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Abstract—In the medical field, there is a need for small ambulatory sensor systems for
measuring the kinematics of body segments. Current methods for ambulatory
measurement of body orientation have limited accuracy when the body moves. The
aim of the paper was to develop and validate a method for accurate measurement
of the orientation of human body segments using an inertial measurement unit
(IMU). An IMU containing three single-axis accelerometers and three single-axis
micromachined gyroscopes was assembled in a rectangular box, sized
20 � 20 � 30 mm. The presented orientation estimation algorithm continuously cor-
rected orientation estimates obtained by mathematical integration of the 3D angular
velocity measured using the gyroscopes. The correction was performed using an incli-
nation estimate continuously obtained using the signal of the 3D accelerometer. This
reduces the integration drift that originates from errors in the angular velocity signal.
In addition, the gyroscope offset was continuously recalibrated. The method was
realised using a Kalman filter that took into account the spectra of the signals involved
as well as a fluctuating gyroscope offset. The method was tested for movements of the
pelvis, trunk and forearm. Although the problem of integration drift around the global
vertical continuously increased in the order of 0.58 s21, the inclination estimate was
accurate within 38 RMS. It was shown that the gyroscope offset could be estimated
continuously during a trial. Using an initial offset error of 1 rad s21, after 2 min the off-
set error was roughly 5% of the original offset error. Using the Kalman filter described,
an accurate and robust system for ambulatory motion recording can be realised.
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1 Introduction

SINCE MICROMACHINED sensors such as gyroscopes and accel-
erometers have become generally available, human movement
can be measured continuously outside a specialised laboratory
with ambulatory systems. Applications involve monitoring
activities of daily living (ADL) and level of activity (BOUTEN,
et al., 1997; FOERSTER et al., 1999; USWATTE, 2000; VELTINK

et al., 1996; MATHIE et al., 2003), gait analysis (TONG and
GRANAT, 1999; WILLIAMSON and ANDREWS, 2001; MAYAGOI-

TIA et al., 2002; WILLEMSEN et al., 1990b; MIYAZAKI, 1997;
MOE-NILSSEN, 1998; MOE-NILSSEN and HELBOSTAD, 2004;
PAPPAS et al., 2001), research into motor control and stability
(DINGWELL et al., 2000; ALUSI et al., 2001; NAJAFI et al.,
2002; MANSON et al., 2000), load estimation (BATEN et al.,
1996; VAN DEN BOGERT et al., 1996) or functional electrical
stimulation (WILLEMSEN et al., 1990a; WILLIAMSON and
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ANDREWS, 2000; SWEENEY et al., 2000; TONG and GRANAT,
1998; VELTINK et al., 2003).

In many of these applications, orientation is an essential
quantity to be estimated. If accelerometers and gyroscopes
are to be used for load estimation using inverse dynamics
techniques, the orientation and angular velocity, as well as
the acceleration, of a segment have to be known. Also, the
identification of daily tasks will be more detailed once the
orientation can be measured. Acceleration can be used to
analyse stability. Measurement of acceleration with a body-
mounted accelerometer will be more accurate once the incli-
nation with respect to gravity is known.

A 3D accelerometer unit can be used as an inclinometer in
the absence of acceleration (KEMP et al., 1998; LÖTTERS

et al., 1998; WILLEMSEN et al., 1990b; BERNMARK and
WIKTORIN, 2002; HANSSON et al., 2001). Under this condition,
it measures the angle of the sensor unit with respect to gravity.
This method is appropriate if the magnitude of the acceleration
can be neglected with respect to the gravity, but will be less
accurate for movements with relatively large accelerations.
Furthermore, accelerometer signals do not contain information
about the rotation around the vertical and therefore do not give
a complete description of orientation. The accuracy of an incli-
nation estimate can be increased using a Kalman filter and
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a model of the spectrum of the acceleration (LUINGE and
VELTINK, 2004). It was suggested that, to increase accuracy,
gyroscopes could be used in addition to accelerometers.

A gyroscope measures angular velocity. Change in orien-
tation can be estimated by integrating the angular velocity
according to an algorithm such as given by Bortz or Ignagni
(BORTZ, 1971; IGNAGNI, 1990). However, an error in measured
angular velocity will result in increasing inaccuracy in the esti-
mated orientation. In particular, a relatively small offset on the
gyroscope signal will give rise to large integration errors,
restricting the time of accurate measurement to less than
1 min for current commercially available micromachined gyro-
scopes. Moreover, if an absolute orientation is required instead
of a change in orientation, a reference orientation has to be
obtained at least once during a recording.

Orientation can be estimated by combining the sensor
signals from gyroscopes and accelerometers. This has already
been performed in the automotive field (BARSHAN and
DURRANT-WHYTE, 1995) and for the assessment of human
balancing (BASELLI et al., 2001). The design of a filter for esti-
mation of the orientation of human body segments has been
described by BACHMAN (2000) and FOXLIN (1996). Bachman
used a filter that relied on accelerometers and magnetometers
for low-frequency components of the orientation and used
gyroscopes to measure faster changes of orientation. This
method seemed to be robust, although the performance of the
filter has not been investigated for 3D human movements. It
did not take the different error sources explicitly into
account. In particular, the use of magnetometers could give
large errors in the vicinity of ferromagnetic materials. Foxlin
described a sensor unit containing a 2D fluid inclinometer, a
2D electronic compass and 3D gyroscopes, with a Kalman
filter that incorporated a continuous gyroscope offset estimate.
Although this method seemed to work for some controlled 2D
test movements, applicability of this sensor was limited for
general 3D movements, owing to the singularities arising
from the 2D instead of 3D sensors and the use of Euler angles.

The aim of this paper was to design and evaluate a Kalman
filter that fuses triaxial accelerometer and triaxial gyroscope
signals for ambulatory recording of human body segment
orientation. It obtains the orientation in a statistical, most-
likely sense, given clear assumptions about the movement
that is to be recorded and about the sensor error behaviour.
Because of this, it can be assumed that the solution is the
best given the assumptions that can be made. The Kalman
states that are continuously corrected include the orientation
and offset errors. Body segment orientation obtained with
this 3D inertial measurement unit was compared with an orien-
tation obtained using a laboratory bound camera system. The
movement of pelvis and trunk during lifting tasks and the
forearm movement during some ADL tasks were recorded.

2 Design of an optimum filter for
orientation estimation

2.1 Sensor fusion with a Kalman filter

A complementary Kalman filter (KALMAN, 1960; BROWN

and HWANG, 1997) was designed to estimate orientation by
combining the three accelerometer and three gyroscope
signals using a model of the inertial measurement unit (IMU)
system and relevant signals. The structure of the estimation
procedure is shown in Fig. 1. Based on a model describing
the sensor signals, both the 3D gyroscope and 3D acceler-
ometer systems yield a measure of inclination (Ẑ�G and Ẑ�A ,
respectively), each with different accuracies and error
sources. The inclination difference (Ẑ�A � Ẑ�G) is a function
of errors in the two measurement systems, particularly an
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orientation error and a gyroscope offset error in the gyroscope
system. This function is also known as the error model. The
Kalman filter uses the inclination difference with the error
model to estimate the orientation and offset errors in a statisti-
cal, most-likely manner. These orientation errors and offset
errors are then used to correct the orientation and offset at
each timestep.

To implement the Kalman filter requires an error model in
state space format that gives the inclination difference as a
function of orientation errors, offset errors and measurement
noise. This error model was derived by first describing a
model of the sensor output and considering the effect of uncer-
tain model states on the inclination estimate. The model of the
sensor output is based on only a few clear assumptions regard-
ing the sensor system and the movement that is to be recorded,
so that any tuning of the parameters of the Kalman filter has a
clear interpretation, and the orientation estimate is optimum
within the given assumptions.

2.2 Model of sensor signals

The sensor is assumed to be attached to a human body
segment that rotates and translates with respect to a global
co-ordinate frame. A model of the measured signals is based
on the following assumptions (Fig. 2):

Fig. 1 Structure of Kalman filter estimation. Both accelerometer and
gyroscope system are used to make estimate of global vertical
unit vector(SẐA

- and SẐG
- , respectively) and system error

covariances. Covariances are Qb for offset uncertainty, Qu

for orientation uncertainty and QZG and QZA for vertical
uncertainty. Difference between two inclination estimates
SẐA

- - SẐG
- is written as function of orientation and offset

errors. Kalman filter uses function with covariances and
inclination difference to estimate these orientation and offset
errors (ûe and b̂e, respectively)

Fig. 2 Sensor signal model. Model of relationships between segment
kinematics and measured gyroscope and accelerometer
signals (yG and yA). Gyroscope signal is modelled as slowly
varying offset plus angular velocity v and white mea-
surement noise vG. Relationship between angular velocity
and orientation GSR is described in box labelled ‘strapdown
integration’. Accelerometer signal is composed of accele-
ration and gravity contribution, expressed in sensor frame
(Sa-Sg) plus measurement noise vector vA. Acceleration of
segment is modelled as low-pass filtered white noise, and
gravity is constant vector
Medical & Biological Engineering & Computing 2005, Vol. 43



(a) a gyroscope measures a 3D angular velocity plus an offset
and white measurement noise in the sensor co-ordinate
frame

(b) the spectrum of the gyroscope offset has a low cutoff
frequency in comparison with the bandwidth of the
kinematic signals that are to be measured

(c) a 3D accelerometer measures acceleration minus gravity
and a white noise component, all in the sensor co-ordinate
frame

(d) the acceleration of a body segment in the global system can
be described as low pass filtered white noise.

Using assumption (a), the signals as measured using the
gyroscope system (described by the column vector yG ¼ [yG,x

yG,y yG,z]
T) are assumed to be the sum of the angular velocity

vector vt, a slowly varying offset vector (bt) and a three-
element white Gaussian noise vector vG,t. The variation of
the offset is assumed to be caused by slowly changing pro-
perties of the sensor, e.g. mechanical wear and temperature
sensitivity.

yG;t ¼ vt þ bt þ vG;t (1)

The slow variation of the gyroscope offset b is modelled as a
realisation of a first-order Markov process, driven by a small
white Gaussian noise vector wb,t

bt ¼ bt�1 þ wb;t (2)

The three accelerometer signals are modelled as the sum of
the linear acceleration vector (at), the gravity vector g and a
white Gaussian noise signal vA.

yA;t ¼
Sat �

Sgt þ vA;t (3)

In (3), a superscript S is used to indicate vectors that are
expressed in the sensor co-ordinate system.

The acceleration was modelled as a first order low-pass
filtered white noise process according to

Gat ¼ ca �
Gat�1 þ wa;t (4)

where ca is a dimensionless constant that determines the
cutoff frequency. The superscript G is used to denote a
vector that is expressed in the global co-ordinate system.

A strapdown integration algorithm calculates the change in
orientation from an angular velocity signal. The word strap-
down means that the angular velocity is obtained using gyro-
scopes strapped to an object. A number of integration
methods have been described (IGNAGNI, 1990; BORTZ, 1971;
JIANG and LIN, 1992). The orientation of the sensor with
respect to the global co-ordinate frame is expressed with a
rotation matrix, containing the three unit column vectors
of the global co-ordinate system expressed in the sensor
co-ordinate system (5).

GSR ¼ SX SY SZ
� �T

(5)

The acceleration and gravity in the global co-ordinate frame
(4) are related to the acceleration and gravity in the sensor co-
ordinate frame (3) through the axes transformation of (6).

Gat �
Ggt ¼

GSRt �
Sat �

Sgt

� �
(6)
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2.3 Inclination estimation based on sensor model

The sensor model was used to make two estimates of the
inclination, one on the basis of the 3D gyroscope signals and
one on the basis of the accelerometer signals. Fig. 3 describes
the estimation procedure. The inclination was defined as the esti-
mate of the vertical direction by the IMU. Because the global
Z-axis was defined in the vertical direction, the inclination was
expressed as SZt, the Z-axis of the global co-ordinate system
expressed in the sensor co-ordinate frame.

The offset, angular velocity and acceleration are esti-
mated using (2), (1), (3) and (4) and setting unknown white
noise components wb,t, vG,t vA,t and wa,t to zero. The esti-
mated angular velocity v̂�t and the estimated orientation at
the previous timestep GSR̂þt�1 are then used to calculate the
current orientation according to the algorithm proposed by
IGNAGNI (1990). The third row of the resulting rotation
matrix (5) gives the inclination based upon the gyroscope
signals SẐ�g;t.

A hat on top of a symbol denotes an estimate, a minus super-
script denotes the a priori estimate that is made using the
sensor model, and a plus superscript denotes an estimate that
is made after correction by the Kalman filter.

The inclination estimated from the accelerometer is
achieved by subtracting the predicted acceleration â�t from
the accelerometer signal to obtain the gravity vector. The
gravity estimate is normalised and reversed to produce an
estimation of the inclination SẐ�A;t.

SẐ�A ¼
yt �

Sâ�t
yt �

Sâ�t
�� �� (7)

2.4 Error model

A Kalman filter uses a state space representation to
model the relationship between errors in estimated model
variables x1 and the error in the inclination predicted by the
model (8).

x1;t ¼ A � x1;t�1 þ wt

z1;t ¼ C � x1;t þ vt (8)

where wt and vt are Gaussian white noise processes speci-
fied by covariance matrices Qw,t and Qv,t, respectively.
The measurement difference vector z1 is formed by the

Fig. 3 Diagram describing estimation of inclination of human body
segment based on gyroscope system and based on
accelerometer system using sensor signals, previously
estimated states and model described in Fig. 2. Angular
velocity vt is estimated by subtracting estimated offset from
gyroscope signal yt. Strapdown integration algorithm is
used to estimate change in orientation GSR̂t

- and inclination
SẐG,t

- . Acceleration Gât
- is estimated by assuming it is

factor ca of previously measured acceleration. Orientation
is used to estimate acceleration in sensor co-ordinate
system, enabling measurement of inclination based on
accelerometers SẐA,t

-
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difference between the gyroscope and accelerometer incli-
nation estimates.

z1;t ¼
SẐA �

SẐG (9)

A difference in the two inclination estimates is caused by
prediction errors. The two most important factors causing an
inclination error are incorporated in the error state vector x1,
which is estimated using the Kalman filter (10). The first
factor is the orientation error at the previous timestep, as this
orientation is used as a starting point to obtain the next
orientation by strapdown integration. The second factor is the
gyroscope offset error, as, already, a small offset error causes
a dramatic effect on the estimated orientation.

x1;t ¼ u1;t�1 b1;t

� �T
(10)

The orientation error is defined as the angle and direction
is which the actual sensor co-ordinate frame has to be rotated
to coincide with the estimated sensor co-ordinate frame. It is
expressed by u1, which has a magnitude that equals the angle
of rotation, whereas the rotation axis is given by the direction
of u1. As other error sources are not incorporated into the
state vector, these are only specified as part of the covariance
matrix of wt and vt.

To use the Kalman filter to make an estimate of the error
vector x1, the matrices A and C and the covariance matrices
Qw and Qv are derived. Matrix A and noise w describe the
propagation of the a priori error state vector x1. They were
found by considering the effect of unknown system com-
ponents on the error state. Matrix C and noise v describe the
relationship between the error states and the Kalman filter
input z1. They were found by considering the effect of an
offset and orientation error on the inclination estimate. The
covariances Qv and Qw were derived by taking the variances
of v and w.

2.4.1 Error propagation
The offset prediction error is denoted by b̂�1;t�1 and can be

found by substituting the prediction of the offset in the offset
model (2).

b�1;t ¼ b̂�t � bt

¼ bþ1;t�1 � wb;t (11)

For small errors, the relationship between the actual and esti-
mated orientations is given by (12) (BORTZ, 1971)

GSR̂ ¼ GSR � I þ u1�½ �ð Þ (12)

The matrix cross product operator is given by

a�½ � ¼

0 �az ay

az 0 �ax

�ay ax 0

2
4

3
5

The orientation after one integration step is found by consid-
ering a first order approximation of a strapdown integration
step

GSR̂�t ¼
GSR̂þt�1 þ

GSR̂þt�1 � Tv̂�t �
� �

(13)

where T is the sample time. An expression for the angular
velocity estimate v̂�t was found by substituting the gyroscope
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output (1) and the expression for the offset error (11) into the
definition of the angular velocity error

v̂�1;t ¼ v̂�t �vt

¼ wb;t � bþ1;t�1 þ vG;t (14)

If we substitute the angular velocity estimation and the
orientation estimation (13) and neglect products of errors, the
estimated orientation is given by

GSR̂�t �
GSRt � I þ uþ1;t�1 � Tbþ1;t�1 þ TvG;t

� �
�

� �� �
(15)

Finally, comparing (15) with (12), it follows that the error
propagation u1;t is described by

u�1;t ¼ uþ1;t�1 � Tbþ1;t�1 þ TvG;t (16)

The matrix A of (8) describes the propagation of the a priori
error state vector x1. Considering (16) and (11), it can be found
that the a priori expected errors b�1;t and u�1;t do not depend on
previous a priori estimated states b�1;t�1 and u�1;t�1. This means
that knowledge about previous errors is incorporated into the
current estimate, and that there is no correlation left between
the a priori estimate errors of two timesteps. Therefore the A
matrix equals the zero matrix.

2.4.2 Relationship between filter input and error states
The error of the gyroscope based inclination estimate was

obtained in the same way as the error in the orientation estimate
(15), yielding

SẐ�G;t � Zt þ
SẐt�1 � uþ1;t�1 � TSẐt�1 � b1;t

þ TSẐt�1 � vG;t (17)

The error of the accelerometer-based inclination estimate
SẐA, (7) depends on the error in estimated acceleration
expressed in the sensor co-ordinate frame and the acceler-
ometer noise. The error in predicted acceleration in the
global co-ordinate frame was found by comparing the real
acceleration with the estimate, using (4).

Ga�1;t ¼
Gâ�t �

Gat

¼ ca �
Gâþ1;t�1 � wa;t (18)

To obtain the acceleration error in the sensor co-ordinate
frame, relationship (6) was applied using the acceleration
error estimate (18) and orientation estimate (12). The resulting
error is caused by both an orientation error and an error in the
global acceleration estimate (19).

Sa1;t ¼
Sâ�t �

Sat

¼ ca �
Sa1;t�1 �

Swa;t þ
Sâ�t � u1;t (19)

Then the accelerometer-based inclination estimate can be
found using (7), where y is given by (3)

SẐ�A;t ¼ Zt þ
1

g
�Sâ�t � u1;t � ca �

Sa1;t þ
Swa;t þ vA;t

� �
(20)

In (20), the magnitude of the accelerometer output vector
is approximated by the gravitational constant g, and products
of errors are neglected.
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The relationship between the inclination difference and the
filter states (8) was found by substitution of (17) and (20)
into (9) and use of the matrix format of the cross product to
obtain the relationship as a matrix multiplication.

z1;t ¼
SẐA �

SẐG

¼ SẐt�1 �
Sâ�t
g

� �
� u1;t þ TSẐt�1 � b1;t

þ
1

g
Swa;t � ca �

Sa1;t þ vA;t

� �
� SẐt�1 � T � vG;t

¼ C �
u1;t
b1;t

� 	
þ vt (21)

where C is a 3�6 matrix, consisting of two 3�3 cross product
matrices.

C ¼ Ẑt �
Sâ�t
g

� �
�


 �
T � Ẑt�

h i� 	
(22)

The noise term vt is described by the third and fourth terms
of (21)

vt ¼
1

g
Swa;t � ca �

Sa1;t þþvA;t

� �
� SZt�1 � vG;t (23)

2.4.3 Covariance matrices
The error covariance matrix Qw,t of the noise term w in the

error propagation part of the Kalman filter (8) can be obtained
using the knowledge that the matrix A equals the zero matrix.
Therefore the error covariance matrix can be found by taking
the variance of the error propagation equations (11) and (16).

Qw;t ¼
E u�1;t � u

�T
1;t

� �
E u�1;t � b

T
1;t

� �
E b�1;t � u

�T
1;t

� �
E b�1;t � b

�T
1;t

� �
" #

¼
Qþu;t�1 þ T2Qþb;t�1 þ T2QvG T2Qþb;t�1

T2Qþb;t�1 Qþb;t�1 þ Qb

" #

where Qþu;t�1 and Qþb;t�1 are the a posteriori error covariance
matrices of the orientation and offset at the previous timestep,
respectively. Qb is the very small covariance matrix of the
offset noise wb and QvG is the gyroscope noise covariance matrix.

Taking the covariance of the noise term (23) yields

Qv;t ¼
1

g2
c2

a � Q
þ
a;t�1 þ Qwa þ Qva

� �
þ QvG (24)

where Qþa;t�1 is the a posteriori acceleration error covariance
matrix, Qwa is the covariance matrix of wa,t, and Qva is the
covariance of the measurement noise vector vA;t. The last
term of (24) was found by assuming that the gyroscope noise
variance is equal in the x-y- and z-directions. In this case, the
noise covariance matrix does not change when the noise is
expressed in a different reference system.

3 Experimental methods

An inertial measurement unit (IMU) was constructed by
mounting three vibrating beam gyroscopes� and three piezo-
resistive accelerometers† perpendicular to each other in a
30 � 20 � 50 mm3 box. These sensors were calibrated accor-
ding to FERRARIS et al. (1995) to obtain the gains and offsets
of both the accelerometers and gyroscopes.

�Murata ENCO5
†AD XL05
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3.1 Comparison with optokinetic system

The Kalman filter was tested by comparison of the orien-
tation as calculated by the Kalman filter with the orientation
that was obtained by a laboratory-bound 3D human motion
tracking system Vicon. Three markers on 0.10 m carbon-
fibre sticks, on a PVC holder, were securely attached to
each sensor box to measure the sensor orientation. The accu-
racy of the reference measurements was estimated by looking
at the relative movement between the markers. The orientation
of the marker frame with respect to the IMU co-ordinate frame
was obtained using the accelerometer output vector during
two moments in which the IMU was put in a different orien-
tation. Gyroscope and accelerometer signals were sampled at
100 Hz and recorded with a portable datalogger.

The IMU was placed on the pelvis, trunk and forearm.
Tasks that were performed were: lifting crates, mimicking
eating and mimicking typical morning routine tasks. For the
crate-lifting tasks, the IMU was placed on the dorsal side
of the pelvis and between the shoulder blades at the height
of the T10 vertebra. The z-axis of the pelvis and trunk IMU
pointed cranially, and the y-axis pointed laterally, to the left.
The forearm IMU was placed on the dorsal side of the
wrist, with the y-axis of the IMU unit along the arm, pointing
in the proximal direction, and the z-axis pointing in the dorsal
direction.

The first task was a 2 min lifting task. A stack of six empty
beer crates was placed in front of the subject. The subject
was asked to move the crates one by one from the stack to
build a new stack 1 m away. Once the new stack was com-
pleted, the routine was reversed. This was repeated for the
duration of the trial. Ten recordings were made at different
lifting speeds. The pace of crate stacking was dictated by
a metronome. The time intervals between the handling of
two crates were 7 s, 6 s, 5 s (twice), 4 s, 3.5 s (twice), 3 s
(twice) and 2 s. Two trials were performed at a pace of
3.5 s per crate, as this was experienced as a comfortable
lifting speed.

The second task consisted of three trials of 90 s in which the
subject was asked to mimic eating. It consisted of subsequent
sessions of the following activities: pouring a glass (10 s),
eating soup (20 s), eating spaghetti (20 s), eating meat (30 s),
drinking (10 s). The morning-routine tasks consisted of: pouring
water on face and drying it using a towel (10 s), applying
deodorant (10 s), buttoning a blouse (10 s), combing hair (20 s),
brushing teeth (30 s).

The tasks described were chosen, not only because of their
relevance in ambulatory movement recording, but also for
their very different movement characteristics and 3D character.
Prior to and after each recording, the subject was asked to stand
still for 4 s. The gyroscope signals that were recorded in this
interval were averaged to yield the initial offset. Experiments
were performed on two healthy subjects. The first subject
(male, 29 years) performed the lifting task, and the second
(female, 28 years) performed the eating and morning routine
tasks. Both subjects signed an informed consent prior to the
measurement.

3.2 Model parameter estimation

Before the Kalman filter was used, the model parameters
were determined. The sensor noise variances QvA and
QvG were found by taking the variance of the sensor signal
while the sensor was lying still on the laboratory floor. The
parameters ca and Qwa were chosen to give reasonable
results while the filter was tested. Gyroscope offset varia-
tion, described by Qwb, was determined with a temperature
experiment.
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A measurement of gyroscope and accelerometer offset
fluctuation was carried out to

(i) identify the parameter for gyroscope offset change wb

(ii) validate the assumption that the accelerometer offset does
not change because the subjects skin warms up.

It was assumed that the major factor influencing the offsets is
the temperature, so that the variation due to a varying tempera-
ture is an approximation of the entire offset variation. The
effect of temperature on gyroscope and accelerometer offset
was measured by cooling down two IMUs in an oven from
40 to 208C in a time period of 3 h. This was done by laying
the sensor on six different sides, enabling us to measure both
the gyroscope and the accelerometer offset dependence on
temperature.

A practical value for gyroscope offset variation wb could be
estimated by taking the time derivative with respect to temp-
erature at 308C and assuming that the temperature during
measurements will not fluctuate by more than 18 min21. A
value for the change in accelerometer offset resulting from
mounting an IMU on a subject was obtained using the
change in output from 20 to 308C, as this was assumed to be
a typical temperature step from the calibration temperature to
the temperature near the skin.

3.3 Analysis

The filter performance was split into one part describing the
ability of the filter to estimate the gyroscope offset and one part
describing the quality of the orientation measurement. The
ability of the filter to estimate the gyroscope offset was
tested by adding an error of 1 rad s21 to each of the separate
gyroscope channels during off-line analysis and determining
the offset error at the end of each trial after applying the
Kalman filter. The robustness of the filter for orientation esti-
mation was tested by comparing the orientation errors during
a trial for different tasks and one for different lifting speeds.
The quality of the orientation estimation was described by
the magnitude of u1, expressed in the global co-ordinate
system. The orientation error has different behaviour for incli-
nation and for the orientation around the vertical. Therefore the
orientation error u1 was split into an inclination and a heading
part. When u1 is considered a vector, the vector component in
the vertical direction is called the heading, and the component
in the horizontal plane is defined as the inclination error. As
long as one of these two errors is small, this is a reasonable
error measure.

The heading can be interpreted as the rotation around the
vertical, and the inclination error can be interpreted as the
angle the estimated Z-axis makes with the real Z-axis.

The inclination of the Kalman filter was compared with
the inclination obtained by low-pass filtering accelerometers.
The heading error was continuously increasing, and therefore
its derivative with respect to time was used to compare with
the orientation that was obtained by strapdown integration of
gyroscope signals. Comparisons were made with a paired
t-test at a significance level of 5%.

4 Results

4.1 Accuracy of the reference measurement system

The accuracy of the reference measurements performed with
the Vicon system depends on the accuracy of the position
measurement of the markers and on the accuracy of the
marker–sensor orientation estimate. The accuracy of the pos-
ition measurement was estimated by considering the distance
between two markers. The standard deviation of the fluctuation
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in measured distance was 1 mm. This corresponds to a standard
deviation in measured orientation of less than 18.

Fluctuation of accelerometer offset can cause an error in
sensor–marker orientation. Using the temperature exper-
iments, the offset change of six accelerometers after a tempera-
ture step from 20 to 308 was 0.2 ms22 on average (SD
0.2 ms22). An offset error of 0.2 ms22 corresponds to an
angle error of 1.18. It was assumed that these were the
largest sources of error of the reference system.

4.2 Parameter identification

An example of a gyroscope and accelerometer recording is
given in Fig. 4. It shows the signals of a sensor on the trunk
during the lifting of one crate, involving flexion as well as
lateroflexion. It can be seen that the z-component of the
accelerometer output is close to 1 g at the beginning and
end, indicating an upright posture. As soon as the movement
starts, the magnitude of the accelerometer output vector
differs from 1 g, indicating an acceleration.

Static measurement with the sensor lying still on the labora-
tory floor, to obtain gyroscope and accelerometer noise, resulted
in an RMS of 0.01 rad s21 and 0.1 m s2, respectively. The temp-
erature tests indicated that the temperature dependency of the
gyroscope offset was 2 deg s218C21 (SD 1) for six gyroscopes.
Assuming a temperature change of less than 18C min21 for lab-
oratory experiments, this corresponds to an offset change per
timestep wb of 0.3 � 1023 deg s21. While testing the Kalman
filter, it appeared that a low ca of 0.6 and a standard deviation
of each component of wa of 0.4 ms22 gave good results.

4.3 Orientation accuracy

An example of the filter performance during a crate-lifting
trial is shown in Fig. 5. The error of the orientation obtained
using the filter was compared with the integration method
described by BORTZ (1971). The error was defined as the mag-
nitude of the orientation error vector. It can be seen that the
orientation error, as obtained by integration of the gyroscope
signal, is larger than the error of the Kalman filter estimate.
The reason that the slope of the orientation error is close to
zero at the start and end of the trial is because the gyroscope
offset was determined at these points.

The magnitude of the orientation drift was defined as the
time derivatives of the orientation error. The heading drift

Fig. 4 Measured sensor signals during one crate lift. Sensor is
attached to trunk. (a) gyroscope output vector; (b)
accelerometer output vector. Accelerometer magnitude is
represented by thick line
edical & Biological Engineering & Computing 2005, Vol. 43



was defined likewise as the time derivative of the change in
heading error. The average orientation and heading drift over
several trials is given in Fig. 6. Using paired t-tests with a
5% significance level, it was found that the orientation errors
from the Kalman filter are significantly smaller than the
errors obtained by integration alone. However, the heading
errors from the Kalman filter are not significantly different
from the heading errors from the strapdown integration
algorithm.

The RMS value of the inclination error during different tasks
is shown in Fig. 7. For three tasks, the inclination as computed
with the Kalman filter is compared with the inclination that
is obtained by low-pass filtering the accelerometer signals
and applying (7). The low-pass filter is a fourth order
Butterworth filter with a 5 Hz cutoff frequency. The Kalman
filter performed significantly better than the method without
Kalman filter. To test the robustness of the filter for the
speed of movement, the influence of the lifting speed on the
inclination error was determined (Fig 8). A linear regression
was made between the lifting speed and inclination error.
The slope was significantly different from zero and the corre-
lation coefficient was 0.77 for the Kalman filter and 0.95 for
the method using only the accelerometer. Especially at high
lifting speeds, the Kalman filter shows a considerable improve-
ment over the use of accelerometers as inclinometers.

4.4 Gyroscope offset estimation

The time required for the filter to estimate the offset was
tested by off-line processing of the sensor signals using an
initial offset error, artificially added to the gyroscope signals
prior to application of the Kalman filter. The offset error at
the end of the measurement was then used as a measure for
the ability of the filter to estimate the offset.
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Fig. 6 Heading and orientation drift when using Kalman filter,
compared with strapdown integration of gyroscope signals
only. Drift of estimated orientation during trial was
obtained by taking time derivative of orientation and
heading error. Inclination of pelvis and trunk were obtained
during crate-lifting task (number of measurements ¼ 10),
and inclination of forearm was obtained from three morning
and three eating routines

Fig. 5 Example trial of orientation error during crate-lifting trial.
Orientation error is defined as angle over which computed
sensor frame has to be rotated to coincide with actual
sensor frame
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An example of gyroscope offset estimation during a crate-
lifting experiment is given in Fig. 9. The decline in offset
that is estimated using the Kalman filter is presented using an
initial offset error of 10 deg s21. Fig. 10 also gives the standard
deviation estimated by the Kalman filter. These are the square
roots of the three diagonal elements of Qþb;t. As the acceler-
ometer gives an estimate of the inclination, merely the gyro-
scope offset of gyroscopes with their sensitive axes in the
horizontal plane can be corrected. This is also shown in the
standard deviation graph. As the y-axis points in the lateral
direction during the entire trial, the y-component of the offset
has the smallest covariance at the end of the trial.

The offset estimation was tested for the lifting experiments
(N ¼ 10), with the sensor on the trunk and pelvis, as well as
for the eating and morning routine tasks together (N ¼ 6),
with the sensor on the forearm. The remaining offset error
after 120 s is shown in Fig. 10. From the Figure, it can be
seen that, for crate-lifting tasks, the estimation of the offsets
in the sensor z-axis is most difficult. This is because the
z-axis of the sensor co-ordinate frame is predominantly vertical
during these trials.

5 Discussion

Considering Figs 6 and 7, it can be concluded that the orien-
tation drift of the examined trials processed using the Kalman

Fig. 8 Inclination error as function of lifting speed for inclination
obtained using accelerometer and Kalman filter, along with
95% confidence intervals
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filter can almost completely be attributed to heading error. This
is in accordance with the notion that the accelerometer signal
only contains information about inclination and not about
heading. In theory, the heading drift from the Kalman filter
could be smaller than the heading drift of strapdown integration,
because the Kalman filter estimates the offset in all three direc-
tions. However, the heading errors obtained with the Kalman
filter and with the strapdown integration appeared to be almost
the same. In terms of the model (Fig. 2), this would mean that
the offsets are not sufficiently observable to reduce the
heading drift effectively. This is in accordance with the finding
that the offset estimation is especially difficult for the gyroscope
that is mostly in the vertical direction (Fig. 10).

Fig. 9 Example of offset estimation of trunk sensor during crate-
lifting trial. Initial offset error was 10 deg s21 added to
x-gyroscope. (a) Offset error; (b) offset SD, estimated by
filter. Offsets of gyroscopes in horizontal plane can only
be estimated on basis of inclination information from
accelerometer. y-gyroscope points laterally and is, most of
time, approximately in horizontal plane. Therefore offset on
y-gyroscope can be estimated better than x- and z-offsets
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Fig. 10 Offset estimation after trial of 120 s. Each trial was filtered
using initial offset error of 1 rad applied to x-, y- and
z-axes subsequently. (X) Offset error of IMU on pelvis
during lifting experiment. (Y) Offset error of IMU on trunk
in lifting experiment. (Z) Offset error of IMU on arm,
morning routine tasks.
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For applications in which the heading is important,
additional sensors or assumptions are required. For example,
biomechanical constraints on the joints between segments
can be used. This method could only result in an accurate orien-
tation between two segments. Magnetic field sensors may make
the heading observable (BACHMAN (2000)), but have the
disadvantage that they are difficult to use in the vicinity of
ferromagnetic metals.

If the inertial sensing unit is to be used during measurement
of activities of daily living, the temperature may fluctuate more
than in the laboratory, resulting in considerable errors because
of offset fluctuation. In this case, the offset errors shown in
Fig. 10 will be realistic and will give large errors in orientation
estimates. The Kalman filter and sensor unit described in this
article have a limited ability to track these offset changes.

The gyroscope offset estimation could be improved by use of
a better spectral model for the acceleration signal. In this study,
the acceleration was modelled as a low pass realisation of a
white-noise signal. Therefore the Kalman filter will assume
low-frequency components in the acceleration. In practice,
however, a segment will never accelerate in the same direction
for more than a few seconds. Therefore the acceleration will
have a bandpass spectrum. If the acceleration spectrum is mod-
elled as a bandpass spectrum, the overlap of the acceleration
and gyroscope offset spectra will be less. This makes it
easier for the filter to distinguish between both. A disadvantage
of this method is that more assumptions restrict the general
applicability of the filter.

Adding the acceleration to the state vector will not greatly
improve the filter performance, whereas it will significantly
increase computational burden. Because the acceleration is
only moderately correlated in time, an accurate estimation of
acceleration at one time step will not have a great influence
on the next time step.

The experimental evaluation of the orientation estimation
algorithm was conducted on two subjects, each performing
part of the protocol. This does not limit generalisation, as it
was not our aim to evaluate the inter-individual performance
of movement tasks, but merely to evaluate the performance
of the orientation estimation algorithm under the condition of
representative 3D human movements. It is critical that this
evaluation includes very different daily-life tasks. Therefore
a lifting task, performed at different lifting speeds, and eating
and morning-routine tasks were included.

Contrary to what could be expected, the orientation and
heading drift of the forearm during eating and morning
routine tasks was less than that of the pelvis during crate stack-
ing, although the rotations and accelerations were larger. This
could be attributed to the fact that different sensor modules
were placed on different segments. As not all gyroscopes are
equal, a plausible explanation would be that, coincidentally,
the arm sensor performed better than the pelvis sensors.

This means that the heading drift is determined by the
quality of the sensors and, to a lesser extent, by the conducted
task.

The most important effect of the Kalman filter is the ability
to estimate inclination. The inclination error is not only depen-
dent on the gyroscope noise and offset but also on the accelera-
tion. The inclination errors for different tasks (Fig. 7) give an
indication of the effect of the Kalman filter. These errors are
within the specifications required by most applications.

Because of the heading drift, the proposed Kalman filter will
only be useful for long measurements if only an accurate incli-
nation is required. There are, however, many applications that
require only short measurements or for which the heading is
not important. A Kalman filter for estimating inclination
merely using accelerometers was described in LUINGE and
VELTINK (2004). For measuring trunk and pelvis inclination
edical & Biological Engineering & Computing 2005, Vol. 43



during lifting tasks, the RMS value of the inclination error
obtained using the Kalman filter for accelerometer signals
only was in the same order as when using accelerometers
and gyroscopes. This means that, for these tasks, the relatively
heavy and power-consuming gyroscopes could be omitted. The
advantage of applying gyroscopes, however, is that angular
velocity and a short-term estimate of total orientation are
available.
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