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Threespine sticklebacks, small fish with a circumglobal distribution in coastal marine and
freshwater of the northern hemisphere, present a remarkable scope of variation in body and
fin shape among populations. The repeated evolution of divergent body shapes in a radiation
of stickleback from Cook Inlet, Alaska suggests that diversification has proceeded by extensive
parallel selection. To explore this hypothesis, hydromechanical equations of fish propulsion
and descriptions of stickleback foraging and anti-predator behaviours were used to develop
a series of hypotheses that predicted the evolutionary effects of native predatory fishes (NPF)
and relative littoral area (RLA) on body shape. Body shape was measured using Cartesian
coordinates of anatomical landmarks transformed by the generalized resistant fit super-
imposition. In general, the results were consistent with the hypotheses that (1) RLA has a
direct effect on selection for foraging behaviour and morphology, (2) RLA has an indirect
effect on selection for morphology employed in predator evasion, (3) presence of NPF has a
direct effect on selection for evasive morphology, and (4) presence of NPF has an indirect
effect on selection for foraging behaviour and morphology. The magnitude of the divergence
of body shapes present in the Cook Inlet system suggests that extreme phenotypes have
evolved by opportunistic expansion into new habitat relatively free of interspecific competition.
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INTRODUCTION

The threespine stickleback is a small fish with a circumglobal distribution in
coastal marine and freshwater of the northern hemisphere (Bell & Foster, 1994a).
Throughout its range, the anadromous life-history form is known to rapidly found
freshwater populations (Francis, Havens & Bell, 1985; Klepaker, 1993; M.A. Bell,
unpublished data). Thousands of lakes in the Cook inlet region of Alaska were
colonized by threespine stickleback (hereafter, stickleback) following the retreat of
the Cordilleran ice sheet beginning 16 500 years ago (Reger & Pinney, 1995). This
freshwater radiation presents a large scope of interlake variation in trophic, body
shape, and defensive armour traits (Bell, Francis & Havens, 1985; Francis et al.,
1986; Bell et al., 1993: Bourgeois, Blouw & Bell, 1994; Bell & Ortı́, 1994; Walker,
1996). The geographic distribution of these traits is consistent with the hypothesis
that derived states have independently evolved multiple times (Bell, 1988; Bell &
Foster, 1994b; Bell & Ortı́, 1994). The repeated evolution of derived body shapes
suggests that diversification has proceeded by extensive parallel selection (Endler,
1986).

In the traditional comparative research programme, correlations between organ-
ismal design and environmental variation are used to investigate adaptation and
infer historical patterns of natural selection (Harvey & Mace, 1982; Harvey & Pagel,
1991; Ridley, 1983; Endler, 1986; Brooks & McLennan, 1991). Post hoc functional
explanations are frequently created to explain observed associations within an
adaptationist framework. When treated as hypotheses for further investigation, post
hoc qualitative functional explanations form a legitimate step in the comparative
method (Mayr, 1981; Endler, 1986). Often, post hoc functional explanations are
never tested experimentally but, nevertheless, attain a nearly dogmatic status. Not
surprisingly, post hoc functional explanations have been criticized as ‘Just So Stories’
(Gould & Lewontin, 1979). Biomechanical models based on first principles, however,
can be used to generate a priori hypotheses of expected ecomorphological relationships
that can be tested with comparative data (Webb, 1984a,b, 1988; Webb & Weihs,
1986; Endler, 1986; Wainwright, 1987, 1988; Losos, 1990; Emerson, 1991; Williams,
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1992). To explore the hypothesis of parallel evolution of stickleback body shape, I
use hydromechanical equations of fish propulsion and descriptions of stickleback
foraging and anti-predator behaviours to develop a series of predictions on the
evolutionary effects of native predatory fishes (NPF) and relative littoral area (RLA)
on stickleback body shape. I then compare the observed and predicted effects as a
preliminary test of the parallel selection model.

Ecomorphological models of locomotor behaviours

Anti-predator behaviour
Of the many anti-predatory behaviours (Huntingford, Wright & Tierney, 1994)

and potential predators (Reimchen, 1994), I focus on the functional consequences
of evasion from piscivorous fishes, although the model should also be applicable to
evasion from birds. Several factors can contribute to the efficacy of an evasion
response, including response latency, maximum acceleration and manoeuvrability
(Howland, 1974; Weihs & Webb, 1984), but there are no empirical data to rank
the importance of these components. For this study, I assume that the probability
of successful evasion for interactions with all predatory fishes is proportional to the
maximum acceleration achieved during an evasive response.

Models of the expected morphologies for optimal acceleration performance are
critically dependent on the kinematics of the evasion response. Many fish, including
stickleback (Taylor & McPhail, 1986), utilize a highly stereotyped C-start to rapidly
accelerate in response to threat of predation (Weihs, 1973; Webb, 1975a, 1978,
1984a, 1986; Eaton, Bombardieri & Meyer, 1977; Taylor & McPhail, 1985; Harper
& Blake, 1990; Domenici & Blake, 1991; Jayne & Lauder, 1993). In the first stage
of a C-start, axial flexion bends the fish into a ‘C’ shape. Stickleback employ the
C-start for two distinct anti-predator behaviours: jumps and bursts into cover. A
jump is a rapid acceleration and powered turn followed by a stop. A burst is a rapid
acceleration followed by a sprint into nearby cover, such as vegetation, fallen trees
or branches, or the open bottom. Rapid accelerations are also employed in tortuous,
or protean, flights (Driver & Humphries, 1988), which are prolonged, high velocity
escape responses with frequent and sharp changes in direction.

Both acceleration reaction forces (Daniel, 1984) and lift contribute to thrust in a
C-start (Weihs, 1972, 1973, 1989; Frith & Blake, 1991). The acceleration reaction
is a result of the caudal body and tail sweeping through the water, accelerating a
mass of water behind the fish. The water, in turn, exerts a reaction force in the
opposite direction, which propels the fish forward. Lighthill (1970, 1971, 1975)
modelled the acceleration reaction by partitioning the length of the body into a
series of transverse sections, or propulsive segments of length, da. During the
propulsive stroke, each propulsive segment accelerates a mass of water with a force
(Weihs, 1973)

Fa=
d

dt
(mawda) (1)

Where ma is the mass of the water per unit length of fish and w is the velocity of the
segment normal to the longitudinal midline at that segment. The mass of accelerated
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water is called the added mass because the propulsive force accelerates both the
body mass and a mass of surrounding water. The total thrust due to acceleration
reaction, Ta, is the sum of the thrust components for each propulsive segment, or
for segments of infinitely small length (Weihs, 1972, 1973; Frith & Blake, 1991),

Ta=
d

dt P
l

o

maw sin h da (2)

where h is the angle between the tangent of the midline at the segment and the
forward direction of the fish.

The mass of water accelerated by a propulsive segment is proportional to the
depth of the segment. Lighthill (1970, 1971) has expressed this as

ma=
p
4
qd

2b (3)

where q is the density of the water, d is the depth of the segment, and b is a
coefficient that is a function of the shape of the propulsive segment. Equations 2
and 3 indicate that thrust is a function of the velocity of the laterally moving
segment, the orientation of the segment relative to the direction of movement of
the fish and the depth of the segment, which may include a contribution from both
the body and fins. Based on kinematic comparisons, Webb (1977, 1978, 1982b,
Webb & Blake, 1985) has emphasized that thrust is maximized when the greatest
depth is distributed in the caudal region. This follows from the observation that not
all propulsive segments contribute equally to thrust. The normal velocity component,
w, of a propulsive segment increases posteriorly due to the larger displacement of
more caudal segments. In addition, the direction of the resultant force is aligned
more in the direction of the forward motion of the fish for the caudal segments.
Experimental evidence is consistent with the hypothesis that the caudal segments
contribute a larger proportion to thrust (Webb, 1977; Frith & Blake, 1991).

Caudal depth may be increased by increasing body depth caudally, by moving
the median fins caudally, or, if the median fins are in a caudal position, by increasing
median fin area. The consequences of increasing caudal depth by increasing body
depth or by increasing dorsal and anal fin area are not functionally equivalent.
Because inertial resistance to acceleration is proportional to body mass, selection
should favor profiles with large caudal depth but little body mass. Weihs (1989)
demonstrates this point simply but elegantly by modelling the energy required to
move a fish as

E=Ef+Ea=
1
2MfU

2+1
2MaU

2 (4)

where Ef is the energy to move the mass of fish, Ea is the energy to move the total
added mass of water, and U is the velocity of the fish. A fish works to move both
its own mass, Mf, and the added mass of water summed for all segments, Ma, but
the energy transferred to move the fish is proportional only to the summed added
mass of water. The hydrodynamic (Froude) efficiency, g, is
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g=
Ea

E
=

Ea

Ef+Ea

(5)

The contribution to hydrodynamic efficiency for any segment will be

g=
ma

mf+ma

(6)

The mass of an elliptical segment of fish is

mf=
p
2
q p d da (7)

where q is the density of the segment, which is equal to the density of water for a
neutrally buoyant fish, and d and b are the depth and breadth of the segment. Body
mass is proportional to both depth and breadth (eq. 7) but thrust is proportional
only to depth (eq. 3). Hydrodynamic efficiency, therefore, is proportional to d/b.
Because d/b for a segment of fin is greater than d/b for a segment of the body,
increasing caudal depth by moving median fins into a caudal position or by increasing
the length and depth of the median fins results in greater hydrodynamic efficiency
than increasing caudal body depth. Given this model, stickleback that forage in
habitats with high risk of predation from vertebrate piscivores are expected to have
longer and more caudally positioned median fins than those foraging in lower risk
habitats.

Foraging behaviour
In general, stickleback are generalized carnivores that prey on both limnetic and

littoral invertebrates (Hart & Gill, 1994). Individual populations fall on a continuum
of specialization for prey type (Rogers, 1968; Lavin & McPhail, 1986; Gross &
Anderson, 1984; Foster, Baker & Bell, 1992). Among lake populations, this spe-
cialization reaches an extreme in the pairs of sympatric populations found within
six lakes in southwestern British Columbia (Larson, 1976; Larson & McIntire, 1993;
Bentzen & McPhail, 1984; McPhail, 1984, 1992, 1993, 1994; Schluter & McPhail,
1992; Schluter, 1993). In each lake, one population feeds almost exclusively on
littoral prey while the second population feeds almost exclusively, except during the
breeding season, on open water prey (Schluter & McPhail, 1992). I use benthic to
refer to littoral foraging behaviours and morphologies and limnetic to describe open
water foraging behaviours and morphologies (Larson, 1976; McPhail, 1984).

The predation cycle can be divided into search, pursuit, attack, and capture
components (O’Brien, 1979). In this study, I focus on the mechanical consequences
of variation in searching behaviour, which is an important component of the
predation cycle because of both the difficulty in locating prey (O’Brien, 1979) and
the energetic costs of this component relative to other components (Drost & van
den Boogaart, 1986). A detailed description of searching behaviour in stickleback is
not available in the literature. The following description is based on laboratory and
field observations by myself and others (Hart & Gill, 1994).

Variation in searching behaviour between open water and vegetated bottom is
largely a function of differences in structural complexity. The benthic environment
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is characterized by moderate to dense vegetation, sunken logs and branches, leaf
litter and, in some lakes, gravel, cobbles and boulders. Near shore, overhanging
shrubs add to structural complexity. Common benthic prey, including chironomid
larvae and amphipods (Rogers, 1968; Manzer, 1976; Lavin & McPhail, 1986; Hart
& Gill, 1994), prefer habitats with a high density of aquatic vegetation (Beattie,
1982; Dvorak & Best, 1982; Gregg & Rose, 1985; Cyr & Downing, 1988; Downing,
1991). It has been repeatedly demonstrated in fishes that increased structural
complexity reduces foraging performance (Crowder & Cooper, 1982; Savino &
Stein, 1982, 1989a,b; Stoner, 1982; Werner et al., 1983 a,b; Gilinsky, 1984; Ryer,
1988; Diehl, 1988; Gotceitas & Colgan, 1989; Dionne & Folt, 1991; Heck &
Crowder, 1991). Populations of stickleback colonizing lakes with extensive littoral
habitat should evolve behaviours and morphologies that would increase foraging
performance in structurally complex environments.

Increased manoeuvrability provides one potential mechanism to increase littoral
foraging performance. Manoeuvrability is the ability to rapidly and precisely modify
steady, forward locomotion and includes accelerating, braking, turning, rising, falling,
and hovering behaviours (Breder, 1926). I use this more general definition rather
than the more restricted definition that limits manoeuvrability to the ability to turn
in confined spaces (Norberg & Rayner, 1987; Webb, 1994). In this study, I specifically
focus on the functional morphology of turning manoeuvres. During routine turns,
a stickleback, as do many fish, bends the body with the head oriented in the direction
of the turn. Both pectoral fins are used to generate turning moments (Walker,
unpublished data). With both blades broadside to the flow of water, the fin on the
side of the turn is abducted, as in braking (Breder, 1926), while the contralateral
fin is adducted, as in the power stroke during drag-based labriform propulsion
(Blake, 1979). Clearly, the position and shape of the pectoral fins should have a
great influence on turning performance.

Nevertheless, there is also good reason to expect body shape to influence turning
performance. A turn is composed of both the centre of mass of the fish moving
along the arc of a circle with radius, R, and the body of the fish rotating around
the centre of mass. Turning performance should be inversely proportional to both
R and the resistance to rotation of the body. Turning radius is a function of many
parameters, including axial flexibility, turning kinematics, and body shape. The
relationship between turning radius and body shape was modeled by Webb (1983).
Instead of turning radius, I will use turning curvature, j, which is the inverse of
turning radius and, therefore, directly proportional to manoeuvrability. For any turn
with constant radius, the centripetal force is equal to the force available for the
turn.

mvac=1
2qwSU

2
CT (8)

where mv is the virtual mass, which is the sum of the body mass plus the mass of
entrained water, qw is the density of water, S is the wetted surface area of the fish,
U is the velocity of the moving fish, and CT is the thrust coefficient. The mass of
the body and entrained water is

mv = qfVf+qwVw = qV (9)

since stickleback are neutrally buoyant (i.e. qf=qw=q.) and the virtual volume, V,
is Vf+Vw. ac is the centripetal acceleration of the centre of mass,
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ac=
U

2

R
=jU

2 (10)

where R is the radius of the turn. Substituting equations 9 and 10 into 8, we have

qVjU
2=1

2qSU
2CT (11)

Solving for turning curvature,

j=1
2

S

V
CT (12)

Turning curvature is proportional to the ratio of surface area to body (and entrained
water) volume, S/V. For equal size fish, S/V, and thus, j, is proportional to d/b.
Fish with deep, laterally compressed bodies (highly elliptic in transverse section) and
long median fins should have greater turning curvature, and, thus, manoeuvrability,
than fish with shallow, broad bodies (circular transverse sections) with short median
fins.

Both viscous (Alexander, 1967a) and inertial forces resist the rotation of the body
during a turn. Because viscous forces are proportional to the velocity squared,
inertial forces may be more important during foraging-related turns because of the
low average velocities. The inertial resistance is

C=Ia (13)

where I, the moment of inertia about the rotational axis, is

I=R(mr
2 ) (14)

m is the mass of a small volume of the fish body (and entrained water) and r is the
distance of the volume of mass to the axis of rotation. Inertial resistance to rotation
is, therefore, a function of the distribution of virtual mass around the rotational axis.
Keeping mass constant, I, inertial resistance to rotation, increases from fish with
short, deep bodies to fish with elongated, shallow bodies. Given equations 12–14,
stickleback with truncated, deep bodies are expected to have greater manoeuvrability,
and, thus, littoral foraging performance, than those with elongate, shallow bodies.

The limnetic zone presents a very different searching environment than the
benthic zone. The open water of the limnetic zone is largely free of structure,
although some aquatic plants consist of columnar stems that extend through the
limnetic zone. Near shore, large fallen trees can create complex but ephemeral
structure. Wind, predation, and other agents produce a spatially heterogenous
distribution of zooplankton (Colebrook, 1959; George & Edwards, 1976; Kerfoot,
1980; Jakobsen & Johnsen, 1987; Pinel-Alloul et al., 1988; Downing, 1991; Folt &
Schultze, 1993), the preferred prey in open water (Hynes, 1950; Rogers, 1968;
Manzer, 1976; Campbell, 1991). For this study, I assume that stickleback foraging
in the open water swim at steady velocities, or cruise, for much longer periods of
time than those foraging in the littoral zone. This would occur, for example, if
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stickleback swim long distances in search of profitable patches of prey. Qualitative
field observations (pers. observ.) are consistent with this assumption.

Flume studies (Taylor & McPhail, 1986; Whoriskey & Wootton, 1987; Stevens,
1993) and observations in the wild (pers. observ.) indicate that stickleback employ
a pectoral fin, or labriform (Breder, 1926), propulsive mechanism for cruising in the
open water. The body and caudal fin remain rigid. The median fins and, on
occasion, the caudal fin, are collapsed (pers. observ.). Thrust is generated by the
synchronous rowing of the pectoral fins. Both pressure and skin-friction drag resist
motion and the magnitude of this resistance is highly dependent on body shape
(Webb, 1975b; Blake, 1983; Vogel, 1994). A flat, circular body is referred to as a
bluff body while a body characterized by an anteriorly positioned maximum depth,
or shoulder, and an elongated, tapering caudal region is referred to as a streamlined
body (von Mises, 1945) (Fig. 1). Water flowing around a fish cannot follow the
contour of the body precisely but, instead, separates from the body creating a
pressure difference between the anterior and posterior regions of the fish. In bluff
bodies, the point of separation is relatively anterior, leaving a large region of low
pressure. In contrast, the point of separation in streamlined bodies is relatively
posterior, resulting in only a small region of low pressure.

Skin friction drag results from water sticking to the moving fish. Quantitatively,
this is expressed by (Vogel, 1994),

D=1
2qSU

2
Cd (15)

where S is the wetted surface area of the fish body and fins (which will depend on
the degree of erection of the fins) and Cd is a drag coefficient. For constant length
and volume, a shallow fish with a round cross section will incur less frictional drag
during steady labriform propulsion than a deep fish with a highly elliptic cross
section. Minimization of pressure and skin-friction drag leads to the expectation
that limnetic foraging stickleback should have more elongate, shallow, and stream-
lined bodies than benthic foraging stickleback (Fig. 1).

Ecomorphological model
Two environmental variables, Predator State (PS) and Relative Littoral Area

(RLA) are modelled to have effects on the evolutionary history of evasive and
foraging morphology in stickleback (Fig. 2). PS, which is based on the presence or
absence of predatory fishes, should have a direct effect on evasive morphology if
predatory fish have higher capture success when striking fish with less evasive body
shapes and an indirect effect on foraging morphology if the presence of predatory
fish causes a shift in foraging-habitat use. RLA should have a direct effect on
foraging morphology if the distribution of prey types is associated with lake habitat
and stickleback prefer the most available prey type. Additionally, RLA might have
an indirect effect on evasive morphology if different foraging habitats within a lake
are associated with different risks of predation from predatory fish.

METHODS

Samples and measurements

Stickleback samples were collected from 40 lakes in the Mat-Su Valley and the
Kenai Peninsula, Alaska between 1990 and 1994 (Table 1). Collections were made
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Figure 1. Shape of idealized (A) bluff body and (B) streamlined profiles. Natural analogues of engineering
shapes: (C) Chaetodon, with a bluff body profile and (D) Makaira, with a streamlined profile.

during the breeding season, when reproductive males nest near shore, using both
minnow traps and dip nets. Minnow traps were either baited with Cheddar cheese
(1990) or unbaited (1992–1994) and placed on the bottom 1–3 m off shore at depths
of 0.5–2 m. Dip nets were used while diving. Fish were anaesthetized in ms-222,
fixed in buffered 10% formalin, stained in Alizarin Red-S, and stored in 50%
isopropyl alcohol. Samples were sorted by sex and a rough estimate (by eye) of
length and only the largest, sexually mature males in each sample were measured.
This removed variation due to sex and reduced variation due to ontogeny. Minimizing
ontogenetic variation by measuring only a common ontogenetic stage among groups
imposes a non-statistical method to control ontogenetic variation. Regardless, body
shape allometry is small following sexual maturity (Walker, 1993) and not expected
to effect the results of this study. Sample sizes vary among lakes (Table 1) and a
total of 870 fish was measured.

The lakes sampled were chosen to maximize variation in RLA and PS. In addition,
to minimize potentially confounding, historical effects, including common ancestry
and geneflow, on body shape, stickleback from lakes with similar environmental
characteristics were sampled from separate drainages.

RLA is a measure of the proportion of littoral foraging habitat within a lake and

Figure 2. Path model of expected relationships between Predator State and Relative Littoral Area on
foraging and evasive behaviour and body shape traits.
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T 1. Lake data. Kenai = Kenai Peninsula, Mat-Su = Matanuska-Susitna valley, NPF=native
predatory fish, RLA=relative littoral area, Rakers=mean gill raker count

Lake n Region NPF RLA Rakers

Hidden 20 Kenai present 14.996 20.55
Weed 18 Kenai present 20.347 20.39
Lower Ohmer 50 Kenai present 23.371 21.56
Price 20 Kenai present 23.855 20.65
Beck 20 Kenai present 29.797 20.00
Stormy 20 Kenai present 32.737 20.35
Watson 20 Kenai present 47.091 19.75
Parsons 20 Kenai present 80.282 19.25
Engineer 20 Kenai present 90.649 20.25
Duck 20 Kenai present 100 18.55
Headquarters 20 Kenai present 100 21.15
Upper Cohoe 20 Kenai present 100 20.05
Music 20 Kenai absent 24.203 19.60
Nowack 15 Kenai absent 26.084 19.80
Bruce 20 Kenai absent 74.553 19.40
Douglas 20 Kenai absent 91.04 21.10
Arness 22 Kenai absent 92.066 18.77
Denise 16 Kenai absent 95.967 20.56
Bottenintnin 20 Kenai absent 96.489 20.30
Kalifonsky 20 Kenai absent 100 20.75
Suneva 10 Kenai absent 100 19.00
Whisper 20 Kenai absent 100 19.50
Beaverhouse 20 Mat-Su present 15.623 21.30
Lynda 20 Mat-Su present 24.172 20.70
Long 20 Mat-Su present 30.211 21.90
Wasilla 20 Mat-Su present 32.551 19.90
Lazy 20 Mat-Su present 43.609 21.55
Corcoran 20 Mat-Su present 100 20.45
Kashwitna 20 Mat-Su present 100 20.85
Mud 60 Mat-Su present 100 17.97
Little Beaver 10 Mat-Su absent 24.147 21.50
Vera 10 Mat-Su absent 46.609 21.40
Kalmbach 20 Mat-Su absent 48.047 21.70
Zero 20 Mat-Su absent 51 22.60
Farmer 20 Mat-Su absent 69.706 21.80
Lorraine 20 Mat-Su absent 85.223 22.35
Visnaw 54 Mat-Su absent 95.215 23.20
Diamond 20 Mat-Su absent 96.831 21.30
Sharon 20 Mat-Su absent 100 20.40
Weinee 25 Mat-Su absent 100 18.20

is estimated as the percentage of lake surface area in which the depth of the bottom
is less than the euphotic zone depth (EZD). EZD was estimated from the linear
regression of EZD on lake water colour reported by Koenings et al. (1987). Lake
perimeters and approximate contours of estimated euphotic zone depth were digitized
from bathymetric maps (obtained from the Sport Fish Division of the Alaska
Department of Fish and Game) using MorphoSys (Meacham & Duncan, 1990).
This measure assumes that the relative proportion of habitat with complex structure
is associated with the proportion of lake area above EZD. I use shallow to refer to
lakes with high RLA and deep to refer to lakes with low RLA.

PS is a measure of variation in the intensity of predation from gape-limited
predators and is estimated simply as the presence or absence of predatory fishes
that are native to the lake (Bell et al., 1993). These data were obtained from the
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Figure 3. Location of 15 anatomical landmarks in (A) dorsal view, (B) lateral view and (C) ventral
view.

Sport Fish Division of the Alaska Department of Fish and Game. As a measure of
predation regime, PS ignores variation in the density and taxonomic diversity of
native predatory fishes (NPF). It also ignores avian piscivores altogether, which can
be a highly significant component of predation on threespine stickleback (Reimchen,
1980, 1994). Use of PS assumes that the evolution of evasive performance is largely
a function of differences in the long term risk of predation among lakes and only
marginally a function of differences in the taxonomic diversity of predators among
lakes. The many studies that have found differences in anti-predator behaviours
among stickleback sampled from high predation risk sites and low predation risk sites,
regardless of taxonomic differences among the predators, support this assumption
(Huntingford, 1982; Huntingford & Giles, 1987; Huntingford et al., 1994; Giles,
1984; Giles & Huntingford, 1984; Tulley & Huntingford, 1987a,b).

Fifteen landmarks that describe the shape of the stickleback in left lateral view
were digitized in two dimensions using a video camera and MorphoSys software
(Meacham & Duncan, 1990). The landmarks digitized are (Fig. 3): (1) anterior tip
of upper lip; (2) supraoccipital notch immediately lateral to the dorsal midline
(DML); (3) anterior junction of first dorsal spine with the DML; (4) anterior junction
of the second dorsal spine with the DML; (5) base of the first dorsal fin ray at the
DML; (6) insertion of the dorsal fin membrane on the DML; (7) origin of caudal
fin membrane on the DML; (8) caudal border of hypural plate at lateral midline;
(9) origin of caudal fin membrane on ventral midline (VML); (10) insertion of anal
fin membrane on VML; (11) base of first anal fin ray on VML; (12) caudal tip of
posterior process of pelvic girdle on VML; (13) posterior tip of ectocoracoid; (14)
anterior border of ectocoracoid on VML and (15) posterior edge of angular. In
addition to the morphometric landmarks, the number of gill rakers on the first right
branchial arch were counted.

Following Goodall (1991), I refer to the configuration of landmarks for a specimen
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as a figure. Figures were superimposed within samples using a slight modification
of the generalized orthogonal resistant fit superimposition (Rohlf & Slice, 1990; see
also Siegel, 1982; Siegel & Benson, 1982; Olshan, Siegel & Swindler, 1982). A
superimposition analysis estimates and removes both non-biological variation due
to the arbitrary placement and orientation of the specimens in the video field and
geometric size variation. In my modified version, I used the mean and not the
median figure to estimate the consensus because exploration of the scatter of
transformed coordinate values did not reveal outliers and distributions were ap-
proximately normal.

Some of the figures had missing data due to either the absence of the first dorsal
spine or the pelvis. For these figures, the superimposition parameters were estimated
only from the set of landmarks present. The set of 40 sample mean figures, computed
from the mean coordinates within samples, were superimposed using the generalized
orthogonal resistant fit. For convenience, the superimposed sample mean figures
were rotated by the angle that aligned landmarks 1 and 8 of the grand mean figure
in a horizontal orientation. This final rotation did not modify the orientation of the
sample mean figures relative to each other. The 30 coordinates (one x and y pair
for each of the 15 landmarks) transformed by this nested superimposition procedure
are the shape variables for this study.

Methods using the decomposition of the thin-plate spline were not used because
these require separate analyses of affine and non-affine shape variation (see Walker,
1996). Superimposition methods have been criticized on the grounds that many
criteria of fit are available (Lele, 1991). While the different methods can produce
uncomfortably different results when figures have few landmarks (Siegel & Benson,
1982; Rohlf & Slice, 1990), results become increasingly similar with more landmarks
(Slice, 1993). In an exploratory analysis of a subset of these data, results obtained
by different superimposition methods were remarkably similar (Walker, 1996).

Effects of size

Correlations between size and shape among samples may reflect mechanical or
physiological constraints (e.g. McMahon, 1975; Schmidt-Nielson, 1984; Calder,
1984) or a common environmental factor (Calder, 1984). I use least squares regression
to investigate the relationship between sample mean size and shape (Walker, 1993)
using median size (Rohlf & Slice, 1990) as the estimate of geometric size. Centroid
size (Bookstein et al., 1985; Bookstein, 1991) could not be compared among figures
because this estimate is a function of the number of landmarks and three of the
samples had figures with a single missing landmark. For these data, the choice of
size measure is less important than the method of scaling (isometrically or allo-
metrically): for the 818 figures without missing landmarks, the correlation between
median size and both centroid size and standard length is 0.99.

Univariate effects of predator state, relative littoral area and their interaction

Both parametric and non-parametric tests were performed to estimate the effects
of PS, RLA and their interaction, on sample mean shapes (i.e. configurations of
transformed coordinates), gill raker count, and median size. For the parametric
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analysis, I used ANCOVA (Sokal & Rohlf, 1994), with PS as a fixed effect and
RLA as a covariate.

For the non-parametric analysis, least squares regressions of the transformed
coordinates on RLA were computed for each level of PS separately. Although a
reduced major axis regression may have been warranted given the error in RLA
(Ricker, 1984; Rayner, 1985; McArdle, 1988; Sokal & Rohlf, 1994), a least squares
regression was used because this model provides the best estimate of the expected
coordinate value for a given RLA. The slope of the regression line reflects an RLA
effect while the differences in elevation, or expected Y, reflects a PS effect. The
effect of RLA was investigated using a nested bootstrap (described below) to calculate
95% confidence intervals of the the correlation coefficient. With a significant
interaction effect, the effects of PS will depend on the level of RLA. To investigate
the effects of PS at extreme levels of RLA, I computed the expected value of the
transformed coordinates at RLA=0 and RLA=100 for both levels of PS based on
the least squares regression and used the difference between these expected values,
ŶNPF absent−ŶNPF present, as the test statistic. The nested bootstrap was used to estimate
the 95% confidence intervals of this statistic.

Multivariate effects of predator state

Both parametric and permutation tests were used to estimate the statistical
significance of multivariate shape differences between the two levels of PS. Goodall
(1991) developed a two-sample test based on Procrustes distance, Dp’

Dp=[(ȳ1−ȳ2)
t(ȳ1−ȳ2)]

1/2 (16)

where ȳj is a vector of length pk of the coordinates of the mean shape for the jth
group, p is the number of landmarks and k is the number of dimensions. Procrustes
distance between group mean shapes is equivalent to the Euclidean distance between
the group centroids in a pk dimensional space and therefore, both homogenous and
uncorrelated variation among the coordinates within groups are assumptions of
Goodall’s two-sample test (Goodall, 1991). Because variation among the coordinates
is neither homogenous nor uncorrelated within groups, an F statistic based on the
generalized Mahalanobis distance, Dg, was used in place of the F statistic based on
Procrustes distance

F[k(p−2),n1+n2−k(p−2)−1]=G n1+n2−k(p−2)
(n1+n2−2)k(p−2)HT2

g (17)

where

T
2
g=A n1n2

n1+n2BD2
g (18)

and n1 and n2 are the number of mean figures in groups 1 and 2, respectively. The
computation of the F statistic and the numerator and denominator degrees of
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freedom are adjusted for the degrees of freedom lost due to the translation, rotation,
and scaling, of the original figures (i.e. there are k×2 fewer degrees of freedom of
shape variation then number of shape variables).

The traditional Mahalanobis distance, D, computed using the inverse of the
pooled within group covariance matrix, W−1,

D=[(ȳ1−ȳ2)
t W−1(ȳ1−ȳ2)]

1/2 (19)

is simply the Euclidean distance between the group centroids in a space that has
deformed the within group variation to have homogenous and uncorrelated variation
among the variables. The generalized Mahalanobis distance, Dg, was employed to
avoid potential complications of a singular within group covariance matrix due to
the reduced degrees of shape variation relative to number of shape variables. Dg is
the simple absolute difference between sample mean shapes in the subspace defined
by the first canonical vector computed using a two-stage principal component
analysis (Rempe & Weber, 1972; Campbell & Atchley, 1981).

For the permutation tests, the Procrustes distance between group mean shape
was used as the test statistic. To estimate the significance of Dp, group membership
between the two groups was randomly permuted 99 999 times, each time recalculating
a new Procrustes distance, Dp∗ from the pseudosample. The probability for this test
is calculated as (k+1)÷(100 000), where k is the number of Dp∗ greater than or
equal to Dp. This test compares the Procrustes distance resulting from the observed
assignment of figures to the two groups with the distribution of distances resulting
from a random assignment of figures to the two groups.

To infer the pattern of shape differences between stickleback inhabiting lakes with
and without native predatory fish, the raw canonical coefficients from the computation
of Dg were rescaled to equal the correlation between the first canonical vector scores
and the original coordinates for the 40 cases (the total variation structure coefficients).
Ninety percent confidence intervals for the structure coefficients were computed
using the nested bootstrap procedure described below.

Nested bootstrap procedure

In this analysis of sample means, sampling error is a function of both the individuals
measured within samples and the lakes sampled from the Cook Inlet region. To
include both these sources of error in the estimate of confidence intervals, both lakes
and individual figures were resampled in a nested fashion. This procedure involved
(1) randomly sampling, with replacement, one of the lakes from one level of PS; (2)
randomly sampling, with replacement, n individual figures from this lake, where n
is the original sample size of the lake; (3) repeating steps 1 and 2 until Nj pseudosamples
were generated, where Nj is the number of samples in the jth level of PS, and (4)
repeating steps 1 through 3 for the second level of PS. This nested bootstrap
maintained the original number of samples within both levels of PS (n=20) and the
original number of specimens within samples (Table 1) but the total number of
figures differed from iteration to iteration.

Figures in each pseudosample were superimposed with the generalized orthogonal
resistant fit. The two sets of pseudosample mean figures were computed, combined
into a single data set superimposed using the generalized orthogonal resistant fit
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and rotated into a horizontal orientation as per the original data set. The desired
tests statistic(s) were computed on this new set of data. The nested resampling
scheme was repeated 999 times, which, including the original analysis, resulted in
1000 estimates of each statistic. Confidence intervals were estimated using the
appropriate percentiles of the generated distribution.

Effects of history

If both morphometric and environmental variation are correlated with geography
(spatial autocorrelation), then correlations between shape and environment may
reflect history and not independent adaptation. Spatial autocorrelation is common
in ecological data sets (Sokal & Oden, 1978a, b; Legendre, 1993) and could arise
in the morphometric data as a result of an isolation-by-distance process of population
differentiation or increased geneflow among neighbouring populations. I attempted
to minimize spurious effects of history by sampling lakes that have similar en-
vironments from geographically distinct regions. Nevertheless, to remove the in-
fluence of phylogeny on the correlations between morphometric and environmental
variation, I used the Smouse-Long-Sokal test (Smouse, Long & Sokal, 1986).

For the relationship between body shape and PS, scores from the CVA were used
to construct an anti-predator morphological distance matrix, Mpred with each element
equal to the absolute value of the difference between the corresponding CVA scores.
For the relationship between body shape and RLA, I used only the cases within the
subset of lakes with NPF, since there was no effect of RLA on body shape among
lakes without NPF. I used principal component analysis of the 24 coordinates with
significant RLA effects to construct a single variable, the first principal component,
that has a high correlation with RLA. With this variable, I constructed a foraging
morphological distance matrix, Mfor, with each element equal to the absolute value
of the difference between the corresponding PC I scores.

Two environmental (E) and two geographic (G) distance matrices were constructed.
EPS was constructed by assigning 0 to elements in which PS was the same for the
corresponding lakes and 1 to elements in which PS differs between the corresponding
lakes. ERLA was constructed by assigning each element the absolute value of the
difference between RLA for the corresponding lakes. Gbird, the ‘as a bird flies’ matrix,
was based on the great circle distances between lakes. Gfish, the ‘as a fish swims’
matrix, was based on the shortest distance along drainages between lakes. The
matrix correlation between M and E reflects ecomorphological associations and that
between M and G reflects the effects of geography on morphological similarity. To
partial out the effects of G on the matrix correlation between M and E, I used the
Smouse-Long-Sokal statistic (Smouse et al., 1986), which is simply the partial
correlation between M and E holding G constant.

I used both Mantel’s (Mantel, 1967) asymptotic approximation test and matrix
permutation tests (Mantel, 1967; Sokal, 1979; Douglas & Endler, 1983; Dietz, 1983;
Manly, 1986; Cheverud, Wagner & Dow, 1989) to compute the significance of the
observed matrix correlations. Right-tailed probabilities were computed because only
positive correlations were expected. For the comparison between Mpred and EPS,
permuting either matrix would result in nearly 50% of the permuted matrix
correlations with the same value as the observed correlation because of the binary
coding of EPS. For each permutation, therefore, I randomly permuted the assignment
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of each case to PS and recomputed EPS instead of permuting Mpred or EPS directly.
For the comparisons with foraging morphology, I randomly permuted MRLA. Matrices
were permuted 9999 times. The distribution of 10 000 correlations was used to
compute the righttailed probability as (k+1)÷(10 000), where k is the number of
permutation correlations greater than or equal to the observed correlation.

Graphical display of ecomorphological variation

The statistical tests produced many coefficients. In addition to reporting these in
tables, I illustrate the patterns of shape change graphically. Following superimposition
of multiple figures, each landmark consists of a scatter of points around a bivariate
mean. Patterns of covariation between coordinates among landmarks or between
coordinates and external variables (e.g. RLA) cannot be readily determined from
these scatters. One of the admirable features of geometric morphometrics is that
these patterns of shape variation can be illustrated using the coefficients from
traditional statistical analyses. This is possible because the coefficients from both the
regression and canonical variates analyses retain the geometric properties of the
transformed coordinates.

The bivariate mean described previously is the expected location of the landmark
in the absence of any effect. The expected location of a landmark will change,
however, given different values of an effect (e.g. RLA or PS). For the regression
analysis, the expected location of a landmark at a given value of some external
variable, X, is found by

x̂=ax+bxX

ŷ=ax+byX
(20)

(Walker, 1993). In this study, the parameters of the regression equations were found
by least squares. An arrow from the expected location of a landmark at the minimum
value of X to the maximum value of X reflects the path of shape change as a
function of change in X (Walker, 1993). I refer to these paths from the regression
analyses as regression vectors. To facilitate the interpretation of the vectors, I used
the thin-plate spline (Bookstein, 1989b, 1991) to deform an outline of a stickleback
to match the configuration of the landmarks of the hypothetical figure at both the
minimum and maximum value of X. Both median size and RLA were used as
independent variables. In the analyses with RLA as the independent variable,
separate regressions were fit for both levels of PS and four hypothetical figures were
generated. Differences between hypothetical figures within levels of PS but between
levels of RLA reflect effects of RLA and those between levels of PS but within levels
of RLA reflect effects of PS.

I also used vectors to illustrate the pattern of variation described by the structure
coefficients from the canonical variates analysis, which I will refer to as CVA vectors.
The raw canonical coefficients were rescaled to equal the covariance between the
first canonical vector and the original coordinates. With this scaling, the coefficients
corresponding to the x and y coordinates of a single landmark are the components
of a resultant vector that reflects the direction and magnitude of shape difference
at the landmark relative to the within sample variation of all landmarks sim-
ultaneously. The tips of the CVA vectors describe a configuration reflecting an
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T 2. Effects of predator state, relative littoral area and size on mean gill raker count

(a) ANCOVA
Effect MS F P
PS 0.1258 0.0946 0.760
RLA 4.3868 3.2995 0.078
PS×RLA 0.1360 0.1023 0.751

(b) Effect of relative littoral area
Predator state n Slope SE r F P

NPF+ 20 −0.013 0.006 0.461 4.8538 0.041
NPF− 20 −0.009 0.011 0.188 0.6572 0.428

(c) Effect of size
n Slope SE r F P
40 0.211 0.1027 0.3161 4.219 0.0469

extreme hypothetical shape at one pole of the canonical vector. By multiplying each
coefficient by −1, the tips of the CVA vectors describe the geometrically opposite
shape.

Miscellany

The great number of statistical tests and computations of confidence intervals
substantially increase type I error rates. The traditional remedy for this situation is
to apply a Bonferroni adjustment to the observed probabilities to reflect the number
of tests (Sokal & Rohlf, 1994; Rice, 1989). I have chosen not to adjust the P values
for two reasons. First, what is the proper divisor for the adjustment, the number of
tests in a single table, or, the number of tests in the paper, or, the number of tests
that I used to explore the data, some of which are reported in other manuscripts?
Second, Bonferroni adjustments are appropriate for multiple independent tests. The
shape changes observed here are highly correlated and, as a consequence, even
sequential Bonferroni methods are too conservative.

Finally, the superimposition, regression, canonical variates, Mantel and principal
component analyses were performed on a Sun SPARCserver 1000. I used JMP 3.1
(SAS, inc.) to compute the ANOVAs and ANCOVAs.

RESULTS

There is moderate variation in size among the samples in this study, sample mean
standard length (SL) ranges from 42.4 to 64.6 mm. RLA has no effect on median
size (NPF present: slope=−0.0126, F=0.9494, P=0.3428, NPF absent: slope=
−0.001814, F=0.0273, P=0.8706). Stickleback in lakes with NPF are, on average,
slightly larger than those from lakes without NPF (F=4.2786, P=0.0454): the
average median size of fish in the largest size class is 19.7 for lakes with NPF
and 18.6 for lakes without NPF, corresponding to 52.65 mm and 49.43 mm SL,
respectively.

An ANOVA with mean gill raker count as the response variable and PS and
RLA as the main effects suggests a RLA effect but no PS effect (Table 2). The
separate regressions of mean gill raker count on RLA within each level of PS,
however, indicates the RLA effect is present only in the subset of lakes with NPF
(Table 2). The interaction term of the two-way ANOVA is not significant, indicating
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Figure 4. Regression vectors based on least squares regression of transformed coordinates on median
size. The magnitude of the vectors in (B) has been increased four-fold. The bottom panel (C) illustrates
the expected shape of a small fish while the top panel (A) illustrates the expected shape of a large fish.

that the slopes of the separate regression may not differ, but the error of the slope
estimate in the subset of lakes without NPF is nearly twice the error in the subset
with NPF (Table 2). This suggests that similarity of slopes may simply be a sampling
artifact.

Interpopulation allometry is present among the Cook Inlet samples. Mean gill
raker count is positively correlated with body size among samples (Table 2). The
direction of shape change with increasing size is indicated by the arrows in Figure
4. The dorsal spines (x3, x4) are more anterior and both the dorsal (X5, X6) and
anal fins (X10, X11) are longer in larger fish (Fig. 4, Table 3).

The scatterplots of the transformed coordinate values on RLA illustrate effects of
RLA, effects of PS and interaction effects (Fig. 5). The ANCOVAs (Table 4) indicate
effects of RLA on body shape but the confidence intervals of the correlation
coefficients (Table 5) indicate that this effect occurs only among stickleback from
lakes with NPF. In the subset of lakes without NPF, confidence intervals bound zero
for each coordinate of every landmark. The many significant interaction effects
between PS and RLA on body shape (Table 4, 5) reflect this lack of association
between RLA and body shape in lakes without NPF. The ANCOVAs (Table 4),
univariate distance statistics (Table 5), Hotelling’s T2 tests (Dg=7.526, T

2=566.407,
F=7.4527, P=0.00025) and non-parametric multivariate tests (k=0, PΞ 0.00001)
indicate effects of PS on body shape. Consistent results were obtained between
univariate and multivariate tests and between parametric and non-parametric tests.

The pattern of regression vectors for both levels of PS are illustrated in Figure 6.
The direction of the arrows indicates shape differences that occur with increasing
RLA. Confidence intervals of the correlation coefficients between all transformed
coordinates and RLA cover zero for the subset of lakes without NPF (Table 5) and
the pattern of the vectors will not be discussed. The multiple effects of RLA on
head, body, and fin shape among the lakes with NPF are highlighted with hypothetical
extreme figures (Fig. 6b) based on the univariate regression coefficients.

The relative position of the tip of the snout (X1) is relatively invariant, but the
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T 3. Regression statistics and 95% bootstrap confidence intervals for regression analyses of
coordinates on median size

n F P Pearson’s q n F P Pearson’s q

0.442
x1 40 0.15 0.7005 0.063

−0.334

0.359
y1 40 0.07 0.7883 0.044

−0.231

0.058
x2 40 2.70 0.1087 −0.257

−0.511

0.002
y2 40 4.98 0.0316 −0.340

−0.556

0.031
x3 39 3.58 0.0667 −0.301

−0.586

−0.003
y3 39 2.99 0.0923 −0.277

−0.517

−0.028
x4 40 5.83 0.0207 −0.365

−0.615

0.109
y4 40 0.74 0.3936 −0.139

−0.428

−0.184
x5 40 8.76 0.0053 −0.433

−0.626

0.344
y5 40 0.39 0.5361 0.101

−0.164

0.764
x6 40 20.48 0.0001 0.592

0.348

−0.079
y6 40 8.07 0.0072 −0.418

−0.600

0.323
x7 40 0.01 0.9405 0.012

−0.292

−0.026
y7 40 5.39 0.0258 −0.352

−0.546

0.401
x8 40 0.24 0.6277 0.079

−0.224

0.022
y8 40 3.45 0.0708 −0.289

−0.484

0.287
x9 40 0.05 0.8311 −0.035

−0.339

0.293
y9 40 0.11 0.7443 −0.053

−0.278

0.757
x10 40 22.20 0.0000 0.607

0.368

0.414
y10 40 0.00 0.9835 0.003

−0.279

−0.138
x11 40 6.23 0.0170 −0.375

−0.583

0.300
y11 40 0.12 0.7364 −0.055

−0.336

0.484
x12 39 1.30 0.2607 0.185

−0.149

0.412
y12 39 0.68 0.4153 0.134

−0.121

0.165
x13 39 1.54 0.2219 −0.197

−0.499

0.553
y13 39 3.51 0.0687 0.291

0.008

0.225
x14 40 0.86 0.3604 −0.149

−0.444

0.510
y14 40 1.97 0.1686 0.222

−0.108

0.461
x15 40 0.53 0.4691 0.118

−0.275

0.493
y15 40 1.37 0.2498 0.186

−0.125
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Figure 5. Scatterplots and least squares regressions of x (this page) and y (facing page) coordinates for the
15 landmarks on RLA. The scatter is grouped by PS. Native predatory fish present (Χ), absent (Β).

position of the angular (X15) moves posteriorly with increasing RLA, indicating
longer jaws in shallow lakes. The dominant pattern of the regression vectors indicates
that depth increases along the length of the head and body (Y5, Y6, Y9, Y10, Y11)
with increasing RLA. In addition, the body shortens with increasing RLA due to
the relative contraction of the caudal peduncle. This contrast between short, deep
body profiles in lakes with high RLA and elongate, shallow profiles in lakes with
low RLA is consistent with the expected pattern given foraging habitat variation.
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Figure 5.–contd

Contrary to expectations, depth increases uniformly along the length of the body
with increasing RLA. This indicates that stickleback in lakes with low RLA do not
have a more anteriorly positioned shoulder (point of maximum depth). Finally, the
entire ectocoracoid (X13, X14) shifts posteriorly with increasing RLA but the
anterior end shifts at a greater rate, which indicates that this bone is shortening
with increasing RLA.

In addition to body shape changes, the dorsal spines (X3, X4) are positioned more
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T 4. Parametric statistics for ANCOVAs with RLA as covariate

Predator state RLA Interaction
n F P F P F P

x1 40 0.43 0.5171 0.07 0.7970 1.22 0.2768
y1 40 0.30 0.5852 0.78 0.3818 1.91 0.1750
x2 40 7.80 0.0083 0.80 0.3774 4.97 0.0321
y2 40 2.86 0.0994 13.99 0.0006 1.69 0.2019
x3 39 10.83 0.0023 1.00 0.3236 2.62 0.1147
y3 39 0.88 0.3548 12.80 0.0011 2.08 0.1583
x4 40 15.29 0.0004 1.94 0.1722 3.52 0.0687
y4 40 0.04 0.8414 10.50 0.0026 1.09 0.3041
x5 40 7.05 0.0117 2.76 0.1052 0.96 0.3347
y5 40 0.14 0.7126 5.65 0.0229 0.61 0.4396
x6 40 1.42 0.2407 0.22 0.6454 0.29 0.5960
y6 40 2.58 0.1168 4.95 0.0324 0.41 0.5256
x7 40 8.03 0.0075 14.07 0.0006 10.68 0.0024
y7 40 4.44 0.042 4.74 0.0362 0.13 0.7210
x8 40 5.28 0.0275 5.88 0.0205 5.94 0.0199
y8 40 1.52 0.2256 0.80 0.3765 0.32 0.5772
x9 40 7.16 0.0112 25.77 0.0000 13.33 0.0008
y9 40 0.03 0.8561 14.09 0.0006 1.34 0.2542
x10 40 0.01 0.9358 0.37 0.5485 0.49 0.4882
y10 40 3.30 0.0774 8.83 0.0053 3.54 0.0682
x11 40 16.20 0.0003 4.94 0.0327 6.77 0.0134
y11 40 0.53 0.4696 3.37 0.0745 2.56 0.1184
x12 39 23.41 0.0000 3.13 0.0855 5.70 0.0225
y12 39 0.09 0.7627 5.11 0.0302 0.80 0.3760
x13 40 3.69 0.0628 2.11 0.1553 3.25 0.0800
y13 40 2.99 0.0921 18.33 0.0001 5.33 0.0269
x14 40 8.35 0.0065 8.75 0.0054 7.71 0.0087
y14 40 8.43 0.0063 12.57 0.0011 4.55 0.0398
x15 40 0.00 0.9903 0.78 0.3821 1.94 0.1717
y15 40 5.67 0.0227 13.05 0.0009 2.54 0.1194

posteriorly and the median fins (X5, X11) are shortened in lakes with high RLA,
Median fin length was expected to have an association with predation regime. The
observed association between median fin length and RLA in lakes with NPF suggests
that RLA indirectly effects predation regime. This would occur if stickleback foraging
in the open water face higher risk of predation from vertebrate piscivores than those
foraging in the vegetated littoral zone (Reimchen, 1980; Bell & Foster, 1994b).

Effects of PS on body shape can be inferred from the expected distance statistics
at RLA=0 and RLA=100 (Table 5), the multivariate canonical structure coefficients
(Table 6) and the corresponding scatterplots (Fig. 5), regression vectors (Fig. 6) and
CVA vectors (Fig. 7). The direction of the arrows in Figure 7 indicates the shape
expected in lakes without NPF. Figure 7A is the expected shape of a stickleback in
a lake with NPF and Figure 7C is the expected shape of a stickleback in a lake
without NPF. The snout (X1, X15) is anteriorly extended and head depth (Y2, Y14)
is greater in stickleback from lakes without NPF. Relative to stickleback in lakes
with NPF, those from lakes without NPF have more posteriorly positioned dorsal
spines (X3, X4), a more anteriorly positioned tip of the posterior pelvic process
(X12), and shorter median fins (X5, X11). The absence of an effect on the position
of the posterior end of the ectocoracoid (X13) indicates no effect on the position of
the pelvis as a whole but, instead, an effect on the length of the posterior process.
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T 5. Regression statistics, with 95% bootstrapped confidence intervals, for regression analyses of
coordinates on RLA. Pearson’s is the product moment correlation between the coordinate and RLA
among lakes with (NPF+) or without (NPF−) NPF. The Expected difference is the difference between
the expected coordinate value when RLA is 0 and when RLA is 100 based on a least squares regression

Pearson’s q Expected difference Pearson’s q Expected difference
NPF+ NPF− RLA 0 RLA 100 NPF+ NPF− RLA 0 RLA 100

0.641 0.290 0.006 −0.009
x1 0.282 −0.156 −0.008 −0.027

−0.338 −0.488 −0.043 −0.043

0.057 0.519 0.018 0.018
y1 −0.588 0.058 −0.004 0.010

−0.742 −0.438 −0.028 −0.0005

0.742 0.335 0.027 0.007
x2 0.582 −0.173 0.018 −0.001

0.129 −0.456 0.000 −0.007

0.857 0.581 0.027 0.007
y2 0.680 0.354 0.012 −0.0003

0.500 −0.003 0.003 −0.010

0.835 0.526 0.097 0.038
x3 0.601 −0.076 0.059 0.021

0.240 −0.519 0.007 0.005

0.887 0.665 0.036 0.001
y3 0.742 0.287 0.011 −0.011

0.578 −0.267 −0.018 −0.026

0.797 0.417 0.068 0.025
x4 0.612 −0.062 0.041 0.015

0.250 −0.534 0.013 0.005

0.890 0.625 0.034 −0.003
y4 0.766 0.258 0.003 −0.015

0.601 −0.333 −0.028 −0.031

0.753 0.528 0.066 0.034
x5 0.478 0.095 0.035 0.018

0.017 −0.388 0.010 0.004

0.844 0.539 0.027 −0.005
y5 0.728 0.182 −0.005 −0.018

0.508 −0.367 −0.034 −0.033

0.466 0.640 0.017 0.010
x6 −0.016 0.131 −0.015 −0.006

−0.546 −0.432 −0.045 −0.021

0.822 0.518 0.017 0.008
y6 0.507 0.217 0.007 0.003

0.197 −0.343 0.0004 −0.004

−0.590 0.370 −0.006 0.021
x7 −0.794 −0.074 −0.022 0.012

−0.886 −0.469 −0.041 0.002

0.812 0.632 0.015 0.009
y7 0.395 0.299 0.007 0.005

−0.003 −0.275 0.002 0.0005

−0.372 0.530 0.003 0.017
x8 −0.756 0.002 −0.019 0.008

−0.853 −0.521 −0.044 −0.003

0.348 0.394 0.014 0.011
y8 −0.250 −0.054 0.004 0.007

−0.571 −0.604 −0.001 0.002

−0.656 0.216 −0.003 0.021
x9 −0.840 −0.224 −0.016 0.013

−0.903 −0.584 −0.030 0.006

−0.353 0.045 0.010 0.008
y9 −0.710 −0.342 −0.001 0.004

−0.858 −0.691 −0.005 −0.001

0.428 0.435 0.021 0.002
x10 0.021 −0.172 −0.001 −0.010

−0.536 −0.576 −0.029 −0.022

−0.362 0.355 0.003 0.007
y10 −0.668 −0.166 −0.008 0.003

−0.831 −0.641 −0.018 −0.003

0.831 0.354 0.078 0.025
x11 0.639 −0.064 0.054 0.007

0.308 −0.475 0.029 −0.007

−0.349 0.434 0.019 0.025
y11 −0.633 −0.031 −0.007 0.014

−0.819 −0.491 −0.028 0.002

0.404 0.852 −0.049 −0.025
x12 −0.156 0.467 −0.137 −0.048

−0.574 −0.158 −0.263 −0.075

−0.353 0.373 0.027 0.030
y12 −0.625 −0.171 −0.004 0.012

−0.778 −0.605 −0.033 −0.006

0.813 0.517 0.034 0.006
x13 0.501 −0.056 0.015 −0.004

0.007 −0.539 −0.005 −0.013

−0.616 0.093 0.002 0.026
y13 −0.777 −0.287 −0.016 0.012

−0.864 −0.578 −0.030 0.000

0.836 0.556 0.047 0.003
x14 0.728 0.028 0.027 −0.008

0.500 −0.404 0.003 −0.016

−0.382 0.260 −0.004 0.008
y14 −0.733 −0.208 −0.016 0.000

−0.886 −0.566 −0.026 −0.010

0.761 0.451 0.019 −0.005
x15 0.585 −0.060 0.000 −0.021

0.080 −0.437 −0.031 −0.034

−0.403 0.320 0.001 0.007
y15 −0.761 −0.258 −0.016 −0.002

−0.884 −0.633 −0.036 −0.012
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Figure 6. Regression vectors based on least squares regression of transformed coordinates on RLA.
The vectors reflect the direction and relative magnitude of change in the location of the landmarks
for a unit change in RLA. The vectors have been magnified five-fold to magnify the effects of RLA
on body shape. (A) Native predatory fish absent. (B) Native predatory fish present. Outlines of the
extreme hypothetical figures have been fit to the origins and tips of the vectors within each level of
PS. The shapes of these figures represent the expected body shape for stickleback from deep lakes
without native predatory fishes (A, top panel), shallow lakes without native predatory fishes (A, bottom
panel), deep lakes with native predatory fishes (B, top panel) and shallow lakes with native predatory
fishes (B, bottom panel).

The shorter median fins in stickleback from lakes without NPF is consistent with
the ecomorphological model. Note, however, that (i) the median fins are not more
caudally positioned and (ii) mid-body and caudal body depth are not greater in
lakes with NPF. The effects of PS on dorsal spine and pelvic landmarks indicates an
effect of predation regime on armour structure in addition to locomotor morphology.

The distance statistics in Table 5 and the corresponding regression vectors in
Figure 6 also highlight interaction effects. Positive distance statistics for the x and y
coordinates indicate that the expected position of the landmark is more posterior
and more dorsal, respectively, in lakes without NPF. Thus, in shallow but not deep
lakes, stickleback in lakes without NPF have shallower body profiles (Y4, Y5, Y11,
Y13) and longer caudal peduncles (X7, X9) compared to those in lakes with NPF.
In deep lakes, all stickleback have shallow, elongate profiles (Fig. 5).

Finally, the correlation between morphological and geographic distance matrices
are extremely low (Table 7) and the Smouse-Long-Sokal tests indicate that spatial
autocorrelation due to common ancestry or geneflow cannot account for the effects
of PS and RLA on body shape (Table 7).

DISCUSSION

Isometric scaling

Size and shape are the two components of form (Bookstein, 1991; Goodall, 1991).
Size refers to the scale of a figure and shape refers to the geometry of a figure that
is invariant to translations, rotations, and scaling (Bookstein, 1991; Goodall, 1991).
These definitions derive from our common, everyday use of size and shape. The
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T 6. CVA structure coefficients (ci) with 90% confidence intervals

ci ci ci

−0.353 −0.037 0.710
x1 −0.507 x6 −0.221 x11 0.555

−0.712 −0.506 0.370

0.437 0.611 0.446
y1 0.109 y6 0.462 y11 0.097

−0.098 0.184 −0.121

0.524 0.091 −0.577
x2 0.240 x7 −0.123 x12 −0.662

0.026 −0.404 −0.802

0.537 0.746 0.315
y2 0.309 y7 0.646 y12 −0.007

0.097 0.423 −0.235

0.752 0.074 0.405
x3 0.627 x8 −0.196 x13 0.081

0.465 −0.412 −0.125

0.268 0.696 0.191
y3 0.033 y8 0.581 y13 −0.093

−0.272 0.327 −0.380

0.775 0.172 0.458
x4 0.645 x9 −0.027 x14 0.234

0.491 −0.329 0.002

0.169 0.383 −0.194
y4 −0.059 y9 0.081 y14 −0.417

−0.357 −0.201 −0.679

0.733 −0.074 −0.146
x5 0.579 x10 −0.287 x15 −0.361

0.406 −0.562 −0.597

0.008 0.113 −0.190
y5 −0.208 y10 −0.225 y15 −0.488

−0.525 −0.472 −0.640

shape of a photocopied image does not change if we rotate the image, or move the
image around on the glass, or when we zoom in or out. I refer to this intuitive
definition of size as geometric size. The resistant fit procedure used in this study
scales figures with a size estimate called median size, which is the repeated-median
interlandmark distance (Rohlf & Slice, 1990). Median size, like centroid size or the
geometric mean (Mosimann, 1970; Darroch & Mosimann, 1985; Sampson & Siegel,
1985; Bookstein, 1989a), is a function of the measurements of an individual specimen
and is an estimate of geometric size. Geometric size differs from general size, which
is the factor that explains the largest portion of covariation among the variables
(Wright, 1918, 1932; Bookstein et al., 1985; Bookstein, 1989a). General size may
have little to do with geometric size if most of the covariation is the consequence
of shape differences due to sexual dimorphism, geographic variation, or any number
of other factors.

The figures in this study were scaled isometrically, which, like the reduction or
magnification of the photocopy machine, does not distort shape (Bookstein, 1989a).
In most morphometric analyses, traits are scaled allometrically, that is, some estimate
of size-correlated shape variation is removed to produce ‘size-free’ shape variables.
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Figure 7. Hypothetical shapes based on CVA vectors. These shapes reflect the direction and relative
magnitude of shape difference between stickleback from lakes with (top panel) and without (bottom
panel) native predatory fishes. The vectors have been magnified five-fold.

T 7. Matrix correlations and associated right-tail prob-
abilities

Matrix Asymptotic Permutation
correlation P P

MPred vs.
EPS 0.320 <0.0001 <0.0001
GBird −0.020 0.6880 0.6326
EPS.GBird 0.320 <0.0001 <0.0001
GFish −0.062 0.8757 0.8910

EPS.GFish 0.328 <0.0001 <0.0001

MFor vs.
ERLA 0.757 <0.0001 <0.0001
GBird 0.011 0.4413 0.3462
ERLA.GBird 0.757 <0.0001 <0.0001
GFish −0.066 0.7965 0.8312

ERLA.GFish 0.756 <0.0001 <0.0001

(Reist, 1985, 1986; Bookstein et al., 1985). But why should size-correlated shape
variation be statistically separated from ‘size-free’ shape variation? A common
argument is that only residual deviation from a regression is adaptive, the regression
itself reflects the passive by-product of selection for geometric size (Huxley, 1932;
Gould & Lewontin, 1979; Strauss, 1984, 1990). This argument is quite paradoxical.
On the one hand, quantitative genetic models indicate that a long term correlated
response occurs only if the correlated trait is selectively neutral (Lande, 1979, 1986;
Zeng, 1988). On the other hand, residuals from the regression line are supposed to
represent adaptive variation. But if the trait is selectively neutral, the residual cannot
be adaptive.

More importantly, allometric scaling can be potentially misleading by removing
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ecologically important shape differences between samples. To take a hypothetical
example, relative body depth and body size may be negatively correlated among
fish species because of correlated selection: both a deep profile and small size
enhance maneuverability in littoral environments (Webb, 1983) while both a stream-
lined profile and large size increase velocity and locomotor efficiency in pelagic
environments (Hobson, 1991; Videler, 1993). Allometric size adjustment in this
scenario would remove the ecologically relevant shape information (i.e. relative body
depth).

Evolutionary allometry

Numerous ecological factors may have interacting ontogenetic and evolutionary
effects on body size (Wootton, 1976, 1984, 1994; Baker, 1994; Hart, 1994; Peuhkuri
et al., 1995) but life history and nutritional differences among populations may
confound interpretations of observed body size variation. If maximum life-span
varies among populations (e.g. Baker, 1994), size variation could simply be a
consequence of sampling different year classes. Size may respond to variation in
lake productivity (Giles, 1987; Wootton, 1994), which can differ between benthic
and limnetic habitats within a lake as well as between lakes. Nevertheless, size
differences among some populations of stickleback do have a genetic component
(Snyder & Dingle, 1989; Snyder, 1991; McPhail, 1993; Lavin & McPhail, 1993).

Predation regime could potentially influence body size evolution via several
pathways. Two relationships are important for modeling the effects of predators on
fast-start morphology. First, body size is proportional to maximum velocity attained
in fast-starts (Webb, 1976; Domenici & Blake, 1993). Second, given isometric scaling
of body shape and muscle mass, acceleration during fast-starts should decrease with
increasing body size since mass increases with the cube of length but thrust should
increase with only the square of length. Large body size, therefore, may be associated
with habitats where stickleback more frequently employ a prolonged flight response
than a short duration jump or sprint. In habitats with high risk of predation from
gape-limited predators, size selective predation could result in the evolution of large
body size (Moodie, 1972a, b; Reimchen, 1988, 1990, 1991b). On the other hand,
small body size may evolve as a response to increased allocation of energy to
reproductive growth relative to somatic growth (McPhail, 1977).

Variation in body size may also reflect interacting foraging effects. Small size may
increase foraging performance within dense vegetation (e.g. Stoner, 1982). The cost
of transport, a dimensionless variable expressing the energetic cost of transporting
a unit of mass a unit distance, decreases with increasing size (Videler, 1993). Given
either of these foraging effects, limnetic stickleback that swim long distances during
the predation cycle should be larger than benthic stickleback that forage in dense
vegetation. Alternatively, a smaller upper size limit in zooplanktivorous fish, relative
to benthic fish, may reflect constraints due to picking small, individual zooplankters
from the water column (for example, there is simply not enough time to search,
strike and handle the amount of prey necessary to maintain large body size).

Can we infer sources of selection on body size and allometry from the pattern of
body size variation among Cook Inlet stickleback? There is no measured effect of
RLA on median size, suggesting a lack of a foraging habitat effect. Similarly, there
are no measured effects of size on foraging related body shape traits but a small
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effect on mean gill raker count. On the contrary, the positive allometry in mean
gill raker count is evidence that planktivorous stickleback reach larger adult body
size than benthic stickleback when NPF are present. These results differ from the
pattern of body shape variation among the pairs of sympatric species of stickleback
from British Columbia. In these populations, the limnetic species is invariably smaller
than the sympatric benthic species (Schluter & McPhail, 1992).

In contrast to RLA, PS has an effect on mean size and there occurs significant
allometry in the expression of anti-predator traits. Cook Inlet stickleback are larger
in lakes with NPF, on average, than without NPF. Average adult male anadromous
stickleback from Cook Inlet are larger than all means of freshwater samples in this
study (Walker, unpublished data; see also Baker, 1994). The trend of a size decrease
from anadromous fish to freshwater fish from lakes with NPF to freshwater fish
from lakes without NPF supports a model of selective predation on smaller body
size by gape-limited piscine predators (Moodie, 1972a, b; Reimchen, 1988, 1990,
1991b).

Both muscle cross-sectional area and the added mass of water accelerated during
a fast start are proportional to the square of body length. Thrust is, therefore,
proportional to length squared but body mass is proportional to length cubed, hence
given isometric growth, absolute acceleration should decrease with increasing size.
Allometry in the position of the dorsal spines and length of the median fins, then,
highlights potential problems in allometrically scaling morphometric characters to
investigate ecological consequences of shape variation among populations. That is,
the correlation between size and shape probably reflects a history of correlated
selection rather than developmentally necessary modifications in shape as a con-
sequence of size change. Were the data in this study scaled allometrically, the effect
of PS on dorsal spine position and median fin length may have disappeared.

Evolution of anti-predator design in stickleback

Stickleback from lakes with NPF have longer median fins than those from lakes
without NPF. Similarly, within the subset of lakes with NPF, stickleback from deep
lakes have longer median fins than those from shallow lakes. Longer median fins
increase caudal depth, thus this pattern is consistent with the ecomorphological
model. The PS effect suggests a direct evolutionary response in evasive morphology
to variation in predation regime among lakes. The RLA effect suggests an indirect
response due to predation regime differences between benthic and limnetic foraging
habitats (Reimchen, 1980, 1994; Larson & McIntire, 1993; Bell & Foster, 1994b).

A comparison of median fin length between freshwater and anadromous samples,
the latter representing the ancestral state (Bell, 1988; Bell & Foster, 1994b), indicates
that short dorsal and anal fins are the derived states. Long median fins are associated
with predatory fish in both the marine and lake habitat, which suggests that stabilizing
selection has maintained the ancestral state of long median fins in stickleback from
lakes with NPF. In contrast, the loss of the piscine component of predation in lakes
without NPF suggests directional selection for reduced dorsal and anal fin length,
although no environmental factor to drive this reduction has been identified.

Modeling expected body shapes for optimizing anti-predator performance is
difficult because of the non-overlapping sets of expected morphologies for different
components of the evasive and escape responses. Successful evasion during a strike
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is a function of both large acceleration and high maneuverability (Howland, 1974;
Weihs & Webb, 1984). Successful escape during manipulation from gape-limited
predators may be a function of mid-body depth (Moody, Helland & Stein, 1983;
Hobson, 1991; Bronmark & Miner, 1992), especially in the heavily armoured
stickleback (Gross, 1978; Reimchen, 1983, 1988). The relative importance of these
components will be dependent on the context of the predator-prey interaction.
Large caudal depth is expected of acceleration specialists, large depth along the
length of the body is expected of maneuvering specialists, and large mid-body depth
is expected of escape specialists.

It is not clear how much a deep body profile from head to tail compromises
acceleration performance (this compromise arising from the substantial increase in
inertial drag with little increase in total thrust). In general, ambush predators that
use high accelerations during feeding have shallow body profiles with caudally
positioned median fins. The little comparative acceleration performance data is
inconclusive. The highest acceleration rates during a C-start were recorded in the
northern pike (Esox lucius) (Harper & Blake, 1990), a voracious piscivore with a
typical ambush-predator design. On the other hand, the angelfish (Pterophylum emekei),
a low-velocity maneuvering specialist, has acceleration rates similar to rainbow trout
(Oncorhynchus mykiss), a locomotor generalist (Domenici & Blake, 1991).

The PS effect on length of median fins but not body depth suggests that large
body depth compromises acceleration performance. this compromise arises from
the different hydrodynamic efficiencies associated with large median fins and deep
caudal bodies. the resistance due to mass (or inertial resistance) is the largest
component of drag on an accelerating fish (Webb, 1982a), thus fast-start specialists
should evolve a hydrodynamically efficient design for rapid accelerations. Thrust
generated in a C-start is proportional to both caudal body depth and median fin
length. All else being equal, however, large fins contribute less to inertial resistance
than does a deep caudal body.

On the other hand, the PS effect could reflect a functional trade-off that arises
from the multiple biological roles (sensu Bock & Von Wahlert, 1965) of stickleback
locomotion. These data suggest that stickleback from deep lakes with NPF forage
in the open water. Were these populations to evolve deep caudal bodies in
response to selective predation, this solution would compromise open water foraging
performance because of the increased skin-friction drag due to the large surface
area. An effective trade-off is the evolution of a shallow body profile in combination
with large median fins. Increasing median fin size is not only a hydrodynamically
efficient mechanism for increasing thrust, but, because the median fins are collapsed
during steady, open water swimming (pers. observ.), this increase does not add
significantly to skin friction drag.

In addition to median fin length, both relative length of the posterior process of
the pelvis and position of the dorsal spines are associated with PS and with RLA
in lakes with NPF. The pelvis and dorsal spines are components of an extensive
bony armour complex in stickleback. The major components of the complex form
a complete bony ring enveloping the mid-body of the fish (Reimchen, 1983).
Although the ring is composed of different bones, adjacent elements interlock, which
gives the ring a rigid structure. The middle of three dorsal spines projects from the
dorsal surface of this ring and two pelvic spines project laterally from the ventral
surface of the ring. Of the dorsal spines, the middle spine is the most robust, while
the third spine is smallest, especially in freshwater populations from Cook Inlet. A
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locking mechanism keeps both the dorsal and pelvic spines erect without active
input from the fish (Hoogland, Morris & Tinbergen, 1957). The posterior process
of the pelvis extends posteriorly from the base of the ring and protects much of the
ventral abdominal wall.

Length of the posterior process of the pelvis is an indicator of overall pelvic
robustness (Banbura, Przybylski & Frankiewiez, 1989), which varies tremendously
among populations (Reimchen, 1983, 1994; Bell, 1984, 1987; Bell et al., 1993; Bell
& Foster, 1994b). There is extensive direct and indirect evidence for selective
predation on stickleback armour phenotypes (Hoogland et al., 1957; Hagen &
Gilbertson, 1972, 1973; Moodie, 1972b; Moodie, McPhail & Hagen, 1973; Moodie
& Reimchen, 1976; Gross, 1978; Reimchen, 1988, 1992, 1994; Banbura et al., 1989;
Bell et al., 1993). The maintenance of robust armour may carry a high metabolic
cost. In low calcium lakes bony armour may be selected against because of the
increased cost of allocating energy to calcium uptake and transport (Giles, 1983;
Bell et al., 1993; Bourgeois et al., 1994). The pattern of pelvic girdle variation
described in this study supports the hypothesis that pelvic girdle expression reflects
a balance between selective predation from vertebrate piscivores and metabolic
demands (Bell et al., 1993).

The anterior position of the dorsal spines in stickleback from lakes with NPF
enables the pterygiophore of the second spine to firmly articulate with the lateral
plates, which, in turn, firmly articulate with the ascending process of the pelvis (and
thus completing the bony ring enveloping the mid-body) (Reimchen, 1983). In
weakly-armoured stickleback, this ring can be incomplete, and there is no functional
reason for the second dorsal spine to maintain its position above the ascending
process. Reimchen’s (1991a) observation that stickleback predators prefer to ingest
stickleback headfirst suggests an explanation for the anterior position of the spines
in stickleback from lakes with predatory fish. A more anterior position of the spines
may increase the incidence of escape during prey handling by piscine predators.
This hypothesis does not explain, however, why stickleback in relatively low predation
risk lakes consistently have more posteriorly positioned spines.

A diversity of vertebrates prey on stickleback (Reimchen, 1994). The behavioral
response to threat of predation varies with the type of predator and the context of
the interaction (e.g. ontogenetic stage, health, reproductive state, hunger, availability
of refuge, presence of other stickleback) (Huntingford, 1976; Kynard, 1978; Milinski,
1985; Fraser & Huntingford, 1986; Foster, 1994; Foster, Garcia & Town, 1988;
Foster & Ploch, 1990). In a ten-year study of predation on stickleback within a
single lake, Reimchen (1994) observed extensive variation in predation efficiency
among piscivorous species. The morphological consequences of these potential
sources of variation on anti-predator behaviour have received minimal attention
(Reimchen, 1994). Nevertheless, these data and others (Hagen & Gilbertson, 1972;
Moodie & Reimchen, 1976; Bell et al., 1993) indicate that the simple presence or
absence of NPF is a good predictor of anti-predator morphology. This repeated
result is surprising, given that birds are a large source of predation on stickleback
(Reimchen, 1980, 1994) and the absence of NPF does not imply the absence of
gape-limited predation by birds.

Evolution of foraging design in stickleback

The ecomorphological model predicted truncated, deep body shapes in fish that
forage primarily in the littoral zone and elongated, streamlined body shapes in fish
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that forage primarily in the limnetic zone. RLA has an effect on foraging design
but only in the subset of lakes with NPF. With the exception of two lakes, stickleback
from lakes without NPF tend to have intermediate to limnetic foraging designs
regardless of RLA. The presence of both RLA and PS effects is consistent with the
hypotheses outlined in the introduction that both the (1) relative abundance of
limnetic and benthic foraging habitat and (2) predation regime effect foraging habitat
use and that variation in these environmental variables among lakes has produced
an evolutionary response in foraging morphology. With regard to the effects of
predatory fishes on foraging habitat use, these data suggest that there is not a
complete shift to littoral foraging when NPF are present. Indeed, stickleback with
limnetic body shapes occur in all lakes with low RLA, regardless of the occurrence
of NPF.

Hydromechanical models predict that bluff bodies allow greater maneuverability
than elongated, streamlined bodies (Alexander, 1967a; Howland, 1974; Webb, 1983;
see also Introduction). This greater manoeuvrability, in turn, should facilitate foraging
performance in the structurally complex littoral zone. Elongated, streamlined bodies,
on the other hand, have lower skin-friction and pressure drag than deep bodies
during steady swimming and should, therefore, facilitate open water foraging
performance. An association between foraging ecology and body shape consistent
with these models is extremely common in fishes (Gregory, 1928; Greenway, 1965;
Keast & Webb, 1966; Davis & Birdsong, 1973; Gatz, 1979; Riddell & Leggett,
1981; Webb, 1982b, 1984b; Wikramanayake, 1990; Winemiller, 1991; Robinson et
al., 1993; Robinson & Wilson, 1994). A comparison of the distribution of body
depth between freshwater and anadromous samples indicates that both truncated,
deep profiles and elongated, shallow profiles are derived states: the anadromous
form is intermediate to the extreme freshwater forms (Walker, unpublished data). This
suggests a history of diverging patterns of selection among freshwater populations.
Selection for increased manoeuvrability has resulted in the evolution of truncated,
deep bodies in populations colonizing shallow lakes with NPF. The more streamlined
body of the stickleback from deep lakes with NPF and in most lakes without NPF
compared to those from shallow lakes with NPF is consistent with hydromechanical
models but the evolution of more streamlined and shallow body profiles compared
to the anadromous ancestor is paradoxical. Since the anadromous form makes
annual migrations during the breeding season (Wootton, 1976, 1984), all other
factors being equal, they should have a more streamlined profile than all freshwater
forms.

Taylor & McPhail (1986) observed both significantly larger relative body depth
and significantly higher acceleration during a startle response in a sample of stream
stickleback compared to a sample of anadromous stickleback. With these observations,
it has been argued that the evolution of deep body profiles in stickleback is the
consequence of selection for increased burst performance for either evading predators
(Taylor & McPhail, 1986) or littoral foraging (Taylor & McPhail, 1986; Baumgartner,
Bell & Weinberg, 1988). Both hydromechanical theory and the results of this study
do not support the predation hypothesis (see above). While these results do suggest
a deep body is an adaptation for littoral foraging, I have argued this reflects selection
for increased manoeuvring performance, not (linear) acceleration performance.
Compared to streamlined body profiles, bluff body profiles should both increase
turning curvature and reduce inertial resistance during slow, precise foraging
manoeuvres. On the contrary, a shallow body with posteriorly positioned, large
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median fins is the expected body profile for fish specializing on striking prey with
large accelerations (see above).

The principal caveat of using the comparative acceleration data (Taylor &
McPhail, 1986) to support the burst performance hypothesis of deep body profiles
in stickleback is the occurrence of a large suite of morphological and physiological
differences between anadromous and stream stickleback with potential influence on
acceleration performance. With an effective sample size of two for the comparison,
the chance of a spurious association between any two characters is high (Schluter,
1993; Reimchen, 1994; Garland & Adolphe, 1994).

Even if the stream fish have higher accelerations during a C-start as a direct
consequence of the deeper bodies, the relevance of this to littoral foraging is unclear.
A second kinematic pattern used to accelerate from rest is an S-start, in which the
fish bends into an S in the first stage of the fast start. Stickleback (Schluter, 1993;
Walker, unpublished data) and other fishes (Hoogland et al., 1957; Janssen, 1978;
Rand & Lauder, 1981; Webb & Skadsen, 1981; Vinyard, 1982; Norton, 1991;
Harper & Blake, 1991; Beddow, van Leeuwen & Johnston, 1995) employ an S-start
to strike prey. In the only study to compare acceleration performance between
escape and feeding behaviours, Harper & Blake (1991) found that northern pike
accelerate at significantly higher rates during escape responses than feeding strikes.
Since we do not know how acceleration in C- and S-starts are related, we should
be cautious using C-start data to explain phenotypic variation in foraging behaviour.

More importantly, the available evidence suggests that high accelerations are
more characteristic of open water feeding than littoral feeding. The principal prey
in the littoral habitat of lakes are chironomid larvae (Rogers, 1968; Manzer, 1976;
Lavin & McPhail, 1986; Jakobsen, Johnsen & Larsson, 1988; Schluter, 1993), which
are non-evasive and require only a strong suction to capture. In contrast, the
principal prey of many limnetic populations are calanoid copepods (Rogers, 1968;
Lavin & McPhail, 1986; Schluter, 1993), a highly evasive zooplankter (Drenner,
Strickler & O’Brien, 1978). Most fishes feeding on calanoid copepods, including
stickleback (Walker, unpublished data), use high accelerations for prey capture
( Janssen, 1978; Vinyard, 1980, 1982; Coughlin & Strickler, 1990; Kaiser, Gibson
& Hughes, 1992). In summary, the available morphometric, hydromechanical, and
behavioral evidence suggests that deep body profiles reflect selection for increased
manoeuvrability and not increased burst performance.

The association between relative snout length and PS but not RLA is enigmatic.
The mouth and buccal cavity are roughly cone shaped in fishes (Muller & Osse,
1984) and Liem (1993) argues that a long, narrow cone is a better design for
planktivorous feeding while a short, broad cone is a better design for benthic feeding.
Indeed, feeding trials indicate that limnetic stickleback with long snouts score higher
in various zooplanktivorous feeding performance measures than benthic stickleback
with short snouts while the reverse relationship holds for feeding on benthic
macroinvertebrates (Larson, 1976; Bentzen & McPhail, 1984; Lavin & McPhail,
1986; Ibrahim & Huntingford, 1988a; Schluter, 1993). While the comparative
performance measures indicate differences in feeding ability on different diets
between stickleback that present different morphologies, they do not allow the
determination of the morphological cause of the performance variation.

The functional and ecological significance of variation in snout length is poorly
understood. Pietsch (1978) argued the extremely long snout in Stylephorus chordatus
produces large suction forces during zooplanktivorous feeding. On the contrary,
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Liem (1993) argued that a deep buccal cavity in combination with short snouts
produces large suction forces and is expected of benthivorous feeders. Finally,
Hobson & Chess (1978) argued that long snouts preclude binocular vision and,
therefore, zooplanktivorous fishes are expected to have short snouts.

Comparative morphology fails to enlighten our inference on the functional
consequences of variation in snout length. In the sympatric populations of stickleback
from British Columbia, the limnetic form has a longer snout than the benthic form
(Baumgartner et al., 1988). On the other hand, anadromous stickleback, which spend
large portions of the year in the open ocean feeding on pelagic zooplankton (Wootton,
1976; Williams & Delbeek, 1989; Quinn & Light 1989; Cowen et al., 1991) have
extremely short snouts compared to most lacustrine forms (Walker, unpublished data).
In some trophically polymorphic fish, long snouts are associated with zooplanktivory
(Meyer, 1990a,b; Malmquist, 1992; Liem, 1993; Skúlason & Smith, 1995). In a
large study on stream fishes, Winemiller (1991) found an association between long
snouts and a limnetic body shape. Nevertheless, there are numerous exceptions to
this trend, especially in coral reef fishes (Davis & Birdsong, 1973; Hobson, 1974;
Hobson & Chess, 1978).

Baumgartner et al. (1988), following Pietsch (1978), argued that the long snout in
the limnetic species of the sympatric stickleback from British Columbia evolved to
increase suction performance during zooplanktivorous feeding. In general, however,
large suction forces are more characteristic of benthic feeders than limnetic feeders.
In the open water, fish capture evasive prey with high body acceleration (ram)
strikes or jaw protrusion (ram-jaw) strikes either in place of or in addition to suction
(Lauder & Liem, 1981; Vinyard, 1982; Coughlin & Strickler, 1990; Harper & Blake,
1991; Norton, 1991; Norton & Brainerd, 1993). Because rapid body acceleration
strikes are not typically used when feeding on the bottom, suction is probably more
important for littoral feeders. Indeed, within centrarchids, suction and strike velocities
are inversely related (Lauder, 1983). In addition, Norton & Brainerd (1993) created
the ram-suction suction index and found that phylogenetically distant littoral feeders
were closer to the suction extreme while phylogenetically distant water column
feeders were closer to the ram extreme.

Stickleback feeding on the evasive calanoid copepod, Epischuria, a common open
water prey, use much greater accelerations during the strike than when feeding on
Tubifex, a benthic prey item (Walker, unpublished data). In contrast, suction is clearly
important for stickleback feeding on prey that are partially or completely buried in
the substrate (Alexander, 1967b; Walker, unpublished data). These preliminary data
suggest that stickleback conform to the general pattern described by Liem (1993)
and indicate that increased suction performance is probably not the explanation for
elongated snouts in the limnetic form of the species pairs. It is possible that snout
length is related to the geometry of the head. The pressure generated during suction
is proportional to the volume of the buccal cavity. Fish with deep heads and short
snouts probably have similar buccal volumes to fish with shallow heads and long
snouts. Since head depth effects locomotor performance, locomotor behaviour may
be an important determinant of snout length in addition to feeding behaviour.

Adaptive phenotypic plasticity vs. adaptive genetic differentiation

The range of phenotypes produced by a genotype under natural environmental
variation is the norm of reaction (Schmalhausen, 1949; Lewontin, 1974). Theoretical



J. A. WALKER36

models suggest the norm of reaction can evolve in an adaptive direction as a
consequence of selection for different phenotypes between habitats, a process that
leads to adaptive phenotypic plasticity (Via & Lande, 1985; Via, 1993; Gomulkiewicz
& Kirkpatrick, 1992). Do the ecomorphological correlations observed in these data
reflect adaptive phenotypic plasticity or genetic divergence?

The relative effects of phenotypic plasticity and genetic differentiation on Cook
Inlet populations have not been investigated but evidence from other stickleback
suggests that phenotypic differences among lakes are largely due to genetic differ-
entiation. In a sample of stream threespine stickleback from California, the average
magnitude of the degree of genetic determination on a suite of body shape traits
was relatively high (0.57), indicating a large genetic component to morphological
differentiation (Baumgartner, 1995). Among the British Columbia populations,
common garden experiments provide evidence for a strong genetic effect on major
phenotypic traits (McPhail, 1984, 1992, 1994; Lavin & McPhail, 1993). Finally, Day,
Pritchard & Schluter (1994) designed a breeding experiment directly investigating the
effects of phenotypic plasticity and genetic differentiation on trophic traits between
one of the pairs of sympatric species from British Columbia. They found no plasticity
in gill raker number and moderate plasticity in snout length and head depth.
Importantly, the observed plasticity was in the expected direction for increased
feeding performance. Nevertheless, the magnitude of the plasticity was not enough
to account for observed variation among the sympatric populations.

Interaction effects on body shape

In lakes with NPF, stickleback from shallow lakes have the expected benthic
foraging design and stickleback from deep lakes have the expected limnetic foraging
design. In lakes without NPF, only two of the shallow lakes have stickleback with a
benthic body shape; in general, stickleback from lakes without NPF have intermediate
or limnetic body shapes, regardless of RLA. The two exceptions are from lakes that
are extremely shallow and support dense aquatic vegetation across most of the lake
area. A similar interaction, between presence or absence of predatory fish, lake area
and trophic morphology, was observed among samples of stickleback from British
Columbia, but no explanation for this interaction was offered (Moodie & Reimchen,
1976).

The energetic contents of benthic and limnetic prey are similar (Wootton, 1994).
Nevertheless, relative profitability between benthic and limnetic foraging habitats
may differ if the density of prey (in units of energy) differs between habitats, if prey
are simply easier to locate in one habitat, or if the energetic cost of the predation
cycle differs between habitats (Werner et al., 1983b; Kaiser et al., 1992).

The benefit of foraging in the most profitable habitat must be weighed against
the relative safety from predation in the habitat. Stickleback encounter vertebrate
piscivores in both the littoral and limnetic habitats (Reimchen, 1980, 1994) but the
relative risk of predation between these habitats has not been measured. Predation
experiments indicate that littoral vegetation provides a partial refuge from predation
for many organisms (Savino & Stein, 1982, 1989a,b; Werner et al., 1983a,b; Gilinsky,
1984; Diehl, 1988; Gotceitas & Colgan, 1989; Dionne & Folt, 1991; Brabrand &
Faafeng, 1993) although this has not been investigated in stickleback. Stickleback
are famously bold for their body size and threat of predation may have little
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consequence on the long term feeding behaviour in some populations. Early natural
historians were amused while observing stickleback harass larger predatory fish
(Houghton, 1981). More rigorous, contemporary laboratory and field studies indicate
that stickleback rarely flee into cover unless the predator attempts a strike (Hoogland
et al., 1957; McLean & Godin, 1989; Foster & Ploch, 1990; Bishop & Brown, 1992).
Experimental studies do indicate that stickleback modify foraging behaviour as a
response to direct threat of predation (Milinski & Heller, 1978; Fraser & Huntingford,
1986; Foster et al., 1988; Ibrahim & Huntingford, 1988b; Huntingford & Wright,
1989, 1992; Jakobsen et al., 1988). Stickleback reduce both the amount of time
foraging (Fraser & Huntingford, 1986) and time spent in the water column (Ibrahim
& Huntingford, 1988b) in the presence of predators and they learn to avoid food
patches with higher threat of predation (Huntingford & Wright, 1989, 1992).
Nevertheless, limnetic stickleback are frequently observed foraging high in the water
column despite abundant piscine predators (Foster et al., 1992; Walker, pers. observ.).

The pattern of the interaction in this study is consistent with recent optimal
foraging theory that models diet or foraging habitat preference as a balance between
profitability and risk of predation (Werner et al., 1983a,b; Milinski, 1986; Gilliam,
1990; Godin, 1990; Hart & Gill, 1994). Neither PS nor RLA can explain patterns
of foraging morphology alone. Instead, the comparative morphometric data suggest
that the transition from more limnetic feeding to more littoral feeding occurs in
shallower lakes when NPF are present. Stickleback do feed in the littoral zone when
NPF are absent, but these data suggest this occurs only in lakes with abundant
aquatic vegetation across the entire lake area.

Alternatively, the interaction may reflect the effects of competition for resources
when NPF are present. In the littoral zone of Great Central Lake, Vancouver Island,
stickleback and juvenile sockeye salmon (Oncorhynchus nerka) have similar diets but
the density of salmon is low relative to the limnetic zone. In contrast, in the Wood
River lakes of Alaska, sockeye salmon fry have very similar diets to limnetic threespine
stickleback and interspecific competition in the limnetic zone has been suggested
(Rogers, 1968). In deep lakes, there may be a large enough zooplankter biomass to
support both zooplanktivorous stickleback and salmonids. In shallower lakes, how-
ever, interspecific competition may be intense enough to cause a foraging habitat
transition in stickleback, from the limnetic to littoral zones.

The presence of an interaction between PS and RLA on foraging morphology is
typical of the relationship between many morphological and environmental variables.
Interactions confound estimates of ecomorphological associations unless techniques
that specifically model interactions are employed. This suggests that results from
comparisons of large sets of morphological and environmental variables using simple
bivariate correlations, multiple regression without interaction effects, or canonical
correspondence analysis, should be interpreted cautiously.

Comparisons with sympatric populations from British Columbia

Six lakes in southwestern British Columbia each support species pairs—two
populations of stickleback with extreme trophic and locomotor morphologies as-
sociated with benthic and limnetic foraging behaviour (Larson, 1976; McPhail,
1984, 1992, 1993, 1994; Bentzen & McPhail, 1984; Baumgartner et al., 1988;
Schluter & McPhail, 1992, 1993). Body shape variation among solitary Cook Inlet
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populations is nearly, if not equally, as large as the variation present among the
sympatric species. Unfortunately, the body shape variables in this study cannot be
quantitatively compared with the published shape variables of the sympatric samples
because of slight differences in both the variables measured and the method of size
adjustment. Nevertheless, the mean number of gill rakers for each sample can be
directly compared. Gill rakers are believed to facilitate feeding by sieving small prey
from the flow out of the buccopharyngeal cavity (Wright, O’Brien & Luecke, 1983)
or blocking flow altogether (Sanderson, Cech & Patterson, 1991). Among fishes in
general, zooplanktivore specialists have longer and more numerous gill rakers than
closely related non-planktivores (Schluter & McPhail, 1993). Gill raker number
differs between limnetic and benthic populations from British Columbia (Schluter
& McPhail, 1992; McPhail, 1993) and among marine, lake, and pond populations
from Europe (Gross & Anderson, 1984). Nevertheless, gill raker number is not
always a reliable indicator of foraging habitat preference among lake populations
of stickleback (Foster et al., 1992). This lack of association may result if fewer, wider
gill rakers have the same functional effect as more, narrower gill rakers (Robinson
et al., 1993). The significant positive association between mean gill raker count and
RLA within the subset of lakes without NPF is consistent with the ecomorphological
hypothesis that stickleback from deep lakes should present a better functional design
for feeding on zooplankton than do those from shallow lakes.

Schluter & McPhail (1992) give the mean gill raker counts for samples of both
males and females of all benthic, all limnetic and 10 solitary populations but all
comparisons with the Cook Inlet samples will refer to the male subsamples only.
The lower end of the range of mean gill raker counts from Cook Inlet samples
overlaps that of the British Columbian benthic samples, which, perhaps surprisingly,
have very similar counts to the British Columbian solitary samples. Mean gill raker
count from one Cook Inlet lake (Visnaw Lake, Y=23.2) lies within the range of the
British Columbian limnetics (Y = 23.03–25.00), while two more (Zero Lake, Y=
22.6, Lorraine Lake Y=22.35) fall only slightly below this range. A large proportion
(37.5%) of the Cook Inlet samples have higher counts than all British Columbian
solitary samples. It is noteworthy that these high gill raker counts are observed in
lakes that fall within the range of lake size from Schluter and McPhail’s study
(species-pair lakes, 5–44 ha; Visnaw Lake, 14.4 ha; Lorraine Lake, 13.1 ha; Zero
Lake, 25.7 ha).

Using an elegant series of comparative morphometric, feeding performance, and
experimentally induced competition studies, Schluter (1993, 1994; Schluter &
McPhail, 1992) has argued the extreme divergence in the sympatric populations
from British Columbia is the consequence of character displacement (Brown &
Wilson, 1956). The broad range of trophic and locomotor morphologies among
solitary populations from Cook Inlet suggests that extreme levels of behavioral and
morphological divergence can occur among closely related populations in the absence
of interspecific competition. The lakes in this study were not randomly sampled but
were chosen to maximize differences among lakes for two environmental variables
that were believed a priori to have potential effects on the evolution of foraging
and evasive morphology. The observed associations between foraging and evasive
morphology, RLA, and PS suggests that extreme ecotypes can evolve when
stickleback colonize lakes with extreme environments but lacking interspecific com-
petition.
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Effects of history

The global distribution of phenotypic traits in stickleback suggests that derived
phenotypes have independently evolved numerous times (Bell & Foster, 1994b). At
what geographic scale, however, does a shared derived trait reflect common ancestry
or geneflow and not independent evolution? Parapatric stream populations or from
lakes and their inlet or outlet streams, adjacent lakes, or even sympatric populations
within single lakes frequently present divergent derived phenotypes (Bell, 1982;
Reimchen, Stinson & Nelson, 1985; Lavin & McPhail, 1985, 1993; Baumgartner,
1992; Bell & Ortı́, 1994; McPhail, 1994), suggesting that many characters can evolve
independently at an extreme microgeographic scale.

In order to minimize the influence of common ancestry or geneflow on the
association between morphology and environment, stickleback from lakes with
similar environments were sampled from distinct drainages. Nevertheless, it is
doubtful the 40 populations sampled for this study were each independently derived
from a common anadromous ancestor and have been genetically isolated since
colonizing the lake. I used the Smouse-Long-Sokal test to remove residual effects of
ancestry and geneflow on the ecomorphological correlations (for related methods,
see Felsenstein, 1985; Cheverud, Dow & Leutenegger, 1985; Grafen, 1989; Lynch,
1991; Harvey & Pagel, 1991). The extremely low correlations between the mor-
phometric and geographic distance matrices and the high partial correlations between
morphometric and environmental matrices holding geography constant are consistent
with the hypothesis that the effects of RLA and PS on body shape reflect the
independent, parallel evolution of derived traits following colonization of lacustrine
environments.

CONCLUSION

The presence of multiple stickleback populations with the same suite of derived
traits suggests a history of extensive parallel evolution. Associations between mor-
phological and environmental variation supports this hypothesis. The efficacy of the
mechanical models to predict the pattern of environmental effects on body shape
provides further support for the hypothesis. The absence of a geographic effect on
the distribution of phenotypes is evidence that the ecomorphological associations
are not an artifact of spatial autocorrelation. Given these results, the repeated
occurrence of derived trophic, armor, and locomotor traits within the Cook Inlet
system is consistent with the hypothesis that phenotypic evolution in this radiation
has proceeded by extensive parallel selection.

In this study, I have attempted to identify both the environmental sources and
the morphological targets of selection. My inference is based on the comparison of
observed and expected effects of specific environmental variables on the morpho-
metric variables. This method has the disadvantage of not controlling for correlated
effects of unmeasured environmental or morphological variables. Measuring multiple
environmental variables and controlling for correlated effects by using path, partial
correlation, or canonical correlation analysis is an alternative comparative method
to infer causation. A problem with these multivariate approaches is that results can
be extremely misleading if there are large interaction effects between environmental
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variables. Experimental designs that manipulate morphological or environmental
variation also control for correlated effects. Although many relevant manipulations,
especially on morphological variation, are impractical, an experimental approach
addressing the hypotheses outlined in this study is clearly the next step in the
investigation of body shape evolution in threespine stickleback.
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