L oad-Balancing Clustersin Wireless Ad Hoc Networks

Alan D. Amis

Ravi Prakash

Department of Computer Science
University of Texas at Dallas
Richardson, Texas 75083-0688
Email: aamis@tel ogy.com, ravip@utdallas.edu

Abstract

Ad hoc networks consist of a set of identical nodes that
move freely and independently and communicate with other
node via wireless links. Such networks may be logically
represented as a set of clusters by grouping together nodes
that are in close proximity with one another. Clusterheads
form a virtual backbone and may be used to route pack-
ets for nodes in their cluster. Nodes are assumed to have
non-deterministic mobility pattern. Clusters are formed
by diffusing node identities along the wireless links. Dif-
ferent heuristics employ different policies to elect cluster-
heads. Several of these policies are biased in favor of some
nodes. As a result, these nodes shoulder greater respon-
sibility and may deplete their energy faster, causing them
to drop out of the network. Therefore, there is a need for
load-balancing among clusterheads to allow all nodes the
opportunity to serve as a clusterhead. We propose a load-
balancing heuristic to extend the life of a clusterhead to the
maximum budget before allowing the clusterhead to retire
and give way to another node. This helps to evenly dis-
tribute the responsibility of acting as clusterheads among
all nodes. Thus, the heuristic insures fairness and stabil-
ity. Smulation experiments demonstrate that the proposed
heuristic does provide longer clusterhead durations than
with no load-balancing.

1. Introduction

Ad hoc networks (also referred to as packet radio net-
works) consist of nodes that move freely and communicate
with other nodes viawireless links. One way to support ef-
ficient communication between nodesis to develop awire-
less backbone architecture[1, 2, 3, 6]. While all nodes are
identical in their capabilities, certain nodes are elected to
form the backbone. These nodesare called clusterheadsand
gateways. Clusterheads are nodes that are vested with the
responsibility of routing messages for all the nodes within

their cluster. Gateway nodes are nodes at the fringe of a
cluster and typically communicate with gateway nodes of
other clusters. The wireless backbone can be used either
to route packets, or to disseminate routing information, or
both.

Nodes in ad hoc networks are powered by batteries be-
cause of their mobile nature. Communications or trans-
missions cause the batteries to be depleted. Therefore, the
amount of communications should be kept to a minimum
to avoid a node dropping out of the network prematurely.
Clusterhead batteries are depleted faster because they are
usually involved in every communication within their clus-
ter. Therefore, there isaneed to distribute the responsibility
of being a clusterhead to all nodes (load-balancing). The
proposed heuristic provides load balancing among cluster-
heads to insure a fair distribution of load among cluster-
heads.

2. System Model

In an ad hoc network all nodes are alike and all are mo-
bile. There are no base stations to coordinate the activities
of subsets of nodes. Therefore, al the nodes have to collec-
tively make decisions. All communication is over wireless
links. A wireless link can be established between a pair of
nodes only if they are within wireless range of each other.
We will only consider bidirectional links. It is assumed
the MAC layer will mask unidirectional links and pass only
bidirectional links. Beacons could be used to determine the
presence of neighboring nodes. After the absence of some
number of successive beacons from a neighboring node, it
is concluded that the node is no longer a neighbor. Two
nodes that have a wireless link will, henceforth, be said to
be 1 wireless hop away from each other. They are also said
to beimmediate neighbors. Communication between nodes
is over a single shared channel. The Multiple Access with
Collision Avoidance (MACA) protocol [13] may be used
to allow asynchronous communication while avoiding col-
lisions and retransmissions over a single wireless channel.



MACA utilizesaRequest To Send/Clear To Send (RTSCTS)
handshaking to avoid collision between nodes.

Other protocols such as spatial TDMA [7] may be used
to provide MAC layer communication. Spatial TDMA pro-
vides deterministic performance that is good if the number
of nodes is kept relatively small. However, spatiadl TDMA
requires that all nodes be known and in a fixed location to
operate. In ad hoc networks the nodes within each neigh-
borhood are not known a priori. Therefore, spatial TDMA
isnot aviable solution initially. We suggest that MACA be
used initially for this heuristic to establish clusterheads and
their associated neighborhoods. Then the individua cluster
may transition to spatial TDMA for inter-cluster and intra-
cluster communication.

All nodes broadcast their node identity periodically to
maintain neighborhood integrity. Due to mobility, a node's
neighborhood changes with time. As the mobility of nodes
may not be predictable, changes in network topology over
time are arbitrary. However, nodes may not be aware of
changes in their neighborhood. Therefore, clusters and
clusterheads must be updated frequently to maintain accu-
rate network topology.

3. Previous Work and Design Choices

There are two heuristic desigh approaches for manage-
ment of ad hoc networks. The first choice is to have
all nodes maintain knowledge of the network and manage
themselves [5, 9, 10]. This circumvents the need to se-
lect leaders or develop clusters. However, it imposes a sig-
nificant communication responsibility on individual nodes.
Each node must dynamically maintain routes to the rest of
the nodes in the network. With large networks the number
of messages needed to maintain routing tables may cause
congestion in the network. Ultimately this traffic may gen-
erate huge delays in message propagation from one node
to another. This approach will not be considered in the re-
mainder of this paper.

The second approach is to identify a subset of nodes
within the network and vest them with the extra respon-
sibility of being a leader (clusterhead) of certain nodes in
their proximity. The clusterheads are responsible for man-
aging communication between nodesin their own neighbor-
hood as well as routing information to other clusterheadsin
other neighborhoods. Typically, backbones are constructed
to connect neighborhoodsin the network. Past solutions of
this kind have created a hierarchy where every node in the
network was no more than 1 hops away from a clusterhead
[1,3,7].

Furthermore, some of the previous clustering solutions
have relied on synchronous clocks for exchange of data be-
tween nodes. In the Linked Cluster Algorithm [1], LCA,
nodes communicateusing TDMA frames. Each framehasa

dot for each node in the network to communicate, avoiding
collisions. For every node to have knowledge of all nodes
in it neighborhood it requires 2n TDMA time slots, where
n is the number of nodes in the network. A node z be-
comes a clusterhead if at least one of the following condi-
tions is satisfied: (i) = has the highest identity among all
nodes within 1 wireless hop of it, (ii)  does not have the
highest identity in its 1-hop neighborhood, but there exists
at least one neighboring node y such that x is the highest
identity node in y’s 1-hop neighborhood. Thus, LCA has a
definite bias towards higher id nodes while electing cluster-
heads. A pathological case existsfor LCA where agroup of
nodes are aligned in monotonically increasing order. In this
case all of the nodesin the ordered sequence will become a
clusterhead, generating a large number of clusterheads.
Later the LCA heuristic was revised [4] to decrease the
number of clusterheads producedintheoriginal LCA and to
decrease the number of clusterheads generated in the patho-
logical case. Inthisrevised edition of LCA (LCA2) anode
is said to be covered if it isin the 1-hop neighborhood of
anode that has declared itself to be a clusterhead. Starting
from the lowest id node to the highest id node, a node de-
clares itself to be a clusterhead if among the non-covered
nodes in its 1-hop neighborhood, it has the lowest id. So,
LCA2 favorslower id node while electing clusterheads.

Definition 1 (d-hop Clusters) - A d-hop cluster is one
where no node in a cluster is more than d hops away from
its clusterhead.

The LCA heuristics were developed to generate 1-hop
clusters and intended to be used with small networks of
less than 100 nodes. In this case the delay between node
transmissions is minimal and may be tolerated. However,
as the number of nodes in the network grows larger, LCA
will impose greater delays between node transmissions in
the TDMA communication scheme and may be unaccept-
able. Additionally, it has been shown [11] that as com-
munications increase the amount of skew in a synchronous
timer also increases, thereby degrading the performance of
the overall system or introducing additional delay and over-
head.

The Max-Min heuristic [12] was developed to extend the
notion of 1-hop clustersand generalizes cluster formationto
d-hop clusters. Therulesfor Max-Min heuristic are similar
to those for LCA but converges on a clusterhead solution
much faster at the network layer, 2d rounds of messages
exchanges. Once again a node = becomes a clusterhead if
at least one of the following conditions is satisfied: (i) =
has the highest identity among all nodes within d wireless
hop of it, (ii) « does not have the highest identity in its d-
hop neighborhood, but there exists at least one neighboring
node y such that z is the highest identity node in y's d-hop
neighborhood. Max-Min and LCA generate different solu-



tions because in case (ii) for Max-Min if a node becomes
aclusterhead it will consume all nodes that are closer to it
than any other elected clusterhead. Thisis a major differ-
ence between the two heuristics. However, like LCA, Max-
Min also favors higher id nodes while electing clusterheads.

Other solutions base the election of clusterheads on de-
gree of connectivity [8], not node id. Each node broadcasts
the nodesthat it can hear, including itself. A nodeis elected
as aclusterhead if it is the highest connected node in all of
the uncovered neighboring nodes. In the case of atie, the
lowest or highest id may be used. As the network topol-
ogy changes this approach can result in a high turnover of
clusterheads [6]. Thisis undesirable due to the high over-
head associated with clusterhead change over. Data struc-
tures have to be maintained for each nodein the cluster. As
new clusterheads are elected these data structures must be
passed from the old clusterhead to the newly elected cluster-
head. Re-election of clusterheads could minimize this net-
work traffic by circumventing the need to send these data
structures. So Degree based heuristic has no bias towards
any particular nodes while electing clusterheads.

We would like to combine the non-biased selection of
Degree based heuristics with the stability of Max-Min and
LCA(2) heuristics.

4. Contributions

The main objective was to develop an enhancement for
existing heuristics to provide a contiguous balance of load-
ing on the elected clusterheads. Once a node is elected a
clusterhead it isdesirablefor it to stay asaclusterhead up to
some maximum specified amount of time, or budget. The
budget is a user defined constraint placed on the heuristic
and can be modified to meet the unique characteristics of
the system, i.e., the battery life of individual nodes. Some
of the goals of the heuristic are:

1. Minimize the number and size of the data structures
required to implement the heuristic,

2. Extend the clusterhead duration budget based on anin-
put parameter,

3. Allow every node equal opportunity to become a clus-
terhead in time,

4. Maximize the stability in the network,

5. Load-Balancing (Node I D)
5.1. Data Structures
The data structures necessary for the heuristic consist

of two local variables. Physical ID (PID), and Virtual ID
(VID). The PID istheinitial id given and is unique for each

individual node. Initially, the VID is set equal to the PID for
each node. However, this changeswith timeto represent the
electability of anode. The VIDs for various hodes may be
the same at certain times.

5.2. Basic ldea

The node id load-balancing heuristic operates on the
principle of acircular queue. That is, the virtual ids of each
non-clusterhead node cycles through the circular queue at a
rate of 1 unit per run of the load-balancing heuristict. The
circular queue has a minimum value of 1 and a maximum
value of MAX_COUNT. Upon reaching MAX_COUNT a
node will rotate to a value of 1 on the next cluster election
heuristic run. Asthe cluster election heuristics run they will
use the VIDs to determine the clusterheads of the network.
In cases where the VIDs are the same the PID isused as a
tie breaker. Once a node is determined to be a clusterhead,
its VID is promoted to a value larger than MAX_COUNT
(MAX_COUNT + VID). A clusterhead will maintain this
value until it has exhausted its clusterhead duration budget.
At this point it will setitsVID to 0, i.e., less than any other
node, and become a normal node.

There are cases where two elected clusterheads A and
B may move within close range of each other causing B
to give way to A prior to B exhausting its clusterhead bud-
get. Inthis case clusterhead B lowersits V1D to the valueit
would have achieved had it not become a clusterhead. That
is, B's VID just prior to becoming elected a clusterhead +
the number of times the cluster election heuristic has run
since B became a clusterhead. Thiswill place B back into
aplace of high electability to insureaquick return asaclus-
terhead. One would probably immediately notice that this
may not be the desired response. One of the main goal's of
this heuristic is to provide stability in the network. There-
fore, we may not want node B to make a quick return as a
clusterhead. Alternately, node B’s VID may be set to O just
as if it had successfully used its clusterhead budget. This
should provide a more dampened response than having the
clusterheads bounce back simply to use up their clusterhead
budget.

5.3. Load-Balancing Pseudo Code

LRSS S S S S LSS LSS RS RS EEEEEEETEEEEEEEEEEEEEEE S

Clusterhead L oad-Balancing

If anodeisaclusterhead check to seeif the budget is
exceeded. If it isthen set the VID to 0 and become and
ordinary node, otherwise increment the VID value.

LRSS EEEEEEE LSS SRR S EEEEEEETEEEEEEEEEEEEEEE S

LFor clarity, the load-balancing heuristic is an enhancement to the clus-
ter election heuristic and will run whenever the cluster election heuristic is
triggered to run.



cluster_load_balance()
if (Clusterhead == My_Node_ld)
if (Budget >= Max_Budget)
VID =0;
Clusterhead = FAL SE;
Budget = 0;
else
Budget += Work;
else
++VID;

6. Load-Balancing (Degree)
6.1. Data Structures

The data structures necessary for the heuristic consist
of one local variable: Elected Degree. The Elected De-
gree represents the degree of the node when it was initialy
elected a clusterhead. This value will be used for compari-
son purposes described below.

6.2. Basic ldea

Because the Degree based heuristic elects clusterheads
with a different policy than LCA and Max-Min heuristics,
we must use a different load-balancing policy. The degree
load-balancing heuristic monitors the amount of change, or
delta, in the degree of an elected clusterhead from the time
itiselected aclusterhead. That is, on each run of the heuris-
tic the difference is take between the current degree of the
clusterhead and the Elected Degree. If the absolute val ue of
the difference exceeds an input value MAX_DELTA, then
the clusterhead is demoted to an ordinary node. The De-
gree based heuristic, much like the LCA2 heuristic, does
not allow for adjacent clusterheads. Therefore, there may be
cases where an elected clusterhead will give way to another
clusterhead based on the heuristic and not on exceeding the
MAX_DELTA parameter.

6.3. Load-Balancing Pseudo Code

kkhkkhkkkhkkhkkhkkhkkhkhkhkhkhkhkhhhhkkkkkhkhhhhkhhkkhdkhkhhhhkhkhkkxxkhkdkxkx*%

Clusterhead L oad-Balancing
If anodeis aclusterhead check to seeif it has exceeded
MAX_DELTA. If it has then set it to and ordinary node.

kkhkkkhkkhkkhkkhkkhkhkhkhkhkhkhkhhhhkkkkkhkhhhhhhkkhhkhkhhhhkhkhkkxkkkdkxk*%

cluster_load_balance()
if (Clusterhead == My_Node_|d)
if (ABS(My_Degree-Elected_Degree) >=MAX _DELTA)
Clusterhead = FAL SE;

7. Simulation Experiments and Results

We conducted simulation experiments to evaluate the
performance of the proposed heuristic. The load-balancing
heuristic was implemented into 4 cluster election heuris-
tics. the Max-Min heuristic [12], the Linked Cluster Al-
gorithm (LCA) [1], the revised LCA (LCA2) [4], and the
Highest-Connectivity (Degree) [8, 6] heuristic. These sim-
ulation results were then compared against similar results
produced by the cluster election heuristics running without
load-balancing. We assumed a variety of systems running
with 100, 200, 400, and 600 nodes to simulate ad hoc net-
works with varying levels of node density. Two nodes are
said to have awireless link between them if they are within
communication range of each other. The performance was
simulated with the communication range of the nodes set to
20, 25 and 30 length units. Additionally, the span of aclus-
ter, i.e., the maximum number of wireless hops between a
node and its clusterhead (d) was set to 2 and then 3 for each
of the simulation combinations above. The entire smula-
tion was conducted in a 200 x 200 unit region. Initialy, each
node was assigned a unique node id and (z, y) coordinates
within the region. The nodes were then alowed to move at
random in any direction at a speed of not greater than 1/2
the wireless range of anode per second. The simulation ran
for 2000 seconds, and the network was sampled every 2 sec-
onds. At each sample time the proposed |oad-balancing and
cluster election heuristic was run to determine clusterheads
and their associated clusters. For every simulation run a
number of performance metrics were measured for the 2000
seconds of simulation. The main simulation metric mea-
sured was Clusterhead Duration, and provided a basis for
evaluating the performance of the proposed load-balancing
heuristic.

Definition 2 (Clusterhead Duration) - The mean time for
which once a node is elected as a clusterhead, it stays as
a clusterhead. This statistic is a measure of stability, the
longer the duration the more stable the system.

As described in Section 5.2, the load-balancing heuristic
has several customizable approaches. For example, once
aclusterhead loses its leadership role before exhausting its
clusterhead budget, it may set the node’s new virtual id to 0,
or its Old Virtual id + Number of runs of the heuristic since
it was elected a clusterhead. Additionally, the clusterhead
budget may be afunction of (i) contiguous times elected as
a clusterhead, (ii) maximum amount of work performed or
load, (iii) minimum amount of work performed or idle, (iv)
or any combination of these. Work is calculated to be the
summation of the number of nodes in the cluster times the
sample period. That is,

Work = Z sample period duration; x cluster size;
i=1



For the purposes of these ssimulations we have set the
clusterhead budget to be afunction of the maximum amount
of work it performs (5000 units of Work). That is, once a
clusterhead becomes a clusterhead it will remain a cluster-
head until it has exhausted it maximum work load, or until
it loses out to another clusterhead based on the rules of the
cluster election heuristic. Once a clusterhead does lose its
leadership role to another clusterhead its new virtua id is
set to itsold virtual id + the number of runs of the heuristic
since becoming a clusterhead.

Figure 1 shows the clusterhead durations for the Max-
Min heuristic with and without load-balancing applied. The
load-balancing makes a noticeable difference in the cluster-
head duration (ranging from 14% to 28%). Furthermore, the
variance of the clusterhead duration without |oad-balancing
appliedismorethan 500% greater than with load-balancing.
This shows that while the load-balancing heuristics gen-
erates longer clusterhead durations, it also produces much
tighter and more deterministic responses (stability). These
results are not surprising, as mentioned earlier the Max-
Min heuristic favors the election of larger ids. Therefore,
once a clusterhead is elected it will stay a clusterhead for
a maximum of the programmed budget. This will provide
the longer clusterhead durations that we see. The load-
balancing heuristic is continuously rotating ordinary nodes
into the position of becoming a clusterhead. Therefore,
once a clusterhead budget is exceeded, a different cluster-
head is elected and the process repeats. This provides the
load-balancing effect of distributing the responsibility of
being a clusterhead among all nodes.

Figure 2 shows the clusterhead durations for the LCA
heuristic with and without load-balancing applied. The
clusterhead duration for LCA is only slightly greater with-
out load-balancing than with it. At first glance this may
appear that the load-balancing is a hindrance rather than
a help. However, we see that the variance of clusterhead
duration for LCA without load-balancing is 400% larger
than with load-balancing. Therefore, while LCA with load-
balancing produces dightly shorter clusterhead durations,
load-balancing once again, provides a much tighter and
more deterministic response (stability).

Figure 3 shows the clusterhead durations for the revised
L CA heuristic (LCAZ2) with and without load-balancing ap-
plied. The clusterhead duration with load-balancing show
a 25% improvement over without load-balancing. Further-
more, the variance with load-balancing applied is greatly
improved over without load-balancing, showing an im-
provement of better than 500%. Therefore, load-balancing
once again, provides a larger clusterhead duration and a
much tighter and more deterministic response (stability).
Again, just as with the Max-Min heuristic, the LCA2
heuristicis biased towards certain nodeids (lower nodeids).
Therefore, it is not surprising that the LCA2 heuristic pro-

duces results quite similar to that of the Max-Min heuristic.

Figure 4 shows the clusterhead durations for the Degree
based heuristic with and without load-balancing applied.
For this simulation we have set the MAX_DELTA vaue
to 10. The load-balancing has produced a noticeable im-
provement in the clusterhead duration (better than 200%).
However, the variance of the clusterhead duration without
load-balancing is less than that with load-balancing. By ex-
amining the clusterhead duration without load-balancing we
see that it is between 2 and 3. This happens to be approx-
imately equal to the sample rate of the simulation, 2 sec-
onds. Therefore, what we are observing is that clusterheads
exist for only a single snapshot of the simulation and then
give way to another node. The variance will be small be-
cause each clusterhead is only serving as a clusterhead for
one snapshot, on the average. While we want each node to
serve as a clusterhead, we would like for each node to stay
a clusterhead for some period of time. In this case longer
than one snapshot. With this knowledge, the variance of
the Degree based heuristic with load-balancing is actually
quite good and provides a much needed larger clusterhead
duration.

8. Conclusion

Two clusterhead load-balancing heuristics have been
proposed for ad hoc networks. Thefirst heuristicisfor clus-
ter election heuristics that favor the election of clusterheads
based on node id. Here the heuristic places a budget on the
contiguous amount of time that a node stays a clusterhead.
As seen from the simulation results, this heuristic produces
larger clusterhead durations while decreasing the variance,
increased stability. The second heuristic is for cluster elec-
tion heuristics that favor the election of clusterheads based
on the degree of connectivity. A clusterhead stays a clus-
terhead aslong asits degree of connectivity iswithin a spe-
cific range. The Degree based heuristic was ssimulated with
this load-balancing heuristic. The simulation results show
a much needed increase in clusterhead duration while still
maintaining alow variance.



Average Cluster Head Duration (seconds)

Average Cluster Head Duration (seconds)

Cluster Head Duration in 2 Hop Count, 25 Range System

10

85 -

75

6.5

100 150 200 250 300 350 400 450 500 550

Number of Nodes in the System

600

Cluster Head Duration Variance

1600

1400

1200

1000

800

600

400

200

Cluster Head Duration in 2 Hop Count, 25 Range System

0
100 150 200 250 300 350 400 450 500 550 600

Number of Nodes in the System

Figure 1. Clusterhead duration and variance, Max-Min.

Cluster Head Duration in 2 Hop Count, 25 Range System

46 -

3.4

28 |

T
Ica -
Ica_lb --

2.6
100

150 200 250 300 350 400 450 500 550
Number of Nodes in the System

600

Cluster Head Duration Variance

350

300

200

150

100

50

Cluster Head Duration in 2 Hop Count, 25 Range System

100 150

200 250 300 350 400 450 500 550 600
Number of Nodes in the System

Figure 2. Clusterhead duration and variance, LCA.



Average Cluster Head Duration (seconds)

Average Cluster Head Duration (seconds)

Cluster Head Duration in 2 Hop Count, 25 Range System
T T

4.5 |

lcaz -
Ica2_lb --

35 .
100 150

200 250 300 350 400 450 500 550 600
Number of Nodes in the System

Cluster Head Duration Variance

Cluster Head Duration in 2 Hop Count, 25 Range System
T T T

600

500

400

300

200

100 |

0

100

150 200 250 300 350 400 450 500 550 600
Number of Nodes in the System

Figure 3. Clusterhead duration and variance, LCAZ2.

Cluster Head Duration in 2 Hop Count, 25 Range System

65%.

45

25 b

‘degre‘e -
degree_|b --

-

2
100 150

200 250 300 350 400 450 500 550 600
Number of Nodes in the System

Cluster Head Duration Variance

Cluster Head Duration in 2 Hop Count, 25 Range System

35 |

20 |

10 |+

‘ degrée -
degree_Ib

0
100

150 200 250 300 350 400 450 500 550 600
Number of Nodes in the System

Figure 4. Clusterhead duration and variance, Degree.



References

(1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

[9]

D. J. Baker and A. Ephremides. The Architectural Or-
ganization of aMobile Radio Network viaaDistributed
Algorithm. |EEE Transactions on Communications,
COM-29(11):1694-1701, November 1981.

D.J. Baker, A. Ephremides, and J. A. Flynn. The De-
sign and Simulation of a Mobile Radio Network with
Distributed Control. 1EEE Journal on Selected Areas
in Communications, pages 226237, 1984.

B. Das and V. Bharghavan. Routing in Ad-Hoc Net-
works Using Minimum Connected Dominating Sets. In
Proceedings of ICC, 1997.

A. Ephremides, J. E. Wieselthier, and D. J. Baker. A
Design Concept for Reliable Mobile Radio Networks
with Frequency Hopping Signaling. Proceedings of
|EEE, 75(1):56-73, 1987.

E. Gafni and D. Bertsekas. Distributed Algorithms for
Generating Loop-free Routes in Networks with Fre-
quently Changing Topology. |EEE Transactions on
Communications, pages 11-18, January 1981.

M. Gerlaand J. T.-C. Tsai. Multicluster, mobile, multi-
mediaradio network. ACM Baltzer Journal of Wireless
Networks, 1(3):255-265, 1995.

L. Kleinrock and J. Silvester. Spatial Reuse in Multi-
hop Packet Radio Networks. Proceedings of the |EEE,
75(1):156-167, January 1987.

Abhay K. Parekh. Selecting Routersin Ad-Hoc Wire-
less Networks. In ITS, 1994.

V. D. Park and M. S. Corson. A Highly Adaptive Dis-
tributed Routing Algorithm for Mobile Wireless Net-
works. In Proceedings of IEEE INFOCOM, April 1997.

[10] C.E. Perkins and P. Bhagwat. Highly Dy-

namic Destination-Sequenced Distance-Vector Routing
(DSDV) for Mobile Computers. In Proceedings of
ACM SIGCOMM Conference on Communication Ar-
chitectures, Protocols and Applications, pages 234—
244, August 1994.

[11] Jennifer Lundelius and Nancy Lynch. An Upper and

Lower Bound for Clock Synchronization. Information
and Control, Vol. 62 1984.

[12] A.Amis, R. Prakash, T. Vuong, and D.T. Huynh. Max-

Min D-Cluster Formation in Wireless Ad Hoc Net-
works. In Proceedings of IEEE INFOCOM, March
1999.

[13] A. Tanenbaum. Computer Networks(3"¢ Edition).

Prentice Hall, Upper Saddle River, N.J., 1996.



