraic manipulation one
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can verify that:

Zﬁilf* A Yl cn(v/1 — \/_)<0 ieT.

Zﬁl 16n €1 V A* \/_Zn 16n

Since A* is increasing in r°, this implies that the first term in eq. (B.2) is nondecreasing in

% € (am, @my1]. Therefore, f} is increasing in r° € (@, @my1], and this concludes the proof.

a

C. Simple-Follower Stackelberg Routing Game

In Section 8, it was shown that an optimal strategy of the leader can be determined by
solving the optimization problem P1(L') for all L' € L. In this appendix we develop an
iterative algorithm to solve P1(L'), that is based on the explicit solution of the general
single-user routing optimization problem, that is given by eq. (4.5) and (4.1).

In view of eq. (8.17), (8.16) can be written as:

min {Ll 251:1 N + Z } (C.1)
L) ZLl LT fl ‘

ne1 Cn = 2opmr Jn 2 i+ €

Note also that (8.21) for I = 1,..., L" is equivalent to ¢; > (Y51, ¢, — S50, f.)/LY. Since

cin < ¢, for [ < L', these L' nonnegativity constraints can be replaced by:

Lt Lt
Zn:l n > Zn:l Cn

It - It — Cya. (02)

Define now d, with:

Y

. SE e /Lt 1<I< I
T L'<I1<L

Y

and

1 !
Br1 = max T_anlcn_01 > 0
Ll — Ll? Ll L Y

and consider the following optimization problem in g = (¢1,...,95), that will be denoted by
P2(LY):

L
g
mmz > —lgz (C.3)
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subject to:

dl_gl§d1_917 ZZL1—|—1,...,L, (04)

L
=1

g > 6L17 [ = 17"'7L17 (06)
>0, I=L"+1,...,L. (C.7)

The cost function in (C.3) is convex, therefore, if an optimal solution exists, then it is
unique. Let g be the optimal solution to P2(L"). Then, it is easy to verify that dy = ... = dp
implies g; = ... = gr1. Adding the latter as a constraint to P2(L'), (C.3) can be replaced
by:

L
. g1 g1
min { L* + E . C.8
g { dl_gl I=I141 dl_gl} ( )

Consider now (f1,..., fr), with:

pola-Ehe -t 11l
e , LP<I<L

Then, it is easy to verify that:
Ll
Yo fi=ua, (C.10)
=1

therefore, (fi,..., fr) satisfies (8.17). In view of (C.6), it also satisfies (8.19) and (C.2),
which implies the nonnegativity constraints (8.21) for { < L'. The nonnegativity constraints
(8.21) for I > L' follow from (C.7). Finally, constraints (8.18) and (8.20) coincide with (C.4)
and (C.5), respectively. Therefore, (fi1,..., fr) satisfies the constraints of problem P1(L').
Since the cost functions in (C.1) and (C.8) are equal (according to (C.10)), we conclude
that (fi,...,fr) is the optimal solution of P1(L'). Similarly, if (fi,..., fr) is the optimal
solution of P1(L'), then g with ¢ = 251:1 fo/ LY for | < L' and g = f; for [ > L' is the
optimal solution of P2(L').

Note that problem P2(L') is a modified version of the problem of optimally routing a
throughput demand of R over a system of parallel links with capacity configuration d. In
P2(L'), the flow at each link [ < L' is required to be higher than a positive constant (by
(C.6)), and the residual capacity of each link [ > L' is required to be less than the residual
capacity of link 1 (by (C.4)). In the sequel, we develop an algorithm to find the optimal
solution of P2(L'), provided that one exists, based on the explicit solution of the general

routing optimization problem, that has been presented in Section 4.
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Let g be the optimal solution of P2(L'). Let us start by showing that:
dl_ngdl-I—l_gl-l—la ZZLI—I-l,...,L—l. (Cll)

To see this, assume that there is some n > L' 4+ 1, with d,, — ¢, < dpy1 — Gny1 < di — ¢1.
Then d,, > d,41, since d,, = d, 11 would contradict the first inequality. Consider now g, with
In = Gnr1 + dn — dpt1y Gny1 = o — dy + dpyq, and g = gp, for all [ £ n,n + 1. It is easy
to verify that g satisfies the constraints of P2(L'). If J and J are the costs under g and g,
respectively, then J—J= (dy — dpr))[(dns1 — Gnr1) ™t — (d — g4) 7] < 0, which contradicts
the optimality of g.

Denote the optimal solution of the problem of optimally routing demand R over d by g*.
As shown in [ORD93], g* satisfies (C.4) for all [ € £. Thus, if g] > S, g* is the optimal
solution of P2(L'), i.e., g = g*. Suppose now that g7 < f71. Then, g, = (1, since it is easy
to verify that ¢; > 1 would imply g = g*, and thus fp1 < ¢1 = g7 < Sri. In this case, the
cost at each “link” [ < L' is fixed — recall that ¢, = ... = ¢g;1 —and (gr141, ..., gr) minimizes
the total cost over {L' + 1,..., L}, subject to the constraints. Let g(1) be the solution to
the problem of optimally routing demand R — L'f;1 over (dpiyq,...,dr). Suppose that
driy — g?) < dy — Bp1. From (C.11), g with ¢ = B for | < L' and ¢, = gl(i)Ll for [ > L*
satisfies the constraints of P2(L'), thus it is its optimal solution. Similarly, if dyi, — g?) >
dy— PBra, then dri gy —griy = di— Bra,ttie., graqy is fixed and (gri49, - .., gz) minimizes the
total cost over {L' +2,..., L}, subject to the constraints. Proceeding inductively (in view
of (C.11)), we either determine the optimal solution g, or conclude that P2(L') is infeasible.

The above discussion shows that an iterative algorithm to solve P2(L') is the following:

Step 0: Find the solution g* of the problem of optimally routing demand R over d. If
gy > Pri, then set g = g* and go to Final Step. Otherwise, set:

g1 =P, RY=R—L'3n,

and proceed to Step 1.

Step n: If R < 0, stop; P2(L') is infeasible. If R = 0, set gpiyy=0forl=mn,..., L—L
and go to Final Step. If R(®) > 0, find the solution g™ of the problem of optimally routing
demand R™ over (diii,,...,dr).

If dpiy, — gYL) < dy — Br1, then set g1, = 9727:-)1—17 l=mn,...,L — L' and go to Final

HTt is easy to see that drirq — ¢riyq < di — Br1 implies that @ = Jrit1,--.,95), which contradicts
+ + g +
1
dL1-|—1 —gg ) >dy — Bra.
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Step. Otherwise, set:
9ripn = driy, — (dl - 5L1)7 R0 = R — 9ri4n-

If gr1q, <0, stop; P2(L') is infeasible. Otherwise, proceed to Step n+1 if n < L — L', or
to Final Step if n = L — L'.

Final Step: If Y2, ¢ = R, then g is the optimal solution of P2(L'). Otherwise, the

problem is infeasible.
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