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This presentation considers how the peculiar structure of the biological brain may be
supported by the computational power of the computer to enhance mathematical
thinking. It considers how we think and learn mathematics with particular reference to
the use of visualisation and symbol manipulation. Visualisation occupies a major
portion of the brain’s cortex and enables Homo Sapiens to ‘see’ how ideas can be
formed and related.

Mathematical symbols in arithmetic,
algebra, calculus particularly suit the
biological brain, acting as pivots between
concepts for thinking about mathematics and
processes to calculate and predict. We use the
term ‘procept’ to describe this particular
combination of symbol as process and
concept. Analysis of procepts reveals that the
development of symbols does not follow an
easy cognitive path for the growing individual
because they operate in significantly different
ways in arithmetic, algebra and the calculus.
We therefore advocate a versatile approach
that complements the visualisation of concepts
with the power of symbolic calculation to
model, calculate and predict. Empirical evidence is provided to show how theory
relates to practice when the computational computer is used to enhance and develop the
power of the mathematical mind.

INTRODUCTION

After several million years of humanoid evolution and a hundred thousand years of Homo Sapiens,

the development of the computer has taken but a few decades. The carbon-based brain and silicon-

based computer work in very different ways. It is the purpose of this presentation to relate the ways

in which the two systems work to enhance the mathematical thinking processes of the individual. I

will use the term mathematical mind to refer to the manner in which the processes and concepts of

mathematics are conceived and shared between individuals. The discussion of the mathematical

mind will focus both on the mathematical structure that is overtly shared by the mathematical
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community and also on the underlying manner in which our biological mental structure handles

these ideas. First therefore we consider what is known of the biological operation of the brain, build

on this to develop theories of the mathematical mind, then consider how this interacts with the

computer in developing and enhancing mathematical thinking. This discussion will be supported by

evidence from empirical research in using the computer in mathematics education in a variety of

different ways. In particular, we will consider how the computer may be used to enable the brain to

operate in a versatile manner using visual imagery to complement the manipulation of symbols.

BRAIN , MIND AND COMPUTER

The Biological Brain

The last decade of the last millennium was dedicated as ‘the decade of the brain’. During this

period, those interested in research into brain activity made a concerted effort to understand how

the brain works and to make their findings available to a wider public.  Some of this research was

directed towards understanding in mathematics, often focused on empirical studies of brain activity

in arithmetic, such as The Number Sense by Stanislas Dehaene (1997), or The Mathematical Brain

by Brian Butterworth (1999). These and a number of other popular books on the subject (Edelman

(1992), Pinker (1997), Greenfield (1997), Carter (1999), Devlin, (2000)) offer tantalizing insights

into the structure and operation of the biological brain. For instance, a newborn child already has

the mental structure for a primitive numerosity to cope with numbers up to three based on its built-

in ability to identify and track a small number of objects. But, as Dehaene has responded privately

by e-mail, the possibility of getting actual physical evidence of how the brain copes with higher

mathematical constructs is still in the future. In building up a theory of mathematical mind, we

therefore rely on theoretical constructs that are designed to correspond to what is known about the

way in which the biological brain works.

The brain is a complex multi-processing system. To simplify thinking processes, regular

activities are routinised so that they require less brain activity and we do not have to attend to them

consciously:

As a task to be learned is practiced, its performance becomes more and more automatic; as this
occurs, it fades from consciousness, the number of brain regions involved in the task becomes
smaller. (Edelman & Tononi, 2000, p.51)

The remaining complexity is made more manageable by suppressing less important detail:

The basic idea is that early processing is largely parallel – a lot of different activities proceed
simultaneously. Then there appear to be one or more stages where there is a bottleneck in
information processing. Only one (or a few) “object(s)” can be dealt with at a time. This is done
by temporarily filtering out the information coming from the unattended objects. The
attentional system then moves fairly rapidly to the next object, and so on, so that attention is
largely serial (i.e., attending to one object after another) not highly parallel (as it would be if the
system attended to many things at once). (Crick, 1994, p. 61)

Thus routine processes are performed subconsciously while the conscious ‘focus of attention’ or

‘short-term working memory’ attends to the important aspects. This can be made even more
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efficient by making the conscious elements as ‘small as possible’. This can be done using words, or

even more efficiently, symbols:

I should also mention one other property of a symbolic system – its compactibility – a property
that permits condensations of the order F = MA or S = 1

2 gt2, …in each case the grammar being
quite ordinary, though the semantic squeeze is quite enormous. (Bruner, 1966, p. 12.)

It is by a combination of these phenomena that it becomes possible for the biological brain to

become a mathematical mind.

Mathematical Mind

During the last two decades my colleagues and I have introduced a number of constructs to describe

and explain the cognitive operation of the mathematical mind. These include:

• the concept image, which refers to the total cognitive structure in an individual mind

associated with the concept, including all mental pictures, associated properties and

processes (Tall & Vinner, 1981),

• a theory of cognitive units (the mental chunks we use to think with, and their related

cognitive structure). (Barnard & Tall, 1997).

A particular type of cognitive unit which is highly important in mathematics is:

• the notion of procept, referring to the manner in which we cope with symbols

representing both mathematical processes and mathematical concepts. (Gray & Tall,

1994). Examples include 3+5, ax2+bx+c, 
d

dx
e xx sin( ), or 

x

n

n

n !=

∞

∑
0

.

The notion of concept image has proved a most valuable construct in contrasting the activities of

the mathematical mind and the computer. Whilst the computer is confined to the algorithms to carry

out computations and represent solutions in numbers and pictures, the mathematical mind has all

kinds of associations within the multi-processing brain. For instance the concept of ‘function’ not

only has the properties given by the definition, its image includes links to a range of other ideas.

These may include the notion that a function must be given by a single formula, its graph is smooth,

it has a domain consisting of all the points where the function is defined, and its graph has a

recognisable shape (such as those of polynomials, trigonometric expressions, exponentials and

logarithms) (Vinner, 1983, Bakar & Tall, 1992).

The notion of procept and the more general notion of cognitive unit are powerful ways of

describing how the mathematical mind handles mathematical concepts. Procepts can be seen in

action when a child calculates 8+6 as 8+2+4=10+4=14, with the procept 6 seen equivalently as

2+4, then the expression 8+2+4 seen in a different way as 8+2 (=10) and 4, giving 14.

Symbols as procepts therefore operate in a manner that is ideally suited to the biological brain.

They can be used as tokens that are easily accommodated by the limited focus of attention, and they

can also be used to evoke processes that are performed largely subconsciously, leaving the

conscious attention to focus on more important matters.
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The brain is not naturally configured for rapid and efficient arithmetic (Dehaene, 1997). Instead

it often uses meaningful links between cognitive units. For instance, when my colleague, Shaker

Rasslan was discussing an algorithm for divisibilty by seven, I found myself responding not in

terms of the division algorithm but in terms of associated number facts. He asked me if 121 is

divisible by seven, I replied ‘no, because it is eleven squared’, evoking not only the factors of 121,

but implicitly appealing to uniqueness of factorization.

I replied to the divisibility of 131 by 7 saying ‘no, because it is 140 take away 9’. The number

119, caused me a problem. I associated it with the non-divisibility of the nearby number 121 but, of

course this is of no help. I resorted finally to the division algorithm to find 119 divided by 7 is 17.

However, my mind did not stop there, I saw new relationships—17 times 7 is 10 sevens and 7

sevens, which is 70+49=119, or it is 20 sevens take away 3 sevens, which is 140–21=119. I was

happy once more. My mathematical mind had perceived patterns that ‘made sense’ to me, using the

rich (yet limited) concept image I had developed for the number 7.

Mathematical thinking is therefore more than knowing procedures ‘to do’. It involves having a

knowledge structure which is compatible with the biological structure of the human brain, with its

huge store of knowledge and internal links, and its way of coping with the profusion of

simultaneous activities by using a manageable focus of attention.

In The Humane Interface (2000), Jeff Raskin (the designer of the Macintosh Computer) refers to

this as the locus of attention, to indicate that the choice of items to attend to may not always result

from a conscious decision. He suggests that the locus of attention can only focus on one thing at a

time. Whilst a case can be made for this, it is not always evident how many different things are in

focus simultaneously. For instance, the focus may be on the relationship between two different

things. This may be calculated as one thing (the relationship), but it also requires close access to the

two entities being related, a total of three things—the two entities and the relationship between

them. In my own theoretical formulation, I therefore consider that the focus of attention

concentrates on a small number of items (cognitive units) at a time. Powerful thinking arises out of

the use of linkages both within the units themselves and between the units.

Consider, for example, the notion of ‘linear relationship’ between two variables. This might be

expressed in a variety of ways

• an equation in the form y=mx+c,

• a linear relation Ax+By+C=0,

• a line through two given points,

• a line with given slope through a given point,

• a straight-line graph,

• a table of values,

and so on. Crowley (2000) (reported in Crowley & Tall, 1999) reveals how successful students

develop the idea of ‘linear relationship’ as a rich cognitive unit encompassing most of these links as
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a single entity, whilst the less successful simply carry around a ‘cognitive kit-bag’ of isolated tricks

to carry out specific algorithms. The cognitive kit-bag may get the student through the examination,

but it is too diffuse to build on in later courses and students may soon reach a point where the ideas

they are handling place too great a cognitive burden, leading inexorably to failure.

Computational computers

The computer is quite different from the biological brain and therefore can be of value by providing

an environment that complements human activity. Whilst the brain performs many activities

simultaneously and is prone to error, the computer carries out individual algorithms accurately and

with great speed. Computer calculations with numbers and manipulation of symbols has some

similarities with the notion of procept. Internal computer symbolism is used both to represent data

and also to perform routines to manipulate that data. However, there are significant differences. The

computer is simply a device which manipulates information in a way specified by a program. It has

none of the cognitive richness (or baggage) of the concept image available to the human mind to

guide (or confuse) problem-solving activities.

The simplest facilities involve the programming of the four rules of arithmetic, now readily

available everywhere on hand-calculators. More sophisticated use of evaluations of algebraic

expressions provide software environments such as spreadsheets to carry out desired calculations

using given values in various cells.

The manipulation of symbolic expressions is more subtle. Not all that long ago, a colleague of

mine, an eminent mathematician, saw the processes of solving equations and performing the rules

of calculus required the intelligence of a human mind to operate them. He told me he had “a zoo of

functions and techniques” in his head and he selected intelligently from them to perform the

operations of symbolic calculus. He was amazed with the arrival of computers and the realisation

that symbol manipulation could be reduced to the level of mechanical algorithms. Of course, they

are different algorithms from those of arithmetic. The simplification of expressions involves as

allowing an expression such as X*(–Y) to be replaced by the expression –(X*Y) where X and Y are

themselves expressions. Symbol simplification utilises a list of interchangeable symbols recursively

to obtain a simpler equivalent result. Formulating the appropriate list is non-trivial and subsequent

versions of software have shown successive improvements. For instance, an early version of

Derive, simplified

     n  n
(x+h) -x
---------
    h

to give

     n    n
(x+h)    x
----- - --- .
  h      h

and the limit option applied to this expression, as h tends to 0, gave not nxn-1, but

 n LN(x)-LN(x/n)
ê               .

The current version of Derive has added a new rule to simplify this expression further to give
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   n–1
n x   .

The internal handling of symbols needs to be performed as a finite algorithm and can be quite

different from those used by the mathematical mind. For instance, whereas a mathematician might

compute a limit such as

lim
sin

x

x

x→0

from first principles, perhaps using a visual argument supported by a concept image of the graph of

sin x , a symbol manipulator is likely to use L’Hôpital’s rule to get

lim
sin

lim
(sin )

( )
cos

x x

x

x

D x

D x→ →
= = =

0 0

0
1

1.

The person using the software may have no idea of the internal mechanisms so a learner is unlikely

to build up proceptual relationships without other experiences.

Relationships between Brain, Mind and Computer

Given the constraints and support in the biological brain, the concept imagery in the mathematical

mind can be very different from the working of the computational computer. A professional

mathematician who has mathematically formed cognitive units may use the computer in a very

different way from the student who is meeting new ideas in a computer context. For example,

mathematicians can make insightful use of symbol manipulators in all kinds of ways to support

their already formed mathematical imagery. But students using such software have to make sense

of what is going on using only their internal cognitive structure and the external guidance of the

teacher.

Focusing on certain aspects of an activity and neglecting others may cause the neglected items to

atrophy. Hunter, Monaghan & Roper (1993) observed that students using Derive on hand-held

computers to draw graphs of functions did not need to substitute numerical values for the

independent variable to get a table of values to draw the graph. As a result, they had little practice

of numerical substitution. This had unforeseen consequences. Some students who could calculate

by substitution before the course were unable to do so afterwards. The students were asked:

‘What can you say about u if u=v+3, and v=1?’

None of the seventeen students improved from pre-test to post-test and six successful on the pre-

test failed on the post-test.

Furthermore, students see the mathematics through the embodied actions they perform within

their context of action. A symbol manipulator replaces the mathematical procedures of

differentiation by the selection of a sequence of procedures in the software. For instance Derive

requires the user to take the following sequence of decisions carried out by touching the appropriate

keys:
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• select Author  and type in the expression,

• select Calculus, then Derivative,

• specify the variable (e.g. x),

• Simplify  the result.

What happened in a comparison of two schools in the UK, one following a standard course, one

using Derive is as follows:

Please explain the meaning of lim
( ) ( )

h

f x h f x

h→

+ −
0

.

… All the students in school A gave satisfactory theoretical explanations of the expression but
none gave any examples. However, none of the Derive group gave theoretical explanations and
only two students [out of seven] mentioned the words ‘gradient’ or ‘differentiate’. Four of the
Derive group gave examples. They replaced f(x) with a polynomial and performed or described
the sequence of key strokes to calculate the limit. (Monaghan, Sun & Tall, 1994.)

The result is that the students using the symbol manipulator saw differentiation as a sequence of

keystrokes applied for a specific symbolic expression, rather than a conceptual idea of ‘rate of

change’.

To consider how the computer is used to develop conceptual insight into mathematical concepts,

we need to first consider the manner in which the mathematical mind handles the development of

symbols in the mathematics curriculum.

COGNITIVE DEVELOPMENT OF SYMBOLS

The mathematical mind uses symbols in a way that is dictated by the workings of the underlying

biological brain. Although the mathematical development from arithmetic through algebra, calculus

and on to axiomatic mathematics seems to be coherent and logical in a mathematical sense, the

cognitive development is more complex. For example, all procepts have ingredients that allow the

individual to switch between process and concept, however, they behave in very different ways:

 (1) arithmetic procepts, 5+4, 3×4, 1
2

2
3+ , 1·54÷2·3, all have built-in algorithms to obtain

an answer. They are computational, both as processes and even as concepts. For

instance in the sum 8+6, the concept 6 can be linked to the operation 2+4, which can

be combined in the sum 8+2+4 to give 10+4 which is 14.

(2) algebraic procepts, e.g. 2+3x, can only be evaluated if the value of x is known. Thus

an algebraic procept has only a potential process (of numerical substitution) and yet

the algebraic expressions themselves represent manipulable concepts (manipulated

using algebraic rules of equivalence).

Meaningful power operations such as

2 2 2 2 2 2 2 23 2 5× = × × × × =( ) ( )

can act as a cognitive basis for the power law

x x xm n m n× = +
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valid for all real x and for whole numbers m, n. This then leads to a new use of

symbols as procepts:

(3) implicit procepts, such as the powers x
1

2 , x0 or x−1 , for which the original meaning

of xn no longer applies. (For instance, we can hardly speak of ‘half an x multiplied

together’, or ‘no xs multiplied together’— surely on xs must give zero— or even

‘minus one xs’.This is as foolish as talking about ‘minus one cows’.) Many students

are confused by this use of symbolism that has—for them—no meaning. The lucky

few see that the power law can be generalised and used as an axiomatic basis for

deduction. Thus, for m n= = 1
2 , we get

x x x x
1

2
1

2 1× = =
from which we may deduce that x x

1
2 = . Some find this an attractive and appealing

generalisation. But for many it is meaningless. The meaning is being deduced from a

law that they do not know is true from their experience of the world, so for them it is

confusing to base their deductions on something they do not understand.

(4) limit procepts, such as lim
x a

x a

x a→

−
−

3 3

 or 
1

2
1 nn=

∞

∑  have potentially infinite processes

‘getting close’ to a limit value, but this may not be computable in a finite number of

computation.

(5) calculus procepts, such as 
d x e

dx

x( )2

 or sin cosmx nx dx
0

π

∫  are more familiar in the

sense that they (may) have finite operational algorithms of computation (using

various rules for differentiation and integration).

These successive changes in meaning can cause serious discontinuities in building up knowledge.

Success in arithmetic accrues to those who build up rich cognitive units for number concepts,

failure is far more likely to result for students who remain entrenched in the procedures of counting

(Gray &  Tall, 1994). The move to algebra proves difficult for students who see the symbols only as

processes of numerical evaluation and are less able to think of expressions as manipulable concepts.

Davis, Jockusch and McKnight (1978) noted the difficulty seventh-graders have in understanding a

symbol such as ‘7+x’, as they complain, ‘But how can I add 7 to x, when I don’t know what x is?’

This can lead to attempts at coping through rote-learning of rules which may then be applied in

the wrong context. For instance, the rule to compute 3a2 × 4a3  to give 12a5 by ‘multiplying

numbers and adding powers’ may be used inappropriately in arithmetic to compute 32 × 43  as 125 ,

or the idea that a fraction such as 
12
6

 is correctly computed by dividing 12 by 6 is misapplied to

a12

a6 , by seeing the division bar as an instruction to divide the numbers to get a2  (Anderson, 1997).

Limit procepts cause widespread problems because they are seen as an unfinished process rather

than a completed concept. Thus the sequence 1 1
2

1
4

1
2 1+ + +…+ +…−n  is seen not as representing a
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fixed number but as a growing quantity which is ‘just less than 2’. Likewise, the infinite decimal

‘nought point nine repeating’ is seen as ‘just less than one’ because, ‘no matter how many places

you take, it is never actually equal to one.’ In this way students gain concept images of limits as

being ‘arbitrarily close’ or ‘arbitrarily small’ or ‘arbitrarily large’, envisaging a number system

which has infinitesimals and infinite quantities within it (Cornu, 1992). Monaghan (1986) found

that students conceived of a variety of different kinds of numbers—‘proper’ numbers, such as

whole numbers and familiar fractions, and ‘improper numbers’ such as infinite decimals, which ‘go

on forever’.

The shift from informal computational mathematics to formal axiomatic mathematics poses a

new problem to the biological brain. Since the brain already has knowledge of many concepts, a

definition (in a dictionary sense) is simply a way of identifying an already existing concept. The

idea of defining a concept and then constructing its properties is quiet foreign. For example, when

students have mental images of number lines with infinitesimal quantities on them, it is not easy for

them to accept the axiom of completeness as it is contrary to the experiences of their biological

brain (Li & Tall, 1993). There is another major shift in moving to axiomatic definitions and logical

deductions to produce theorems. This involves not only the process of proof, but the concept of

theorem, in which the (consequences of) theorems can be considered as entities that are logically

manipulable to produce further theorems in a fully axiomatic theory. It has a structure which is

quite different from their earlier experiences with numerical calculation and symbol manipulation.

It shares many ideas in common with Euclidean proof (definitions, statements of theorems and

deduction of consequences building a systematic theory). But it reveals a significant change from

the developments of arithmetic, algebra and symbolic calculus. (See figure 2, based on Tall et al.,

2000.)

Formal definitions
and proof

(dynamic limit concept)

calculus

(implicit algebraic concepts)

Algebra

Arithmetic

defined properties (axioms and definitions)
logical processes (deductions)
formally constructed concepts (theorems)

computational processes (rules)
manipulable concepts (formulas)

potentially infinite processes
arbitrarily small, close, or large concepts

(variable quantities)

potential processes (evaluating expressions)
manipulable concepts (expressions)

implicit processes (generalised properties)
manipulable concepts (generalised expressions)

computational processes (arithmetic)
computational concepts (numbers)

Figure 2 : changing meaning of symbols in arithmetic, algebra, calculus, and formal proof
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The development of symbol sense throughout the curriculum therefore faces a number of major re-

constructions which cause increasing difficulties to more and more students as they are faced with

successive new ideas that require new coping mechanisms. For many it leads to the satisfying

immediate short-term needs of passing examinations by rote-learning procedures. The students may

therefore satisfy the requirements of the current course and the teacher of the course is seen to be

successful. However, if the long-term development of rich cognitive units is not set in motion,

short-term success may only lead to increasing cognitive load and potential long-term failure.

COMPUTER ENVIRONMENTS FOR COGNITIVE DEVELOPMENT

Generic organisers

Given the many difficult transitions in the development of symbols and the consequent likelihood

of increasing procedural thinking, we should consider ways in which we can enhance the students

thinking processes to give richer cognitive units. The computer is powerful here because it can

carry out any algorithms quickly and efficiently and represent the final result in a range of different

representations. For example, the results may be represented visually and manipulated physically

using a mouse to enable the student to build up embodied relationships that are part of a wider

richer conceptual structure. This led me to design what I term ‘generic organisers’.

• a generic organiser is an environment (or microworld) which enables the learner to

manipulate examples and (if possible) non-examples of a specific mathematical

concept or a related system of concepts. (Tall, 1989).

Generic organisers may be computer programs that give immediate feedback to the users

explorations. They may also be physical objects such as Dienes’ Blocks used in primary schools for

exploring the concept of place value in different bases. Usually (but not always) they have visual

and physical aspects that link to the fundamental workings of the human brain, its sensory inputs

and subsequent actions.

An example which proved most valuable in making sense of the notion of variable as both

process of evaluation and concept of expression is given in Tall and Thomas (1991). Realising that

children were failing to give appropriate meaning to algebraic expressions, we introduced a

physical game using a ‘cardboard computer’ to represent the storage of variables. The cardboard

computer consisted of two large pieces of card, one being the ‘screen’ and the other being for

‘storage’, the latter having a number of small boxes on it for storing values. When an instruction

was placed on the ‘screen’ the children acting as operators carry out the desired operation, storing

and calculating expressions. For instance, if the command “A=1” is issued, the operators look for a

box marked with the letter A—if not, they mark such a box by placing a small piece of card with

the letter ‘A’ beside it—and then place a piece of card with the number ‘1’ inside the box. If the

next instruction is ‘B=A+2’, they set up a new store B, look inside store A, add two to the value,

and place the result ‘3’ in store B. The command ‘PRINT B+1’ would then cause the operators to
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look in store B, add on 1, then put the resulting number 4 on the ‘screen’. This physical game

concentrates on the students carrying out the processes of storage and evaluation. It can be used to

illustrate equivalent expressions, by using, for instance, by inputting various values of A and then

issuing instructions PRINT 2*(A+1), PRINT 2*A+2, to find that this always gives the same

answer. The physical game is then  linked to programming variables in BASIC, using programs

such as INPUT A: PRINT 2*(+1):PRINT 2*A+2, to see that the two different looking expressions

which represent different procedures of calculation always output the same value. Notice that the

‘sense’ of what is going on here focuses not on the actual procedures of calculation (the computer

now does this internally) but on the results of the computation. The results are the same even

though the symbolism and the procedures are different. In this way, the brain can focus on the

important aspect of the situation (that two expressions always give the same results) in a way which

is consonant with the manner in which the brain operates. It focuses on the important structure

(provided always that the student actually sees this aspect of the structure) and helps the brain

recognise that different expressions can be equivalent in the sense that they always give the same

result. The computer complements brain activity by carrying out the operations internally and

presenting the results so that the brain can focus on the displayed idea.

Cognitive roots

Designing generic organisers requires the selection of an important foundational idea to focus on.

However, this idea is not a mathematical foundation for the theory. If it were, then the notion of

limit would be used as a foundation for the study of calculus and we have shown earlier that the

limit procept is seen by many students in terms of a potentially infinite process or as a variable

quantity that is ‘abitrarily close’ or ‘infinitessimally small’.

Instead the introduction to the calculus requires a concept in the mathematical mind that is

embodied in the biological brain. For both initial and also long-term success, a starting point is

required which is both familiar to the student and also enables the student who wishes to take a

deeper look into the theory to develop ‘appropriate’ intuitions. With this in mind I formulated:

• the notion of cognitive root (Tall,1989) as a cognitive unit which is (potentially)

meaningful to the student at the time, yet contain the seeds of cognitive expansion to

formal definitions and later theoretical development.

Cognitive roots for the calculus are simply the notion of local straightness (for rate of

change/differentiation) and area under the graph (for cumulative growth/integration). The notion of

local straightness was taken as the foundation of a generic organizer called Magnify, which allows

the user to home in on a graph and draw a magnified portion in a second window. Once the concept

of “seeing” the changing gradient of a locally straight curve is met, it is possible to have a second

generic organiser which steps along the curve and plots the changing gradient.

The software can be even more powerful when designed as an environment for student

exploration, teacher demonstration, and reflective discussion. Figure 3 shows a graph in the main
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window and a magnification of part of it in a second window. Here the graph in the second window

still looks curved, but a further magnification will see it beginning to ‘look straight’.

Figure 3 : Magnifying a (locally straight) graph to see how steep it is

If the software allows the user to step along the curve in the first window, redrawing the second

window each time, then the user can feel and see the changing gradient along the curve. The notion

of ‘local straightness’ is a cognitive root because it allows the gradient function to be seen as the

changing gradient of the graph itself.

Lakoff and Johnson (1999) contend that all human thought is embodied, that is it is ultimately

based on the activity of the human brain whose evolutionary design builds on bodily sensations and

physical activity. This use of ‘local straightness’ is a deeply embodied concept. It is in tune with the

basic functions of human perception and action. A vivid illustration of the embodied basis for

thought arose in an episode in a calculus course where the teacher asked his students to use their

knowledge of the derivative to determine the local maxima and minima of a given function. He

drew a curve on the board with a local maximum and minimum, tracing along it with his finger

rising, falling, then rising again. One of the students waved his hand up and down, tracing the shape

of the curve passing over the maximum and said that the gradient would be positive before and

negative after (Tall, 1986). This conception of a maximum is therefore more than just a learned

response, it is an embodied conception that is based on the individual’s fundamental being.

I see the notion of local straightness to be more important than just illustrate the generic idea of

pictorial gradient at times when it happened to work. To refine the meaning, non-examples were

given of graphs which have corners, or are very wrinkled that they never look straight, providing

anchoring concepts for non-differentiability (figure 4).
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Figure 4: A graph which nowhere looks straight

Local straightness is therefore a profound embodied representation of the notion of gradient of a

graph which appeals directly to the sense of vision and the mental images of curves. It can also be

used to give insights into highly subtle ideas. For instance, iff x( ) is any differentiable function and

n x bl x( ) ( ) /= 1000 1000 is a tiny wrinkled blancmange, and f x n x( ) ( )+  is nowhere differentiable

(highly magnified it reveals the tiny wrinkles). Thus two graphs f x( ), f x n x( ) ( )+  look identical at

a standard scale, but one is differentiable everywhere and the other nowhere (figure 5). This begins

to move us from mere visualisation to more formal reflection. You cannot see the gradient, unless it

is assumed that the picture is a faithful representation of the changing gradient with no tiny hidden

wrinkles. This reveals the necessity of moving on from the visual basis of ideas to a more exact

description of the functions in a precise sense.

This shows that the generic organiser Magnify can be used not only to get an informal idea of

visual gradient, but also, with a little imagination, can demonstrate that the visual perception needs

Figure 5: A familiar smooth-looking graph which magnifies to look ‘rough’ (Tall et al 1990)
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to be supported by something more substantial to develop a logically watertight theory. More

generally, I expect all generic organisers to ‘contain the seeds of their own destruction’ in the sense

that they are sufficiently sophisticated to show the limitations of their modelling process and the

need for a fuller theoretical approach.

Embodied Local Straightness and Mathematical Local Linearity

The embodied notion of ‘local straightness’ is quite different from‘local linearity’ as used in most

reform college calculus books. ‘Local straightness’ is a primitive human perception of the visual

aspects of a graph. It has global implications as the individual looks along the graph and sees the

changes in gradient, so that the gradient of the whole graph is seen as a global entity.

Local linearity, on the other hand, focuses more on what happens at a single point on the graph,

having a linear function approximating the graph at that point. It is only when the concept of

(symbolic) linear approximation is encapsulated to focus on its gradient, that the student is allowed

to vary the point to give a global gradient function. It is a mathematical formulation of gradient,

taken first as a limit at a point x, and only then varying x to get the formal derivative. Local

straightness remains at an embodied level and links readily to the global view.

I see many mathematicians confusing these two quite distinct ideas, one intuitive and insightful,

that can be used to ‘see’ highly subtle theoretical ideas in a meaningful embodied sense, the other

formal and mathematical. We mathematicians with our mathematical minds full of logical

formalisms are sometimes blind to the simple embodied realities that appeal to the biological brain

and are capable of giving insights that can later underpin formal theory in the mathematical mind.

As an example, consider the inverse problem to that of differentiation. (No, this is not

integration!) The problem is this—if I know the gradient of a function at any point, how can I build

up the graph that has that gradient? In traditional calculus this is given in terms of linear differential

equations in the form
dy

dx
F x y= ( , ).

In traditional symbolic calculus this is attacked by a rag-bag of specific techniques suitable for a

small number of types of differential equation. The meaning is (usually) lost. But the embodied

meaning is plain. It is this: If I point my finger at any point ( , )x y  in the plane, then I can calculate

the gradient of the solution curve at that point as m F x y= ( , ) and draw a short line segment of

gradient m through the point ( , )x y . This is a perfect opportunity to design a generic organiser on

the computer. Simply write a piece of software so that when the mouse points at a point in the

plane, a short line segment of the appropriate gradient is drawn, and as the mouse moves, the line

segment moves, changing its gradient as it goes. As the solution curve is locally straight (because it

has a gradient!) this line segment is part of the solution (at least, it approximates to part of a

solution). The software allows the segment to be left in position by clicking the mouse. Hence by

pointing and clicking, then moving the line segment until it fits with the end of the curve drawn so
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far, an approximate solution curve can be constructed by sight and hand-movement—an embodied

link between a first order differential equation and its solution. (See Figure 6.)

Continuity

In Tall, (1985), I showed how the notion of continuty can be illustrated for a real function All that

is required is to stretch the graph much more horizontally than vertically.  In figure 7 we see the

blancmange function with a rectangle that is tall and thin. This is stretched to give the picture in

figure 8. It can be seen that the graph ‘pulls flat’ and that further stretching will flatten it

Figure 6: A solution of a first order differential equation built by hand,

supported by software (using Bloklandet al (2000))

Figure 7: The blancmange graph and a

rectangle to be stretched to fill the screen

Figure 8: The blancmange function

being stretched horizontally.
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horizontally. The translation from this

embodied notion of continuity to the formal

definition is not very far. Imagine the graph is

drawn in a window with (x0, f(x0) in the centre

of the picture, in the centre of a pixel height 2ε.

Suppose it ‘pulls flat”. Then the graph lies in a

horizontal row of pixels and if the window is

now of width 2δ, we have:

x x− <0 δ  implies f x f x( ) ( )− <0 ε [QED].

Think what happens when a very thin strip

of area under a curve of width h is stretched

horizontally. It gives a rectangle width h,

height f(x) (figure 9.) This can be used to show

that the derivative of the area is f(x), giving a pictorial version of the Fundamental Theorem. (Think

about it!)

Embodied area and formal Riemann and Lebesgue integration

Just as the cognitive root of ‘local straightness’can be used to lead to more sophisticated theory, so

the embodied notions of ‘area’ and ‘area-so-far’ can support Riemann and even Lebesgue

integration. The use of technology to draw strips under graphs and calculate the numerical area is

widely used. With a little imagination, and well-planned software, it can be used to give insight into

such things as the sign of the area (taking positive and negative steps as well as positive and

negative ordinates) and to consider ideas such as how the notion of continuity relates to the notion

of integration. For these ideas, I refer the reader to selected papers such as: Tall (1985, 1991a, 1992,

1993, 1995, 1997), These may be downloaded from my web-site:

http://www.warwick.ac.uk/staff/David.Tall

I conclude this presentation by showing a few

visual examples of various sophisticated

concepts in mathematical analysis.

The blancmange function is continuous (Tall,

1982), and therefore its area function is

differentiable. Figure10 shows the numerical

area function for the blancmange and the

gradient of the area function. This looks like

the original graph. Of course it does, because

the derivative of the area is the original

function again.
Figure 10: the area function of the blancmange

and the derivative of this area (from Tall, 1991b)

Figure 9: Area under sinx from 1 to 1.001

stretched horizontally
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Another much more interesting situation is to consider the ‘area’ under a function which has a

number of discontinuities. The function x–int(x) is discontinuous at each  integer and is continuous

everywhere else. The area function is continuous everywhere and is also differentiable everywhere

that the original function is continuous (figure 11). However, at the integer points, if the graph of

the area function is magnified, it can be seen to have a corner at each integer point, because here the

area graph has different left and right gradients (figure 12). If you look at the change in the area

under the function you may be able to see why this happens.

Figure 11: the area function for x–int(x) Figure 12: The area function magnified

It was an ambition of mine to draw functions such as f(x)=x for x rational, f(x)=1–x for x irrational.

The fact that this was impossible for numerical calculations on a computer (which are all rational)

did not deter me. In Tall (1993), I found a method that enabled me to make such a model. For any

number x, I simply calculated the sequence of rational approximations to x using the method of

continued fractions. This behaves differently for rational x (where the sequence ends by equalling

x) and irrational x (where the denominators grow without limit). Modelling what happened to this

sequence allowed me to subdivide numbers into two disjoint sets numerically, which I called

‘pseudo-rational’ and ‘pseudo-irrational’. I also programmed a routine plotting random points,

which were mainly ‘pseudo irrational’ and a second routine that plotted mainly ‘pseudo-rationals’.

Figure 12 shows pictures of the function which is x on the rationals and 1–x on irrationals

together with a graph for the area ‘under the graph’ from 0 to x. This uses the mid-ordinate rule

with a fixed with (rational) step. It encounters mainly (pseudo-) rationals where f (x)=x, so the

resulting area function approximates to x2/2. (figure 13). When the area is calculated using a

random step-length and a random point in the strip to calculate the area, it encounters mainly

(pseudo-) irrationals where the function has values f(x) = 1–x. The area function drawn in this case

reflects the latter formula (figure 14). (Here I have drawn several plots of the area curve. Because

of the errors calculating pseudo-rationals and irrationals, there are small discrepancies with the

random area that is slightly different each time.)
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I used this software to discuss the area under such graphs (Tall, 1993). Students who were not

mathematics majors and who would normally not cope very well in an analysis course were able to

discuss this example intelligently, noting that ‘a random decimal is highly unlikely to repeat, so

random decimals are almost certainly irrational’. This led to a highly interesting discussion on the

‘area’ under ‘peculiar’ graphs which began to move the thinking on from Riemann integration to

Lebesgue integration. It was only a glimpse of the ideas for these students, but it was a glimpse that

they could empathise with. It shows how the mathematical mind can gain insights from visuo-

spatial ideas in areas where the formal theory would be far too abstruse. But, for some of those who

later do go on to the formal theory, visualization can provide a powerful cognitive foundation.

Figure 12: The (pseudo-) rational area Figure 13: The (pseudo-) irrational area

Epilogue

In this presentation I have shown how the human mind does not always do mathematics logically,

but is guided by a concept image that can be both helpful and also deceptive. It may seem that

symbolism is more precise and safe than visualisation, but I produced evidence to show how the

cognitive development of symbols in arithmetic, algebra and calculus have many potential

cognitive pitfalls. In arithmetic, algebra and calculus I showed how a combination of visual and

enactive experiences can complement symbolic methods. To do this requires a carefully prepared

curriculum and the guidance of a teacher as mentor to focus on ideas that are fundamental and

generative. I reported how the use of local straightness and visual ideas of area can be cognitive

roots that are foundational in building an embodied understanding of the calculus, taking the ideas

to a stage where, given careful guidance, ideas can be motivated that are part of the formal theory

of differentiation, continuity and integration. To do this requires more than mathematics and more

than a knowledge of cognitive growth. It requires a special approach to mathematical thinking that

supports the concept imagery of the biological brain by interaction with a computational computer

to produce a versatile mathematical mind.
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