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Abstract

This thesis is mainly a study of theoretical issues in the field of fiber Bragg gratings.
The synthesis problem of gratings is investigated in detail. This applies to synthesis
based on desired, complex spectra in reflection as well as in transmission. In addition,
methods for characterization of fiber gratings are proposed.
For the synthesis problem of gratings, a genetic algorithm and a layer-peeling method

are used. The genetic algorithm follows the principle of evolution from nature. As with
nature, the evolution gives good results, but the synthesis process is extremely slow. On
the other hand, the layer-peeling approach is extremely efficient, and the performance of
the designed filters is very good. As the name indicates, one retrieves one layer at a time
using a simple causality argument, and peels off the layers until the whole structure is
reconstructed from the reflection response. We derive, analyze and compare two variants
of the method that have appeared in the literature, a discrete and a continuous version.
The discrete version is simplified and shown to be superior to the continuous version
when it comes to stability and computing time. The continuous version offers some
advantages in flexibility. To demonstrate the generality of the layer-peeling algorithm,
we also apply it for synthesis of thin-film filters.
When designing gratings for use in transmission, one must have the minimum phase

restriction in mind. Despite this restriction, it turns out that it is still possible to realize
a complex response inside a limited bandwidth. The minimum phase condition is then
satisfied by the behavior of the transfer function outside that interval. We propose a
general method for synthesizing limited bandwidth minimum phase filters, and apply it
in particular to design fiber gratings with specified transmission coefficients.
Several methods for characterization of fiber gratings are treated in the thesis. It

is showed that phase reconstruction from reflectivity alone is not possible in general.
Even if such reconstruction is possible for a certain type of grating, this method is not
suitable for experimental gratings owing to bad stability against grating imperfections.
Different kinds of a priori information can resolve this problem; one possibility is to use
information of the index modulation amplitude. The resulting method is particularly
useful for intragrating sensing since the index modulation amplitude is unchanged when
the fiber is exposed to a spatial variation of strain or temperature. One can also retrieve
the complex reflection spectrum of a grating by measuring the interference spectrum of
the grating and a bare fiber end reflection. The group delay of the grating is obtained
from the periodicity of the resulting Fabry-Perot spectral fringes. Finally, one can mea-
sure the complex reflection spectrum using low-coherence interferometry. By probing
the grating at different positions, one gets the impulse response, from which the complex
reflection spectrum can be determined through a Fourier transform.
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Chapter 1

Introduction

1.1 Background

A fiber Bragg grating is an optical fiber for which the refractive index in the core is
perturbed forming a periodic or quasi-periodic index modulation profile. A narrow band
of the incident optical field within the fiber is reflected by successive, coherent scattering
from the index variations. When the reflection from a crest in the index modulation is
in phase with the next one, we have maximum mode coupling or reflection. Then the
Bragg condition is fulfilled, i.e.

λB = 2neffΛ, (1.1)

where λB is the Bragg wavelength, neff is the effective modal index and Λ is the pertur-
bation period. By modulating the quasi-periodic index perturbation in amplitude and
(or) phase, we may obtain different optical filter characteristics.
The formation of permanent gratings by photosensitivity in an optical fiber was first

demonstrated by Hill el al. in 1978 [1]. Photosensitivity means that exposure of UV
light leads to a rise in the refractive index of certain doped glasses. Typical values for
the index change are ranging between 10−6 to 10−3, dependent on the UV-exposure and
the dopants in the fiber. By using techniques as hydrogen loading [2], an index change
as high as 10−2 can be obtained. The physical mechanism behind photosensitivity is
not yet fully understood.
Fiber gratings are nowadays usually fabricated by a variant of the transverse holo-

graphic method first proposed by Meltz et al. [3]. By exposing the fiber to a UV
interference pattern from the side, the pattern is ”printed” into the fiber [4], see Fig.
1.1. Only the core is usually doped (for example with germanium), and consequently the
grating is only formed in the core and not in the cladding. In order to write nonuniform
gratings with advanced characteristics, one can use the scheme suggested by Stubbe et
al. [5, 6].
Because a fiber Bragg grating can be designed to have an almost arbitrary, complex

reflection response, it has a variety of applications, well described by Hill and Meltz
among others [4]. For telecommunications, the probably most promising applications
have been dispersion compensation [7] and wavelength selective devices [8]. Examples
of the latter are filters for Wavelength Division Multiplexing (WDM) [9]. Fiber Bragg
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Figure 1.1: The transverse holographic method for writing fiber gratings. Two coherent
UV beams produce an interference pattern in the fiber. The periodicity of the resulting
grating is dependent on the angles of the incident beams.

gratings have also become popular as sensing devices, ranging from structural monitoring
to chemical sensing [10]. Any change in the fiber properties, such as strain, temperature,
or polarization which varies the modal index or grating pitch, will change the Bragg
wavelength. Thus, by determining the peak reflectivity wavelength of the grating, we will
get information about the sensing parameters. Distributed sensing is also possible for
instance by recording the entire reflection spectrum. By applying an inverse scattering
approach, it is possible to determine the grating structure, and thereby the distributed
sensing parameters along the fiber (see Chapter 5). Another noteworthy application of
fiber gratings is to use them as reflectors for fiber lasers [11].

In order to design fiber gratings for various applications, it is crucial to have tools
for analysis, synthesis and characterization of fiber gratings. The most common math-
ematical model that governs wave propagation in gratings is the coupled-mode theory
[12]. The analysis of gratings based on coupled-mode theory is well understood; a review
is given in Chapter 2. The synthesis problem of gratings amounts to finding the grat-
ing structure (grating amplitude and phase) from a specified, complex spectrum. The
synthesis problem will be treated in this thesis; both the design of gratings based on a
desired reflection spectrum (Chapter 3) and based on a desired transmission spectrum
(Chapter 4). Similarly, the task of characterizing fiber gratings is important to monitor
the fabrication process or to monitor the grating as it is exposed to different physical
perturbations as strain or temperature gradients. This problem is not always trivial as
the reflection phase response spectrum is required in addition to the power spectrum for
a complete characterization. Chapter 5 contains a description of methods for obtaining
complete characterization of gratings.

The fiber Bragg grating is analogous to many other physical situations involving
coupling between counter-propagating waves as transmission lines, thin-film filters, and
acoustic filters. Therefore, many of the results in this thesis can be used in other fields.
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An example of this is the layer-peeling synthesis method of fiber gratings which has
been adopted for the synthesis of thin-film filters in Section 3.3.

1.2 Thesis history and outline

1.2.1 History

This thesis work was originated as a continuation of my diploma work 1997, which was
about analysis and synthesis of fiber Bragg gratings. The work on the present thesis
started in January 1998. During several stays at the Institute of Optical Research in
Stockholm in 1998, I had the opportunity to test some of the grating theory in practice.
At their grating lab facilities, we developed a low-coherence system for characterization
of fiber gratings (Section 5.4). Back in Trondheim, I worked on phase retrieval of
fiber gratings and application to characterization and distributed sensing (Sections 5.1
through 5.3). During the summer 1999, I was with the Institute of Optics, University of
Rochester, Rochester NY. We investigated the layer-peeling inverse scattering method
in detail and applied it to the synthesis of gratings and thin-film filters (Sections 3.2 and
3.3). Also, the new idea about synthesis of gratings for use in transmission was born
(Chapter 4).

1.2.2 Outline

It is the author’s intention that it should be possible to read the thesis if one has a
general background in physics and mathematics. Therefore, a relatively thorough intro-
duction to the field of fiber Bragg gratings is given in Chapter 2. First the coupled-mode
theory is reviewed and the connection between the mathematical model and the physical
quantities is described. In Section 2.2 the coupled-mode equations are solved analyti-
cally for two situations, uniform gratings and weak gratings. Section 2.3 contains the
most convenient methods for solving the coupled-mode equations numerically. Both the
numerical integration method (Runge-Kutta) and the common transfer-matrix method
are described in addition to a new variant of the transfer-matrix method that is the
counterpart to the discrete layer-peeling method for the corresponding inverse problem.
Chapter 2 is ended by a brief discussion of the most important mathematical properties
of the grating reflection and transmission spectra, and the properties of the transfor-
mation that exists between the grating structure and the spectra. The material in the
Sections 2.1 through 2.3.2 is well-known, while the last Sections 2.3.3 through 2.4.2
contain less known theory.
Chapter 3 is devoted to the synthesis problem of gratings. The first article is about

a genetic algorithm for the synthesis. The idea is to design the grating structure by
numerical optimization using a certain merit function and a goal spectrum. In the
second article, more direct design methods (layer-peeling algorithms) are described.
The layer-peeling algorithm is a general, inverse scattering algorithm, and to show its
powerfulness and generality, it is also applied for the synthesis of thin-film filters in the
last paper of this chapter.
In Chapter 4 we treat a related synthesis problem, namely how to design a grating
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with an arbitrarily transmission response. Because the transmission coefficient is a min-
imum phase-shift function, we limit the bandwidth of consideration to a finite interval.
Then it turns out that the problem becomes that of finding a minimum phase transfer
function with a desired complex response inside a finite frequency interval. The response
outside that interval is unspecified. The problem is treated in a general context in the
first article, and the next article shows how the theory can be applied to the synthesis
of practical gratings. Both articles stand on their own.
The last group of papers deals with characterization of fiber gratings and intragrating

sensing. Intragrating sensing basically means to read out the local Bragg wavelength
profile of the grating, and consequently we can treat this application as a special case
of characterization. The first two papers are about situations where it is possible to
reconstruct the complex reflection coefficient from the power reflectivity, given some a
priori information. The numerical stability is treated. The next paper is about a simple
characterization method that utilizes the interference between the grating and a bare
fiber end reflection, whereas the final paper describes a low-coherence approach to the
characterization.
Finally, the thesis is summed up and lines are drawn into the future in Chapter 6.
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Chapter 2

Fiber Bragg grating model

In this chapter, we describe the mathematical model of fiber Bragg gratings (FBG) that
is used in the thesis. The results from coupled-mode theory are briefly reviewed together
with the common numerical techniques for computing the reflection and transmission
spectra of fiber gratings. Finally, we summarize the main properties of grating spectra
and properties of the transformation that exists between the grating structure and the
reflection spectrum.

The contents in Section 2.1 through 2.3.2 are well-known. There are already two
books in the field of fiber Bragg gratings [13, 14], and in addition, there are several review
articles and other articles, see e.g. [4, 12] and the references therein. The numerical
algorithm in Section 2.3.3 and the theoretical grating properties listed in Section 2.4 are
less known although most of the results have been published previously.

2.1 Coupled-mode theory

The relation between the spectral dependence of a fiber grating and the corresponding
grating structure is usually described by the coupled-mode theory. While other tech-
niques are available, we consider only coupled-mode theory since it is straightforward,
it is intuitive, and it accurately models the optical properties of most fiber gratings of
interest. Coupled-mode theory is described in a number of texts; detailed analysis can
be found in [12, 15, 16, 17, 18]. The notation in this section follows most closely that
of Snyder and Love [15] and Poladian [18]. Throughout this thesis, we assume that the
fiber is lossless and single mode in the wavelength range of interest. In other words, we
consider only one forward and one backward propagating mode. Moreover, we assume
that the fiber is weakly guiding, i.e. the difference between the refractive indices in the
core and the cladding is very small. Then the electric and magnetic fields are approx-
imately transverse to the fiber axis, and we can ignore all polarization effects due to
the fiber structure and consider solely the scalar wave equation [15]. The fiber axis is
oriented in the +z direction and we assume that the electric field is x-polarized. The
implicit time dependence is exp(−iωt); a forward propagating wave with propagation
constant β > 0 and frequency ω > 0 has thus the form exp[i(βz − ωt)].
The grating is treated as a perturbation on the fiber. The unperturbed fiber has re-

fractive index profile n(x, y) and the perturbed fiber has the z-dependent index n(x, y, z).
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Both fibers are weakly guiding so we assume n ∼= n ∼= neff ∼= ncl where ncl is the index in
the cladding and neff is the effective index of the supported mode in the absence of the
grating. We write the total electric field as a superposition of the forward and backward
propagating modes,

Ex(x, y, z) = b1(z)Ψ(x, y) + b−1(z)Ψ(x, y), (2.1)

where the coefficients b±1 contain all the z-dependence of the modes. It is clear that
b±1 are dependent on frequency since they include the harmonic propagation factor
exp(±iβz) with β = β(ω) = neffω/c = neffk as the scalar propagation constant. The
transverse dependence is described by the function Ψ, which satisfies the scalar wave
equation for the unperturbed fiber,

{∇2t + k2n2(x, y)− β2}Ψ = 0, (2.2)

where ∇2t = ∂2/∂x2 + ∂2/∂y2, and k = ω/c is the vacuum wavenumber. The total
electric field Ex must satisfy the scalar wave equation for the perturbed fiber, i.e.

{∇2t + k2n2(x, y, z) + ∂2/∂z2}Ex = 0. (2.3)

By substituting (2.1) into (2.3), and using (2.2), we obtain

d2

dz2
(b1 + b−1)Ψ+ [β2 + k2(n2 − n2)](b1 + b−1)Ψ = 0. (2.4)

Multiplication by Ψ and integration over the xy-plane leads to

d2b1
dz2

+
d2b−1
dz2

+ (β2 + 2kncoD11(z))(b1 + b−1) = 0, (2.5)

where we have defined the coefficient D11 as

D11(z) =
k
2nco

R
(n2 − n2)Ψ2dAR

Ψ2dA
. (2.6)

The refractive index nco ≈ neff is an approximate value for the index in the fiber core,
and the integrations extend over the entire xy-plane. Eq. (2.5) can be decomposed into
the following set of first order differential equations [15]

db1
dz
− i(β +D11)b1 = iD11b−1

db−1
dz

+ i(β +D11)b−1 = −iD11b1, (2.7)

as is readily realized by differentiation and summation of the two equations in (2.7).
This decomposition corresponds to separating the total field in (2.1) into its forward and
backward propagating components. Indeed, when n = n, we observe that the solution
of (2.7) reduces to b±1(z) = B±1 exp(±iβz) with constant B±1, i.e. b±1 correspond to
the forward and backward propagating modes. In the absence of the grating, n = n,
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the modes propagate without affecting each other; otherwise the modes will couple to
each other through the quantity D11(z).
For a fiber grating, the z-dependence of the index perturbation is approximately

quasi-sinusoidal in the sense that it can be written

n2 − n2 = ∆²r,ac(z) cos

µ
2π

Λ
z + θ(z)

¶
+∆²r,dc(z) (2.8)

where Λ is a chosen design period so that θ(z) becomes a slowly varying function of
z compared to a period Λ. The functions ∆²r,ac(z) and ∆²r,dc(z) are real and slowly
varying, and satisfy

|∆²r,ac(z)| << n2co, |∆²r,dc(z)| << n2co. (2.9)

It is therefore convenient to express D11 as a quasi-sinusoidal function

D11(z) = κ(z) exp

µ
i
2π

Λ
z

¶
+ κ∗(z) exp

µ
−i2π

Λ
z

¶
+ σ(z) (2.10)

where κ(z) is a complex, slowly varying function of z and σ(z) is a real, slowly varying
function that accounts for the dc index variation from ²r,dc(z). In order to simplify (2.7),
we define new field amplitudes u and v by setting

b1(z) = u(z) exp
³
+i

π

Λ
z
´
exp

µ
+i

Z z

0

σ(z0)dz0
¶

b−1(z) = v(z) exp
³
−iπ

Λ
z
´
exp

µ
−i
Z z

0

σ(z0)dz0
¶
. (2.11)

By substituting (2.10) and (2.11) into the equations (2.7), ignoring the terms that are
rapidly oscillating since they contribute little to the growth and decay of the amplitudes,
we arrive at the coupled-mode equations

du

dz
= +iδu+ q(z)v

dv

dz
= −iδv + q∗(z)u. (2.12)

In (2.12) we have defined the wavenumber detuning δ = β − π/Λ and the coupling
coefficient q of the grating

q(z) = iκ(z) exp

µ
−2i

Z z

0

σ(z0)dz0
¶
. (2.13)

Note that all phase factors in (2.11) are independent of the propagation constant β and
therefore the frequency. Hence, we can simply treat the new variables u and v as the
fields themselves once the reference planes have been fixed, since they differ only from
b±1 by constant phase factors. For example, the reflection coefficient b−1(z0)/b1(z0) can
as well be computed by the expression v(z0)/u(z0) once the position z0 has been fixed
because the two expressions only differ by a constant phase factor. Also note that all
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the functions u, v and q are slowly varying with z compared to the period Λ because
β ≈ π/Λ when the wavelength is close to the Bragg wavelength λB = 2neffΛ.
To get a feeling of the physical interpretation of the coupling coefficient, we will

examine the relation between the coupling coefficient and the grating parameters. Usu-
ally for a fiber Bragg grating, the induced index change happens in the fiber core only,
i.e. n = n in the cladding. Moreover, if we assume that the index change is created
uniformly in the core, then (2.6) yields

D11(z) =
k

2nco
(n2 − n2)η (2.14)

where η is the fraction of the modal power that is contained in the fiber core. By sub-
stitution of (2.8) into (2.14), and comparison to (2.10), we obtain 2|κ| = ηk∆²r,ac/2nco,
θ = arg κ, and σ = ηk∆²r,dc/2nco. Because the index change is small we can set
∆²r = ∆(n2co) = 2nco∆n, and use (2.13) to obtain

|q(z)| = ηπ∆nac(z)

λ

arg q(z) = θ(z)− 2ηk
Z z

0

∆ndc(z
0)dz0 +

π

2
. (2.15)

Note that since the index perturbation is small, (2.8) can be written

n− n = ∆nac(z) cos

µ
2π

Λ
z + θ(z)

¶
+∆ndc(z), (2.16)

where ∆nac(z) and ∆ndc(z) are the ”ac” and ”dc” index change, respectively, and we
have used the approximation n2 − n2 ≈ 2nco(n − n). We can therefore interpret the
coupling coefficient in the following way: The modulus of q is proportional to the index
modulation amplitude or the peak-to-peak modulation of the index variation, see Fig.
2.1. The phase of q corresponds to the excess optical phase or phase envelope of the
grating; the term θ(z) is the spatial grating phase and the integral term in (2.15) gives the
optical modification to the spatial phase due to the increased dc index. The derivative
of arg q gives the extra effective spatial frequency of the grating in addition to 2π/Λ,

d arg q/dz = dθ/dz − 2ηk∆ndc(z). (2.17)

This translates into an effective grating periodicity of

Λeff(z) = Λ

µ
1+

Λ

2π

dθ

dz
− η

∆ndc(z)

neff

¶−1
(2.18)

for λ ≈ λB. In the literature, the impact of the dc index change is sometimes incorpo-
rated in θ(z). In that case we would have q = iκ. Note however, that κ is defined in
different ways, and may or may not include the grating phase and/or the phase due to
the dc index change.
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Figure 2.1: The solid line shows the refractive index profile of a chirped, apodized
grating. Chirp and apodization mean that the grating period and strength are varying
with z. For a typical fiber grating, the period would be much smaller compared to the
grating length than at this plot. The unperturbed index is set to n = 1.5. The dashed
line corresponds to the ac index modulation envelope ∆nac(z) added to n .

We summarize the grating model as follows. The Bragg grating is characterized
by the following quantities: The design Bragg wavelength λB, the effective refractive
index neff, and the slowly varying complex coupling coefficient q(z). The modulus of the
coupling coefficient determines the grating strength or the index modulation amplitude,
and the phase corresponds to the grating phase envelope. The forward and backward
propagating field envelopes are mutually coupled by the coupled mode equations

du(z; δ)

dz
= +iδu+ q(z)v

dv(z; δ)

dz
= −iδv + q∗(z)u, (2.19)

where δ is proportional to the frequency detuning with respect to the design Bragg
frequency,

δ = β − π/Λ = (ω − ωB)neff/c, ωB = 2πc/λB. (2.20)

This model forms the basis for the rest of this thesis.
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2.2 Analytical solutions to the coupled-mode equa-

tions

Any solution {u, v} to the coupled-mode equations must satisfy (2.19) and two appro-
priate boundary conditions. For example, the boundary conditions u(0; δ) = 1 and
v(L, δ) = 0 give the reflection coefficient r(δ) = v(0; δ) and the transmission coefficient
t(δ) = u(L; δ) of a grating located in 0 ≤ z ≤ L. There are two well-known, impor-
tant cases where it is possible to find simple closed-form solutions to the coupled-mode
equations. The two cases are weak gratings for which we can use the first order Born
approximation [16], and uniform gratings where q(z) = const. [19]. We will use the
boundary conditions above in both cases.

2.2.1 Weak gratings

A weak grating has small influence on the propagating waves. In the limit q → 0,
the coupled-mode equations yield the zeroth order, trivial solutions u = u0 exp(iδz)
and v = v0 exp(−iδz). By the boundary conditions above, these solutions reduce to
u = exp(iδz) and v = 0. The first order Born approximation will in this case mean that
the forward propagating wave u is unaffected by the grating, that is u = exp(iδz). This
expression in turn is substituted into the last equation in (2.19). By integrating the
resulting first order differential equation using the boundary conditions v(0, δ) = r(δ)
and v(∞; δ) = 0, we obtain

r(δ) = −1
2

Z ∞

0

q∗
³z
2

´
exp(iδz)dz (2.21)

Hence, in the first order Born approximation, the functions r(δ) and −1
2
q∗
¡
z
2

¢
form a

Fourier transform pair, and

−1
2
q∗
³z
2

´
=

Z ∞

−∞
r(δ) exp(−iδz)dδ. (2.22)

As a rule of thumb, these weak grating relations are valid when the top reflectivity of the
grating is less than about 10-40% or if the area of the coupling coefficient,

R∞
0
|q(z)|dz,

is less than about 0.3 to 1.0. Although the Fourier relations break down for stronger
gratings, much of the intuition from Fourier analysis remains still valid as will be shown
in Section 2.4.2.

2.2.2 Uniform gratings

A uniform grating has constant coupling coefficient over a limited range 0 ≤ z ≤ L,
where L is the grating length. In this situation, the coupled-mode equations can be
solved analytically. By differentiation of (2.19) and substitution of the derivatives from
the original equations, we obtain d2u/dz2 = (|q|2 − δ2)u and d2v/dz2 = (|q|2 − δ2)v. By
solving these simple equations, we obtain expressions for u and v involving 4 constants.
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Figure 2.2: The power reflectivity R = |r|2 of a uniform grating with three different
values of the strength qL. When qL = 1, the spectrum is very near to the sinc2-
like spectrum predicted by the Born approximation. For a 1cm grating at the Bragg
wavelength λB = 1550nm, a detuning of 30cm−1 corresponds to a bandwidth of about
∆λ = 0.8nm in a normal fiber.

These constants are determined by substituting the expressions into the original coupled-
mode equations and applying the two boundary conditions. The resulting reflection
coefficient is

r(δ) =
−q∗ sinh(γL)

γ cosh(γL)− iδ sinh(γL) (2.23)

where we have defined the parameter γ2 = |q|2−δ2. The transmission coefficient becomes

t(δ) =
γ

γ cosh(γL)− iδ sinh(γL) . (2.24)

We note that both coefficients are meromorphic functions. While the reflection coeffi-
cient has both poles and zeros, the transmission coefficient is zero-free everywhere. As we
will see later, this is typical for all (nonuniform) fiber gratings. Moreover, we note that in
the weak grating limit, the reflection coefficient reduces to r(δ) = −q∗L exp(iδL) sinc δL,
where sincx = sin x/x, in consistency with the Fourier relation (2.21). In Fig. 2.2.2
the power reflectivity R(δ) = |r(δ)|2 of a uniform grating is plotted for different values
of the grating strength. We observe that the spectra are sinc2-like, but as the strength
increases, the top reflectivity is pressed down so that it never gets larger than 1.
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2.3 General numerical solution techniques

There is a variety of methods to compute the reflection and transmission spectra for
nonuniform gratings. Here we will only present the two most extensively used methods
in addition to another less known method. In the first method, the coupled-mode
equations are integrated using Runge-Kutta algorithms, whereas in the other, often-
preferred transfer matrix method, one divides the grating into smaller sections [12].
The sections are treated as uniform gratings, yielding the overall spectra by transfer
matrix multiplication. Finally, we present a less known method in which the grating
model is discretized into a stack of discrete, complex reflectors. The overall spectrum is
then found using a simple recursion expression. The algorithm is in some sense similar
to Rouard’s method of thin-film optics which has been applied to corrugated waveguide
filters previously [20]. The difference between the approach in [20] and the present
approach is that they divided the grating into as many sections as there are grating
periods, while in the present approach we will only use as many sections as necessary
to represent the (slowly varying) coupling coefficient with a sufficient accuracy. As we
will see in Section 3.2, the discretized grating model method is the direct counterpart
to the layer-peeling reconstruction or synthesis algorithm [21].

2.3.1 Direct numerical integration

Define r(z; δ) = v(z; δ)/u(z; δ). By differentiation of r(z; δ) with respect to z and sub-
stituting from the coupled-mode equations (2.19), we get the following Riccati equation

dr(z; δ)

dz
= −2iδr − q(z)r2 + q∗(z). (2.25)

By applying the boundary condition r(L; δ) = 0 we can start at the end of the grating
and use Runge-Kutta methods to work the equation backwards to z = 0. The reflection
coefficient of the grating becomes r(δ) = r(0; δ). Even though this method is simple,
the number of steps of the Runge-Kutta routine must be large to ensure convergence.
Therefore, in some cases the algorithm might be slow compared to the next two methods.

2.3.2 Transfer matrix method

Divide the grating into a sufficient number N of sections so that each section can be
approximately treated as uniform. Let the section length be ∆ = L/N . By applying
the appropriate boundary conditions and solving the coupled-mode equations similar to
the procedure in Section 2.2.2, we find the following transfer matrix relation between
the fields at z and at z +∆·

u(z +∆)
v(z +∆)

¸
=

"
cosh(γ∆) + i δ

γ
sinh(γ∆) q

γ
sinh(γ∆)

q∗
γ
sinh(γ∆) cosh(γ∆)− i δ

γ
sinh(γ∆)

# ·
u(z)
v(z)

¸
. (2.26)

Hence, we can connect the fields at the two ends of the grating through·
u(L)
v(L)

¸
= T

·
u(0)
v(0)

¸
, (2.27)
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where T = TN · TN−1 · ... · T1 is the overall transfer matrix. The matrix Tj is the
transfer matrix written in (2.26) with q = qj = q(j∆) the coupling coefficient of the jth
section. As a result, T is a 2× 2 matrix with elements

T =

·
T11 T12
T21 T22

¸
. (2.28)

Once T is found, the reflection coefficient from the left and the transmission coefficient
are calculated by the relations

r(δ) = −T21/T22
t(δ) = 1/T22, (2.29)

obtained by substitution of the appropriate boundary conditions into (2.27). The ad-
vantages with this method are that it is stable and also efficient since relatively few
sections are required for analyzing most common gratings accurately.

2.3.3 Discretized grating model method

Instead of making the piecewise uniform discretization as above, we can discretize such
that the whole grating becomes a stack of complex, discrete reflectors. Each of the
transfer matrices above are then replaced by T∆ ·Tρ

j , where

T∆ =

·
exp(iδ∆) 0

0 exp(−iδ∆)
¸

(2.30)

is the pure propagation matrix obtained by letting q → 0 in the matrix in (2.26), and

Tρ
j = (1− |ρj|2)−1/2

·
1 −ρ∗j
−ρj 1

¸
(2.31)

is the discrete reflector matrix obtained by letting q → ∞ holding q∆ constant. The
discrete reflection coefficient is given by ρj = − tanh(|qj|∆)q∗j/|qj|. It is straightforward
to show that the task of transferring the fields using T∆ · Tρ

j , similar to (2.26), is
equivalent to the recursion

r(z; δ) =
ρj + r(z +∆; δ) exp(2iδ∆)

1+ ρ∗jr(z +∆; δ) exp(2iδ∆)
, (2.32)

analogously to (2.25). The reflection coefficient of the grating is obtained by setting
r(L; δ) = 0 and then working (2.32) backwards to z = 0, yielding the spectrum r(δ) =
r(0; δ). In contrast to the direct numerical integration method, the propagation of r(z; δ)
is exact for the discrete model, and the numerical stability is therefore as good as for the
transfer matrix method. In addition, the discrete method based on (2.32) is very fast
as one only needs to evaluate a hyperbolic function O(N) times in contrast to O(N2)
times when using (2.26).
The two latter methods are exact once the grating model has been discretized; the

computational error arises in the model discretization. In the ordinary transfer-matrix
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approach, the coupling coefficient is assumed to be piecewise uniform, i.e. q(z) has a
staircase-like shape. In contrast, q(z) has a comb shape in the discretized model. In the
weak grating limit (Fourier), it is clear that the latter discretization is most accurate
in the relevant bandwidth. This is realized from the fact that provided q(z) is sampled
with a sufficient number of points according to the Nyquist theorem, the spectrum is
represented exactly in the relevant bandwidth (that is inside one period of the repeated
spectra, principal range). The spectrum of the piecewise uniform approximation will
be the exact spectrum multiplied by a (wide) sinc-function, and hence there will also
be inaccuracies in the principal range. For strong gratings, the situation is opposite
because the Fourier relation breaks down, and the piecewise uniform approximation
models more accurately the multiple reflections inside each section. This conclusion has
been supported by numerical calculations.

2.4 Theoretical constraints

In this section, we will give a summary of the most important mathematical properties
of the grating spectra and the transformation between the coupling coefficient (grating
structure) and the reflection spectrum. Most of the results in this section are either
given in Song [22] or Poladian [23].

2.4.1 Properties of the reflection and transmission spectra

A fiber grating is a two-port device with scattering matrix [24]

S(δ) =

·
r1 t
t r2

¸
, (2.33)

where r1 = r and r2 are the reflection coefficients from the left and the right, respectively,
and t is the transmission coefficient. The transmission coefficient is equal for both
directions due to reciprocity. Since the device is assumed to be lossless, the scattering
matrix must be unitary, i.e.

STS∗ = I. (2.34)

From (2.34) we obtain the relations

|r1,2|2 + |t|2 = 1
r1
r∗2
= − t

t∗
. (2.35)

The first equation expresses the trivial lossless condition. The latter relation connects
the phases of the two reflection coefficients and the transmission coefficient, and was
stated previously in [22, 23].
The transfer matrix of a general grating is determined from the scattering matrix by

the following expression

T(δ) =

·
t− r1r2

t
r2
t−r1

t
1
t

¸
, (2.36)
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which is readily obtained from the transfer matrix relation (2.27). For a lossless grating,
we can use the properties (2.35) to simplify T, writing

T(δ) =

·
1
t∗

r2
t− r1

t
1
t

¸
=

·
1
t∗ −r∗1

t∗−r1
t

1
t

¸
. (2.37)

We observe that detT = 1 and that the elements of T satisfy T22 = T
∗
11 and T21 = T

∗
12,

as required from the lossless and reciprocity conditions.

It can be shown that the transmission coefficient has no zeros in the complex ω plane
[25, 23, 26], and thus that it satisfies the minimum phase condition. If one sets the
input and output reference planes to the same position, the asymptotic behavior of the
transmission coefficient is t(ω)→ 1 as ω →∞. Then the amplitude and phase response
in transmission are uniquely related by means of a logarithmic Hilbert transform,

arg t(ω) = H[ln |t(ω0)|]. (2.38)

The sign in the integral expression of the Hilbert transform H is dependent on the sign
convention of the Fourier transform. Note that in this context, it is more convenient
to use ω rather than δ as the frequency variable. This is due to the fact that some of
the dispersion relations in the literature, analogously to (2.38), are not valid unless we
have conjugate symmetry about ω = 0; t(ω) = t∗(−ω). Of course, a similar symmetry
t(δ) = t∗(−δ) is not generally valid. The minimum phase condition of the transmission
coefficient is treated thoroughly in Chapter 4.

Here we will only examine the impact of (2.38) on the reconstruction of t. We note
that the modulus of t can be found from the reflectivity R = |r|2 when the grating is
lossless. Since the phase of t can be computed from |t|, we conclude that t is uniquely
determined from R, and that the reverse reflection coefficient r2 is uniquely determined
from r1 by (2.35). Finally, we remark that the logarithmic Hilbert transform relation is
generally not valid for the reflection coefficient (see Section 5.1).

2.4.2 Properties of the transformation q(z)↔ r(δ)

As we have seen in Section 2.3 we can calculate the complex reflection spectrum from
any grating structure q(z). As we will see in Chapter 3, it is also possible to perform the
inverse calculation; one can obtain the grating structure q(z) associated with a certain,
realizable complex reflection spectrum. The bidirectional transformation q(z) ↔ r(δ)
is therefore in some sense analogous to the Fourier transforms. Indeed, it is stated in
Section 2.2.1 that in the weak grating limit the transformation is essentially equal to
a Fourier transform (when ignoring the scaling factors and the complex conjugation in
(2.22)). For general gratings, some of the properties of the Fourier transform break down
since the transformations no longer are linear. The nonlinearity is readily seen as |r| < 1
while |q| has no theoretical limit. Nevertheless, many of the common properties of the
Fourier transform remain valid. In this section we will summarize the most important
properties. The properties that are not obvious are proved in [22] in a slightly different
form.
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1. Symmetry relations

q(z) is real⇔ r(δ) = r∗(−δ), t(δ) = t∗(−δ) (2.39)

q(z) is imaginary⇔ r(δ) = −r∗(−δ), t(δ) = t∗(−δ)
q(z) = q∗(−z)⇔ r(δ)/t(δ) is real

q(z) = −q∗(−z)⇔ r(δ)/t(δ) is imaginary

q(z) = −q(−z)⇔ r(δ)/t(δ) = −r(−δ)/t(−δ), t(δ) = t∗(−δ)
q(z) = q(−z)⇔ r(δ)/t(δ) = r(−δ)/t(−δ), t(δ) = t∗(−δ)

2. Global phase shift (θ0 is a real constant)

q(z)→ q(z) exp(iθ0)⇔ r(δ)→ r(δ) exp(−iθ0), t(δ) is invariant (2.40)

3. Scaling (a is a real constant)

q(z)→ aq(az)⇔ r(δ)→ r(δ/a), t(δ)→ t(δ/a) (2.41)

4. Translation (z0 is a real constant)

q(z)→ q(z − z0)⇔ r(δ)→ r(δ) exp(i2δz0), t(δ) is invariant (2.42)

5. Frequency shift

r(δ)→ r(δ − δ0), t(δ)→ t(δ − δ0)⇔ q(z)→ q(z) exp(i2δ0z) (2.43)

6. Physical inversion

q(z)→ −q∗(−z)⇔ r(δ)/t(δ)→ −r∗(δ)/t∗(δ), t(δ) is invariant (2.44)

Note that physical inversion means that D11(z) → D11(−z) in (2.10) which in turn
implies q(z)→ −q∗(−z) by (2.10) and (2.13). Also note that δ is assumed to be real.
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Chapter 3

Grating synthesis

The synthesis problem of a fiber grating amounts to finding the complex coupling co-
efficient q(z) that corresponds or approximates a desired reflection response r(δ). The
simplest approach is to use the approximate Fourier relation (2.22) that results from the
first order Born approximation. This method is of course only suitable for weak gratings.
For high-reflectivity gratings, one can find the coupling coefficient using classical inverse
scattering techniques. Song and Shin [27] demonstrated how one can design corrugated
gratings by solving two coupled integral equations that is called the Gel’fand-Levitan-
Marchenko (GLM) equations. Their approach is exact but the reflection coefficient must
be a rational function. Later, Frangos and Jaggard proposed two different numerical
approaches [28, 29] to solve the GLM equations without the rational limitation on r(δ).
Similarly, Peral et al. [30] proposed an iterative, numerical method to solve the GLM
equations in order to design fiber gratings. Their algorithm is equivalent to the last
algorithm by Frangos and Jaggard [29]. The iterative solution to the GLM equations
is compared with an optimizing Genetic Algorithm (GA) for the synthesis in the next
section. Different trade-offs in the design process is facilitated by the GA algorithm, but
since the GA method is so slow, it has not been extensively used later in this work. In
1999, Feced et al. [21] adopted the so-called layer-peeling algorithm for the synthesis of
fiber gratings. This method is fast and accurate, and in Section 3.2 we simplify it, and
compare it to an algorithm proposed by Poladian [31], which turns out to be a variant
of the layer-peeling algorithm. The layer-peeling algorithm is general and extremely
simple; in fact it is as simple as the forward problem of finding the spectrum from the
coupling coefficient. In order to show its generality it has been applied to a similar
synthesis problem, namely to design optical thin-film filters (Section 3.3).
Note that the sign convention on the implicit time dependence in Section 3.1 does

not correspond to the sign convention in Chapter 2.
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A Genetic Algorithm for the Inverse
Problem in Synthesis of Fiber Gratings

Johannes Skaar and Knut Magne Risvik

Abstract— A new method for synthesis of fiber gratings
with advanced characteristics is proposed. By combining the
Runge–Kutta method for calculating the reflection spectrum of
a fiber grating and a genetic algorithm, we obtain a promising
method for the synthesis. Compared to other methods, the
proposed method facilitates the task of weighting the different
requirements to the filter spectrum. In addition, the method is
general, and would thus be useful for other inverse problems.

Index Terms—Fiber Bragg gratings, genetic algorithms, syn-
thesis.

I. INTRODUCTION

A classical problem in applied physics and engineering
fields is the inverse problem, such as for instance the

synthesis of a system, for which the analysis method is known.
An example of such a synthesis is to determine a fiber grating
index modulation profile corresponding to a given reflection
spectrum. This is not a trivial problem, and a variety of
synthesis algorithms has been proposed [1]–[3].

For weak gratings, the synthesis problem of fiber gratings
reduces to an inverse Fourier transform of the reflection
coefficient. This is known as the first-order Born approxima-
tion, and applies only for gratings for which the reflectivity
is small. For synthesis of corrugated waveguide filters with
higher reflectivity, the Fourier transform technique has been
extended by Winick and Roman [1], yielding a better approx-
imation. An exact solution of this inverse scattering problem
was found by Song and Shin [2], who solved the coupled
Gel’fand–Levitan–Marchenko (GLM) integral equations that
appear in quantum mechanics. Their method is exact, but
is restricted to reflection coefficients that can be expressed
as a rational function. An iterative solution to the GLM
equations was found by Peralet al. [3], yielding smoother
coupling coefficients than the exact method. Their algorithm
is converging relatively fast, and gives satisfying results even
for high reflectivity gratings. However, when specifying ideal
filter responses, it is desirable to have a weighting mechanism,
which makes it easier to weight the different requirements.
For example, when synthesizing an optical bandpass filter,
one may be interested in weighting linear phase more than
sharp peaks, because the dispersion may be a more critical

Manuscript received November 12, 1997; revised June 11, 1998.
J. Skaar is with the Department of Physical Electronics, Norwegian Uni-

versity of Science and Technology (NTNU), Trondheim N-7034 Norway.
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parameter. The iterative GLM method does not support such
a mechanism in a satisfactory way.

In this paper we present a new approach to the solution
of inverse problems, in particular the problem of synthesizing
waveguide gratings. The coupling coefficient is sampled, and
the samples are applied as inputs to a “black box,” which
calculates the reflection spectrum. The output of the “black
box” is an error value to be minimized in order to achieve
the aimed reflection spectrum. Thus, the synthesis problem
is reduced to a minimization of a nonlinear, hidden function
of variables. This optimization problem is solved using a
genetic algorithm [4], i.e., an algorithm that follows the same
principle as the evolution process of nature.

The outline of this paper is as follows: Section II contains
a short description of Genetic Algorithms, and in Section III
and IV the theoretical approach and the synthesis algorithm
are presented. Section V contains numerical results and com-
parisons to alternative synthesis methods, and finally the main
conclusions are drawn in Section VI.

II. GENETIC ALGORITHM PRELIMINARIES

Genetic algorithms (GA’s) are probabilistic parallel search
algorithms based on natural selection. GA’s were designed to
efficiently search large and poorly understood search spaces
where expert knowledge was limited or inaccessible. The basic
principles of GA were first laid down by Holland [5], and are
well described in [4].

In nature, individuals in a population compete with each
other for resources such as food, water and shelter. In addition,
members of the same species often compete to attract a mate.
Those individuals most successful in surviving and attracting
mates will have relative large numbers of offsprings. Poorly
performing individuals will produce few or even no offspring
at all.

Genetic algorithms use a direct analogy of natural behavior.
A population of “individuals” is created, each individual
representing a possible solution to a given problem. Each
individual is ranked after its “fitness,” which is a measure of
how well the solution complies with the requirements. A new
generation is made from the current generation by creating
offsprings from a pair of individuals. The more fit individuals
have a higher chance of finding a mate and reproducing. By
favoring the mating of the more fit individuals, we explore the
more promising areas of the search space.

Solutions or individuals are encoded as a string of values
(Fig. 1). This is a direct analogy to genes as described in
biology. When reproduction occurs between two individuals,

0733–8724/98$10.00 1998 IEEE
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Fig. 1. Sample string of values.

Fig. 2. Crossover operation.

Fig. 3. Mutation operation.

the two genes are combined. Sometimes an error occurs in the
reproduction, in which case the new individual has mutated.

The two basic operations on individual (encoded as a string
of values) are crossover and mutation (Figs. 2 and 3). For
simplicity, we use binary encoded individuals to show the
basic operations.

• Crossover:A new individual is created. Each element in
the new string of values is taken randomly from one of
the parents of the new individual.

• Mutation: An existing individual is modified. One ele-
ment in the string is altered randomly.

Genetic algorithms fall into a category of methods for
optimizing nonlinear functions of several variables. Beasley
et al. [6] compare GA to other methods and discuss the theory
and applications of GA.

III. A NALYSIS METHOD

The Bragg scattering of waves in a waveguide occurs when
the refractive index is varying in the longitudinal direction.
We assume that the refractive index is varying as a quasi-
sinusoidal function

(1)

where the functions and are slowly varying
compared to the grating period. If the fiber is in single
mode operation, it supports only the fundamental mode, which
has two components propagating in opposite directions. In the
corrugated region, the forward propagating waveand the

backward propagating wave are related by the coupled
mode equations [7]

(2)

In (2), and are the complex amplitude envelopes of
the waves, obtained by removal of the spatial dependence

. is defined as the complex coupling co-
efficient

(3)

and is the phase shift per unit length compared to the Bragg
wavelength .

(4)

We further define the local reflection coefficient as

(5)

By calculating , and substituting and
from the coupled mode equation (2), we get the well-known
Riccati equation

(6)

This differential equation can be numerically solved for the
reflection coefficient at the beginning of the
grating of length by using the Runge–Kutta 4th order and the
boundary condition . When the number of samples
of is small, it is necessary to include an interpolation
routine to increase the number of samples in order to reduce
the error in the Runge–Kutta algorithm. Such an algorithm is
implemented in C++, yielding an efficient reflection spectrum
calculation algorithm. The computation of a spectrum takes
about 10–100 ms for a “normal” grating on a Pentium 150
MHz PC. “Normal” means that the number of samples of
after interpolation and the number of samples of is both
about 50–100.

IV. SYNTHESIS USING A GENETIC ALGORITHM

The objective is now to find a coupling coefficient that
produces a reflection coefficient as close as possible to the
target spectrum. Since there is no general, exact solution to
this problem when is finite, we will try to utilize a GA to
evolve solutions. To rank the solutions, we need to calculate
an error for a given solution. The error value will be used as
the fitness value for the GA. Given a sample input vector,
we can find the error using the following steps:

1) calculate the reflection spectrum for the input vector
using the method described above (Runge–Kutta);

2) using a predefined error function, calculate the error of
the calculated spectrum related to the target spectrum.
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The error function is a measurement of the distance between
the calculated reflection spectrum and the target reflection
spectrum. It tells the GA how to weight the different parts of
the spectrum. Therefore, it is important that the error function
is designed according to the filter requirements, especially
when the target filter spectrum is unrealizable. An example
of an error function is

(7)

where and denote the th value of the calcu-
lated reflectivity spectrum and the target reflectivity spectrum

, respectively. Another more general error function
is obtained by introducing a weighting coefficient in the-
metric frequently used in functional analysis [8]

(8)

For , we simply obtain the weighted sum of errors, for
we get a weighted Euclidean metric, and in the limit
, (8) reduces to

(9)

Thus, is a parameter that describes how the large errors in
the spectrum are weighted compared to the small errors.

For some applications, the phase response or
the dispersion is critical as well. Suitable error
functions may for example be

(10)

(11)

where is given in (8) and decides how
the reflectivity spectrum are weighted compared to the phase
response or the dispersion.

Now, utilizing this measurement of error, we apply a GA to
the problem. The process of solving the optimization problem
by a GA can be illustrated using the pipeline in Fig. 4.

The individuals are represented as vectors of input
samples along with the calculated error, that is as pairs .
To create random individuals we produce vectors of size
of random values. Since we have some domain knowledge of
our problem, we can put a threshold on the random values.
We have used two different threshold functions.

1) Rectangular Threshold:The random vector values
should reside in a range where is the
maximum achievable coupling coefficient. By investigating
the coupled mode equations, we have found that by limiting

to real values, we will get a symmetric .

Fig. 4. GA pipeline.

2) Half-Hamming Threshold:Letting the vector elements
take random values within the right half of a Hamming
window scaled by a factor . Such a constraint will prefer
a minimum phase solution. This is because the coupling
coefficient will be largest for small , which means that the
effective reflection point will be close to the reference point
for .

When creating a new generation, we will always keep
a certain percentage of the best individuals from the last
generations unaltered. We also combine individuals from the
last generation to create new offsprings, and create some new
(random) individuals.

When selecting the individuals for crossover, each individ-
ual has a probability to be used in a crossover that is related
to the fitness of that individual. That is, a very fit individual
is more likely to be used in a crossover than a poorly fit
individual. After a crossover is performed, there is a slight
possibility that the newly created offspring will be mutated.
That is, for some of the newly created offsprings, we introduce
a random value in the string of values.

V. NUMERICAL EXAMPLES AND DISCUSSION

A. Bandpass Filter

An interesting application of the synthesis algorithm is to
synthesize a fiber optic bandpass filter. The target bandpass
filter is characterized by

(12)

where 2 refers to the width of the filter. Note that the
filter is bandpass in reflection, i.e., corresponds to
the pass band, which in this case should be 0.2 nm wide.
We have applied (12) as input to our implemented algorithm
using the error function (7) with . Since we will
compare our results to a minimum phase solution from the
iterative GLM algorithm, a half Hamming threshold has been
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Fig. 5. The coupling coefficient of the genetic bandpass filter, (solid curve),
the causal GLM bandpass filter (dashed curve), and the raised cosine filter
(dashed-dotted curve).

utilized in the GA. The maximum coupling coefficient is set
to 400 m 1, corresponding to a maximum index modulation
of 2 10 4. The resulting coupling coefficient is shown in
Fig. 5, and is compared to a raised cosine design. Also shown
in Fig. 5 is the resulting coupling coefficient from the iterative
GLM algorithm [3] using a nonlinear minimum phase of
(“causal”) and 12 iterations.

The grating lengths are 3.1 cm, and the corresponding
reflection spectra are shown in Fig. 6. The skirt steepness of
the genetic bandpass filter is somewhat higher than for the
raised cosine filter and for the GLM filter, while the side lobes
are less for both the GLM filter and the raised cosine grating. In
order to suppress the side lobes of the GLM filter, the resulting
coupling coefficient is multiplied by a half Hamming window,
i.e., a window function for which the top value matches the
start position of the grating ( ). Due to the truncation
of the coupling coefficient, it is necessary to multiply this
intermediate coupling coefficient by a constant to achieve the
desired reflectivity of 99%.

By using our algorithm, it is not necessary to multiply the
coupling coefficient by a window function or a final constant.
However, the choice of an error function is very important,
because it determines to what extent low side lobes or low
pass band ripple is preferred.

B. Low-Dispersion Bandpass Filter

For a bandpass filter with low dispersion, the target spectrum
is given by (12) provided the phase response is linear, or
equivalently . We choose a rectangular threshold
with the same as before, and the error function (11)
with and for the amplitude part, i.e., non-
weighted Euclidean metric. Furthermore, we want to optimize
the grating for the worst case dispersion inside the pass band.
Therefore, we set and

(13)

for the dispersion part, where denotes the values
corresponding to samples within the passband. Hence, we

Fig. 6. Calculated reflection spectrum for the genetic bandpass filter (solid
curve), the causal GLM bandpass filter (dashed curve), and the raised cosine
filter (dashed-dotted curve).

Fig. 7. The coupling coefficient of the genetic low-dispersion bandpass filter,
(solid curve), the noncausal GLM bandpass filter (dashed curve), and the
raised cosine filter (dashed-dotted curve).

obtain the error function

(14)

The parameter is chosen so that the weighting between
the dispersion and the amplitude response is approximately
equal (the value depends on the dispersion unit). The resulting
coupling coefficient and reflectivity spectrum is given in
Figs. 7 and 8, and is compared to a linear phase GLM solution
(“noncausal”) and a raised cosine design.

Fig. 9 shows the in-band dispersion of the three filters. The
worst case dispersion inside the pass band are 300, 2900, and
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Fig. 8. Calculated reflection spectrum for the low-dispersion genetic band-
pass filter (solid curve), the noncausal GLM bandpass filter (dashed curve),
and the raised cosine filter (dashed-dotted curve).

Fig. 9. In-band dispersion for the low-dispersion genetic bandpass filter
(solid curve), the noncausal GLM bandpass filter (dashed curve), and the
raised cosine filter (dashed-dotted curve).

4200 ps/nm for the genetic, the “noncausal” GLM, and the
raised cosine gratings, respectively. On the other hand, the
reflectivity spectrum is less square-like for the genetic filter
than for the two other. This shows that the grating has been
optimized for low dispersion compared to the other gratings.

Such an optimization procedure, for any kind of parameter,
is not trivial when using the iterative GLM algorithm, or
when using simpler designs as, for example, raised cosine
apodization.

The main drawback with our method is the running time. For
the problems described above, acceptable solutions were found

after 10 min, and the results given below were found after
approximately two hours using a Pentium 150 MHz PC. For
comparison, the running time of the iterative GLM method is
about a minute. However, Genetic Algorithms exploit a natural
parallel form, which makes it ideal for parallel implementation.
Parallel algorithms are essential for solving complex problems
in a reasonable amount of time. Our proposed method has a
great potential for scaling to problems beyond what is possible
to solve using conventional methods. GA’s can be used to
solve the majority of inverse problems, and are not only limited
to the fields of fiber grating synthesis.

It is also worth mentioning that the resulting index modula-
tion profiles from the synthesis algorithm can be written into
fibers by using for example the method described by Storøy
et al. [9] and Assehet al. [10].

VI. CONCLUSION

A novel method for synthesizing fiber gratings is proposed.
The algorithm is made by combining the Runge–Kutta analysis
method and a genetic algorithm, which is analogous to the
evolution process in nature. The numerical examples presented
show that the method gives results that are comparable or
better than other design methods. In addition, the proposed
method greatly reduces the problem of weighting the different
requirements to the filter response of a fiber grating.

REFERENCES

[1] K. A. Winick and J. E. Roman, “Design of corrugated waveguide filters
by Fourier transform techniques,”IEEE J. Quantum Electron.,vol. 26,
pp. 1918–1929, 1990.

[2] G. H. Song and S. Y. Shin, “Design of corrugated waveguide filters
by the Gel’Fand–Levitan–Mar.enko inverse-scattering method,”J. Opt.
Soc. Amer.,vol. 2, pp. 1905–1915, 1985.

[3] E. Peral, J. Capmany, and J. Marti, “Iterative solution to the
Gel’Fand–Levitan–Mar.enko coupled equations and application to
synthesis of fiber gratings,”IEEE J. Quantum Electron.,vol. 32, pp.
2078–2084, Dec. 1996.

[4] Z. Michalewicz, Genetic Algorithms+ Data Structures = Evolution
Programs. New York: Springer-Verlag, 1992.

[5] J. H. Holland,Adaption in Natural and Artificial Systems.Cambridge,
MA: The M.I.T. Press, 1975.

[6] D. Beasley, D. R. Bull, and R. R. Martin,An Overview of Genetic
Algorithms: Part 1, Fundamentals,http://www.mcs.drexel.edu/ shart-
ley/MCS770/index.html.

[7] D. Marcuse,Theory of Dielectric Optical Waveguides.San Diego, CA:
Academic, 1991.

[8] E. Kreyszig,Introductory Functional Analysis with Applications.New
York: Wiley, 1989.

[9] H. Storøy, H. E. Engan, B. Sahlgren, and R. Stubbe, “Position weighting
of fiber Bragg gratings for bandpass filtering,”Opt. Lett.,vol. 22, pp.
784–786, 1997.

[10] A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, and R. Stubbe, “A
writing teqnique for long fiber Bragg gratings with complex reflectivity
profiles,” J. Lightwave Technol.,vol. 15, pp. 1419–1424, 1997.

Johannes Skaar, photograph and biography not available at the time of
publication.

Knut Magne Risvik , photograph and biography not available at the time of
publication.



3.2 On the synthesis of fiber Bragg gratings by layer

peeling

Authors: Johannes Skaar, Ligang Wang, and Turan Erdogan.

Accepted for publication in IEEE Journal of Quantum Electronics, February 2001. Man-
uscript submitted July 2000. Revised manuscript submitted September 2000.

24



25

On the Synthesis of Fiber Bragg Gratings by Layer Peeling

Johannes Skaar
Department of Physical Electronics, Norwegian University of Science and Technology

(NTNU),
N-7491 Trondheim, Norway

Ligang Wang and Turan Erdogan
The Institute of Optics, University of Rochester, Rochester, NY 14627

Abstract
Two methods for grating synthesis which have appeared in the literature recently are
compared directly. In particular, we point out the similarity between the two — both
algorithms are based on propagation of the fields through the structure with simultaneous
evaluation of the coupling coefficient according to simple causality arguments (layer-peeling
algorithms). The first published method [1] (here called the discrete layer-peeling algorithm)
is reformulated in a simpler, more efficient way and it is shown that its implementation can be
made exact. For mathematical comparison, a derivation of the second method [2] (here called
the continuous layer-peeling algorithm) is presented.  The methods are compared both
mathematically and numerically. We find that the discrete layer-peeling algorithm is
significantly faster and can be more stable than its continuous counterpart, whereas the
continuous algorithm offers some advantages in flexibility.

1. Introduction
The synthesis of fiber Bragg gratings has attracted many researchers in the field of fiber optics
recently  [1-6]. The problem amounts to finding the grating structure (grating amplitude and
phase) from a specified, complex spectrum.  Synthesis is useful both as a design tool and for
characterization of already fabricated gratings with complex profiles. It has been a common
view that the synthesis problem is complicated, especially compared to the well-known direct
problem of computing the reflection spectrum from a grating structure. In a recent article [2],
Poladian points out that the synthesis problem actually is as simple as the direct problem; one
can find the grating structure from the reflection spectrum simply by propagating the fields
along the grating structure, while simultaneously evaluating the grating strength using a
simple causality argument. In fact this result has been appreciated in a number of other fields
of physics, and this layer-peeling (sometimes called “differential inverse scattering”)
approach has been used to analyze such systems as transmission lines, vibrating strings,
layered acoustic media, and particle scattering in quantum mechanics [7,8].
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The purpose of this paper is to first simplify the discrete layer-peeling (DLP) synthesis
method proposed by Feced et. al. [1] to improve its clarity and efficiency, and then compare
this method with the continuous method described by Poladian [2] (referred to here as CLP
for continuous layer peeling). We point out that the continuous method essentially makes use
of the same principle as the discrete method. Both are based on the following procedure [8]:
by causality, the coupling coefficient at the front end of the grating is determined only by the
leading edge of the impulse response, since at the very beginning of the impulse response
light does not have time to propagate more deeply into the grating and hence “sees” only the
first layer. After computing the value of the coupling coefficient in the first layer, the fields
are propagated to the next layer of the grating. This propagation is essentially the direct
(forward) calculation and can be accomplished by numerical integration of the coupled-mode
equations or by the transfer matrix method described below. Now one is in the same situation
as at the beginning, since the effect of the first layer is “peeled off.” The process is continued
to the back of the grating, so that the entire grating structure is reconstructed. Note that the
layer thickness must be chosen sufficiently small that the (complex) coupling coefficient can
be approximated as constant throughout the layer.

While the principle behind the DLP and CLP methods is the same, the implementation of the
two methods differs.  The DLP model is based on a discretization of the grating model itself;
i.e., the grating is approximated as a series of discrete, complex reflectors. Once this
approximation is made, though, the reconstruction or synthesis algorithm can be made exact.
In the CLP method the coupling process is treated continuously, but discretization is
introduced in the actual computation of the coupling coefficient and the propagation of the
fields. This qualitative comparison is described more precisely and in mathematical terms
below.  Differences in the implementations of the two methods lead to differences in the
numerical performance.  As illustrated in the examples below, we find that the discrete layer-
peeling algorithm is significantly faster and often more stable than its continuous counterpart,
whereas the continuous algorithm can be more flexible.  For example, in contrast to the DLP
method, the CLP method allows the layer thickness to be varied for a given frequency
bandwidth.

The remainder of this paper is organized as follows.  In Section 2 we reformulate the discrete
layer-peeling algorithm reported in [1], showing that a “moving reference frame” simplifies
the algorithm and improves its performance.  In Section 3 a derivation is provided for the
continuous layer-peeling algorithm, since this has not been published yet, and it is necessary
for a clear comparison between the two methods.  In Section 4 we compare the two methods
mathematically, showing that they are equivalent in certain limits and how they differ in
others.  Also, several numerical examples are provided to demonstrate the relative
performance of the two methods.  Finally, in Section 5 we summarize and draw conclusions.
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2. Discrete Layer Peeling
In this section we describe the layer-peeling method for synthesis of gratings from an
inherently discrete model [1]. It was first developed by geophysicists like Goupillaud and
Robinson, and was extended and generalized by Bruckstein et. al. (see refs [7,8] for excellent
reviews).

The starting point for the discretization is the well-known transfer matrix T of a Bragg
grating, which connects the fields at the point z � �  with the fields at z,
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Here ),( �zu  and � ��,zv  are the slowly varying amplitudes of the forward and backward

propagating fields, respectively, and � �2 2 2
� �q , where q q z� ( )  is the coupling coefficient

and � � �� � B  is the wavenumber detuning compared to a Bragg design wavenumber � B .
The implicit harmonic time dependence is assumed to be exp �i t�b g , and the spatial

dependence exp �i zB�b g has been removed from the fields. We refer to (1) as the piecewise

uniform model since the grating is considered uniform in the interval � ���zz, . A further

discretization approximation involves replacement of the matrix T by the product of two
transfer matrixes T T

� �
, one of them (T
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) describing a discrete reflector, and the other (T
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where the discrete, complex reflection coefficient is given by

� � �

�

tanh q q
q

�c h . (4)
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Fig. 1: The discrete model of a fiber grating; the forward (uj) and backward (vj) propagating fields

associated with each layer are indicated on the drawing.

The transfer matrix T
�
 can be obtained from T by letting all coupling take place at a single

point in (1); i.e., q �� , while the product q�  remains constant. It can also be written

directly since it merely describes the standard transfer matrix of a discrete reflector with �

and � �

�  the reflection coefficients from the left and right, respectively, and 1 2 1 2
� �e j  

the

transmission coefficient for both directions.

The discrete model of the entire grating is thus a series of N discrete, complex reflectors with
a distance �  between all reflectors. From a realizable complex reflection spectrum r1 �b g  we

wish to reconstruct the complex reflector amplitudes � j , j N� 1 2, ,..., . Define the forward

and backward propagating fields before the jth section as � ��ju  and � ��jv , see Fig. 1. The

fields before the first section are then given by
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The causality argument illustrates how to find the complex amplitude of the first reflector. We
note that the impulse response of the reflector stack for time t � 0 is independent of the
reflectors � j  for j � 2  because light does not have sufficient time to propagate to and from

the second and higher reflectors. Thus, when looking at the impulse response of the stack for
t � 0, we obtain the same response as if only the first reflector were present. Therefore, we
can compute �1 from the inverse Fourier transform of r v u1 1 1� � �b g b g b g�  evaluated at time

t � 0. Since we then know �1, we can use T T
� �1

 to transfer the fields to the next section. At

z
�1 �2 �3

��

u1

v1

u2
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section 1



29

this point we find ourselves in the same situation as with the first reflector, so in effect the
first layer is “peeled off.” This procedure can be repeated until the entire series of reflectors is
determined. The coupling coefficient function q(z) is then determined from Eq. (4).

Using (2) and (3) it is straightforward to show that the task of transferring the fields by the
transfer matrix product T T

� �1
 can be described in terms of the local reflectivities as

r i
r

r2
1 1

1 1

2
1

� �
� �

� �
b g b g b g b g� �

�

�
�

exp  � , (6)

where r v uj j j� � �b g b g b g� . It is interesting to note that (6) is equivalent to a recursion formula

proposed by Schur for testing the boundedness of an analytic function outside the unit circle
of the complex plane [8].

To obtain an explicit expression for the determination of �1 by the inverse Fourier transform,
we note that the spectrum r1 �b g  can be written as a discrete-time Fourier transform (Fourier

series) of the impulse response h1 �b g ,
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because the impulse response is discrete with the sample period 2� , which is equal to the
“round-trip” propagation length of one layer. We have defined � � t / 2�  as the discrete time
variable with t as the normalized time. Since the impulse response for  � � 0 is the same as if
only the first reflector were present, we can see that �1 is simply the zeroth Fourier coefficient

of the series (7), or
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Thus far the model is based on inherently discrete functions that describe the grating structure.
For numerical implementation, the spectral dependence must also be discrete, and hence the
calculation of �1 by the inverse Fourier transform of r1 �b g  can be achieved by the discrete

Fourier transform

�1 1
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b g  (9)

where r m1b g denotes a discrete version of the spectrum r1 �b g  in the range � ��  2� , and

M N�  is the number of wavelengths in the spectrum. Note that Eqs. (7)–(9) are valid for all



30

layers j by substituting j�1  in the subscripts, because the reference plane is transferred to

the actual layer through (6).

The desired impulse response h1 �b g  must be nonzero for � � 0, and if necessary, it should

therefore be apodized to reduce the Gibbs phenomenon, and shifted so that it starts at 0��

[1]. The apodizing-windowing procedure reduces the undesirable oscillations in the spectrum
due to the finite length of the desired impulse response that is represented in the computer.
Note that M, the number of wavelengths in the discrete spectrum, which is equal to the
number of points in the impulse response, should be greater than or equal to the number of
layers N.  The number N is chosen from the desired grating length or detuning range, or is
chosen such that we obtain a desired accuracy in the realized spectrum.

The discrete layer-peeling algorithm may be summarized in the following simple steps:
i) Start with a physically realizable reflection coefficient r1 �b g  (see Appendix).

ii) Compute �1 from Eq. (9).
iii) Propagate the fields using the transfer matrixes (2)–(4) or the equivalent expression (6).
iv) Repeat step ii) until the entire grating structure is determined.

A count of the number of operations shows that the running time is of the same order O MNb g
as the conventional approach for computing the direct problem, i.e., computing the spectrum
r1 �b g  from the reflector amplitudes � j  using the transfer-matrix. We also note that the inverse

problem actually is as simple as the forward problem.

A difference between the approach described here and that of Feced [1] is that we move the
reference plane as we propagate through the structure (or peel off the layers). The reference
plane in [1] is always located at z � 0, and consequently it is necessary to take into account
the propagation of the fields back and forth from z � 0 to the layer being reconstructed. While
this approach certainly works, it unnecessarily increases the computation time and the clarity
of the presentation.

We conclude this section by discussing the implications of choosing the frequency domain vs.
the time domain for implementation of the layer-peeling algorithm.  In a similar fashion to
that chosen by Feced [1], we implement the algorithm in the frequency domain. The main
disadvantage with this choice is that, strictly speaking, the synthesis algorithm is not exact
unless we have perfect spectral resolution (M � �).  However, this is not a fundamental
limitation of the DLP method, because the algorithm can be made exact by transforming it
into the time domain [7]. By an inverse Fourier transform of the discrete transfer-matrix
relation, we find
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where u tj b g and v tj b g are the inverse Fourier transforms of the fields uj �b g and uj �b g,
respectively. Since the reference plane for the fields u tj b g and v tj b g is fixed at 0�z , the local

reflectivities are simply

� j
j

j t j

v
u

�

� �

. (11)

The vector u t1b g is initialized to the unit impulse function, and v t1b g is set equal to the desired

impulse response in agreement with (5). From Eqs. (10) and (11) we can then determine the

local reflectivities exactly from the impulse response (by O N 2c h operations), and we therefore

expect better accuracy than with the frequency-domain DLP implementation. However, for
the frequency-domain approach, if the number of spectral points M is set significantly larger
than N, for example M=2N, the performance in most practical situations is about the same as
for the time-domain implementation. Finally, we note that only the first N points of the
impulse response are needed to reconstruct the grating up to layer N. In principle, this
requirement applies frequency-domain DLP also, but since errors associated with the
utilization of band-limited reflection spectra are repeatedly propagated and thereby
exacerbated by Eq. (6), the accuracy of the frequency-domain DLP procedure improves when
we increase the number of points in the impulse response (i.e., increase the spectral
resolution).

3. Continuous Layer Peeling
The continuous layer-peeling (CLP) method was first developed by Bruckstein et. al. and
Corones et. al. [8,9]. In this section, we summarize the main principles of the method for
synthesis of Bragg gratings, particularly as they relate to the discrete layer-peeling method.
The synthesis relation resulting from the causality argument is derived, and it is shown that
the method introduced in [2] is clearly a version of the continuous layer-peeling method.

The continuous model for coupling of counter-propagating modes in a grating is described by
the familiar coupled-mode equations,
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where all of the parameters are defined in the previous section. The two coupled equations
can be combined into a single Riccati equation for the local reflectivity
r z v z u z, , ,� � �b g b g b g�  by computing dr z dz,�b g  and substituting the derivatives from (12),

d
dz

r z i r z q z r z q z, , ( , )� � � �b g b g b g b g� � � �
�2 2 . (13)

Eq. (13) can be solved numerically by Runge-Kutta integration methods. Thus the model
itself is not inherently discrete (like a series of localized reflectors); nevertheless some form
of discretization must be introduced in order to numerically solve the coupled-mode or Riccati
equations to propagate the fields.

As indicated previously, inverse scattering relies heavily on causality, so in order to find a
relation analogous to (8) we must also consider the time domain in the description of
propagation in the grating, or
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where Eqs. (14) are obtained by inverse Fourier transform of Eqs. (12). Note that the time t
here is normalized such that the velocity of the waves equals unity. Now, we imagine that the
grating is probed by a wave with a leading impulse. The grating is assumed to be dark at
t � 0, so by causality the fields must vanish for t z�  and have the form [8]

u z t t z H t z u z t
v z t H t z v z t

, ~ ,

, ~ ,
b g b g b g b g
b g b g b g

� � � �

� �

�
, (15)

where ~u , ~v  are some functions describing the fields in the grating, H t z�b g denotes the unit

step function that is 0 for t z�  and 1 for t z� , and � t z�b g  is the Dirac delta function. By

substituting (15) into the second of equations (14), and equating the coefficients of � t z�b g  on

both sides, we obtain
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q z v z t z v z t z� � �
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By the initial value theorem for the unilateral Fourier transform (Laplace transform) [10], we
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the shift property of the Fourier transform. Hence we can write

q z i v z i z i r z�

�� ��

� � �b g b g b g b glim , exp lim ,
� �

� � � � �2 2  , (17)

where the last equality results from the fact that  u z i z, exp� �b g b g�  as � ��  according to

(15). By using the initial value theorem once again, we can see that the complex conjugate of
the coupling coefficient is equal to the leading edge of the impulse response multiplied by a
factor of –2, or

q z r z i d� �
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� � �zb g b g c h1 � � � �, exp  0 . (18)

In [2] this relation is incorrectly written as q z r z d�

��

�

� � zb g b g1 � � �, , after translation to our

convention for the coupled-mode equations. However, because the impulse response is
discontinuous at t � 0, the Fourier integral evaluated at t � 0 is given by the average of the
impulse response at t � �0  and t � �0 . Therefore, one should either multiply the synthesis
relation in [2] by a factor of 2, or be careful to write the relation explicitly in the form (18).
This problem does not occur in the discrete layer-peeling algorithm because there we choose
the spectrum rj �b g  to be the discrete-time Fourier transform of the discrete impulse response

(see discussion in Section 4).

The continuous layer-peeling algorithm is thus performed by following these simple steps:
i) Start with a physically realizable reflection coefficient r 0,�b g  (see Appendix).

ii) Compute q zb g for the present z value from (18) or

q z r z d�

��

�

� � zb g b g2 � � �, . (19)

The integral may be evaluated using standard numerical integration routines, such as
Simpson’s rule.

iii) Propagate the fields using the transfer matrix relation (1), or by integration of (13) using a
backward difference scheme.

iv) Repeat step ii) until the entire grating structure is determined.
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The primary sources of error in the continuous layer-peeling procedure are the evaluation of
the synthesis integral (19) and the propagation of the fields.

4. Comparison and Numerical Properties
In this section we first consider the similarities and differences between the two methods from
a fundamental, mathematical standpoint.  Then we compare the numerical performance using
several realistic examples.

First, we expect that the two methods should be equivalent in the limit where the
discretization step (layer thickness for matrix multiplication) approaches zero. By letting
�� 0 in (4), we obtain �� �

�q � . Substituting this result into (8) gives

q j r dj
�

�
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�

b g b g1
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�
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/
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(20)

for the jth layer. In the limit of small ����we obtain the relation (19) (divided by 2). However,
we must be careful at this point, because the spectra rj �b g  and r j�,�b g are not exactly

equivalent to one another.  For a fixed position given by �� jz  the spectrum r j�,�b g is the

Fourier transform of a continuous impulse response, whereas rj �b g  is a Fourier series with a

discrete impulse response as its coefficients. While the determination of the impulse response
using r j�,�b g requires a factor of 2 to fix the “wrong” convergence of the inverse Fourier

integral at 0�t , the determination of the Fourier coefficient (8) from rj �b g  does not. With

this subtle difference taken into account, relations (19) and (20) are consequently equivalent
in the limit � � 0.

Owing to the nonequivalence between rj �b g  and r j�,�b g, the target spectra r1 �b g  and r 0,�b g ,
the starting physical realizable spectrum for DLP and CLP respectively,  should ideally be
specified in different ways. The discrete model spectrum r1 �b g  should equal a discrete-time

Fourier transform of a causal, discrete impulse response, whereas the continuous model
spectrum r 0,�b g  should equal the Fourier transform of a causal, continuous impulse response.

Therefore, if one starts with a true grating spectrum in both DLP and CLP (reconstruction
problems), the DLP will give wrong result for the coupling coefficient of the first section,
whereas the CLP will give the right answer. Similarly, the situation will be reversed in
synthesis problems where one starts with a spectrum that is a discrete Fourier transform of a
discrete impulse response. Usually, this does not impose any problems as long as the grating
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starts smoothly at the front end. If this is not the case, one could fix the algorithm at the first
layer by including an extra factor of 2 in (9) for reconstruction problems, and exclude the
extra factor of 2 in (19) for synthesis problems.

To make the equivalence between the two methods clearer, it is also instructive to derive the
synthesis relation (8) from a more physical standpoint than that of the derivation in Section 2.
As above, we assume the grating is comprised of a series of N discrete reflectors separated by
equal distance of � .  Also, the scattering is assumed to happen at the beginning of each layer.
At the beginning of the st)1( �j  layer, ),( ��� jzr is the corresponding local reflectivity

associated with the grating beyond that layer. Recall that the reference plane is shifted from
0�z  to �� jz , and the associated definition of zero time is also shifted to the layer of

interest.

The reflection of a single layer between z and ��z  is simply that of a discrete reflector at
�� jz followed by a free propagation of distance of � . Thus, according to Eq. (2), the

reflection from this layer only is j� . Note that this single-layer reflection is independent of

frequency, which is a direct result of the discretization of the coupling process. Based on

causality, at time t � 0�  the impulse response contains a contribution only from the reflector
at �� jz . Therefore we can write

� �
�

��

�

�� ��
��

���

2/

2/

2/

2/ 00 )exp(),()exp(
�

�

�

�
��

�������� dizrdij . (21)

The limits on the integral arise because the discrete grating model produces a periodic
spectrum with periodicity of � � � /� . Consequently, only a single period of the spectrum
should be considered.

Next, we note that since j�  is independent of the detuning � , the integral on the left may be

evaluated so that Eq. (21) becomes

�
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�
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�
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���� dizr . (22)

According to the definition of j�  in Eq. (4), this expression may be written in terms of the

coupling coefficient as
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Eq. (23) is the integral form of the synthesis relation for the discrete layer peeling (DLP)
method, analogous to Eq. (8). By taking the limit as � � 0,  on both sides of Eq. (23), the
synthesis relation (18) for the continuous layer peeling (CLP) method is readily obtained:

q * (z) � �

1
�

r(z,� )exp(�i�� 0�)d� . (24)

Although simple, this analysis makes it clear that the CLP method is essentially identical to
the DLP method in the limiting case of infinitesimally thick layers, or � � 0.

For the first numerical comparison example, we consider a dispersionless band-pass filter. We
take the ideal spectrum to be a flat-top, nearly rectangular pass-band filter described by the
“super-gaussian” function

� �� �, exp)( 20
PBRr ��� ��   (25)

where the maximum reflectivity is R = 0.90 and the width is determined by �PB = 19.2 cm–1,

which corresponds to a pass-band full width at half maximum (FWHM) of 37.84 cm–1 in
wavenumber, or 1 nm in wavelength at a center wavelength of 1550 nm. We choose the

detuning window (frequency range) to be 157 cm–1, which corresponds to a wavelength
window of about 4 nm. This choice determines the layer thickness, since for the DLP method
the layer thickness �DLP and detuning window W�  must be related by

w�

�
��DLP . (26)

Thus �DLP = 0.02 cm. Furthermore, we choose the length of the grating to be L = 10 cm,

which therefore determines the number of layers N = L/�DLP; in this case N = 500.  Finally,

we choose the number of wavelengths M = 1000.  For both methods, the actual target
spectrum is obtained as the discrete Fourier transform of the impulse response associated with
(25), windowed to be causal and apodized by a Hanning function. Ideally, for comparison we
would like to choose the same parameters for the CLP method.  However, for this choice of
parameters we find that the CLP method does not converge on a reasonable solution.  In fact
this behavior appears to be a general result (at least for some structures) — the CLP method
does not yield a reasonable structure for layer thickness roughly greater than or equal to that
dictated by the DLP method (through (26)).  Therefore, for the CLP simulation we must
choose a smaller layer thickness.  We pick 0.01 cm, and keep all other parameters equal.  We
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note that this ability is actually an inherent advantage of the CLP method — the layer
thickness can be adjusted independently of W� , as long as it is not made too large.

Unfortunately, the smaller layer thickness does not enable a totally fair comparison, so we
also include for a third case a DLP simulation with the same layer thickness (0.01 cm), but

because of the constraint in (26) we must increase the frequency range to 314 cm–1, and we
double the number of wavelengths (M = 2000) in order to keep the frequency sampling
resolution constant.  To summarize, the three cases considered for the first example are
denoted (by layer thickness) as “DLP 0.02 cm,” “CLP 0.01 cm,” and “DLP 0.01 cm.”
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Fig. 2: Plots of the (real) coupling coefficient reconstructed from a nearly ideal, flat-top,
dispersionless reflection spectrum using both DLP and CLP methods and different sets of parameters.

The three calculations for this example had associated processor run times of 0.66 sec, 25.26
sec, and 2.25 sec, for the “DLP 0.02 cm,” “CLP 0.01 cm,” and “DLP 0.01 cm” cases,
respectively.  These were implemented using the program MATLAB on a 550 MHz Pentium
III computer.  The DLP method is at least an order of magnitude faster than the CLP method.
In Fig. 2 we plot the coupling coefficient (which is real for this example) determined for each
of the three cases described above.  On this plot it is very difficult to distinguish the three
curves.  The main difference is a slight lateral shift in the position of the profile with respect
to the spatial window. In Fig. 3(a) we show the calculated reflectivity spectra for the three
cases.  Note that all spectra in this figure are computed using the “exact” transfer matrix
method described by Eq. (1).  Fig. 3(b) shows the group delay curves associated with the
power spectra in 3(a).  Again all are nearly indistinguishable, except for a slight difference in
the absolute delay, which is expected given the lateral shifts seen in Fig. 2.  From the power
reflectivity curves, we observe that the layer thickness is important in determining how well
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the spectrum of the reconstructed grating approximates the target spectrum.  For the direct
comparison of the DLP and CLP methods with the same layer thickness (0.01 cm), the DLP
method synthesizes an excellent approximation to the target spectrum for reflectivities down
to about –40 dB, whereas the CLP method is able to match the spectrum down to about –50
dB.  However, sidelobes produced by the CLP method do not fall off quite as rapidly as those
produced by the DLP method.
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Fig. 3: Plots of the (a) reflectivity spectra, and (b) group delay curves associated with the
reconstructed gratings in Fig. 2.  All spectra are computed using the “exact” transfer matrix
described by Eq. (1).

In Section 2 we make the claim that except for the approximation resulting from the grating
coupling model itself (the discretized transfer matrix model), the DLP method can be made
exact.  This claim is now verified numerically, although we use the frequency domain
implementation of the DLP, so here it is “exact” only within the error resulting from the finite
spectral resolution limitation discussed in Sec. 2. In Fig. 4 we plot the reflection spectrum for
the example above, but only for the case “DLP 0.02 cm.” The dashed line is from Fig. 3(a),
and the solid line is computed from the same coupling coefficient, but for the forward
problem calculation we use the discretized matrix (2)–(4) instead of the “exact” matrix (1).
Here we obtain an excellent approximation to the target spectrum for reflectivities down to
about –170 dB.  Of course this result is not necessarily physically significant, since for strong
gratings the actual spectrum is usually more accurately predicted by the piecewise uniform
(“exact”) matrix calculation, but it shows that the method is exceptionally self-consistent — it
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does an almost perfect job of reproducing the desired spectrum within the limits of the
discretized-matrix approximation.
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Fig. 4: Reflection spectra for the case “DLP 0.02 cm” in Fig. 2 computed using the discrete and the
“exact” transfer matrixes.

For a second example, we consider for the target reflection spectrum a simple gaussian
function with a quadratic phase (non-zero dispersion) of the form

� � � � � �2)(exp)(exp 2
2

2 ncLiRr FPB ����� ��� , (27)

where the maximum reflectivity is R = 0.95 and the width is determined by �PB = 12.3 cm–1,

which corresponds to a pass-band full width at half maximum (FWHM) of 20.4 cm–1 in
wavenumber, or 0.54 nm in wavelength at a center wavelength of 1550 nm. The dispersion is
described by the product of the �2 parameter (second derivative of the propagation constant

with respect to frequency) and a characteristic length LF for an optical fiber.  Here we assume

�2 = –21.7 ps2/km (D = 17 ps/nm-km) and LF = 30 km, so that the grating is capable of

compensating the dispersion of a standard (non-dispersion-shifted) fiber over a length of 30
km. The detuning window and layer thicknesses are the same as in the first example.  The
length of the grating is chosen to be L = 12 cm, which determines the number of layers N =
600.  For this example the number of wavelengths is M = 1200.  As in the example above, to
present the fairest comparison we consider three cases:  DLP with equal layer thickness to
CLP, DLP with equal detuning window to CLP, and the CLP method.
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Fig. 5: Plots of the (a) magnitude of the coupling coefficient, and (b) relative chirp of the grating
period with respect to a nominal period (arbitrarily defined to be at the middle of the grating), for
gratings reconstructed from a constant-dispersion, gaussian-shaped reflection spectrum using both
DLP and CLP methods and different sets of parameters.

The three calculations for the second example had associated processor run times of 0.93 sec,
35.92 sec, and 3.29 sec, for the “DLP 0.02 cm,” “CLP 0.01 cm,” and “DLP 0.01 cm” cases,
respectively. The relative run times among the three cases for this example are almost
identical to those for the first example. The coupling coefficient profiles are plotted in Figs.
5(a) and (b), where 5(a) shows the magnitude of the coupling coefficient and 5(b) shows the
relative chirp of the grating period with respect to a nominal period (arbitrarily defined to be
at the middle of the grating). Again the curves are nearly indistinguishable. In Fig. 6 we plot
the spectra associated with the reconstructed gratings.  For this example there is almost no
difference among the spectra, indicating that for relatively smooth functions both methods
work equally well for practical applications.
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Fig. 6: Plots of the (a) reflectivity spectra, and (b) group delay curves associated with the
reconstructed gratings in Fig. 5.  All spectra are computed using the “exact” transfer matrix
described by Eq. (1).
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5. Conclusion
We have reformulated the discrete layer-peeling method for the synthesis of fiber gratings and
showed how the discrete grating model can be reconstructed exactly from its spectrum, since
the only approximation in this method is that resulting from the discretization of the mode
coupling itself. The continuous layer-peeling method for grating reconstruction has been
derived and it has been compared both mathematically and numerically to the discrete
method. We show that the methods are based on the same principle, and that the continuous
method is essentially equivalent to the discrete method in the limit of infinitesimally thin
layers.

A numerical comparison reveals several interesting facts and apparent trends.  First, we find
that the DLP method is significantly faster than the CLP method, due in large part to the
absence of any calculation of special (hyperbolic) functions for wave propagation and to the
sufficiency of simple summations instead of more sophisticated numerical integration
routines.  Both of these simplifications result from the discretized approximation to the
transfer matrix, and they come at a price — the DLP method is fundamentally limited by the
degree of approximation associated with the simplified matrix calculation.  The CLP method
has the advantage that it allows for a variable layer thickness for a given choice of the spectral
window.  However, we find empirically that the method is not able to produce reasonable
results for layer thicknesses similar to or greater than the thickness required for the DLP
method.  Thus CLP seems to inherently require smaller layer thickness than the DLP method,
a characteristic which, while compounding its computation-time disadvantage, does allow it
to yield somewhat better results for difficult structures (like those with rapidly varying
coupling coefficients). When both methods are implemented with equal layer thicknesses (but
a significantly larger frequency window and identical frequency resolution used for the DLP
method), we still find about an order of magnitude improvement in the computation time for
the DLP method over the CLP method. In this case the accuracy is similar for the two
methods. Decreasing the layer thickness in the CLP method so that it is much smaller than the
thickness dictated by the DLP method (i.e., for thicknesses down to even just a couple of
grating periods), does not appear to provide much improvement in the accuracy with which
the reproduced spectrum matches the target spectrum.
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Appendix: Spectrum Realizability

When using the layer-peeling algorithm for synthesis of actual filters, the desired reflection
spectrum is not necessarily realizable for a series of N reflectors or a grating of length L. To
obtain a realizable reflection spectrum, we can use the (apodizing-)windowing procedure that
is common in digital finite-impulse-response (FIR) filter design. This procedure was used by
Feced for the synthesis of practical fiber gratings using the layer-peeling algorithm [1]. It
consists of forcing the impulse response to be zero outside of a certain window, apodizing the
windowed impulse response to cause the tails to approach zero more smoothly, and then
shifting the whole response so that it starts at t = 0.  This new impulse response is referred to
as the “target impulse response,” and we note that it has a finite duration.  Strictly speaking,
the (complex) reflection spectrum of any real fiber grating structure contains poles, and
consequently the associated impulse response has infinite duration.  In other words, even the
target impulse response is not exactly realizable — the impulse response of the realized
grating contains tails that extend beyond the windowed target impulse response, and these
tails have nothing to do with the tails that were windowed.  The realized tails cause
undesirable fluctuations in the realized reflection spectrum, but as the examples in Feced’s
paper indicate [1], the influence of the tails is small for most practical filters with N>>1 and

� j �� 1 .

This windowing procedure is not necessarily optimal for the synthesis of finite length gratings
as the following example demonstrates. Suppose one desires to synthesize a grating of length
L with reflection spectrum r �b g , and assume that r �b g  happens to be identical to the reflection

spectrum of a certain shorter grating , but of course this coincidence is not known in advance.
Then, by using the windowing procedure, one gets a target spectrum r1 �b g  that is

approximately realizable for a grating of length L. By applying the layer-peeling algorithm to
this spectrum, one ends up with a grating of length L with a spectrum that approximates the
desired function r �b g . Since the spectrum could have been realized exactly using a shorter

grating, we would have been better off shortening the starting grating length than attempting
to window the starting impulse response.  Thus it should be clear that adjusting the
windowing is not necessarily the best way in all cases to achieve the simplest structure to
match a desired reflection spectrum.  Nevertheless, it is a straightforward approach and often
yields good results in practice.

It should also be noted that for the case of a discrete grating model, the realizable filter
functions can be identified exactly.  For N reflectors, the class of realizable filters is Nth order
rational functions of z i�

�
1 2exp � �b g with rather strict conditions on the coefficients [11].

However, these conditions are difficult to handle, and it is not a trivial problem to find the
allowed coefficients that give the best fit to a desired response.
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We present an efficient and accurate method for synthesis of optical thin-film structures.

The method is based on a differentional inverse scattering algorithm and considers

therefore both the phase and amplitude reflectance data. We apply the algorithm to the

synthesis of filters with arbritrary index layers and two-material filters consisting of only

high and low index layers. The layered structure is approximated by a stack of discrete

reflectors with equal distance between all reflectors. This mirror stack is in turn

determined from the desired, complex reflection spectrum by a layer-peeling inverse

scattering algorithm. The complexity of the design algorithm is about the same as the

forward problem of computing the spectrum from a known structure.

1. Introduction

Optical thin-film structures consisting of alternating layers of high- and low-index

dielectric materials are vital components for many applications, including architecture,

energy management, automobiles, scientific instruments, data storage, and display

devices [1].  In addition to their use as high-reflection mirrors and anti-reflection

coatings, thin-film structures form the basis for optical filters with sophisticated complex

responses (reflection and transmission).  In particular, thin-film filters enable tailorable

dispersion for ultra-short pulse lasers [2] and extremely thick films are now a key

technology for wavelength-division-multiplexed (WDM) fiber-optic communication

systems. Thin-film filters with hundreds of layers have become possible to fabricate [3]

and hence the ability to synthesize structures with increasingly demanding filter

characteristics is a critical tool.
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The calculation of the optical characteristics of a particular structure, i.e., the forward

problem, is straightforward, whereas the calculation of a structure associated with

specified optical characteristics, the inverse problem, is signficantly more difficult.

Many approaches to the inverse problem for thin-film design can be classified into two

main categories: numerical refinement and thin-film synthesis [1,4].  Both rely heavily

on optimization algorithms, and hence tend to be based on a reasonable starting guess at

the final structure. In this paper, we propose a new method for the synthesis of multilayer

optical filters based on a specified complex reflection spectrum. The method is a direct

approach analogously to the Fourier transform method [5]. However, in contrast to the

Fourier method, the layer-peeling inverse scattering method is exact, i.e. the layers are

exactly determined from the associated spectrum. The inverse scattering algorithm is

based on direct inversion of the transfer matrix model after the following principle:

Consider the desired impulse response which is determined by an inverse Fourier

transform of the desired spectrum. At the leading edge of the impulse response, the light

“sees” only the first layer because at the very beginning of the impulse response the light

does not have time to propagate more deeply into the structure. By this causality

argument one can determine the first reflector and hence the first transfer matrix. Then

one can use the transfer matrix to propagate the fields to the next layer. Now one is in the

same situation as at the beginning, since the effect of the first layer is “peeled off”. The

process is continued to the back of the filter.

With this method, any thin-film filter structure can be reconstructed from the associated

complex reflection spectrum. For synthesis problems, however, the desired reflection

spectrum does not necessarily have to be realizable for a thin-film filter since the

required Fresnel reflectivities might be complex. To come around this problem, we first

synthesize a mirror stack consisting of discrete, complex reflectors, and then approximate

the stack by an inhomogeneous layer filter or a two-index thin-film filter. The remainder

of this paper is organized as follows: In section 2 we give the basic principles behind the

layer-peeling inverse scattering synthesis algorithm. In section 3 we first consider the

easiest problem, namely to synthesize filters consisting of layers with arbritrary refractive

indexes. Although this class of filters might be realizable in practice, at least in the

future, for practical reasons it is often desireable to design filters consisting of only two

different refractive indices, high (nh) and low (nl ). Two-material structures could be
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achivied by transforming the arbritrary index layers using the standard Herpin

equivalent-index concept [6]. In this paper however, we compute the two-material filters

directly from the discrete reflectors, and this procedure is described in section 3. In

section 4, we present numerical examples of filters in both categories.

2. The layer-peeling inverse-scattering algorithm

In this section, we review the basic principles behind the differentional inverse scattering

algorithm. It was first developed by geophysicists for the recognition of layered-earth

media from scattering data. A thorough analysis and comparison to other algorithms can

be found in Bruckstein [7,8]. Whereas Bruckstein used the algorithm only for real

reflectors, we extend the algorithm to consider complex reflectors. This is done to enable

synthesis of asymmetric filter characteristics, which require quasi-periodical structures.

We state the inverse scattering problem as follows. We assume a stack of N discrete,

complex reflectors with distance d  between all reflectors. From the corresponding

complex reflection spectrum r kb g  we wish to reconstruct the complex reflector

amplitudes � j , j N� 1 2, ,..., , where k � 2� �  is the vacuum wave number. This inverse

scattering problem is inherently discrete in nature, and may be solved exactly by the

layer-peeling algorithm. The running time of this algorithm is of the same order O N 2c h
as the conventional approach for computing the forward problem, i.e., computing the

spectrum r kb g  from the reflector amplitudes � j  using the transfer-matrix method [9].

Fig. 1: The stack of discrete reflectors. The distance between the reflectors is d, and the complex

fields before the jth section is Aj  and Bj .
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For a physical picture of how the layer-peeling algorithm works, we imagine that the

filter is probed by a delta-function pulse. Thus the forward and backward propagating

fields before the first section, A1 and B1 respectively, are

A k
B k r k

1

1

1b g
b g b g
L
NM
O
QP
�

L
NM
O
QP . (1)

Each "unit cell" of the reflector stack is composed of the discrete localized reflector

followed by a pure propagation section, as illustrated in Fig. 1. The jth unit cell is

therefore described by the transfer matrix product T Td j� , , where

T
ikd

ikdd �

�

L
NM

O
QP

exp
exp

b g
b g
0

0
(2)

is the standard propagation matrix, and

T j j
j

j
�

�
�

�
, � �

�

�

L
NMM

O
QPP

�
�

1
1

1
2 1 2

e j (3)

describes a pure, discrete reflector. The discrete reflector is generally complex, with  � j

and � �

� j  the reflection coefficientsfrom the left and right, respectively, and 1
2 1 2

� � je j
the transmission coefficient for both directions. If we manage to determine the first

reflector, we can use T Td � ,1  to transfer the fields to the next section. We then find

ourselves in the same situation as with the first reflector, so in effect the first layer is

"peeled off". This procedure can be repeated until the entire stack is determined.

In order to find the complex amplitude of the first reflector, we note that the impulse

response of the reflector stack for time t d c� 2  is independent of the reflectors � j  for

j � 2  because light does not have sufficient time to propagate to and from the second and

higher reflectors. Thus, when looking at the impulse response of the stack for t d c� 2 ,

we obtain the same response as if reflector 1 was alone. Therefore, we can compute �1 as
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the inverse Fourier transform of r k B k A kb g b g b g� 1 1  evaluated at time t � 0.  More

precisely, because r kb g  is periodic with period � d , we find

�
�

1
1

1

� zd B k
A k

kb gb g dperiod

or �1
1

11

1
�

�

�M
B
A

mm

M

, (4)

where m denotes the sample number of the ratio B A1 1  and M N�  is the number of

spectral points, in one spectral period. We must ensure that M is chosen to be sufficiently

large to represent the target r kb g  with a desired accuracy. Strictly speaking, we must

have M � �  to make the layer-peeling algorithm truly exact. However, in practical

situations, it turns out that M  does not have to be considerably greater than N. For the

examples in this paper, we used NM � . A way of getting the layer-peeling procedure

strictly exact is to transform it to the time domain, and represent the intermediate results

(fields) as time domain responses [7,8].

We can summarize the algorithm in the following simple steps:

i) Start with a physically realizable reflection coefficient r kb g  (see the remark below).

ii) Compute �1 from eq. (4)

iii) Transform the fields using the transfer matrixes, or by using the equvivalent Schur

recursion expression

B k
A k

i kd

B k
A k

B k
A k

2

2

1

1
1

1
1

1

2
1

b g
b g b g

b g
b g
b g
b g

� �

�

�
�

exp
�

�

(5)

Eq. (5) results from the transfer matrix muliplication and is similar to a recursion

formula proposed by Schur for testing the boundedness of an analytic function

outside the unit circle of the complex plane [8].

iv) Return to ii until the entire filter is determined.

When using the layer-peeling algorithm for synthesis of actual filters, the desired

reflection spectrum r kb g  is not neseccarily realizable, even for a stack of complex

reflectors. To obtain a realizable reflection spectrum, we use the windowing procedure
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that is common in digital FIR filter design [10]. The same procedure was used by Feced

et al. for the synthesis of fiber Bragg gratings using a layer-peeling algorithm [11]. First

we compute the inverse Fourier transform of the desired spectrum to obtain the impulse

response. This response is then forced to be causal and realizable by multiplying it by a

window function, and shifting it so that it is nonzero only for times t ≥ 0. The window

function should be smooth in order to reduce the Gibbs phenomenon. The realizable r kb g
is finally obtained by Fourier transform of the windowed impulse response. Note that the

target impulse response has a finite duration. Strictly speaking, the impulse response of

any stack consisting of two or more mirrors must have infinite duration, so the target

response is not exactly realizable for a stack of N reflectors. Thus there is always an

unwanted tail in the realized impulse response. The realized tails cause undesirable

fluctuations in the realized reflection spectrum, but as the examples below and the

examples in ref. [11] indicate, the influence of the tail is small for most practical filters

with N �� 1 and � j �� 1.

3. Design of thin-film structures

In this section we show how to convert the stack of complex, discrete reflectors into a

physical filter. If we were designing a corrugated filter, e.g., a fiber Bragg grating, this

procedure would be very simple: comparison to Feced [11] shows that the samples of the

complex coupling coefficient of the grating are related to the discrete reflection

coefficients by the relation

 q
dj

j

j
j� �

�1 �

�

�arctanh . (6)

In this paper however, our goal is a layered thin-film filter. For simplicity, we neglect all

kinds of loss in the structure. First, we consider the simplest problem, namely to find a

layered structure with arbitrary indexes. The indexes n j  must satisfy n n nl j h� � , where

nl  and nh  is the lowest and highest realizable indexes, respectively. From the Fresnel

reflection coefficients it is straighforward to obtain index jumps that realize real � j

provided
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� j h l h ln n n n� � �b g b g . (7)

The refractive index profile must be held between the limits nl  and nh . If the required

index of the jth layer becomes too small or too large, one can simply insert a section

corresponding to a round-trip phase shift of �  to reverse the index jump. The phase of � j

must be realized by deviating the positions of the index jumps compared to the positions

of the discrete reflectors. This is clearly an approximation as the induced phase response

will be frequency dependent (linear phase) whereas the discrete reflectors are

independent of frequency. However, this approximation is apparently good for

bandwidths that are much less than the center frequency, �k k�� 0  which usually is true

for the usable bandwidth of thin-film filters.

In practice, it is often more desireable to design two-material thin-film filters consisting

of only high (nh) and low (nl ) refractive index layers. Such filters can be designed from

the corresponding inhomogenous layers above by the standard Herpin equvivalent-index

concept [6]. In this work however, we present another, more direct approach of obtaining

the layer thicknesses from the desired stack of discrete reflectors. By using the transfer

matrixes, we show that a symmetrically defined Bragg period (see Fig. 2) can be

approximately represented by a discrete reflection coefficient.

Fig. 2: Refractive index profile of the thin-film filter.  The symmetrically defined Bragg period, or

“unit cell,” is the region between the dashed vertical lines. The discrete reflectors � j  are

indicated below the profile.
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We assume that the grating is perfectly matched to the surrounding media (the refractive

indexes of the surrounding media are assumed to be nl ). Furthermore, we define dh j,  and

dl j,  as the thicknesses, and � h j h h jkn d, ,�  and � l j l l jkn d, ,�  as the phase shifts in the high-

and low-index layers, respectively, all in the jth symmetrically defined Bragg period or

“unit cell” (see Fig. 2). Using a standard transfer-matrix method, we find the complex

reflection coefficients of each “unit cell” to be [9]

r
ir

i r i
j

h j

l j h j l j h j

�

�

� � � � �

2
2

sin

exp exp
,

, , , ,

�

� � � �d i d i
. (8)

where the parameter r n n n nh l h l� � �b g b g denotes the Fresnel reflectivity at each index

step.   Eq. (8) results from a transfer matrix multiplication of the two index-step matrices

inserted between the appropriate propagation matrices.  Now, we want to represent the

above reflectors with discrete, complex reflectors to be able to apply a layer-peeling

synthesis algorithm. To force the reflection coefficient (8) to be independent of

wavelength, we must make an approximation. Therefore we define the amplitude of the

wavelength-independent discrete reflector to be

�
�

�
� �

� �

j j
h j

h j

r
r

r rB

B

� �

� �
�

�

2

1 2 24 2 1 2

sin

cos
,

,d ie j
, (9)

where �B denotes a design Bragg wavelength and we have assumed 0 � �� �h . The

phase of the reflection associated with the jth unit cell at �B is

�
� � � �

� � � �� �

� �

r j j
l j h j l j h j

l j h j l j h j

r
r

rB

B

,
, , , ,

, , , ,

arg arctan
sin sin

cos cos
� �

� � �

� � �
�

�

d i d i
d i d i

2

2
, (10)

where we have ignored the phase shift due to the factor �i  in (8) since it is the same for

all unit cells. We account for the variation in the phase shifts � r j,  resulting from variation

in the layer thicknesses by assigning a phase factors to the discrete reflection coefficients



54

� j , such that � � �j j ji� expd i. That is, we let the distance between the discrete

reflectors be constant, and account for chirp due to variation in the layer thicknesses

using � j . The phase difference between reflections from two neighboring reflectors must

equal the phase difference between reflections from two neighboring unit cells, so that

� � � � � � � � �j j r j r j h j l j h j l j� � � � � � � �
� � � �1 1 1 12 , , , , , , . (11)

Here we have moved the reflection reference planes of the unit cells j  and j �1 to the

same position, namely to the middle of unit cell j �1. This transformation, which is done

to enable comparison of the phases, yields the last four terms in (11) (see Fig. 2). The

same transformation is performed on the left-hand side, but the round-trip propagation

phase between reflector j  and j �1 is simply set to 2�  since the distances between all

neighboring reflectors is the same and since we will require � �j j� �
�1 0 if the right-

hand side is 2� .

Now that we have modeled the thin-film filter as a stack of discrete, complex reflectors

� j  with identical distances between all reflectors, then once the discrete reflectors � i  are

found by use of the layer-peeling method, the layer phase shifts can be computed from

(11) and through inversion of (9) and (10): From the known � j  and � j , eq. (9) gives

� h j,  for all j . After substituting (10) into (11) the only remaining unknowns are � l j, and

� l j, �1. Thus the inversion is initiated by picking an arbitrary value for � l ,1. Then (11)

gives � l ,2 ; the rest of the � l j,  are determined by repeated application of (11). The

equation solving is conveniently performed by numerical optimization packages.

However, for most practical situations the Fresnel reflectivity of each interface is small,

or r �� 1, so that eqs. (9) through (11) may be approximated by the relations

 � �j h jr� 2 sin , (12)

and

� � � � �h j l j j j, ,� � � �
�1 2d i . (13)
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In fact, this approximation can be justified even if the Fresnel reflectivity is relatively

large since the approximation that the reflection coefficient of each unit cell is

independent of wavelength, implicit in eqs. (9) and (10), is usually more significant.

Therefore, equations (12) and (13) are sufficient to compute the layer phases from the

synthesized stack of discrete reflectors. Finally, we obtain the layer thicknesses from the

definitions � h j B h h jk n d, ,�  and � l j B l l jk n d, ,� , where kB  denotes the design Bragg wave

number.

4. Numerical examples

As a numerical example, we first apply the synthesis algorithm to design dispersionless

square filters with high reflectivities. Such filters are potentially important for the

Wavelength Division Multiplexed (WDM) communications technology of the future.

The target filter is a square filter with maximum reflectivity of 99.9%, no dispersion, and

a bandwidth of 0.13 �m.  In order to make the target filter causal and realizable the

impulse response is apodized using a Kaiser10 window [10], and shifted so that it starts at

time 0�t . We take the number of reflectors to be 150. We have synthesized both an

inhomogenous layer filter (fig. 3), and a thin-film filter consisting of high- and low-index

layers (two-material filter, fig. 4). In the latter case the indexes of the materials are set to

1.5 and 2.0, which are close to the indexes of the standard dielectric materials SiO2 and

Ta2O5, respectively. The total thicknesses of the resulting filters are 39 �m and 52 �m,

respectively. The filter performances have been computed by an exact transfer matrix

method, and are shown in Figs. 5 and 6. In Fig. 5, the reflectivity spectra for the two

filters are compared. We observe a small ripple of 4 10 4
�

�  in the pass band for both filters.

The side lobe level is -24dB and -19dB for the inhomogenous-layer filter and the two-

material filter, respectively. As can be observed in Fig. 6, the ripple or deviation of the

group delay dispersion is roughly 20 fs2 and 50 fs2 inside the pass band for the

inhomogenous layer filter and the two-material filter, respectively.

Next, we show an example of synthesis of a dispersion compensating bandpass filter.

This type of filter has become important in ultra-fast laser physics [2]. The target

dispersion for this example is 275 fs2, that is the group delay is linear as a function of

wave number. The dispersion is specified after the windowing process. The number of
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layers is set to 200. The maximum reflectivity and the indexes of the materials are the

same as in the previous example. The result of the synthesis is shown in Figs. 7 through

10. As expected, the performance of the filters is about the same as their non-dispersive

counterparts, but the group delay dispersion is nearly constant as a function of wave

number in the reflection band. While we choose a linear group delay for the sample

dispersion response, the power of the layer-peeling method is its ability to synthesize an

arbitrary group delay spectrum based on the known dispersive properties of the system

that requires compensation.

One of the main advantages of the layer-peeling algorithm compared to the conventional

optimization methods is the efficiency: Because the running time is of the same order as

the forward transfer matrix calculation of the spectrum, we can design extremely thick

filters very fast. The two calculations in this paper had associated run times of less than

0.2sec using the program MATLAB on a 300MHz Pentium computer. In addition, it is

evident from the examples that the layer-peeling method is particularly suitable for

designing filters when the entire spectrum is relevant to the designer, not only a small

bandwidth. For example, one observes that the spectra of the designed filters match well

to the goal spectrum in both the reflection (pass) band and also the stop band. The

disadvantage is clearly that one cannot weight different trade-offs in the same way as

with optimization methods. However, if a certain parameter is critical, as for example the

group delay dispersion, one can use numerical refinement techniques to optimize for that

parameter with the layer-peeling design as a starting point.

5. Conclusion

We have proposed a method for synthesis of thin-film filters using a layer-peeling

inverse scattering algorithm. This method is particularly useful for designing filters with

many film layers, and has the advantage that no knowledge of a reasonable starting guess

at the final structure is necessary. The method has been used for designing filters

consisting of arbitrary index layers and for designing two-material thin-film filters. The

running time of the synthesis algorithm is about the same as the running time of the

conventional transfer matrix method for computing the spectrum from a known structure.
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Fig. 3: The refractive index profile of the inhomogenous layer non-dispersive bandpass filter.
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Fig. 4: Layer thicknesses of the two-material non-dispersive bandpass filter. The dots represent

the thicknesses of the low-index layers (dl j, ) whereas the lined-through dots are 5 times the

thicknesses of the high-index layers (dh j, ).
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Fig. 5: Reflectivity of the non-dispersive bandpass filter. The dashed line is the spectrum of the

inhomogenous layer filter, whereas the solid line represents the spectrum of the two-material

filter. The spectra are shown in both linear and logarithmic scales.
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Fig. 6: Group delay dispersion for the “non-dispersive” bandpass filters. The dashed line is the

dispersion spectrum of the inhomogenous-layer filter, whereas the solid line represents the

dispersion of the two-material filter.
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Fig. 7: The refractive index profile of the inhomogenous layer dispersive bandpass filter.
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Fig. 8: Layer thicknesses of the two-material dispersive bandpass filter. The dots represent the

thicknesses of the low-index layers (dl j, ) whereas the lined-through dots are 5 times the

thicknesses of the high-index layers (dh j, ).
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Fig. 9: Reflectivity of the dispersive bandpass filter. The dashed line is the spectrum of the

inhomogenous layer filter, whereas the solid line represents the spectrum of the two-material

filter. The spectra are given in both linear and logarithmic scales.
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Fig. 10: Group delay dispersion of the dispersive bandpass filters. The dashed line is the

dispersion spectrum of the inhomogenous layer filter, whereas the solid line represents the

dispersion of the two-material filter.
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Chapter 4

Synthesis of fiber gratings for use in
transmission

This chapter is devoted to a related subject to that of the previous chapter. A method
for synthesis of gratings with desired complex transmission coefficients is developed.
Because the transmission coefficient of a fiber grating satisfies the minimum phase con-
dition, only a limited bandwidth is considered for the synthesis. Then the minimum
phase condition can be fulfilled due to the behavior of the transmission coefficient outside
that bandwidth.
The first paper contains a general method for synthesis of minimum phase functions

with a desired, complex response inside a finite bandwidth window. Dependent on
the required asymptotic behavior, one gets two different variants of the method. The
transfer functions resulting from the method in this paper is not necessarily passive, and
consequently, a modification is required when designing practical filters without gain.
In the next paper, we apply the general design method to fiber gratings and show how
one can obtain passive filters. Practical gratings are designed, and the performance of
the designs are discussed. For an introduction to the field, consult the introductions in
the respective papers.
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Synthesis of limited bandwidth minimum phase

filters

Johannes Skaar

Department of Physical Electronics, Norwegian University of Science and Technology,

N-7491 Trondheim, Norway

Abstract. A method for designing minimum phase or minimum delay filters with an

arbitrary complex transfer function inside a finite frequency interval is proposed. The

method is based on a result of Krein and Nudel’man [Problemy Peredachi Informatsii

11, 37-60 1975]. The filters are divided into two classes, depending on their asymptotic

behavior for large frequencies. For filters with asymptotic value different from zero,

a straightforward and completely general synthesis method is proposed yielding good

numerical results. A similar method is shown to be suitable for a limited class of filters

whose responses are required to approach zero in a certain sense.

1. Introduction

Several physical filter configurations yield so-called minimum phase transfer functions.

By minimum phase transfer functions, we essentially mean transfer functions that are

zero-free in the lower half of the complex ω plane. The minimum phase characteristic is

often a fundamental property of the physical configuration itself, rather than a desired or

designed response. Examples of such configurations are transmission lines [1] or optical

transmission filters, e.g. optical thin-film filters or fiber Bragg gratings that work in

transmission [2, 3, 4, 5]. One important property of such transfer functions is that

the amplitude and phase responses are uniquely related. Thus there are fundamental

constraints that strongly limit what is possible to realize. On the other hand, in

some applications it is desirable to realize a certain complex transfer function inside

a relevant bandwidth without changing the overall filter configuration. Since it is in

general impossible to realize an arbitrary minimum phase transfer function H = H(ω)

for all frequencies, we will limit our bandwidth of consideration to a finite interval,

say Ω = (ω1,ω2), where 0 ≤ ω1 < ω2 < ∞. This means that we want to obtain a
desired minimum phase transfer function H(ω) for ω ∈ Ω, but we do not care what

H(ω) is for ω /∈ Ω. If we do not restrict ourselves to minimum phase transfer functions,

the solution to this continuation problem is unique and can be found by the Carleman

formula [6]. A condition for existence has been given by Krein and Nudel’man [7, 8]; it

is rather strict, and in addition, the transfer function solution might have a large energy.

Therefore, Krein and Nudel’man also solved the similar problem of finding a minimum
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norm solution to the problem, given a desired precision on Ω. If we do restrict ourselves

to minimum phase filters, the solution to the continuation problem will of course still

be unique, but the existence condition will be stricter, as the continuation into the

lower half-plane must be zero-free. Therefore, we will consider the problem of finding a

transfer function H, which approximates a desired response for ω ∈ Ω, and satisfies the

minimum phase condition due to its behavior outside Ω.

This paper is organized as follows: In section 2, we make the minimum phase

condition precise, and divide the most common physical filters into two classes,

depending on their asymptotic behavior as ω → ∞. Moreover, we state the synthesis
problems for those classes, and propose corresponding solution methods. In section 3,

a numerical solution algorithm is described and examples are given.

2. Synthesis of minimum phase systems

A linear system is characterized by an impulse response h(t), which we assume can be

written as

h(t) = aδ(t) + hL2(t), (1)

where a is a real constant and hL2 ∈ L̂2(0,∞). L̂2(0,∞) denotes the real Hilbert space
consisting of all real-valued functions in the complex Hilbert space L2(0,∞). We write
h in this form because we will include transfer functions of linear transmission systems

where the transfer function approaches a constant (for example 1) as ω → ∞. The
number a is determined by the type of the filter. The transfer function is defined as the

Fourier transform of h,

H(ω) = (Fh)(ω) =
Z ∞
0
h(t) exp(−iωt)dt, (2)

where F is the Fourier transform operator. Similarly, we define HL2 as the Fourier

transform of hL2 , HL2 = FhL2, so
H(ω) = HL2(ω) + a. (3)

The lower limit in (2) is set to zero due to causality, i.e. hL2(t) = 0 for t < 0.

Consequently, the real and imaginary part of HL2(ω) = H(ω) − a form a Hilbert

transform pair by the Titchmarsh theorem [9]. However, we are interested in the

connection between the modulus and phase of H. In general, there is no such unique

relation owing to zeros of H in the lower half-plane [10]. But for an important class

of filters, there are no zeros of the transfer function in the closed lower half-plane,

and we can derive relations between the modulus and phase. This filter class is called

minimum phase (shift) functions. The form of the relations may differ, depending on

the asymptotic behavior of H as ω → ∞. In addition, there is a variety of equivalent
relations for the same class of filters [10, 11, 12]. Here, we will use the original Hilbert

transforms to connect the modulus and phase. We must therefore form a function

G = G(ω) with its real and imaginary parts derived from the modulus and phase of H.

G must satisfy the Titchmarsh theorem, that is: (i) it must be square integrable along
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the real axis, (ii) it must be analytic in the lower half-plane, and (iii) there must be a

uniform bound k <∞ such thatZ ∞
−∞
|G(x+ iy)|2dx ≤ k for y < 0. (4)

The hypotheses (i) through (iii) are equivalent to the condition that G belongs to the

Hardy space H2 of the lower half-plane [13]. Since the asymptotic behavior is dependent

on the value of a, we must treat two cases separately.

2.1. Filter class with a 6= 0
First we assume that a 6= 0. This is the case for example for typical transmission filters
where the input signal is going straight through the filter outside a certain pass band.

The number a is determined by the asymptotic value of H. For this class, consider

G(ω) = logH(ω)/a. (5)

Because H is a minimum phase function, it is zero-free in the closed lower half-plane.

Then G is analytic in the lower half-plane. Provided that |H(ω)| ≥ ² for a certain

² > 0 in the closed lower half-plane, the function G satisfies the integrability condition

(4). Then, the Titchmarsh theorem is applicable for G, which means that the real and

imaginary parts of G form a Hilbert transform pair. The modulus and phase of H are

therefore uniquely related by means of a logarithmic Hilbert transform [12].

We recall that our problem is to find a minimum phase transfer function H(ω) =

HL2(ω) + a approximating a desired response in Ω. From the above discussion it seems

plausible that this problem can be reduced to the problem of finding another transfer

function G = logH/a approximating a function F in Ω. Since we would like the transfer

function H to be as close as possible to a outside Ω, we optimize for least norm of G.

This problem has been studied by Krein and Nudel’man [7, 8], and we adopt their

problem formulation:

Given a desired response F ∈ L2(ω1,ω2) and a number ², (0 < ² ≤ kFk), find a
g ∈ L̂2(0,∞) having least norm kgk, and such thatZ ω2

ω1
|F (ω)−G(ω)|2dω ≤ ²2, (6)

where G = Fg ∈ L2(−∞,∞).
The minimum phase transfer function H is then given by

H(ω) = a exp[G(ω)]. (7)

H satisfies the Hermitian property H(−ω) = H(ω), and in the Appendix we show that
H − a belongs to L2 and satisfies the Titchmarsh theorem (HL2 ∈ H2) if F satisfies

the Lipschitz condition and vanishes as ω → ω1 and ω → ω2. Moreover, H is zero-free

in the closed lower half-plane, and it is therefore realizable as a transfer function of

the minimum phase transfer function class with a 6= 0. The condition that the goal

function F must vanish at the endpoints is not a further constraint as it can be fulfilled

by extending the interval Ω with a smooth termination of F .
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The problem above has a unique solution, and can be solved by finding the function

g from the integral equation [7, 8]

µg(t) +
Z ∞
0

"
sinω2(t− s)
π(t− s) − sinω1(t− s)

π(t− s)
#
g(s)ds = f(t), 0 ≤ t <∞ (8)

where

f(t) = Re
1

π

Z ω2

ω1
F (ω) exp(iωt)dω, (9)

and µ = µ(²) is some positive function of ². This function is defined in [7, 8]; it is

dependent on F and is decreasing monotonically to zero as ² ↓ 0. In the next section,
we solve (8) numerically by extrapolating to the negative semiaxis, and transforming to

the frequency domain.

2.2. Filter class with a = 0

When a = 0, we have H = HL2 ∈ L2(−∞,∞). The asymptotic condition must in this
case be treated with care, as | logH| →∞. One common, possible asymptotic form of

log |H| is [12]
log |H|→ −(n+ 1) log |ω|+A ω → ±∞, (10)

along the real axis, where n ≥ 0 and A is a real constant. For integer n, this asymptotic
form may arise when the nth derivative of h has a jump at the origin, while the lower

order derivatives are zero. If logH is differentiable and |H| has the asymptotic form
(10), we can construct the function

G(ω) = i
d logH

dω
=
i

H

dH

dω
(11)

with asymptotic form

Im G→ −n+ 1
ω

ω → ±∞. (12)

Now, the idea is to use Krein-Nudel’man to synthesize a function G. Then, by

integration of (11), it turns out that we may obtain a function H ∈ H2 that is zero-

free in the closed lower half-plane. Note that this time, we have assumed the specific

asymptotic condition (10), and not every g ∈ L̂2(0,∞) will correspond to a G = Fg
satisfying (12). Therefore, the results of Krein and Nudel’man are not always directly

applicable to this case. To come around this problem, we can modify the synthesized

G from Krein and Nudel’man for |ω| larger than a certain ωB to obtain the asymptotic

behavior (12) along the real axis. We must ensure that the new function is analytic in

the lower half-plane, so we are only modifying the imaginary part of G to satisfy (12),

and adjusting the real part accordingly,

Im G̃ = Im G+∆, Re G̃ = −HIm G̃. (13)
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In (13), ∆ ∈ L2 is the required modification function that is zero for |ω| < ωB, and H
denotes the Hilbert transform. The error we have introduced in this procedure is ‡

Re G̃(ω)−Re G(ω) = −(H∆)(ω) =
1

π

Z
|ω0|>ωB

∆(ω0)dω0

ω − ω0
, (14)

and can therefore be made arbitrarily small in Ω by choosing ωB large enough. Finally,

we compute the minimum phase transfer function by using G̃ in (11). In practice,

we integrate along the real axis choosing the origin as the starting point, and adjust

a suitable multiplicative integration constant of H to satisfy the desired amplitude

response in Ω. The integral
R ω
0 −iG̃(ω0)dω0 is well-defined for any point ω in the closed

lower half-plane. Moreover, the integral as a function of ω is clearly analytic in the lower

half-plane, and hence its real and imaginary parts are harmonic conjugate functions.

Since log |H| gets the asymptotic behavior (10), it follows that H ∈ L2, and also thatZ ∞
−∞

log |H(ω)|
1 + ω2

dω > −∞. (15)

Therefore, H must belong to H2 [13]. In addition, since the integral
R ω
0 −iG̃(ω0)dω0 is

finite for finite ω in the closed lower half-plane, H is zero-free there. The Hermitian

property of G̃ translates into the same property of H, H(−ω) = H(ω). The function
H is therefore realizable as a minimum phase transfer function of the class with a = 0.

Note that in this case, it is not necessary to restrict the goal function F to be continuous

or Lipschitz because any function G̃ ∈ H2 with the right asymptotic behavior (12) yields

by (11) a function H in L2. Also note that we have no control of the energy ofH−a = H
in this case, the filter is rather optimized for small energy of G.

3. Numerical algorithm and examples

In this section, we solve the integral equation (8) numerically and apply the algorithm to

the synthesis of different minimum phase filters. To the best of the author’s knowledge,

the integral equation of Krein-Nudel’man has not been solved numerically previously.

First, we must transform equation (8) in a way that is suitable for discretization

and numerical implementation. By extrapolating (8) to the whole t-axis and Fourier

transforming, we see that the extrapolated solution ge is an entire function with the

representation [8]

ge(t) =
1

2π

Z
Ω̂
Ge(ω) exp(iωt)dω, Ω̂ = (−ω2,−ω1) ∪ (ω1,ω2) (16)

where

µGe(ω) +G(ω) = F (ω), ω ∈ Ω. (17)

‡ Physically, this error corresponds to an error in the group delay or the derivative of the phase
response.
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This is realized from the fact that the integral terms in (8) correspond to the transmission

of a signal g(t) through an ideal filter with pass band Ω. G is the causal version of Ge,

that is

G(ω) =
Z ∞
0
exp(−iωt)ge(t)dt = 1

2π

Z ∞
0
exp(−iωt)

Z
Ω̂
exp(iω0t)Ge(ω0)dω0dt (18)

We can therefore connect G and Ge through the following Hilbert transform relation

G(ω) =
1

2
Ge(ω)− 1

2πi

Z
Ω̂

Ge(ω
0)dω0

ω0 − ω
, ω ∈ Ω. (19)

The integral is taken in the principal value sense. Note that (19) can be extrapolated

to the entire ω axis provided that Ge(ω) is set equal to zero outside Ω̂. By substituting

the expression above into (17), we obtain [8]µ
µ+

1

2

¶
Ge(ω)− 1

2πi

Z
Ω̂

Ge(ω
0)dω0

ω0 − ω
= F (ω), ω ∈ Ω. (20)

Our goal is to solve (20) and then substitute the resulting Ge into (19) yielding the

solution G. In fact, an explicit solution to (20) is given in [8], see (A.2) in the present

document. However, this expression is not suitable for numerical calculations due

to the fast oscillating exponential expressions. Therefore, we will instead discretize

(20) directly. The truncated Hilbert integral operator in (20) is linear so its discrete

counterpart can be represented as a matrix. Therefore, the equation can be solved

numerically by a simple matrix inversion. Once Ge is found, G can be calculated from

(19) using a discrete Hilbert transform.

By representing Ge and F as vectors of samples in the interval Ω, the discrete

approximation of (20) becomesµ
µ+

1

2

¶
Ge − 1

2i

³
H−Ge +HGe

´
= F, (21)

whereH−Ge andHGe corresponds to the Hilbert transform integral ofGe in (−ω2,−ω1)
and (ω1,ω2), respectively. First, we will treat the case when ω1 is considerably larger

than zero, that is when the term H−Ge is negligible. Later, we will show how to deal

with the problem when ω1 is or is near to zero.

The matrixH corresponds to integration of a singular integrand. The most common

way to perform such a Hilbert transform numerically is to use Fast Fourier Transforms

(FFT). Therefore, we can use the expression for the discrete Fourier transform to obtain

the matrix H. By comparing (18) and (19) we obtain the relation

− 1

2πi

Z
Ω

Ge(ω
0)dω0

ω0 − ω
=
1

2π

Z ∞
−∞
exp(−iωt)

µ
u(t)− 1

2

¶Z
Ω
exp(iω0t)Ge(ω0)dω0dt (22)

where u(t) is the unit step function. The discrete counterpart of (22) is

(HGe) (m) =
i

N

NX
n=1

N−1
2X

k=−N−1
2

sgn(k)Ge(n) exp[i2πk(n−m)/N ], (23)
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where

sgn(k) =


−1 for k < 0

0 for k = 0

1 for k > 0

. (24)

In (23) m ∈ {1, 2, . . . , N}, and we have for simplicity assumed that N is an odd number.

When discretizing (22), Ge becomes periodical, so in order to limit the resulting errors,

we imagine thatGe is padded with so many zeros that the contribution from the repeated

spectra is eliminated. In practice, this means that the number N is increased from the

number of samples of F , and that we are only using a certain inner square of the Hilbert

transform matrix H below. That is we effectively pad Ge with Nz zeros on each side by

setting the Hilbert transform matrix in (21) equal to

(H) (m,n) =
i

N

N−1
2X

k=−N−1
2

sgn(k) exp[i2πk(n−m)/N ] (25)

for m,n ∈ {Nz, Nz + 1, . . . , Nz +NF},
where NF is the number of samples of F and N = NF + 2Nz. It is convenient to use

the number Nz that corresponds to the extra bandwidth for which we want to calculate

G(ω) on each side of Ω. Now, we can solve (21) by inverting the matrix (2µ+1)I−H/i,
which has the dimensionNF×NF . The (discrete) Hilbert transform is energy conserving,
kuk = kvk in the l2-norm, for any Hilbert transform pair {u,v} with zero mean value.
Thus the truncated Hilbert operator (25) will satisfy

kHk/(2µ+ 1) < 1, µ > 0. (26)

Therefore, the matrix (2µ+1)I−H/i is guaranteed invertible [14]. Once we have found
Ge, G is computed from a discrete Hilbert transform of a zeropadded version of Ge,

according to (19). To sum up, the algorithm goes as the following:

(i) Pick a µ > 0.

(ii) Solve (21) for the desired F by matrix inversion.

(iii) Calculate G by a Hilbert transform of Ge padded with zeros outside Ω (discrete

version of (19)).

(iv) Compute ² as the rms error of the elements of F−G (discrete version of (6)).

(v) If ² is not small enough, pick a smaller µ and return to ii.

As the chosen µ is getting smaller, the error ² is decreasing and kGk is growing. Usually,
this means that the transfer function is getting more difficult to realize. At a certain

point, the error is not decreasing further due to finite bandwidth in the calculations.

This bandwidth can be increased by increasing Nz in (25) and padding Ge with more

zeros in step iii. Finally, it is not possible to get any less error due to the quantization

errors in the computer.

The Hilbert transform in step iii is computed using FFT, so the algorithm scales

with the total bandwidth as O(Nz logNz). Note that the computation time of (25)
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scales only linearly with Nz. Owing to the matrix inversion involved, we also observe

that the algorithm scales with the resolution in Ω as O(N3
F ).

When ω1 = 0, we can use the same procedure as the one described above simply by

redefining Ω to the interval (−ω2,ω2). If ω1 is near zero however, we must take the term
H−Ge into account. This term is trivial, since it corresponds to a simple integration of

a non-singular integrand. The integrand is found from the Hermitian property of Ge,

and the integration may for example be performed using the trapezoidal formula. By

splitting (21) into the real and imaginary parts, it is possible to invert the equations in

a similar way as we did in the situation above.

3.1. Reconstruction of a Hilbert transform pair

In the first example, we define a Hilbert transform pair {u, v} by

u(ω) =

 (ω − ω0)/2ωw for |ω − ω0| < ωw

0 for |ω − ω0| ≥ ωw
, (27)

where 2ωw is the window size of Ω, and ω0 is the middle frequency. For simplicity

we assume that ω0 >> ωw so the negative frequencies can be ignored in (20) or (21).

The function v is found from a Hilbert transform of u defined in (27). Now, we set

G = u + iv and apply F = G for ω ∈ Ω to the algorithm to see how well the function

G is reconstructed outside Ω. The results are showed in figure 1. We observe that the

produced solution for µ = 1 has less norm than the original, as expected. For µ less

than about 0.1, the reconstructed and original G is virtually identical. In figure 2 the

dependence of the rms error is shown for 10 different values of µ. The figure shows the

expected behavior; the error decreases with decreasing µ until a certain point where

the finite bandwidth and/or quantization error is dominating. The bandwidth in the

simulation is 14ωw. By increasing this bandwidth, it is possible to get considerably less

rms error.

3.2. All-pass filter with cubic phase response, a = 1

First, we will try to design a minimum phase filter of the category with a = 1. This

category corresponds to typical transmission filters, e.g. optical transmission filters.

The logarithm of the transfer function shall be as near as possible to

F (ω) = 0− i
µ
ω − ω0
ωw

¶3
(28)

in Ω, that is for |ω − ω0| < ωw. Note that F is defined for negative frequencies by

the Hermitian relation F (−ω) = F (ω). Again, we assume that ω0 >> ωw so that

the negative frequencies can be ignored in (20) or (21). Eq. (28) corresponds to a

filter with a flat pass band of unity transmission and a cubic phase response. F (ω)

is not approaching zero at the edges of Ω, and we should therefore extend Ω with a

smooth termination of F (ω). However, according to the discussion in the Appendix,

this procedure is sufficient but not necessary, and in numerical calculations we might
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Figure 1. Real and imaginary part of the original G (solid curves) and reconstructed

G (dashed curves) using µ = 1. The reconstructed G for µ less than about 0.1 is

virtually identical to the original.
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Figure 2. Rms error inside Ω for different values of µ.

omit it. If the produced transfer function has no singularities, then it was acceptable to

use the discontinuous F .

By applying the expression for F to our algorithm we get the responses given in

figure 3 and 4. The results are shown for µ = 10−3 and a simulation bandwidth of 40ωw.
The corresponding rms error is approximately 0.06, and we observe a small ripple in the

amplitude response in Ω. This ripple/error will decrease if µ is decreased, but kGk will
increase correspondingly, making the filter harder to realize.

3.3. Filter with flat pass band and quadratic group delay response, a = 0

We will also try to design a similar filter as the above, but of the category with a = 0.

For a flat pass band and a quadratic group delay response (cubic phase response as
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Figure 3. Amplitude response |H(ω)| of the designed filter with cubic phase response
and flat pass band. The asymptotic value a = 1. The dashed curve shows the desired

response as defined within a limited range.
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Figure 4. Phase response argH(ω) of the designed filter with cubic phase response

and flat pass band. The dashed curve shows the desired response.

above), the goal function F must according to (11) be set to

F (ω) = i0−
µ
ω − ω0
ωw

¶2
(29)

for |ω−ω0| < ωw. By applying (29) to the algorithm, we obtain G. In this case, G turns

out to have approximately the right asymptotic behavior, so only a small ∆ is required.

The resulting spectra for µ = 10−4 are shown in figure 5 and 6, and shows relatively
small errors. The rms error is approximately 0.09 in Ω.

If we would like to design a filter of the class a = 0 with a similar goal function

as (29), but with opposite sign, the resulting asymptotic behavior would be far from

the desired. Although the modification method described in Section 2 would fix this
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Figure 5. Amplitude response |H(ω)| of the designed filter with quadratic group
delay and flat pass band. The asymptotic value a = 0.
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Figure 6. Re G̃, the derivative of the negative phase response, that is the negative

group delay of the designed filter (a = 0). The dashed curve shows the desired response.

behavior, this synthesis method is not always appropriate in practice, as the filter energy

may be very large in such cases. Note that this disadvantage only applies for the filters

of the a = 0 class.

4. Conclusion

We have proposed a method for synthesis of minimum phase filters with desired complex

transfer functions inside a limited bandwidth window. The method is general and

straightforward in the case of asymptotic value a 6= 0. For a = 0, the method is suitable
for a restricted class of filter responses. A numerical solution technique is given and

applied for the synthesis of specific filters of both classes.
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Appendix A.

A minimum phase transfer function of the class with a 6= 0 is found from the transfer

function G by the formula

H(ω) = a exp[G(ω)]. (A.1)

The function G is the solution of Krein-Nudel’man’s problem of finding a transfer

function (in H2) approximating a desired F ∈ L2(ω1,ω2) with a certain precision

parameter µ. Here we will show that the function HL2(ω) = H(ω) − a, where H is

given in (A.1), satisfies the Titchmarsh theorem, HL2 ∈ H2, if F satisfies the Lipschitz

condition [9] and vanishes as ω → ω1 and ω → ω2. This condition is sufficient but not

necessary.

First we must ensure that HL2 ∈ L2(−∞,∞). We recall that G ∈ L2(−∞,∞),
and that G essentially is a Hilbert transform of a function Ge of finite support (19).

Define Ω̃ as Ω̃ = (−ω2 − ²,−ω1 + ²) ∪ (ω1 − ²,ω2 + ²) for a small ² > 0. Then, G

is bounded for real ω /∈ Ω̃. So provided that G does not have singularities in Ω̃, HL2
must belong to L2(−∞,∞). To analyze the behavior in Ω̃, we need information on the

form of Ge. As in ref. [8], we assume with no loss of generality that Ω = (0, 1), that is

Ω̃ = (−1− ², 1+ ²). Krein and Nudel’man gives a formula for Ge in this case which can
be written as

Ge(ω) =
1 + 1/2µ

1 + µ
F (ω) + iB exp

·
iA ln

1 + ω

1− ω

¸ Z 1

−1
F (ν)

ν − ω
exp

·
−iA ln 1 + ν

1− ν

¸
dν, (A.2)

−1 < ω < 1.

In (A.2) A and B are real constants that depend on µ, and F is defined for negative ω by

the Hermitian relation F (−ω) = F (ω). Now we take a truncated Hilbert transform of

(A.2) on the interval (−1, 1) and look for singularities. If we assume that F approaches
zero as ω → ±1 and satisfies the Lipschitz condition of order α, the Hilbert transform
of the first term in (A.2) will be bounded [9]. The Hilbert transform of the second term

needs a more thorough examination around ω = ±1. We note that the integral in (A.2)
equals the Hilbert transform of a function F (ν) exp

h
−iA ln 1+ν

1−ν
i
. It is straightforward

to show that this product adopts the Lipschitz property from F (ν), and consequently

the Hilbert transform of this expression will be bounded and also satisfy the Lipschitz

condition of order α. Therefore, we consider the integral

I(ω) =
Z 1

−1
B(x) exp

·
iA ln

1 + x

1− x
¸
dx

ω − x, (A.3)
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where B(x) is a bounded Lipschitz function. Eq. (A.3) can be transformed by the

substitution ξ = ln[(1 + x)/(1− x)] to

I(ω) =
Z ∞
−∞

2β(ξ)eξeiAξdξ

(eξ + 1)[(eξ + 1)ω − eξ + 1] =
Z ∞
−∞

2β(ξ)eξeiAξdξ

(eξ + 1)[2 + ²+ ²eξ]
, (A.4)

where β(ξ) = B((eξ−1)/(eξ+1)) and we have set ω = 1+², ² > 0 in the last expression.
We observe that β(ξ) is bounded and that β(ξ) → B(±1) as ξ → ±∞. The integral
from −∞ to 0 is therefore bounded, so we consider only the integral¯̄̄̄
¯
Z ∞
0

2β(ξ)(eξ + 1− 1)eiAξdξ
(eξ + 1)[2 + ²+ ²eξ]

¯̄̄̄
¯

≤
¯̄̄̄
¯
Z ∞
0

2β(ξ)eiAξdξ

(eξ + 1)[2 + ²+ ²eξ]

¯̄̄̄
¯+

¯̄̄̄
¯
Z ln 1/²

0

2β(ξ)eiAξdξ

2 + ²+ ²eξ

¯̄̄̄
¯+

¯̄̄̄
¯
Z ∞
ln 1/²

2β(ξ)eiAξdξ

2 + ²+ ²eξ

¯̄̄̄
¯ , (A.5)

We realize that the first and the last integral in the right-hand side of (A.5) are bounded

as ² ↓ 0, and the other satisfies¯̄̄̄
¯
Z ln 1/²

0

(2 + ²+ ²eξ − ²− ²eξ)β(ξ)eiAξdξ
2 + ²+ ²eξ

¯̄̄̄
¯

≤
¯̄̄̄
¯
Z ln 1/²

0
β(ξ)eiAξdξ

¯̄̄̄
¯+

Z ln 1/²

0

(²+ ²eξ) |β(ξ)|dξ
2

, (A.6)

where the last integral is clearly bounded. The first integral is also bounded as can

be realized by setting β(ξ) = β(∞) + β(ξ) − β(∞) and noting that |β(ξ) − β(∞)| =
|B(ω) − B(1)| ≤ C|(eξ − 1)/(eξ + 1) − 1|α < 2Ce−αξ by the Lipschitz condition on B,
where C is a constant and 0 < α < 1. Hence I(ω) is bounded as ω ↓ 1. Next we make
the substitution ²→ −² into (A.4), and split the integral into four parts

I(1− ²) =
Z ∞
−∞

2β(ξ)eξeiAξdξ

(eξ + 1)[2− ²− ²eξ] =
Z 0

−∞
+
Z ln 1/²

0
+
Z ln 3/²

ln 1/²
+
Z ∞
ln 3/²

. (A.7)

By a similar argument as above, we find that the first, second and fourth integral in the

right-hand side of (A.7) are bounded. Using the substitution τ = eξ we find that the

third integral is (Cauchy principal value)Z 3/²

1/²

u(τ )

2− ²− ²τ dτ , u(τ) = 2B
µ
τ − 1
τ + 1

¶
γ(τ), γ(τ ) =

eiA ln τ

τ + 1
. (A.8)

By differentiation of γ and using the Lipschitz condition onB, we get |u(τ+∆τ )−u(τ)| ≤
C1²

2|∆τ |+ C2²1+2α|∆τ |α for ² sufficiently small. Thus the integral in (A.8) is bounded
as ² ↓ 0. From the symmetry of (A.3) it is then clear that I(ω) is bounded as ω → ±1,
and we can conclude that G is bounded in Ω̃. Hence we have shown that both G and

HL2 belong to L
2(−∞,∞) ∩ L∞(−∞,∞).

Finally, we must check the behavior of HL2 in the lower half-plane. Since G is

analytic here, HL2 is analytic as well, and approaches zero as ω →∞. Like G, it must
also satisfy the square integrable condition (4). Hence HL2 satisfies the Titchmarsh

theorem, and HL2 ∈ H2. It is also zero-free in the closed lower half-plane since G is

bounded there.
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A method for designing fiber Bragg gratings with desired complex transmis-

sion coefficients is proposed. The transmission coefficient of a fiber grating

satisfies the minimum phase condition when ignoring the linear phase from

the pure propagation. Therefore, only a finite bandwidth is considered for

the synthesis. The algorithm is based on a result of Krein and Nudel’man

[Problemy Peredachi Informatsii 11, 37-60 1975]. A numerical algorithm is

developed and by numerical examples it is demonstrated that it is possible

to realize gratings with specified complex transmission responses inside the

considered bandwidth. The method is also applicable for thin-film filters. c°
2000 Optical Society of America

OCIS codes: 050.2770, 060.2340

1. Introduction

Fiber Bragg gratings have become very useful components for realizing complex optical filter

functions.1,2 By using inverse scattering design methods an arbitrary complex filter function

can be approximated by the reflection spectrum of the grating. Synthesis of such reflection

filters consists in determining the grating strength and grating period as a function of position

to obtain the desired, complex spectrum.3 In some applications however, there are several

reasons for rather using the fiber grating in transmission. When the grating is operating in

transmission the complexity and cost of the system are reduced as it is not required to use a

coupler or a circulator. In addition the phase response in transmission is often more robust

to imperfections in the grating structure compared to the phase response in reflection.4 In

some applications, as for example Wavelength Division Multiplexing (WDM), one uses the

grating both in reflection and transmission at the same time, and it is therefore desirable to

get a better understanding of how one can obtain a certain complex transmission coefficient.

Unfortunately, it is much harder to realize a given complex filter function in transmission.
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The reduced flexibility compared to the reflection spectrum is due to the fact that the

transmission coefficient will satisfy the minimum phase condition when ignoring the linear

phase associated with the pure propagation through the grating.5—7 Thus, there is a unique

relation between the amplitude and phase response in transmission, which strongly limits

what is possible to realize. In addition, the synthesis problem will not be unique as opposed

to the situation in reflection. This ambiguity arises because a grating with a given reflection

amplitude response will correspond to the same complex transmission coefficient, no matter

what the reflection phase response is. For example, if we reverse a fiber grating, the complex

transmission coefficient will remain the same, whereas the complex reflection spectrum or

grating structure of course are different in the case of an asymmetric grating.

The use of fiber gratings in transmission has been discussed in several papers. Ouellette8

studied theoretically the use of uniform Bragg gratings for dispersion compensation using the

highly dispersive regions near the band edge of the grating. Later, dispersion compensation

using uniform gratings was demonstrated both experimentally and numerically by Eggleton

et.al.9 and Litchinitser et.al.10 The performance of the pulse compression was improved by

use of apodized gratings.10 Furthermore, Hinton4 analyzed the transmission performance for

dispersion compensation near the band edge of a couple of different apodization functions.

Dispersion compensation using fiber gratings in transmission is an example of a situation

where one wants a certain amplitude and phase response inside a limited bandwidth. The de-

sired amplitude response is in this case flat, whereas the desired phase response is quadratic

in the same area (linear group delay). The purpose of this paper is to find a general method

for obtaining a grating profile (apodization and chirp profile or complex coupling coefficient)

to approximate any desired complex transmission spectrum. Since it is generally impossible

to realize an arbitrary complex transmission coefficient for all frequencies, we limit our band-

width of consideration to a finite interval, say Ω = (ω1,ω2), where 0 < ω1 < ω2 < ∞. That
is we want to obtain a desired transmission coefficient H(ω) for ω ∈ Ω, leaving the response

for ω /∈ Ω unspecified.11 By using a fast and simple algorithm, we demonstrate that we can

obtain a function H(ω) which approximates the desired complex spectrum in Ω, and also

satisfies the required minimum phase condition due to its behavior outside Ω. The algorithm

is based on a theory by Krein and Nudel’man on approximation of L2(ω1,ω2) functions by

Hardy class functions.12,13 H may be synthesized as a fiber grating by synthesizing a filter

with reflectivity R(ω) = 1 − |H(ω)|2 and arbitrary reflection phase response, for example
linear phase or minimum/maximum phase.

This paper is organized as follows: In Section 2 the minimum phase condition on the

transmission coefficient is reviewed. In Section 3 the synthesis problem is stated, and we

apply the theory of Krein and Nudel’man to a derived function of H, and show that the

produced transfer function can be made realizable as a transmission coefficient of a fiber

grating. In Section 4 the numerical algorithm is described in detail, and it is applied to

three examples in Section 5. The first example deals with reconstruction (extrapolation) of a

transfer function from data inside a limited bandwidth, and the next two examples present

designs of second and third order dispersion compensating filters.
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2. Minimum phase and the transmission coefficient of fiber gratings

The transmission coefficient H(ω) of a fiber grating satisfies the minimum phase condition

when ignoring the linear phase response from the pure propagation.5—7 Mathematically, the

minimum phase condition states that all the zeros of H is located in the upper half of

the complex ω plane. Physically, the minimum phase condition means that the filter with

the given amplitude response has the least possible phase response and group delay for all

frequencies. The amplitude and minimum phase response are uniquely related by means of

logarithmic Hilbert transform relations. The form of the relations may differ, depending on

the asymptotic behavior ofH as ω →∞. In addition, there is a variety of equivalent relations
for the same class of filters.14—16

Consider the transfer function H(ω). If we set the input and output reference planes to

the same position, the transmission coefficient will equal the Fourier transform of an impulse

response h(t) which vanishes for t < 0 (causality)

H(ω) = (Fh)(ω) =
Z ∞
0
h(t) exp(−iωt)dt, (1)

where F is the Fourier transform operator. The impulse response has a Dirac’s delta com-

ponent in the origin

h(t) = δ(t) + hL2(t). (2)

In Eq. (2), hL2 is a real, square integrable function (hL2 ∈ L2(0,∞)). Similarly, we define
HL2 as the Fourier transform of hL2 , HL2 = FhL2 , so

H(ω) = HL2(ω) + 1. (3)

We observe that the asymptotic value of the transmission coefficient is

H(ω)→ 1, ω →∞. (4)

Physically, this behavior makes sense since the optical wave is not altered by the passive

grating outside a certain bandwidth. Due to the causality (hL2(t) = 0 for t < 0) the real

and imaginary parts of HL2 form a Hilbert transform pair by the Titchmarsh theorem (see

e.g.17). The causality condition is also equivalent to the condition that HL2 is analytic in the

lower half-plane and
R∞
−∞ |HL2(ω)|2dω < c for some number c along any line parallel to the

real axis, uniformly in the closed lower half-plane.

In order to examine the relation between the amplitude and phase response, we study

the function

H̃(ω) = ln[H(ω)]. (5)

The transmission coefficient H of a fiber grating is a minimum phase function, and con-

sequently it is zero-free in the closed lower half-plane. Hence H̃ is analytic in the lower

half-plane. Moreover,
R∞
−∞ |H̃(ω)|2dω < c for some number c along any line parallel to the

real axis, uniformly in the closed lower half-plane. The integrability is realized from the corre-

sponding integrability of HL2 and because there is an ² > 0 such that |H(ω)| ≥ ² uniformly
in the closed lower half-plane. Then, the Titchmarsh theorem is applicable for H̃, which
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means that the real and imaginary parts of H̃ form a Hilbert transform pair. The modulus

and phase of H are therefore uniquely related by means of a logarithmic Hilbert transform

argH = H{ln |H|}, argH(ω) =
1

π

Z ∞
−∞

ln |H(ω0)|
ω0 − ω

dω0, (6)

where H stands for the Hilbert transform operator, and the integral makes sense by means

of the Cauchy principal value. Note that Eq. (6) is not necessarily valid if the asymptotic

behavior were H(ω)→ 0 for ω →∞. In some of these cases however, a similar relation can
be derived, provided that the behavior of lnH at infinity is sufficiently well controlled.14,16

Another solution would be to apply the Hilbert transform to the derivative of lnH.11

3. Synthesis method

We recall that our problem is to find a transmission coefficient H that approximates a

desired complex function Hdes in Ω. This problem can now be divided into three parts: First

we must find a minimum phase transfer function approximating a desired function in Ω.

Then, if necessary, we must modify the resulting filter so that it is passive, |H(ω)| ≤ 1 for
all real ω, and so that the asymptotic behavior is correct. Finally, we can design a grating

with the resulting reflectivity R(ω) = 1− |H(ω)|2.
A first naive approach to the first problem would be to use an extrapolation technique

for functions that are analytic in the lower half-plane. In fact, such extrapolation is unique

if it exists, and can be found by the Carleman formula.18 However, the existence condition

on the transfer function data inside Ω is rather strict. Of course, the condition will be even

stricter when the continuation to the lower half-plane must be zero-free. Therefore, it is more

desirable to utilize a result by Krein and Nudel’man on approximation of the goal function

given a desired precision. Their formulation is as follows:

Given a function F ∈ L2(ω1,ω2) and a number ², (0 < ² ≤ kFk), find a real g ∈ L2(0,∞)
having least norm kgk, and such thatZ ω2

ω1
|F (ω)−G(ω)|2dω ≤ ²2, (7)

where G = Fg ∈ L2(−∞,∞).
The unique solution g to this problem can be found from a certain integral equation,13

and in Section 3 we show how to find the transfer function G numerically. In the rest of this

section we simply assume that we have the solution to Krein-Nudel’man’s problem at hand.

As follows from the problem formulation, the resulting G will be analytic but not necessarily

zero-free in the lower half-plane. A possible remedy is to apply Krein-Nudel’man to a certain

branch of F (ω) = ln[Gdes(ω)], and form the solution

H(ω) = exp[G(ω)]. (8)

Then H will be zero-free and analytic in the lower half-plane. Moreover, it is shown in ref11

that H − 1 belongs to L2 and satisfies the Titchmarsh theorem if F satisfies the Lipschitz

condition and vanishes as ω → ω1 and ω → ω2. The condition that the goal function F must
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vanish at the endpoints is not a further constraint as it can be fulfilled by extending the

interval Ω with a smooth termination of F . The Lipschitz condition is certainly satisfied if

F is once differentiable. When the problem is discretized, however, none of these conditions

is important as the finite number of samples of F always can represent a continuous and

differentiable function. By Eq. (8) and Krein-Nudel’man’s result, we have now constructed

a function with the desired properties.

One important point remains to be treated, namely what if the produced transfer func-

tion H is not passive? Indeed, we have no guarantee that |H(ω)| ≤ 1 with the method

outlined above, so in many cases it is necessary to modify the transfer function. This modifi-

cation is usually easier if we redefine Eq. (8). As an extra bonus with the following definition,

F does not have to satisfy the Lipschitz condition or have to vanish at the endpoints; it is

sufficient that F ∈ L2(ω1,ω2).
We will apply Krein-Nudel’man to the function

F (ω) = i
d

dω
ln[Hdes(ω)], (9)

yielding a solution G. The corresponding transfer function solution is set equal to

H(ω) = exp[G1(ω)], (10)

where G1 is a modified version of the integral of −iG. We modify only the real part of the
integral to satisfy Re G1 ≤ 0 for all (real) ω and Re G1 → 0 as ω → ∞, and adjust the
imaginary part accordingly such that Im G1 = H{Re G1}. To be more concrete we set the
real and imaginary parts of G1 equal to

Re G1(ω) =


R ω Im G(ω0)dω0 + C for

¯̄̄
ω − ω1+ω2

2

¯̄̄
≤ ωB

0 for
¯̄̄
ω − ω1+ω2

2

¯̄̄
> ωB

. (11)

Im G1(ω) = H{Re G1(ω)} (12)

Here, ωB is a bandwidth satisfying ωB >> ω2−ω1 and C is chosen such that Re G1(ω) ≤ 0.
This modification procedure introduces an error in the imaginary part ofG1(ω) in the relevant

bandwidth Ω = (ω1,ω2), and therefore in the group delay −d argH/dω of the filter. By (9) it
follows that the original, unmodified group delay is Re G(ω). Define ω± = (ω1 +ω2)/2± ωB
and G± = Re G1(ω±). The group delay error due to the above modification can then be
written

− d

dω
Im G1(ω)−Re G(ω) = − d

dω
HRe G1 +HIm G = H{− d

dω
Re G1 + Im G}

=
1

π

Z ω−

−∞
Im G(ω0)dω0

ω0 − ω
+
1

π

Z ∞
ω+

Im G(ω0)dω0

ω0 − ω
− G−

π(ω− − ω)
+

G+
π(ω+ − ω)

, (13)

where we have interchanged the order of differentiation and Hilbert transformation. Since

Im G(ω) → 0 as ω → ∞,11 this error can be made arbitrarily small in Ω by choosing

ωB large enough. The last two terms result from the discontinuous points ω±, and can be
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further reduced if G1(ω) is made smoother around ω±. By the modification method we
conclude that the resulting H satisfies |H(ω)| ≤ 1 and has the right asymptotic behavior
H(ω) → 1. Moreover, it is by Eq. (10) zero-free and analytic in the lower half-plane. The

analyticity is realized from the fact that the real and imaginary part of G1 form a Hilbert

transform pair, and consequently G1 is analytic in the lower half-plane. The resulting transfer

function H is therefore realizable as a transmission coefficient of a fiber grating (or a thin-film

filter19). Note that according to Eq. (9), the goal function F contains the group delay and

the derivative of the amplitude response. In other words it is the group delay and not the

phase response which is matched to the desired response. This corresponds to the common

practice of specifying dispersion in terms of group delay. The absolute level of the resulting

amplitude response is determined by the bandwidth ωB and the integration constant C.

From the above discussion we sum up the synthesis method in the following steps:

1. Find the solution G of Krein-Nudel’man’s problem using the input function F defined

by Eq. (9) and the algorithm described in the next section.

2. Use Eqs. (10) and (11) to determine the transmission coefficient |H|. The filter per-
formance can be somewhat improved by smoothing the intermediate response G1(ω)

around ω = ω±.

3. Synthesize a fiber grating with reflectivity R(ω) = 1− |H(ω)|2 and for example linear
phase response. Fiber grating synthesis is fast and conveniently performed by use of a

layer-peeling inverse scattering algorithm.3,20

4. Numerical algorithm

In this section, we present a numerical algorithm for solving Krein-Nudel’man’s problem. It

can be shown that the solution G can be found from the integral equation11,13µ
µ+

1

2

¶
Ge(ω)− 1

2πi

Z
Ω̂

Ge(ω
0)dω0

ω0 − ω
= F (ω), ω ∈ Ω. (14)

where Ge is a noncausal version of G, that is

G(ω) =
1

2π

Z ∞
0
exp(−iωt)

Z
Ω̂
exp(iω0t)Ge(ω0)dω0dt (15)

or equivalently

G(ω) =
1

2
Ge(ω)− 1

2πi

Z
Ω̂

Ge(ω
0)dω0

ω0 − ω
, ω ∈ Ω. (16)

The integrals in Eqs. (14) and (16) are taken in the principal value sense. The interval of

integration is Ω̂ = (−ω2,−ω1)∪ (ω1,ω2), but for optical filters, the center frequency is many
orders of magnitude larger than the typical bandwidth, and consequently we can ignore

the negative frequencies in the Hilbert integral, i.e. set Ω̂ = Ω. Furthermore, µ = µ(²) is

some positive function of ²; it is dependent on F and is decreasing monotonically to zero as

² → 0+.12,13 It is not necessary to have this function at hand; we can instead use µ as the

precision parameter.
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The truncated Hilbert integral operator in (14) is linear so its discrete counterpart can

be represented as a matrix. Therefore, the equation can be solved numerically by a simple

matrix inversion. Once Ge is found, G can be calculated from (16). Note that (16) can be

extrapolated to the entire ω axis provided that Ge(ω) is set equal to zero outside Ω̂. By

representing Ge and F as vectors of samples in the interval Ω, the discrete approximation of

(14) becomes µ
µ+

1

2

¶
Ge − 1

2i
HGe = F, (17)

where HGe corresponds to the Hilbert transform integral of Ge in (ω1,ω2). The matrix H

corresponds to integration of a singular integrand. The most common way to perform such

a Hilbert transform numerically is to use Fast Fourier Transforms (FFT). Therefore, we can

use the expression for the discrete Fourier transform to obtain the matrix H. By comparing

(15) and (16) we obtain the relation

− 1

2πi

Z
Ω

Ge(ω
0)dω0

ω0 − ω
=
1

2π

Z ∞
−∞
exp(−iωt)

µ
u(t)− 1

2

¶ Z
Ω
exp(iω0t)Ge(ω0)dω0dt (18)

where u(t) is the unit step function. The discrete counterpart of (18) is

(HGe) (m) =
i

N

NX
n=1

N−1
2X

k=−N−1
2

sgn(k)Ge(n) exp[i2πk(n−m)/N ], (19)

where

sgn(k) =


−1 for k < 0

0 for k = 0

1 for k > 0

. (20)

In (19) m ∈ {1, 2, . . . ,N}, and we have for simplicity assumed that N is an odd number.

When discretizing (18), Ge becomes periodical, so in order to limit the resulting errors,

we imagine that Ge is padded with so many zeros that the contribution from the repeated

spectra is eliminated. In practice, this means that the numberN is increased from the number

of samples of F , and that we are only using a certain inner square of the Hilbert transform

matrix H below. That is we effectively pad Ge with Nz zeros on each side by setting the

Hilbert transform matrix in (17) equal to

(H) (m,n) = i
N

PN−1
2

k=−N−1
2

sgn(k) exp[i2πk(n−m)/N ]
for m,n ∈ {Nz, Nz + 1, . . . , Nz +NF}, (21)

where NF is the number of samples of F and N = NF + 2Nz. It is convenient to use the

number Nz that corresponds to the extra bandwidth for which we want to calculate G(ω)

on each side of Ω. Now, we can solve (17) by inverting the matrix (2µ + 1)I −H/i, which
has the dimension NF ×NF . Because the (discrete) Hilbert transform is energy conserving,

kuk = kvk for any DC-free Hilbert transform pair {u,v} in the l2-norm, the truncated
Hilbert operator (21) will satisfy

kHk/(2µ+ 1) < 1, µ > 0. (22)
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Therefore, the matrix (2µ + 1)I −H/i is guaranteed invertible.21 Once we have found Ge,

G is computed by a discrete Hilbert transform of a zeropadded version of Ge, according to

(16). To sum up, the algorithm goes as the following:

1. Set the precision by picking a µ > 0. Usually, values in the range [10−5, 10−2] are
appropriate.

2. Solve (17) for the desired F by matrix inversion.

3. CalculateG by a Hilbert transform ofGe padded with zeros outside Ω (discrete version

of (16)).

4. Compute ² as the rms error of the elements of F−G (discrete version of (7)).

As the chosen µ is getting smaller, the error ² is decreasing and kGk is growing. Usually,
this means that the transmission coefficient H is getting more difficult to realize as a fiber

grating. At a certain point, the error is not decreasing further due to finite bandwidth in

the calculations. This bandwidth can be increased by increasing Nz in (21) and padding Ge

with more zeros in Step 3. Finally, it is not possible to get any less error due to quantization

errors in the computer.

The Hilbert transform in Step 3 is computed using FFT, so the algorithm scales with

the total bandwidth as O(Nz logNz). Note that the computation time of (21) scales only
linearly with Nz. Owing to the matrix inversion involved, we also observe that the algorithm

scales with the resolution in Ω as O(N3
F ).

5. Examples

A. Reconstruction of a Hilbert transform pair

In the first example, we wish to verify the algorithm given in the last section. We define a

Hilbert transform pair {u, v} by

u(ω) =

(
(ω − ω0)/2ωw for |ω − ω0| < ωw
0 for |ω − ω0| ≥ ωw

, (23)

where 2ωw is the bandwidth of Ω, and ω0 is the middle frequency. The function v is found

from a Hilbert transform of u defined in (23). Now, we set G = u + iv and apply F = G

for ω ∈ Ω to the algorithm to see how well the function G is reconstructed outside Ω. The

results are showed in Fig. 1. We observe that the produced solution for µ = 1 has less norm

than the original, as expected. For µ less than about 0.1, the reconstructed and original G

are virtually identical. In Fig. 2 the dependence of the rms error is shown for 10 different

values of µ. The figure shows the expected behavior; the error decreases with decreasing µ

until a certain point where the finite bandwidth and/or quantization are dominating the

error. The bandwidth in the simulation is 14ωw. By increasing this bandwidth, it is possible

to get considerably less rms error.

We observe that the algorithm is capable of extrapolating the data from within Ω. The

method may therefore also be used as a technique for extrapolating a transfer function G or
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Fig. 1. The original (solid) and reconstructed (dashed) Hilbert transform pair for

µ = 1. For µ less than about 0.1, the reconstructed and original functions are

virtually identical on this plot.
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Fig. 2. Rms error of the reconstructed transfer function G inside Ω for different

values of µ.
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Fig. 3. Power transmission of the fiber grating in example B. The relevant wavelength

interval corresponding to frequencies inside Ω is indicated with vertical, dashed lines.

a minimum phase transfer function H from data inside Ω. However, in the case of noise in the

data, the extrapolated function far away from Ω might have large errors as the continuation

problem clearly is unstable. The algorithm is regularized by the parameter µ which decides

how to treat the tradeoff between stability and accuracy. If µ is set to a larger value, the

accuracy is decreased, but the stability is increased correspondingly.

B. Second order dispersion compensation grating

As a first example of actual synthesis of a fiber grating, we try to synthesize a filter with

constant amplitude response and linear group delay (i.e. a second order dispersion compensa-

tion grating). This example is chosen because it shows both the powerfulness of the method

and also the weaknesses. In addition the example indicates how one can modify the filter to

optimize for different applications.

According to the specifications, the input function should equal

F (ω) = a(ω − ω0) + i0, ω ∈ Ω, (24)

where a is a number proportional to the dispersion coefficient, and ω0 is the center frequency.

This function is applied as input to the algorithm for solution of Krein-Nudel’man’s problem

using the precision µ = 10−3 and a total bandwidth of 10 times the bandwidth of Ω. The
solution is then modified according to the algorithm presented in Section 3 setting ωB to

twice the bandwidth of Ω. Finally, a layer-peeling algorithm has been applied for the synthesis

of a 20cm long fiber grating centered at 1550nm. The bandwidth of Ω was set to 0.09nm.

The arbitrary reflection phase response was chosen linear, so that the reflection response is

dispersionless. Note that the entire process can be implemented in a single and automatic

computer program. The resulting grating transmission spectra are shown in Figs 3 and 4.
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Fig. 4. Transmission group delay of the designed fiber grating in example B. The

relevant band Ω is indicated with vertical, dashed lines. Note that the delay off-

set associated with the pure propagation has been removed because the input and

output reference planes coincide.
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Fig. 5. Magnitude and phase of the complex coupling coefficient of the designed

grating (example B).
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We observe a flat pass band at 24% transmitivity; the ripple is ±0.03. Moreover, the group
delay is nearly linear in the pass band; the deviation is less than 0.5ps compared to a

linear response. The dispersion in Ω is roughly 140ps/nm. The designed grating structure

(amplitude and phase) is shown in Fig. 5.

One problem with the designed spectrum is clearly that the power transmission in Ω is

only 24%. This is a result of the spectrum shape on the left-hand side; it has to grow as ω

departs from the edge of Ω. Since the power transmission cannot be greater than unity, this

problem arises. It is possible to increase the transmission in Ω by shrinking the bandwidth

ωB on the left-hand side. The resulting performance of the filter will of course be somewhat

worse in Ω.

For some applications, it might be desirable to increase the dispersion. If we scale the

group delay τg = −d argH/dω with a factor k, i.e. τg → kτg, the function ln(|H|) scales by the
same factor (see Eq. (6)). Hence, the transmission coefficient changes according to H → Hk.

In other words, when k > 1 the power transmission will be less for all ω, and the response will

be more rapidly varying. The grating is therefore more difficult to realize. Another way of

getting larger dispersion is to scale the bandwidth of the designed grating. If the bandwidth

is reduced by a factor k, i.e. (ω − ω0) → (ω − ω0)/k, the dispersion D ∝ d2 argH/dω2 is
scaled by a factor k2. The price one would have to pay is to increase the grating length and

decrease the grating strength with the same factor k, i.e. the coupling coefficient q(z) scales

according to q(z) → 1/k q(z/k).22 For example the dispersion of the filter in Figs. 3 and 4

will change to 3500ps/nm if the bandwidth of Ω is reduced by a factor 5. The grating length

will then be 100cm. Thus we can obtain a relatively large increase in the dispersion with a

relatively small increase in the grating length and decrease in the bandwidth.

C. Third order dispersion compensation grating

We will also try to synthesize a filter with flat amplitude response and quadratic group delay

(third order dispersion compensating filter).23 The input function is

F (ω) = b(ω − ω0)
2 + i0, ω ∈ Ω, (25)

where b is proportional to the third order dispersion coefficient. This filter turns out to

be relatively easy to realize, so we set µ = 10−4. We use the same procedure as in the
previous example, but set the grating length to 5cm and the bandwidth of Ω to 0.28nm.

The resulting spectra are shown in Figs. 6 and 7. Again, we have obtained a relatively flat

amplitude response; the ripple is ±1% in Ω. Moreover, the deviation from a quadratic group
delay in Ω is less than 0.3ps. The coupling coefficient of the designed fiber grating is shown

in Fig. 8. We observe that the grating structure is relatively complex, so that it might be

difficult to fabricate in practice. For the grating given in Fig. 8 the reflection phase response

was chosen linear. To obtain a different grating structure, we can for example choose a

quadratic reflection phase response. In particular, we have specified the dispersion 322ps/nm

in reflection, and applied the layer-peeling algorithm to the resulting reflection spectrum. The

new grating structure is given in Fig. 9. As expected, the grating is nearly linearly chirped

and the modulus of the coupling coefficient is slowly varying compared to that of Fig. 8. In
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Fig. 6. Power transmission of the fiber grating in example C. The relevant wavelength

interval corresponding to frequencies inside Ω is indicated with vertical, dashed lines.
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Fig. 7. Transmission group delay of the designed fiber grating in example C. The

relevant band Ω is indicated with vertical, dashed lines.
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Fig. 8. Magnitude and phase of the complex coupling coefficient associated with the

designed grating with nondispersive reflection response (example C).

addition the maximum coupling coefficient value is reduced by a factor 3.4. The associated

transmission spectra (power and group delay spectrum) are not plotted as they are virtually

identical to the spectra given in Figs. 6-7. This demonstrates the nonuniqueness of the

synthesis problem: There is one distinct grating structure for each chosen reflection phase

response, and all gratings have identical transmission spectra. If the dispersion in reflection

is not relevant to the specific application, we can therefore choose a phase response that

makes the grating simple to realize.

If one would like to obtain opposite convexity of the transmission group delay, the power

transmission curve would have to grow as the wavelength departs from Ω. Consequently, the

power transmission will be smaller in Ω. For the present example, exact opposite dispersion

translates into a transmission of 8.7% in Ω. If smaller transmission is not acceptable, one can

reduce the specified dispersion or descrease the bandwidth. For example if the bandwidth of

Ω is reduced by a factor 4, one gets a transmission of 86% with the exact opposite dispersion

as in Fig. 7.

6. Conclusion

A general method for synthesis of fiber gratings with desired, complex transmission responses

in a finite bandwidth window has been described. The necessary minimum phase character-

istics is satisfied by the designed grating due to the spectral behavior outside the relevant

bandwidth Ω. This behavior decides how difficult it is to realize the filter as a fiber grating.

The greater error that can be tolerated in Ω, the easier it is to realize the fiber grating

because the spectral behavior outside Ω is more well-behaved.

A general numerical algorithm has been developed, which can be used for the design of

practical fiber gratings. Two different transmission responses were specified and applied as
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Fig. 9. Magnitude of the coupling coefficient and relative chirp of the designed

grating with dispersive reflection response (example C). The chirp is defined relative

to the design Bragg wavelength 1550nm.

input to the algorithm. The first filter had nearly flat power transmission and linear group

delay, and can therefore be used as a second order dispersion compensator. The second filter

was specified as a third order dispersion compensator. We designed two different gratings with

this response; one with nondispersive reflection response, and one with constant dispersion.

In the latter case, the grating became nearly linearly chirped and simpler to realize. The

spectral results in transmission demonstrated that one can design gratings with desired

power and group delay responses in transmission in a finite bandwidth. In addition one can

specify the reflection group delay independently. For applications where one wants to use the

grating in both transmission and reflection at the same time, this means that we can specify

the two group delay responses independently. On the other hand, the power reflection and

transmission are certainly connected for a lossless grating, and as a result one must sacrifice

the freedom in specifying the power reflection outside Ω.

Finally, we note that the method also can be used for design of thin-film filters in trans-

mission and for extrapolation of transfer function data from a limited bandwidth window.
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Chapter 5

Characterization of fiber gratings

Complete characterization of fiber gratings requires knowledge of the complex coupling
coefficient or the complex reflection spectrum. If one has measured the complex re-
flection spectrum, one can for example use the layer-peeling algorithm to compute the
coupling coefficient. Conversely, one can use the transfer-matrix approach to obtain
the spectrum from the coupling coefficient. Characterization of fiber gratings is not a
trivial problem, as optical phase usually is difficult to measure. It would therefore be
attractive to use a Hilbert transform or Kramers-Kronig type relation to reconstruct
the reflection phase response. However, since the reflection coefficient might have zeros
in the ”wrong” complex frequency half-plane, this is not possible in general. Even if
the responses of certain types of gratings ideally satisfy the minimum phase condition,
the phase reconstruction of corresponding practical gratings might be very inaccurate,
because small grating imperfections may move the zeros to the ”wrong” half-plane as is
discussed in Section 5.1.
In Section 5.2 we propose a different method for reconstruction of the phase response

from the reflectivity. We make use of some extra a priori information in that the modulus
of the coupling coefficient is known. The method can be useful for intragrating sensing
as only the phase of the coupling coefficient is altered when the grating is exposed to
a strain or temperature gradient. Thus if the grating is characterized in advance, this
method can be used to obtain the phase of the coupling coefficient, and thereby the
strain or temperature profile, by monitoring the power reflectivity alone.
Sections 5.3 and 5.4 contain two different methods for characterization based on

interferometry. The first method is extremely simple; one cuts the fiber after the grating,
yielding a Fabry-Perot cavity with the grating and the bare fiber end as the mirrors. By
measuring the power reflection spectrum of the Fabry-Perot structure, one can retrieve
the complex reflection spectrum of the grating. In the second method, a low-coherence
approach is used to obtain the complex impulse response of the grating. The complex
reflection spectrum is then obtained by a Fourier transform.
For an introduction to the available literature on characterization and phase retrieval

of fiber gratings, consult the introductions and references in the respective, following
papers. Note that the sign convention on the implicit time dependence in Section 5.2
does not correspond with the sign convention in Chapter 2.
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It is shown that a recently proposed phase-retrieval technique for Bragg gratings [Opt. Lett. 22, 93 (1997);
J. Lightwave Technol. 15, 1314 (1997)] is not well suited for gratings with imperfections. The reconstructed
group delay is in many cases not a more accurate estimate than the simulated group delay of the perfect,
designed grating, independently of how small the errors in the grating structure are. The error in the group
delay may be especially large near the zeros in the ref lection spectrum.  1999 Optical Society of America

OCIS codes: 060.2340, 060.2770.
For a complete characterization of a fiber Bragg
grating (FBG), both the amplitude and the phase of
the complex ref lection coefficient are needed. The
amplitude response or ref lectivity is conveniently
measured with a spectrum analyzer or a scanning
distributed Bragg ref lector laser, whereas obtaining
the phase response is more complicated. Recently,
a phase-retrieval method for obtaining the phase
response from the ref lectivity spectrum was proposed
by Carballar and Muriel.1,2 The method utilizes the
well-known Hilbert transform or dispersion relations
that connect the minimum phase and the logarithm
of the amplitude spectrum for linear systems.3,4 The
Hilbert transform is easily computed by means of
existing numerical packages using fast Fourier trans-
forms or by use of the Wiener–Lee transform.3 For
a transfer function to be minimum phase, it must be
zero free in the right-hand half-plane. This condition
is always satisfied for the transmission coefficient of a
FBG but generally is not true in ref lection.5 Certain
grating designs will nevertheless yield minimum
phase-ref lection coefficients. For such gratings this
means that the phase response can be uniquely
computed from the ref lectivity. In Refs. 1 and 2
Carballar and Muriel therefore assumed a priori
that the overall grating structure was known (e.g.,
that it was a uniform grating) to ensure that the
minimum phase condition was fulfilled. An experi-
mental grating, however, will have small errors in the
grating structure, so we are never guaranteed that
the minimum phase condition is satisfied. Here we
show that the resulting errors can be signif icant and
that the simulated phase response of the designed
minimum phase grating can often be a better estimate.
This ideal phase response is usually available since
the overall grating design is known a priori. Still,
it is often a bad estimate of the true phase response.
Therefore, this phase-retrieval technique is not well
suited for experimental gratings, as was claimed in
Refs. 2 and 6. Throughout this Letter the terms ideal
grating and actual grating are used for the designed,
perfect minimum phase grating and the experimental,
nonideal grating, respectively.

A linear system is completely characterized by its
impulse response function, hstd. If hstd represents a
causal and stable physical system, it is real, absolutely
0146-9592/99/030136-03$15.00/0
integrable, and vanishes for t , 0. We can therefore
define the Laplace transform as

H ssd ­
Z `

0
hstdexps2std dt (1)

and obtain the frequency response or the Fourier
transform by evaluating H ssd along the imaginary
axis, s ­ iv. According to the Titchmarsh theorem,4

the real and the imaginary parts of H sivd are then
related by means of the Hilbert transform. However,
we are looking for a relation between the magnitude
and the phase of H sivd, so we define

H̃ ssd ­ ln H ssd ­ lnjH ssdj 1 i arg H ssd . (2)

In general, H̃ ssd will not be analytic in the right-hand
half-plane because H ssd can have zeros. Therefore,
the Titchmarsh theorem states that H̃ ssd is not gen-
erally a causal transfer function. We must therefore
restrict H ssd to be zero free for Ressd . 0. Then the
real and the imaginary parts of H̃ sivd, or equivalently
the logarithm of the amplitude response and the phase
response, will be related by means of a Hilbert trans-
form relation of the type3

wminsvd ­
v

p

Z `

2`

lnjH siv0dj
v02 2 v2 dv0. (3)

In Eq. (3), wminsvd is the (minimum) phase response,
and we can make sense of the integral by means of
the Cauchy principal value. Transfer functions that
satisfy Eq. (3) are known as minimum phase functions.
If the transfer function is not minimum phase, the
contribution to the phase response from the zeros in the
right-hand half-plane has to be added to Eq. (3). Let
the zeros of H ssd be denoted by sn ­ sn 1 ivn, repeated
as necessary for multiple zeros. Then the function

Hminssd ­ H ssd
Y

sn.0

s 1 sn
p

s 2 sn
(4)

is analytic and zero free in the right-hand half-plane
and is therefore the minimum phase-shift function
corresponding to jH sivdj, sinceÇ

iv 1 sn
p

iv 2 sn

Ç
; 1 .
 1999 Optical Society of America
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Equation (4) is equivalent to the statement in Ref. 7
that a nonminimum phase filter can be constructed
from a minimum phase filter followed by an all-
pass filter. From Eq. (4) we deduce that the phase
response wsvd ­ arg H sivd is given by

wsvd ­ wminsvd 2 2
X

sn.0
arctan

µ
v 2 vn

sn

∂
, (5)

and the corresponding group delay becomes

tgsvd ­ 2
dwsvd

dv

­ tg, minsvd 1 2
X

sn.0

sn

sn
2 1 sv 2 vnd2

. (6)

Thus if there are zeros in the right-hand half-plane the
difference between the true group delay tgsvd and the
minimum group delay tg, minsvd can be arbitrarily large
for v ø vn and sufficiently small sn.

When one is using the phase-retrieval method pro-
posed in Ref. 2, Eq. (6) can have important conse-
quences. Consider, for example, a uniform FBG, the
same example as was presented in Refs. 1, 2, and 6.
An ideal, uniform FBG will be minimum phase in re-
f lection. This condition is valid for both the forward
and the backward ref lection coefficients because of its
symmetry. Furthermore, there are a number of ze-
ros on the imaginary axis s ­ iv, as is evident from
their sinc2-like spectrum. However, when the grat-
ing is not perfect, these zeros may be located slightly
away from the imaginary axis. This is seen in the re-
f lection spectrum as missing zeros. The probability
that one of these zeros will be located in the right-
hand half-plane is 1y2, since the zeros of two grat-
ings that are reversed with respect to each other are
in the opposite half-plane.7 When sn . 0 for some n,
we must therefore conclude from Eq. (6) that the errors
in the reconstructed group delay tgsivd 2 tg, minsivd
can be arbitrarily large for almost-perfect gratings. In
other words, some of the peaks in the reconstructed
group delay around the perturbed zeros of the spec-
trum can have large errors. As the grating errors be-
come less, the group-delay error peaks become higher
and narrower, and in the limit sn ! 01 the peak width
approaches zero. However, the peak area remains
constant at 2p, as can be seen from Eq. (5). Hence, for
each zero that is located somewhere in the right-hand
half-plane, we get an integrated error in the group de-
lay of 2p.

For a lossy grating the probability that a zero will
be located in the right-hand half-plane is less than
1y2, since the transfer function H ssd will be shifted
to the left by the loss coefficient. We may therefore
expect a better result from the phase-retrieval method
when we have a loss that is large compared with the
grating errors. More precisely, if the time-domain loss
coefficient is larger than the maximum sn, the method
will yield the true group delay. In the numerical
example below, this delay corresponds to a loss in the
grating of more than 80 dBym, although the grating
errors are relatively small. This is a rather large loss,
so it is therefore reasonable to assume that some of
the zeros will contribute to errors in the reconstructed
group delay. This simple loss model might, however,
be somewhat misleading, as grating loss normally is
strongly frequency dependent.

To compare the reconstructed phase or group delay
from Eq. (3) with the corresponding ideal phase or
group delay, we first assume that our ideal grating is
symmetric and weak (for example, a uniform grating).
Since there are Fourier-transform relations between
the grating structure (coupling coefficient) and the
ref lection spectrum, we can write

r2svd ­ expsiadr1svdp (7)

for the actual grating, where a is a real constant and
r1svd and r2svd denote the forward and the backward
ref lection coefficients, respectively. The group delay
is proportional to the derivative of the phase response
and must therefore satisfy

t2svd ­ 2t1svd , (8)

where t1svd and t2svd denote the forward and the
backward group delays, respectively. Note that the
group delay can be negative since the reference plane
z ­ 0 is set to the middle of the grating. Note also
that jr2svdj ­ jr1svdj, which in fact is valid for a gen-
eral lossless grating.5 If we want to find an estimate
for the group delay, which should be as good as pos-
sible for both directions at the same time, according to
Eq. (8) we must choose tsvd ; 0. In fact, this would
be the same as choosing the group delay of the ideal
grating as our estimate. We realize this choice by not-
ing that the ideal grating is symmetric, so according
to Eq. (7) the group delay must be zero almost every-
where. Since the method in Refs. 1 and 2 finds one
estimate, which should be valid for both directions,
the resulting group-delay spectrum on average will
not be a better estimate than the group-delay spec-
trum of the ideal grating. Moreover, since the re-
constructed, minimum group delay is less than both
t1svd and t2svd ­ 2t1svd, the expected relative error
of the reconstructed group delay is hft1svd 2 tminsvdg 1
f2t1svd 2 tminsvdgjy2t1svd ­ 2tminsvdyt1svd, since we
have no control over the orientation of the errors. The
expected relative error is therefore more than 100% for
all v. These results are independent of how small the
errors in the grating are, although the absolute group-
delay error of course approaches zero when the grating
errors vanish.

For a strong grating, Eqs. (7) and (8) are not valid.
Therefore, we analyze a stronger, uniform grating per-
turbed by slowly varying phase errors of amplitude
0.4 rad in the grating structure by use of coupled-mode
theory. The design parameters are otherwise ap-
proximately the same as those of the grating presented
in Ref. 6. The ref lectivity spectra for the ideal and the
actual gratings are shown in Fig. 1. The numerical
results for the true and the reconstructed group de-
lays in the grating stop band are presented in Fig. 2,
together with the group delay of the ideal grating.
First, we note that the reconstructed group delay is
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Fig. 1. Ref lectivity spectrum for the actual grating (solid
curve) and the ideal uniform grating (dotted curve).

Fig. 2. Calculated group delay for the actual grating (solid
curve), the reconstructed group delay (dashed curve), and
the group delay for the ideal uniform grating (dotted
curve).

less than the true group delay for all wavelengths, as
required from Eq. (6). Furthermore, we observe that
the peaks in the group delay correspond to the (near)
zeros in the ref lection spectrum. When the true group
delay has a lower peak, the corresponding zero is lo-
cated to the left of the imaginary axis, sn , 0. There-
fore, the reconstructed group delay corresponds well
to the true group delay in the neighborhood of that
zero. However, when the zero is located to the right
of the imaginary axis, the true group delay has an up-
per peak, whereas the reconstructed group delay has
a lower peak. This is because the reconstruction al-
gorithm assumes that the zero is located to the left
of the imaginary axis. The errors in the group delay
near a zero are often of minor interest, since not very
much light is ref lected in this area. Nevertheless, we
see from Fig. 2 that the errors from a zero can inf lu-
ence the group-delay spectrum over a range around
that zero (e.g., in the stop band). This distance is in-
creased as the errors in the grating structure become
larger, as is evident from Eq. (6). However, the recon-
struction algorithm in this case works better than for
an average weak grating, since the rough shape of the
group delay in the grating stop band is approximately
reconstructed. This result is due to the fact that a
strong grating will in general have not only zeros but
also poles.7 The contribution to the group delay from
the poles will be included in the reconstruction for-
mula [Eq. (3)]. We note, however, that the ideal phase
response is still a better estimate in the stop band.
Hence, the ideal, simulated group delay is often a bet-
ter estimate than the reconstructed group delay.

In general, we must therefore conclude that the
phase-retrieval method presented in Refs. 1 and 2 is
not well suited for reconstruction of the ref lection
phase response of experimental gratings, owing to
zeros at or near the imaginary axis of the transfer
function. Therefore, when the zeros are sufficiently
far from the imaginary axis, we would expect better
performance. However, this is not the case for many
kinds of minimum phase FBG, for example, a near-
lossless, uniform grating.

J. Skaar’s e-mail address is johannes.skaar@
fysel.ntnu.no.
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Abstract

A method for measuring a distributed strain or temperature profile along a fiber Bragg grating is proposed. By
using an a priory knowledge about the index modulation amplitude, the sensing parameters are obtained from
the reflectivity spectrum.

Summary

An interesting application of fiber Bragg gratings (FBGs) is to measure a distributed strain or temperature
profile along the length of the grating. Several methods for this purpose have been reported in the literature
[1-4]. All of them utilize the fact that the measurand can be obtained from the local Bragg wavelength � B zb g
along the grating position z . The function � B za f  can be obtained by using low coherence interferometry [3, 4]
or by recording the complete complex reflection spectrum. By using an inverse scattering method (or an
inverse Fourier transform for the case of weak gratings), the wavelength profile � B za f  may be computed from
the complex reflection coefficient.

The phase response or the group delay of a FBG is somewhat difficult to measure, and it is therefore desirable
to extract the sensing information from the reflectivity spectrum alone. In [1] the distortion of the reflectivity
spectrum due to various kinds of strain gradients is investigated using the transfer matrix method. However, the
authors give no method for obtaining the detailed wavelength profile � B za f  from the spectrum. They note that
the spectrum shows no difference if the strain profile is flipped with respect to the grating, and conclude that
the strain profile cannot be uniquely calculated from the reflectivity spectrum. In [2] it is therefore a priori
assumed that the function � B za f  is either monotonically increasing or monotonically decreasing. Then � B za f
can be obtained uniquely from the reflectivity spectrum. Because of the a priori assumption on � B za f , not
every strain or temperature gradient can be measured.

In this paper, we present a method for obtaining the function � B za f  from the reflectivity spectrum. Because the
index modulation profile of the grating (or the complex coupling coefficient) cannot be computed uniquely
from the reflectivity spectrum alone, we need an a priori assumption. This assumption is that the coupling
coefficient amplitude (or index modulation amplitude) is known, and that it is not symmetric. The former
assumption is justified from the fact that usually only the phase of the coupling coefficient, and not the
amplitude, is perturbed when the grating is exposed to a temperature or strain gradient. Therefore, if the
grating has been characterized initially (for example at fabrication, using optical coherence domain
reflectometry [4] or a phase sensitive interferometric spectrum analyzer [5]), we can assume that the coupling
coefficient amplitude is known. The latter assumption is easily achieved for example by choosing an
asymmetric grating sensor as the one described in the example below. Note that we have made no a priori
assumption on the function � B za f  so every strain or temperature profile can in principle be obtained.

In a FBG, the index of refraction along the grating direction z can be modeled by

n z n z n z z zb g b g b g b g� � �
F
HG

I
KJ0

2
�

�
cos �

� , (1)
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where n z0 b g , �n zb g and � zb g are slowly varying functions compared to the design grating period � . The
function n z0 b g  represents the variation of the mean index, �n zb g is the index modulation amplitude, and � zb g
accounts for the period deviation from � . Since variation of the “dc” index n z0 b g  is equivalent to a chirp [6],
the information from n z0 b g  may be incorporated in � zb g. Hence, we set n z n0 0b g � , where n0  equals the mean
index over the whole grating, and represent a mean index variation by a gradient in the function � zb g. It is
common to introduce a complex coupling coefficient [6] which contains all z-dependent quantities from (1)

� �z A n z i zb g b g b gc h� �� exp . (2)

The factor A, determined by the unperturbed waveguide structure and the wavelength, may be treated as a
constant. For a weak, lossless grating, there is an approximate Fourier transform relation between the complex
coupling coefficient � zb g  and the complex reflection spectrum r �b g  [7],

r z
� �b g � �

F
HG
I
KJ

RST
UVW

�F
1
2 2

. (3)

In (3), r �b g  is the complex reflection coefficient as a function of the detuning � , and F  denotes the Fourier
transform operator. From (1) we deduce that the local Bragg wavelength is given by

�
�

�

B z n d
dz

b g � �
F
HG

I
KJ2 1

20�
� .      (4)

Thus, our aim is to calculate the phase function � zb g from the coupling coefficient magnitude � zb g  and the

reflectivity r �b g 2 . From (3) this is equivalent to the determination of a complex function when its magnitude
and its Fourier transform magnitude is known. This phase retrieval problem has been studied in the literature
because of its relevance in a number of applications [8-15]. The most common algorithm for solving this
problem is the so-called iterative Fourier transform algorithm, first proposed by Gerchberg and Saxton [8] for
determination of the wavefunction phase from a image and diffraction plane pictures in electron microscopy.
The method is transforming successively back and forth between the two Fourier domains, holding the
magnitudes at the known values. For further details, the reader is referred to the original paper.

In principle, this phase retrieval method may be extended to stronger gratings, when the Fourier transforms
must be replaced by the direct and inverse scattering transform. The direct problem, that is to calculate the
spectrum from the coupling coefficient, is easily solved by the transfer matrix method [1,6] or a numerical
Runge-Kutta solution to the coupled mode equations [6]. The inverse problem may be solved by a numerical
solution to the Gel’fand-Levitan-Marchenko coupled integral equations [16]. However, the inverse problem is
ill-posed when the reflectivity approaches unity, and will therefore give inaccurate results for noisy input data.
In practice, we should therefore restrict our phase retrieval method to relatively weak gratings.

The uniqueness of the above Fourier phase problem has been shown to depend on specific analytic properties
on the functions � zb g  and r �b g  [9,10]. However, if the functions � zb g  and/or r �b g  are symmetric, a two-fold
ambiguity arises. This is easily seen from the complex conjugate symmetry of the Fourier transform. On the
other hand, it is explained in [11] that in general for the asymmetric situation, if the spatial frequencies of � zb g
are sufficiently band-limited with regard to the dimensions of the grids, and if r �b g  can be measured with
sufficient accuracy for large � , a unique solution can generally be expected. This somewhat loose statement is
also supported by numerical simulations in a number of papers [8,12,13]. So we conclude that provided that
� zb g  and r �b g  are asymmetric, we can assume that our solution is unique. The symmetry ambiguity
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corresponds to the situation stated in [1] when the authors note that the reflectivity spectrum shows no
difference when the strain gradient is flipped with respect to the grating. However, if we choose an asymmetric
coupling coefficient magnitude for our grating sensor, the only ambiguity left is when the function r �b g  is
symmetric. This rather unusual situation may be handled by slightly perturbing the sensor to see which of the
two solutions � � zb g or � zb g  that persist when the reflectivity becomes asymmetric.

Although the Gerchberg-Saxton algorithm has been successfully used in many practical situations, it suffers
from certain convergence problems. There are however a large number of alternative algorithms in the
literature, which may be used in the situations where the Gerchberg-Saxton algorithm fails. See for example
[14,15].

In order to test the phase retrieval method above, we set � � �z z i zb g b g b g� �exp , where

� z z L z L z L Lb g b g b g b g�

� � �R
S|
T|

2
0

2 3 ,   0 < z
                                     ,  elsewhere

(5)

and
� z z Lb g � 12 10 2. sin ( ) . (6)

A plot of � zb g  is shown in Figure 1. � zb g contains the information of the local Bragg wavelength as a function

of z  according to (4). From (3), we obtain r �b g , and a complete information of this grating is therefore known.

We then test whether the Gerchberg-Saxton algorithm reconstructs the functions from the magnitudes � zb g
and r �b g . We use 500 iterations, which results in a computing time of less than 5 sec on a Pentium PC. In
most situations, it is sufficient with considerably less iteration. The reconstructed result for the spatial phase
function � zb g is finally compared to the original one. The numerical results are shown in Figure 2 as local
Bragg wavelengths in the grating by means of (4). The effective index is set to n0 15� . , the grating length is
L � 10mm, and the design Bragg wavelength is 2 15500n � � nm. Also shown in the figure is the reconstructed
result for a more realistic situation, where noise has been added to the samples of � zb g  and r �b g . The noise
samples are independent, and distributed according to

n r nr � � �b g b g b g� �0 01. (7)

for r �b g  and similarly for � zb g . In (7), n �b g is a realization of a random, Gaussian process with mean 0 and
variance 1. The results show that the reconstructed local Bragg wavelength is indistinguishable from the
original for the noise-free situation, since the error is less than 10 8� pm. When there is noise, however, we get
visible errors at the edges of the grating where the coupling coefficient magnitude is small. Where the coupling
coefficient magnitude is large, the errors are relatively small (about 20pm for 0 01 0 9. .� �z L ).

The spatial resolution of this method should be approximately the same as the spatial resolution of the initial
characterization of � zb g , provided that the reflectivity spectrum is measured sufficiently precise at the edges of
the grating stopband. By using for example the characterization method described in [4], a resolution of 1mm
should be achievable.

In conclusion, we have developed a method for obtaining the distributed strain or temperature distribution
along a fiber Bragg grating by measuring the reflectivity spectrum only. The method makes use of some a
priori information, namely that the index modulation amplitude is asymmetric and known.
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Figure 1: Normalized coupling coefficient magnitude. Figure 2: Local Bragg wavelength in the grating
structure, original and reconstructed (solid curve) and reconstructed from noisy modulus data (dashed curve).
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Abstract: A method for characterization of fiber Bragg gratings is described. The group delay
and the reflectivity of the grating are obtained from measurement of the spectral reflectivity
response of a Fabry-Perot structure consisting of the grating and a reference reflector. The
method has been tested numerically, showing good robustness against noise. It has also been
tried out experimentally, showing reproducible and promising results.
OCIS codes: (060.2340) Fiber optics components, (050.2770) Gratings.

Introduction

Characterization of fiber Bragg gratings (FBGs) means to determine the complex reflection coefficient
or the complex coupling coefficient of the grating. This is not a trivial problem, and there is a large
amount of different methods in the literature. The methods are usually based on interferometry, side-
scattering, heat-scan or modulation (see e.g. refs [1,2] and the references therein). Whereas these
techniques usually are rather complex, Froggatt found a simple approach to the characterization problem
of weak gratings [3]. He showed that one can obtain the complex coupling coefficient of the grating
from measurement of the interference fringes from the grating and a discrete reference reflector. In his
analysis, all multiple reflections are ignored, so the method is only valid for weak gratings and reflectors.
In this paper, we analyze a similar structure, namely a Fabry-Perot cavity consisting of two general
reflectors, where one of them is the FBG to be characterized, and the other is a reference reflector. We
will show that we can obtain the complex reflection spectrum of the FBG, or equivalently the reflectivity
and group delay, from measurement of the reflectivity of the Fabry-Perot structure.

Characterization method

Consider a lossless Fabry-Perot-like system consisting of two reflectors, where one reflector has known
characteristics, and the other has not. Throughout this paper, we assume that the first reflector (Section
1) is a FBG with unknown characteristics, and the other reflector is characterized and broad band
compared to the other, for example a broad band FBG or a bare fiber end, see Fig.1.

Fig. 1: Fabry-Perot cavity consisting of a fiber Bragg grating and a reference reflector.

Section 2Section 1

R3

Section 3
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Our idea is that the spectral periodicity of the Fabry-Perot fringes in the combined reflection spectrum
R3 is dependent on the effective cavity length. Hence, we may obtain the position of the effective
reflection point in reflector 1, or equivalently the desired group delay, from measurement of R3.

In the following section we analyze the system given in Fig. 1. We define � � �� � B  as a
detuning parameter, where �  and � B  are the propagation constants for the actual wavelength and the
FBG design wavelength, respectively. Furthermore l j , rj  are the reflection coefficients from the left and
the right, respectively, and t j  is the transmission coefficient, all of the jth section. Finally, we define

R r lj j j� �

2 2
 as the reflectivity, and Lj  as the length of the jth section. By summing all multiple

reflections in the Fabry-Perot structure, we easily realize that

t t t
r l

t t
r l i L3

1 2

1 2

1 2

1 2 21 1 2
�

�

�

� �exp � �b g (1)

where � � � � �� � � � �2 22 2 1 2L L r lb g arg arg . We have explicitly written out the linear term 2 2�L , which
corresponds to the round trip propagation in section 2. By calculating R t3 3

21� � , we obtain

R
t t

r l r l L
t t

r l
g L m
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1 2
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1 2
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� � �

� �

�

� �

�

�

�
cos

cos , (2)

where g g r l r l� � ��b g e j2 11 2 1 2
2 . At this point, we assume that the complex reflection and

transmission coefficients of the reflectors vary slowly with �  compared to the cosine term in (2). This
assumption means that L2  is so large that the Fabry-Perot fringes in R3 �b g  varies more rapidly versus �
than the reflector spectra. Then we may band pass filter R3 �b g  around the angular "frequency" �2 2L ,
obtaining the analytic signal

R h i L3,BP � � � �b g b g b g� � �exp 2 2 , (3)

where

h
t t
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g R R
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1 21

2 1
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1 1
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(4)

is a real, slowly varying function. Assuming that 0 11 2� �R , , we observe that h �b g � 0. Therefore, from
(3) the phase response � � � � �b g b g� � �arg R L3,BP 2 2  is obtained up to the trivial linear term 2 2� �L �

and the group delay � � �g d d�  is obtained up to a constant. Note that the phase response � �b g is
actually the sum of phase responses of reflector 1 and 2, so the phase response of reflector 1 is found by
subtracting the phase response of reflector 2 from � �b g. If reflector 2 is a bare fiber end, its phase
response is zero when ignoring the linear propagation term 2 2�L .
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If the reflectivity R1 �b g is not known, it may be calculated from R2 and R3 by taking the absolute
value of eq. (3) and using (4), or by low pass filtering (2), obtaining

R R R R R
R R3

1 2 1 2

1 2

2
1,DC �b g � � �

�

. (5)

As expected, the expression in (5) is symmetric in the two reflectivities, and R R3 1,DC �  when R2 0� .
In addition, we observe from (5) that R R R3 1 2,DC � �  only when both reflectors are weak, R1 2 1, �� .
Otherwise, the shape of the low-pass filtered Fabry-Perot spectrum will be distorted due to the terms
R R1 2.

For weak reflectors, (3) and (4) reduce to R R R i L3 1 2 22, expBP � � �� �b g . Hence if the
reflection coefficient r2 is constant with respect to frequency, R3,BP will be proportional to the complex
reflection spectrum of the fiber grating when ignoring the linear propagation phase 2 2�L . The inverse
Fourier transform of R3,BP �b g will therefore be proportional to the complex coupling coefficient of the
FBG shifted by 2 2L , since the complex coupling coefficient and the complex reflection spectrum are
Fourier transform pairs in the weak grating limit. This is consistent with the result in ref. [113], where
Froggatt showed that the Fourier transform of R3 �b g  is proportional to the complex coupling coefficient
for weak gratings in a certain interval. This interval is in our case 2 2 22 2 1L L L, � , and corresponds to
the "bandwidth" we must include in the bandpass filtering of R3 �b g  above.

Note that the obtained reflection coefficient r R i1 1� exp �b g is the reflection coefficient from the
right. The reflection coefficient from the left, l1, may be calculated from r1 using the lossless and
reciprocity condition l r t t1 1 1 1� � �

� �  since t1 is minimum phase [4].

To sum up the algorithm:
i) The reflectivity R3 �b g  is measured for the desired wavelength interval.
ii) R3 �b g  is Fourier transformed. The result is multiplied by a filtering window function centered at

the peak corresponding to the angular frequency �2 2L . The choice of a window function is not
crucial, however its width should be according to the descriptions below. R3,BP �b g is
subsequently computed by an inverse Fourier transform.

iii) The phase response � � �b g b g� arg R3,BP  and the group delay � � �g d d�  is calculated.
iv) If desirable, R1 may be computed using eq. (5).

The window function must be sufficiently wide so that the phase modulation of the Fabry-Perot fringes
due to � � �� b g  is included, but so narrow that the higher order variation in (2) is removed. This
compromise is possible when � �b g varies slowly compared to 2 2�L . In practice however, the important
compromise is between numerical stability and resolution in r1 �b g. If large resolution in r1 �b g is
desirable, the window function must be correspondingly wide. On the other hand, the stability of the
method increases with decreasing window width, as more noise is suppressed.
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Numerical and experimental examples

In order to test our algorithm, we analyze a structure consisting of a raised cosine apodized, 0.5nm linear
chirped FBG of length L1 2� cm, an end reflection of 3.5%, and a cavity length L2 5� cm. The spectral
responses r1 �b g and l3 �b g is calculated using transfer matrix and coupled mode theory [5]. From the
calculated spectrum R l3 3

2
�  we construct the "measured" data including noise

R R An Anm s d� � � �b g b g b gc h b g� � �3 1 , (6)

where ns  and nd  are realizations of Gaussian processes with mean 0 and variance 1. The 1000 noise
samples in (6) are independently distributed. We construct the "measured" Rm  in this way to simulate
source and detector noise in a measurement process with a scanning DBR laser. The reflectivityR1 of the
FBG, and Rm  are shown in Fig. 2. By applying Rm  as input to our algorithm, we compute the group
delay, and compare to the original group delay resulting from the coupled mode theory. The size of the
filtering window (Blackman window) has been chosen so that the wavelength resolution of r1 �b g
becomes approximately 30pm. The resulting group delays for A � 0 and A � 0 02.  are shown in Fig. 3,
demonstrating that the reconstructed group delays only have small errors for both the noisy and noise-
free situation. The reconstructed group delay is not identical to the true group delay for noise-free input
data because we have filtered away some information of R3 through the use of the window function.
This fact demonstrates the trade-off between accuracy and stability. Because we want high stability, we
sacrifice some of the accuracy in the sense that rapid variation in r1 �b g is lost.
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Fig. 2: The dotted curve shows the reflectivity Rm of the
Fabry-Perot configuration including errors according to
eq. (6) with A=0.02. The solid curve represents the
reflectivity R1 of the apodized, linearly chirped FBG.
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Fig. 3: Retrieved group delays (dashed and dotted
curves) compared to the true group delay of the FBG
(solid curve). The dotted curve is computed from noisy
data (A=0.02), whereas the dashed curve is computed
from noise-free data.
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We also note the requirements of the scanning DBR laser. Because it must be able to resolve the Fabry-
Perot fringes, its resolution should be roughly

��
�

�

2

32L neff
(7)

where neff  denotes the effective index of refraction in the core. For our case, (7) yields a resolution of
about 13pm.

Finally, we have measured the reflectivity spectrum of a configuration consisting of an apodized
FBG and a bare end reflection using a scanning DBR laser. The resulting spectrum is applied as input to
our algorithm. The experiment is repeated several times in order to test its reproducibility. The results
for three measurements are shown in Fig. 4 and Fig. 5. As can be seen, the reproducibility is good in the
area where the reflectivity of the grating is significantly different from zero. Outside the grating
spectrum however, the reproducibility is bad, as expected from (3) and (4) since the amplitude of the
Fabry-Perot fringes h is near zero. Moreover, we observe a "DC" level of roughly 650ps. This
corresponds to about 13cm propagation in the fiber, which means that the distance between the average
effective reflection point in the grating and the bare fiber end is about 6.5cm.
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Fig. 4: Measured reflectivity of an apodized FBG and
the end reflection.
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Fig. 5: Retrieved group delay of an apodized FBG. The
three curves correspond to three independent
measurements.

This characterization method may also be used for distributed intragrating sensing, since a
distributed strain or temperature profile, or equivalently the local Bragg wavelength of reflector 1 may be
calculated from the complex reflection spectrum r1 by using an inverse scattering algorithm (or an
inverse Fourier transform in the case of weak FBG).



113

Conclusion

We have developed a method for characterization of FBGs. By measuring the spectrum of a FBG
interfering with a bare end reflection, the group delay can be computed for all wavelengths where the
reflectivity of the grating is not very close to 0 or 1.
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Abstract—A method based on optical low coherence reflectome-
try for complete characterization of fiber Bragg gratings (FBG’s)
is presented. It is shown that the measured signal corresponds to
the impulse response of the grating filter, and the measurement
therefore yields all information about the device. Experiments
have been carried out with a novel dual-channel interferometer.
The results are in excellent agreement with the theory, demon-
strating the versatility of the method for characterization of fiber
gratings.

Index Terms—Gratings, interferometry, optical fibers, optical
fiber measurement, optical interferometry, reflectometry.

I. INTRODUCTION

SINCE the demonstration of the transverse holographic
method in 1989 [1], many improvements have been re-

alized for the fabrication of fiber Bragg gratings (FBG’s).
In particular, new methods to produce long gratings with
complex structures have been developed [2], [3]. Long fiber
gratings are very sensitive to perturbations and require a
practical characterization method for their actual refractive
index envelope and local periodicity. One method of char-
acterizing FBG’s is to measure the reflection spectrum with a
spectrum analyzer. However, this does not yield a complete
characterization unless the phase response is obtained as well.
Another characterization method is optical coherence-domain
reflectometry (OCDR), which in recent years has been used in
several ways to perform measurements on fiber gratings [4],
[5].

Using a frequency-domain method it has recently been
established that optical low coherence reflectometry (OLCR) is
directly related to the inverse Fourier transform of the complex
reflection spectrum of the device under test [6]. In this paper,
we restate this fact in the frame work of linear systems theory
and use the result to fully characterize fiber Bragg gratings.
The advantage of our method is its simplicity and generality.

Once the complex reflection spectrum is calculated from
the measured OLCR data using the Fast Fourier Transform
(FFT), the index modulation profile (both amplitude and
phase), which is proportional to the coupling coefficient in
coupled mode theory, may be obtained with the help of an
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inverse scattering method. In particular, a numerical solution to
the Gel’Fand–Levitan–Marchenko (GLM) coupled equations
is well suited for this problem [7]. However, the inverse
scattering problem is ill-posed, and may give inaccurate results
in the case of strong gratings and noisy data. In the case
of weak gratings, the coupling coefficient and the reflection
spectrum are simply a Fourier transform pair [8], so the
complex envelope of the OLCR data directly corresponds to
the complex coupling coefficient.

In order to verify the theory, measurements have been
carried out with aid of a novel dual-channel interferometer.
The two channels are used to produce differential data, thus
reducing the system noise. A number of different gratings
with easily predictable profiles have been analyzed and for
one grating, the reflection spectrum has also been obtained
with a tunable DBR laser yielding the same result as with our
method.

A rigorous mathematical analysis of the OLCR character-
ization method is given in the Appendix. Section II contains
a description of the experiments and the obtained results. The
main conclusions are summarized in Section III.

II. EXPERIMENTS

A. Experimental Setup

A verification of the theory was carried out using a two-
channel interferometer capable of interrogating a test grating
at two positions simultaneously. By using the information from
two positions, it is possible to make differential measurements
with the benefit of suppressing noise due to, e.g., thermal
fluctuations in the system itself. Of course this somewhat limits
the spatial (phase) measurements that can be performed in the
front and rear parts of the grating, but this information is in
most cases not so important.

A schematic two-dimensional (2-D) drawing showing the
working principle of the interferometer is depicted in Fig. 1
(for a detailed description, see [9]). The light from the source
and grating under study is split into two channels by beamsplit-
ter . A translatable retroreflector is used to alter the length
of both reference paths simultaneously. A second retroreflector

changes the distance between the two interrogation points
in the grating by increasing the reference path length in one
channel and the length of the test path in the other. Each
channel is split into two complementary outputs that are fed
into differential detectors. The electrical signal from each
detector is then proportional to the corresponding interference

0733–8724/99$10.00 1999 IEEE
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Fig. 1. Schematic 2-D equivalent drawing of the interferometer. Each chan-
nel has two complementary outputs.

signal. As shown in the Appendix, this signal is directly related
to the real part of the impulse response of the investigated
grating.

In all experiments, both interrogation points were scanned
simultaneously along the grating and from the resulting data,
the differential phase between these points throughout the
grating was calculated. For a fiber Bragg grating the impulse
response can be written on the form

(1)

where

(2)

is the complex slowly-varying envelope of the impulse re-
sponse and the average Bragg frequency. In this context,
it is convenient to view the impulse response as a function of
scanning position instead of time, i.e.

(3)

where is the speed of light in vacuum and the effective
refractive index in the fiber.

In a general case, the absolute value and phase of the enve-
lope in (2) is obtained by first calculating the imaginary part of
the impulse response from its experimentally determined real
part using the Hilbert transform. Since the impulse response of
a grating is approximately sinusoidal with the Bragg frequency

, the absolute value of may in the present case
instead be approximated by the average of the local maxima
of the real part in the vicinity of . Accordingly, if the distance
between the two interrogation points is denoted byand the
measured phase difference by , the phase of the
impulse response envelope is taken as

(4)

Fig. 2. White light source used in fiber grating characterization.

or, since we are dealing with sampled data

(5)

where is the :th sample, is the number of samples and
is the spatial distance between two samples.

The white light source used for the measurements consisted
of two erbium-doped fiber amplifiers and a filter grating
connected as shown in Fig. 2. The ASE of the first amplifier is
guided to the filter through a circulator, is reflected, and then
amplified by the second amplifier. With a filter grating band-
width of 1 nm, the light eventually reaching the interferometer
has a (vacuum) coherence length of approximately 1 mm and
a power of several mW.

If only one channel is used, this coherence length determines
the spatial resolution that can be obtained. When obtaining
differential measurements, however, this is not the case. The
spatial resolution is then rather determined by the sample
distance as well as by the resolution of the detectors.
Furthermore, spatial variations with a period corresponding
to a multiple of the distance between the two interrogation
points will be suppressed.

The time it takes to obtain one measurement is only limited
by the speed of the scanning movement and the sampling
frequency for a given sample distance. In our experiments,
we used a scanning speed of approximately 0.25 mm/s and
a sampling rate near the Nyqvist limit. For a typical 10
cm long grating the whole process of obtaining raw data
and calculating the phase difference and envelope then took
less than 10 minutes using a 200 MHz Pentium computer.
Of course this time can be substantially shortened by using
higher translation speeds and more powerful computer and
data acquisition hardware.

B. Results

Some preliminary experiments confirming the functionality
of the setup are given in [10]. Furthermore, a weak uniform
grating containing three phase shifts of magnitudes90

90 and 50 was fabricated. As can be seen in Fig. 3, a
differential measurement with the interferometer yields three
peaks corresponding to the phase shifts. Without the phase
shifts, the curve would be a straight line with an offset
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Fig. 3. Measured phase difference for a uniform grating with phase shifts�90�; +90� and�50�.

Fig. 4. Phase of the index modulation of the grating from Fig. 3.

depending on the distance between the interrogation points. In
the present case, the phase difference decreases by 90as soon
as the first interrogation point passes the first phase shift. When
the second interrogation point follows, the difference returns to
the initial value. As long as the distance between these points
is larger than the coherence length of the source, the FWHM
of these peaks can thus be used to estimate the distance. In
the present case it is approximately 1.5 mm (cf. Fig. 3). A
slow modulation of the phase that lowers the constant level
by about 20 toward the end of the grating can be seen. The
most probable cause of this is that the fiber was not perfectly
aligned during the writing process.

Since the grating is weak, the phase of the index modulation
is directly obtained by integrating the phase difference. The
phase difference offset gives rise to an unwanted linear term
that can be eliminated by choosing a suitable zero level. This
corresponds to moving the reference plane for the reflection
coefficient, or equivalently adding a constant time delay. The
phase difference zero level is in this case set to 60, which

gives a modulation phase according to Fig. 4, where the three
phase shifts once again clearly can be seen.

Fig. 5 shows the impulse response envelopes, which in this
case are the same as the index modulation envelopes measured
by the two channels. Since a phase shift works as a broad
band reflector within the grating, there is a peak (positive or
negative) for each phase shift in the envelope as well. As seen
from (A11) and (A12) these unwanted peaks are obviously
due to the fact that the source spectrum is not constant
for all frequencies at which the reflection spectrum is
significantly different from zero, i.e., the source is not entirely
“white”. The peaks can therefore be reduced by using a light
source with broader spectrum.

Fig. 6 shows the phase difference data for a 10 cm long
chirped grating. As can be seen, there is a slowly varying
modulation on the signal here as well. As expected, the average
derivative is not zero as was the case for a uniform grating.
In order to simulate a simple sensor, another measurement
was done on the same grating when heating one end with a
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Fig. 5. Impulse response envelopes from the two channels for the grating in Fig. 3.

Fig. 6. Measured phase difference for a 10-cm chirped grating.

soldering iron, thus changing the chirp profile according to
the heat gradient. The difference of these two measurements
is plotted in Fig. 7. Obviously, this data could be used to
determine the heat gradient along the fiber. This particular
experiment was merely done to show the principle, though,
and no proportionality constant between chirp and heat was
calculated. The induced chirp happened in this case to be
of the same orther of magnitude, but with a different sign,
as compared to the original chirp. The slow modulation
disappears due to the subtraction in this plot and the noise
in the measurement is revealed. Evidently, the fluctuation is
typically 25 .

Performing a Fourier transform on the measured impulse
response of the unheated grating yields the reflectance spec-
trum depicted in Fig. 8. The group delay is defined as the
derivative of the phase spectrum with respect to frequency and
can be seen in Fig. 9. As expected, the linearly chirped grating
yields a group delay curve that is almost linear with a slope

that corresponds to the chirp. As a last experiment, a weak
uniform 10 cm grating with Bragg wavelength 1551.1 nm was
fabricated. The reflectance spectrum as calculated from the
white light interferometer data is given by the solid line in
Fig. 10. The spectrum of the same grating was also measured
with a tunable DBR-laser with a result corresponding to the
dashed line in Fig. 10. As can be seen, the agreement between
these two measurements is excellent. In Fig. 11, the group
delay calculated from the interferometer data is shown. As
opposed to the group delay spectrum for a chirped grating, this
is more or less constant. The peaks are caused by the phase
shifts that occur when the reflectance spectrum equals zero.

III. CONCLUSION

It has been shown, theoretically as well as experimentally,
that low coherence interferometry is a versatile tool for charac-
terizing fiber Bragg gratings. The output of the interferometer
corresponds to the impulse response of the grating. From
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Fig. 7. Subtraction of a second measurement with heated grating from the data in Fig. 6 reveals the noise to be typically�25�.

Fig. 8. Reflectance spectrum of the same chirped grating as in Fig. 6.

this, we obtain the reflection spectrum and the group delay
spectrum. In the case of a weak grating, the measured impulse
response directly corresponds to the index modulation am-
plitude and phase (or the complex coupling coefficient). For
stronger gratings it is necessary to use an inverse scattering
method to obtain the same spatial information.

In the experimental verifications, a dual-channel interfer-
ometer has been used, giving the benefit of reducing noise
originating from e.g. thermal fluctuations in the interferometer
itself. The measurements show a noise corresponding to ap-
proximately 25 in spatial phase. This value is by no means
a limit: most of the noise probably comes from fluctuations in
the velocity of the scanning interferometer arm and further
improvements to this movement would probably also take
away a substantial part of the noise.

APPENDIX

The basis of the theory is an ordinary Michelson interfer-
ometer used with a white light source as shown in Fig. 12. In

the following, we apply a linear systems approach to derive
the important result that the detector signal as a function of
reference mirror position corresponds to the impulse response
of the device under investigation.

At a given point the light from the source is represented
by a random complex field . It is characterized by the
autocorrelation function

(A1)

where denotes the time average. Light coming from the
interferometer arm containing the fiber grating will interfere
with light from the (broadband) reference mirror at the beam-
splitter. Each arm is characterized by a respective impulse
response, which for the reference arm is a simple time delay
corresponding to the time it takes for the light to travel twice
the length of the arm. According to the theory of linear systems
[11], the electric fields at the beamsplitter are thus given by

(A2)
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Fig. 9. Group delay for the chirped grating in Fig. 6.

Fig. 10. Reflectance spectrum of a uniform grating, calculated from the OCDR data (solid curve), and measured by the DBR laser (dashed curve).

and

(A3)

where denotes the convolution integral and is the com-
plex impulse response of the interferometer arm containing the
device under investigation. Note that for
due to causality. The total field at the beam splitter becomes

(A4)

We are interested in the detector signal, which is proportional
to the average power of

(A5)

denoting the real part. The first two terms in (A5) are trivial,
since they are constant powers independent of the delay. We
recognize the last interference term as a cross-correlation of

and , which will be dependent of , i.e.

(A6)

This interference detector signal is determined by the prop-
erties of the source field , impulse response and
delay .

On substituting (A2) and (A3) into the expression for
obtained in analogy with (A1), we find

(A7)

Since the source has a finite power, the mean-square value
is finite for all and we may interchange the order
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Fig. 11. Group delay for the uniform grating in Fig. 10.

Fig. 12. White light interferometer.

of averaging and integration [11]

(A8)

where the last equality follows from (A1) and noting that
is stationary.

By Fourier transforming (A8), we obtain

(A9)

where is the power spectral density
of the source due to the Wiener–Khintchine theorem and

is the reflection coefficient of the device
under investigation. Hence

(A10)

and

(A11)

The same formula is also deduced in the frequency domain in
[6]. Note that the result is general and valid for any optical
filter and source spectrum.

Now, in OLCR the spectral bandwidth of the source is
often much larger than the bandwidth of the device under
investigation. Hence may be treated effectively as a
constant near the Bragg frequency characterizing the
grating, yielding

(A12)

Since is real, we obtain

(A13)

Hence, ignoring a background power, the data from the white
light interferometer corresponds to the real part of the impulse
response of the device under investigation, provided the spec-
trum of the source is constant over the device bandwidth. The
imaginary part of is generally obtained from the real
part in terms of the Hilbert transform [12].
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Chapter 6

Thesis summary and future work

In this chapter we will summarize the previous chapters with a special emphasize on
the results. We will also try to draw lines into the future.

6.1 Summary

In Chapter 2 we derived the coupled-mode equations that govern the coupling between
the forward and backward propagating waves in a fiber grating. The connection be-
tween the mathematical model and the physical grating was examined. We defined the
complex coupling coefficient q(z) and found that its modulus and phase correspond to
the index modulation amplitude and phase, respectively. Once the mathematical model
was established, we could use it as a starting point for analyzing the reflection and
transmission response of an arbitrary grating. We observed that there is a Fourier rela-
tion between the coupling coefficient and the reflection spectrum for weak gratings. For
uniform gratings we found exact closed-form expressions for the reflection and transmis-
sion coefficients. When analyzing nonuniform, general gratings, one must use numerical
tools as the well-known numerical integration method or the transfer-matrix method.
As an alternative, we also presented a discrete method that is the direct counterpart
to the discrete layer-peeling algorithm for the inverse (synthesis) problem. We ended
this chapter by examining the different mathematical properties of the reflection and
transmission spectra in addition to some properties of the transform between q(z) and
the spectra.

Chapter 3 was devoted to the inverse scattering problem of finding the grating struc-
ture from a desired, complex reflection spectrum. First we applied a genetic algorithm
to the problem. In this optimization method, each grating corresponds to an individual.
By evolution through several generations, the performance of the individuals (gratings)
becomes better. The performance or fitness of the individuals was computed by a merit
function. The method is general and it is easy to weight different trade-offs as for ex-
ample dispersion and skirt steepness. The main disadvantage is the computing time; it
is considerably slower than most other approaches to the synthesis problem.

The next paper in this chapter contained a description of the layer-peeling algorithm
for designing gratings. The essence of this method is the following causality argument:
The impulse response of the grating evaluated at time τ = 0+ corresponds directly to
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the front end of the coupling coefficient since the light does not have time to propagate
deeper into the structure. Since the initial segment of q(z) now can be determined, one
can propagate the fields to the next section using the coupled-mode equations or the
transfer matrix. Then, one is in the same situation as at the beginning, since the effect of
the first layer is ”peeled off”. The process is continued until the entire grating structure
is reconstructed. In our paper we described two variants of the same method, what we
called the discrete and continuous layer-peeling algorithm. The discrete technique was
simplified compared to a previously published version of it, and it was shown how it can
be implemented exactly on a computer once the grating model is discretized into a stack
of discrete reflectors. Moreover, the continuous version was derived and an error in the
literature was corrected. The discrete and continuous variants were compared, and we
found that the discrete layer-peeling algorithm is significantly faster than its continuous
counterpart, whereas the continuous algorithm offers some advantages in flexibility.

To demonstrate the generality of the layer-peeling inverse scattering approach, we
utilized it for the design of optical thin-film filters in the last paper of Chapter 3. We
designed both filters consisting of arbitrary index layers (with indices ranging between
certain limits) and filters consisting of layers with only two different indices. Since the
algorithm is so fast, it is particularly useful for filters with many layers.

Chapter 4 contained a similar synthesis problem. We designed grating filters work-
ing in transmission with an arbitrary complex response inside a finite bandwidth. The
synthesis problem turned out to be that of obtaining a minimum phase transfer function
approximating a desired, complex function in a finite interval. In the first paper, we
solved this general continuation problem and developed a numerical algorithm. Depen-
dent on the required asymptotic behavior of the transfer function at infinite frequency,
we got two different variants of the method. For asymptotic value different from zero,
the synthesis method was completely general and rigorous. For asymptotic value equal
to zero, the method was not suitable for all kinds of filters as the designed filters in some
cases get large energy.

The minimum phase design method was then applied to the synthesis of fiber grat-
ings in the next paper. The algorithm was modified to obtain a passive filter, and
practical gratings with desired transmission characteristics were designed. In particu-
lar, we designed gratings that can be used as dispersion compensators in transmission.
Several trade-offs are present in the design process. In particular, we demonstrated that
the power transmission in the pass band, the dispersion, and the bandwidth are closely
connected. For a dispersion compensator, one usually wants large transmission and also
large dispersion. To obtain this the bandwidth of the filter must be relatively small.

In Chapter 5 we proposed different methods for complete characterization of gratings.
First we analyzed a method for phase reconstruction from reflectivity that has appeared
in the literature. In this method, one assumes a priori that the reflection coefficient
satisfies the minimum phase condition. For certain types of gratings, as uniform gratings,
this condition is fulfilled, and consequently one can use the logarithmic Hilbert transform
to reconstruct the reflection phase response. However, it turns out that small grating
imperfections may move the reflection zeros to the ”wrong” half-plane, and then the
response is not minimum phase anymore. It is shown that the reconstructed phase
response often is more inaccurate than the phase response of the corresponding ideal
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grating. Consequently, this method is not suitable for experimental gratings.
In the next paper we proposed a different method for the characterization. We as-

sumed that the modulus of the coupling coefficient is known a priori. Then, if the
coupling coefficient is not symmetric, one can retrieve the phase of the coupling coeffi-
cient from the power reflectivity spectrum. The phase retrieval is performed by using
an iterative Fourier transform algorithm. This method may be useful for intragrating
sensing according to the following scheme: Initally one must fabricate a weak grating
with an asymmetric index modulation amplitude and characterize it using a method for
complete characterization (for example one of the methods in Section 5.3 or 5.4). Then
one can use the grating as a sensor: By recording the power reflection spectrum one
can compute the grating phase using the iterative Fourier transform algorithm since the
coupling coefficient amplitude is known. Only the phase and not the amplitude of the
coupling coefficient is altered when the grating is exposed to a change in the strain or
temperature profile. The temperature or strain profile is encoded in the phase of the
coupling coefficient or the Bragg wavelength profile.
The two final papers contained descriptions of complete characterization methods.

The first method is the simplest; one cuts the fiber after the grating yielding a Fabry-
Perot cavity with the grating and the bare fiber end reflection as the mirrors. By
looking at the phase of the Fabry-Perot spectral fringes, one can read out the effective
cavity length and thus the group delay of the grating. The power reflection spectrum
is obtained from the lowpass-filtered Fabry-Perot spectrum. The method was tested
on numerical examples with noise and also experimentally, yielding good stability and
reproducibility.
The idea of the final characterization method is to use low-coherence light to probe

the grating at different positions. We showed that the measured signal is proportional to
the impulse response of the grating, and thus one gets the complex spectrum by a Fourier
transformation. Several gratings were characterized experimentally using a dual-channel
interferometer. An excellent agreement between the square modulus of the measured
spectrum and the power reflection spectrum measured by a scanning DBR (Distributed
Bragg Reflector) laser was demonstrated.

6.2 Future work

One interesting issue is the impact of noise in inverse scattering algorithms. For several
applications, it is desirable to reconstruct the grating profile from a measured complex
reflection spectrum, and hence it is desirable to analyze how noise in the measurements
is amplified through the reconstruction process. It would also be useful to include some a
priori information on the coupling coefficient in order to regularize the solution yielding
better numerical stability.
As noted in the appendix of Section 3.2, the FIR windowing procedure is not neces-

sarily optimal for the synthesis of finite length gratings. Strictly speaking, the windowing
procedure does not apply to Bragg gratings due to the infinite length of the grating im-
pulse response. Therefore, it would be useful to investigate how one can make a goal
spectrum exactly realizable for a grating of length L. For example, one could try to find
the realizable spectrum that is closest to the goal spectrum in the least-square sense. By
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combining such a fitting procedure with the layer-peeling algorithm, one ends up with
a design method that finds the grating structure of length L whose reflection spectrum
is optimal with respect to the goal spectrum. Such a method would be particularily
suitable for designing short gratings.
The algorithm for synthesis of minimum phase functions could be used in other

fields, for example for designing thin-film filters in transmission or transmission lines.
Moreover, the numerical solution to Krein-Nudelman’s problem could be used for ex-
trapolation of causal filter functions or design of general filters. It would be interesting
to investigate how the extrapolation technique complies with noise for different values
of µ.
It remains an open question which method that would be the most practical for

intragrating sensing. One could in particular test the methods in Section 5.2 and Section
5.3 experimentally for this purpose. Both methods are promising due to relatively good
stability against noise, and because it is only necessary to record a power reflectivity
spectrum.
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