ON SEMILOCAL MODULES AND RINGS

CHRISTIAN LOMP

HEINRICH HEINE UNIVERSITAT¨ D-40225 DUSSELDORF, GERMANY LOMPMATH.UNI-DUESSELDORF.DE

ABSTRACT. It is well-known that a ring R is semiperfect if and only if $_R R$ (or R_R) is a supplemented module. Considering weak supplements instead of supplements we show that weakly supplemented modules M are semilocal (i.e., $M/Rad(M)$ is semisimple) and that R is a semilocal ring if and only if $_RR$ (or R_R) is weakly supplemented. In this context the notion of *finite hollow dimen*sion (or finite dual Goldie dimension) of modules is of interest and yields a natural interpretation of the Camps-Dicks characterization of semilocal rings. Finitely generated modules are weakly supplemented if and only if they have finite hollow dimension (or are semilocal).

1. Preliminaries

Let R be an associative ring with unit and throughout the paper M will be a left unital R-module. By $N \leq M$ we denote an essential submodule $N \subset M$. M is *uniform* if $M \neq 0$ and every non-zero submodule is essential in M, and M has *finite uniform dimension* (or *finite Goldie dimension*) if there exists a sequence

0 $\longrightarrow \bigoplus_{i=1}^n U_i \stackrel{f}{\longrightarrow} M,$

where all the U_i are uniform and the image of f is essential in M. Then n is called the uniform dimension of M and we write $udim(M)$ = n. It is well known that this is equivalent to M having no infinite

I would like to thank Nyguen Viet Dung for bringing the R. Camps and W. Dicks paper to my attention. Moreover I want to express my thanks to Patrick F. Smith and Robert Wisbauer for their interest and helpful suggestions.

independent family of non-zero submodules (there is a maximal finite independent family of uniform submodules).

We denote a small submodule N of M by $N \ll M$. A module M is said to be *hollow* if $M \neq 0$ and every proper submodule is small in M. M is said to have *finite hollow dimension* (or *finite dual Goldie dimension*) if there exists an exact sequence

$$
M \xrightarrow{g} \bigoplus_{i=1}^{n} H_i \xrightarrow{}
$$
 0

where all the H_i are hollow and the kernel of g is small in M. Then n is called the hollow dimension of M and we write $hdim(M) = n$.

B. Sarath and K. Varadarajan showed in[[SV](#page-16-0), Theorem 1.8] that in this case M does not allow an epimorphism to a direct sum with more than n summands. Dual to the notion of an independent family of submodules we have:

Definition 1.1. Let M be an R-module and $\{K_{\lambda}\}\$ ^{Λ} a family of proper *submodules of* M. ${K_{\lambda}}_{\Lambda}$ *is called coindependent (see* [[T76](#page-16-0)]*) if for every* $\lambda \in \Lambda$ *and finite subset* $J \subseteq \Lambda \setminus \{\lambda\}$

$$
K_{\lambda} + \bigcap_{j \in J} K_j = M
$$

 $holds(convention: if J is the empty set, then set $\bigcap_J K_j := M$).$

For finitely generated modules it usually suffices to consider coindependent families of finitely generated submodules as our next observation shows.

Lemma 1.2. Let M be a finitely generated R-module and $\{N_1, \ldots, N_m\}$ *a coindependent family of submodules. Then there exists a coindependent family of finitely generated submodules* $L_i \subseteq N_i$, $1 \leq i \leq m$.

Proof. Since M is finitely generated, for each $1 \leq i \leq m$, there exist finitely generated submodules $X_i \subseteq N_i$ and $Y_i \subseteq \bigcap_{j \neq i} N_j$ such that $X_i + Y_i = M$. Let $L_i := X_i + \sum_{j \neq i} Y_j \subseteq N_i$. As $L_i + \bigcap_{j \neq i} L_j \supseteq$ $X_i + Y_i = M$ holds the result follows. \square

Theorem 1.3 (Grezeszcuk, Puczyłowski, Reiter, Takeuchi, Varadarajan). *For an* R*-module* M *the following statements are equivalent:*

- (a) M *has finite hollow dimension.*
- (b) M *does not contain an infinite coindpendent family of submodules.*
- (c) *There exists a unique number* n and a coindependent family $\{K_1, \ldots, K_n\}$ *of proper submodules, such that* $M/K_1, \ldots, M/K_n$ *are hollow modules and* $K_1 \cap \cdots \cap K_n \ll M$.
- (d) *For every descending chain* $K_1 \supset K_2 \supset K_3 \supset \cdots$ *of submodules of* M, there exits a number n such that $K_n/K_m \ll M/K_m$, for all $m \geq n$.

Proof. The equivalence of (b) , (c) , (d) can be found in [\[GP](#page-15-0)]. The equivalence of (a) and (c) is given by the chinese remainder theorem (see [\[W](#page-16-0), 9.12]). \square

Remark 1.4. Let M be an R -module and N, L submodules of M . Then the following properties hold:

- (1) $hdim(M/N) \leq hdim(M);$
- (2) $N \ll M \Rightarrow hdim(M) = hdim(M/N);$
- (3) $hdim(N \oplus L) = hdim(N) + hdim(L)$.

Moreover if M is self-projective and has finite hollow dimension, then every surjective endomorphism is an isomorphism.

We refer to [\[GP](#page-15-0)],[[HaS](#page-15-0)],[[HeS](#page-15-0)],[\[Lo](#page-15-0)],[[Re\]](#page-16-0), [\[T76\]](#page-16-0) and[[V\]](#page-16-0) for more information on dual Goldie dimension.

The following theorem can be seen as an attempt to transfer R. Camps and W. Dicks characterization of semilocal rings[[CD](#page-15-0)] to arbitrary modules with finite hollow dimension. Denote by $\mathcal{L}(M)$ the lattice of submodules of a module M.

Theorem 1.5. *For* M *the following statements are equivalent:*

- (a) M *has finite hollow dimension.*
- (b) *There exists an* $n \in \mathbb{N}$ *and a mapping* $d : \mathcal{L}(M) \to \{0, 1, \ldots, n\}$ *such that for all* $N, L \in \mathcal{L}(M)$:
	- (i) *If* $d(N) = 0$ *, then* $N = M$ *.*
	- (ii) *If* $N + L = M$ *, then* $d(N \cap L) = d(N) + d(L)$ *.*
- (c) *There exists a partial ordering* $(\mathcal{L}(M), \leq)$ *such that*
	- (i) $(\mathcal{L}(M), \leq)$ *is an artinian poset;*

(ii) *for all* $N, L \in \mathcal{L}(M)$ *with* $N + L = M$ *: if* $L \neq M$ *, then* $N > N \cap L$.

Proof. (a) \Rightarrow (b) Let $d(N) := \text{hdim}(M/N)$; then the conditions (i) and *(ii)* are easily checked.

 $(b) \Rightarrow (c)$ Let $N < L : \Leftrightarrow d(N) < d(L)$ and $N = L : \Leftrightarrow d(N) = d(L)$ then $(\mathcal{L}(M), \leq)$ is artinian. Let $N, L \in \mathcal{L}(M)$ with $N + L = M$ and $L \neq M$. By (i) and (ii) we have $d(N \cap L) = d(N) + d(L) < d(N)$. Hence $N > N \cap L$.

 $(c) \Rightarrow (a)$ Assume that $\{K_i\}_N$ is an infinite coindependent family of submodules of M. Then we have for all $i \in \mathbb{N}$: $K_1 \cap \cdots \cap K_i + K_{i+1} = M$ and $K_{i+1} \neq M$. Hence by *(ii)* we get the infinite descending chain

$$
K_1 > K_1 \cap K_2 > \cdots > K_1 \cap \cdots \cap K_i > \cdots
$$

contradicting property (i) . Hence M does not contain an infinite coindependent family of submodules. \Box

2. Weakly Supplemented Modules

Dual to a complement of a submodule N of M the *supplement* of N is defined as a submodule L of M minimal with respect to $N + L = M$. This is equivalent to $N + L = M$ and $N \cap L \ll L$. Recall that M is *supplemented* if every submodule has a supplement in M.

More generally, a submodule N of M has a *weak supplement* L in M if $N + L = M$ and $N \cap L \ll M$, and M is called *weakly supplemented* if every submodule N of M has a weak supplement (see Zöschinger [\[Z78a](#page-16-0)]). Examples for weakly supplemented modules are supplemented, artinian, linearly compact, uniserial or hollow modules. For supplemented modules over commutative local noetherian rings we refer to [\[Z78a\]](#page-16-0),[[Z78b\]](#page-16-0),[[Z86\]](#page-16-0) and[[Ru\]](#page-16-0).

Before we give a summarizing list of properties of weakly supplemented modules, we will state a general result:

Proposition 2.1. *For a proper submodule* $N \subset M$ *, the following are equivalent:*

(a) M/N *is semisimple;*

4

- (b) *for every* $L \subseteq M$ *there exists a submodule* $K \subseteq M$ *such that* $L + K = M$ and $L \cap K \subseteq N$;
- (c) *there exists a decomposition* $M = M_1 \oplus M_2$ *such that* M_1 *is semisimple,* $N \leq M_2$ *and* M_2/N *is semisimple.*

Proof. (a) \Rightarrow (c) Let M_1 be a complement of N. $M_1 \simeq (M_1 \oplus N)/N$ is a direct summand in M/N , hence semisimple and there is a semisimple submodule M_2/N such that $(M_1 \oplus N)/N \oplus M_2/N = M/N$. Thus $M = M_1 + M_2$ and $M_1 \cap M_2 \subseteq N \cap M_1 = 0$ implies $M = M_1 \oplus M_2$. Since M_1 is a complement we have by the natural isomorphisms $N \simeq$ $(M_1 \oplus N)/M_1 \leq M/M_1 \simeq M_2$ that $N \leq M_2$.

 $(c) \Rightarrow (a) \Rightarrow (b)$ clear.

(b) \Rightarrow (a) Let $L/N \subseteq M/N$; then there exists a submodule $K \subseteq M$ such that $L+K = M$ and $L \cap K \subseteq N$. Thus $L/N \oplus (K+N)/N = M/N$. Hence every submodule of M/N is a direct summand. \square

Let Rad(M) denote the radical of M. We call M a *semilocal module* if M/Rad (M) is semisimple. Any semilocal module M is a *good* module, i.e., for every homomorphism $f : M \to N$, $f(\text{Rad}(M)) = \text{Rad}(f(M))$ $(see |W|).$

We call N a *small cover* of a module M if there exists an epimorphism $f: N \to M$ such that Ker $(f) \ll M$. Then f is called a *small epimorphism*. N is called a *flat cover*, *projective cover* resp. *free cover* of M if N is a small cover of M and N is a flat, projective resp. free module. Note that this definition of a flat cover is different from Enochs' definition.

Proposition 2.2. *Assume* M *to be weakly supplemented. Then:*

- (1) M *is semilocal;*
- (2) $M = M_1 \oplus M_2$ *with* M_1 *semisimple,* M_2 *semilocal and* Rad $(M) \trianglelefteq$ M_2 ;
- (3) *every factor module of* M *is weakly supplemented;*
- (4) *any small cover of* M *is weakly supplemented;*
- (5) *every supplement in* M *and every direct summand of* M *is weakly supplemented.*

Proof. (1) and (2) follow from Proposition [2.1](#page-3-0) since for every $L \subseteq M$ there exists a weak supplement $K \subseteq M$ such that $L + K = M$ and $L \cap K \subseteq$ Rad (M) .

(3) Let $f : M \to N$ be an epimorphism and $K \subset N$, then $f^{-1}(K)$ has a weak supplement L in M and it is straightforward to prove that $f(L)$ is a weak supplement of K in N.

(4) Let N be a small cover of M and $f : N \to M$ be a small epimorphism. First note that $f^{-1}(K) \ll N$ for every $K \ll M$ holds since Ker $(f) \ll N$. Let $L \subset N$. Then $f(L)$ has a weak supplement X in M. Again it is easy to check that $f^{-1}(X)$ is a weak supplement of L in N .

(5) If $N \subset M$ is a supplement of M, then $N + K = M$ for some $K \subseteq M$ and $K \cap N \ll N$. By (3), $M/K \simeq N/(N \cap K)$ is weakly supplemented and by (4) , N is weakly supplemented. Direct summands are supplements and hence weakly supplemented. \square

Let $length(M)$ denote the length of the module M.

Corollary 2.3. An R-module M with Rad $(M) = 0$ is weakly sup*plemented if and only if* M *is semisimple. In this case hdim* (M) = length(M) *holds.*

Proof. This follows by Proposition [2.2\(](#page-4-0)1). \Box

We need the following technical lemma to show that every finite sum of weakly supplemented modules is weakly supplemented.

Lemma 2.4. Let M be an R -module with submodules K and M_1 . As*sume* M_1 *is weakly supplemented and* $M_1 + K$ *has a weak supplement in* M*. Then* K *has a weak supplement in* M*.*

Proof. By assumption $M_1 + K$ has a weak supplement $N \subseteq M$, such that $M_1 + K + N = M$ and $(M_1 + K) \cap N \ll M$. Because M_1 is weakly supplemented, $(K + N) \cap M_1$ has a weak supplement $L \subseteq M_1$. So

 $M = M_1 + K + N = L + ((K + N) \cap M_1) + K + N = K + (L + N)$ and $K\cap(L+N) \subseteq ((K+L)\cap N)+((K+N)\cap L \subseteq ((K+M_1)\cap N)+((K+N)\cap L) \ll M.$ Hence $N + L$ is a weak supplement of K in M. \Box

6

Proposition 2.5. Let $M = M_1 + M_2$, where M_1 and M_2 are weakly *supplemented, then* M *is weakly supplemented.*

Proof. For every submodule $N \subseteq M$, $M_1 + (M_2 + N)$ has the trivial weak supplement 0 and by the Lemma above $M_2 + N$ has a weak supplement in M as well. Applying the Lemma again we get a weak supplement for N . \square

Corollary 2.6. *Every finite sum of weakly supplemented modules is weakly supplemented.*

The relationship between the concepts 'hollow dimension' and 'weakly supplemented' is expressed in the following theorem.

Theorem 2.7. *Consider the following properties:*

- (i) M *has finite hollow dimension;*
- (ii) M *is weakly supplemented;*
- (iii) M *is semilocal.*

Then $(i) \Rightarrow (ii) \Rightarrow (iii)$ *and* $hdim(M) \geq length(M/Rad(M))$ *holds. If* $Rad(M) \ll M$ *then* $(iii) \Rightarrow (ii)$ *holds.*

If M is finitely generated then $(iii) \Rightarrow (i)$ and $hdim(M) = length(M/Rad(M))$ *holds.*

Proof. (*i*) \Rightarrow (*ii*) There is a small epimorphism $f : M \to \bigoplus_{i=1}^{n} H_i$ with hollow modules H_i . Since hollow modules are (weakly) supplemented we get by Corollary 2.6 that $\bigoplus_{i=1}^n H_i$ is weakly supplemented. Since f is a small epimorphism we get by Proposition [2.2\(](#page-4-0)4) that M is weakly supplemented.

 $(ii) \Rightarrow (iii)$ by Propositon [2.2](#page-4-0)(1).

If $Rad(M) \ll M$, then $(iii) \Rightarrow (ii)$ follows by Proposition [2.2\(](#page-4-0)4).

If M is finitely generated and (iii) holds, then M is a small cover of $M/Rad(M)$. By Corollary [2.3,](#page-5-0) $hdim(M/Rad(M)) = length(M/Rad(M)),$ and by remark [1.4\(](#page-2-0)2), $hdim(M) = length(M)$ Rad (M) .

3. Semilocal Modules and Rings

Let $Gen(M)$ denote the class of M-generated modules.

Theorem 3.1. *The following statements about* M *are equivalent:*

- (a) M *is semilocal;*
- (b) *any* $N \in Gen(M)$ *is semilocal*;
- (c) any $N \in Gen(M)$ *is a direct sum of a semisimple module and a semilocal module with essential radical;*
- (d) any $N \in Gen(M)$ with small radical is weakly supplemented;
- (e) any finitely generated $N \in Gen(M)$ has finite hollow dimension.

Proof. (a) \Rightarrow (b) For every $N \in Gen(M)$ there exists a set Λ and an epimorphism $f : M^{(\Lambda)} \to N$. Since $f(\text{Rad } (M^{(\Lambda)})) \subseteq \text{Rad } (N)$ and $M^{(\Lambda)}/\text{Rad}(M^{(\Lambda)}) \simeq (M/\text{Rad}(M))^{(\Lambda)}$ always holds we get an epimorphism $\bar{f} : (M/\text{Rad } (M))^{(\Lambda)} \to N/\text{Rad } (N)$. Hence N is semilocal.

- $(b) \Rightarrow (a)$ trivial.
- $(b) \Leftrightarrow (c)$ by Proposition [2.1.](#page-3-0)
- $(b) \Leftrightarrow (d) \Leftrightarrow (e)$ by Theorem [2.7](#page-6-0) \Box

Recall that the ring R is *semilocal* if $_RR$ (or R_R) is a semilocal Rmodule.

Corollary 3.2. *For a ring* R *the following statements are equivalent:*

- (a) $_R R$ *is weakly supplemented;*
- (b) ^RR *has finite hollow dimension;*
- (c) R *is semilocal;*
- (d) R^R *has finite hollow dimension;*
- (e) R^R *is weakly supplememted.*

In this case $hdim_R R$ *= length* (R) *Jac* (R) *= hdim* (R_R) *.*

Proof. Apply Theorem [2.7](#page-6-0) and use that 'semilocal' is a left-right symmetric property. \Box

Remark 3.3. Consider the ring

$$
R:=\mathbb{Z}_{p,q}:=\left\{\frac{a}{b}|a,b\in\mathbb{Z},b\neq0,p\nmid b\text{ and }q\nmid b\right\},
$$

where p and q are primes. Then R is a commutative uniform semilocal noetherian domain with two maximal ideals. Since R is uniform, the decomposition of $R/\text{Jac}(R)$ cannot be lifted to R. Moreover the maximal ideals pR and qR are weak supplements but not supplements of each other. So R is a semilocal ring which is not semiperfect.

For our next result we need the following:

Lemma 3.4. *Let* R *be a ring,* $r, a \in R$ *and* $b := 1 - ra$ *. Then* $Ra \cap Rb =$ Rab*.*

Proof. $x \in Ra \cap Rb$, then $x = ta = sb = s(1 - ra) \Rightarrow s = (t + sr)a \in$ Ra. Hence $Ra \cap Rb \subseteq Rab$. Conversely $Rab = Ra(1 - ra) = R(1 - ra)$ $ar)a \subseteq Ra \cap Rb$. □

We are now ready to give characterizations of semilocal rings in terms of finite hollow dimension and to prove results from Camps-Dicks (see [[CD](#page-15-0), Theorem 1]) in a module-theoretic way.

Note that for a semilocal ring R , $_R$ R is a good module, and so for any left R-module N we have Rad $(M) = \text{Jac}(R) M$ (see [\[W](#page-16-0), 23.7]).

Theorem 3.5. *For any ring* R *the following statements are equivalent:*

- (a) R *is semilocal;*
- (b) *every left* R*-module is semilocal;*
- (c) *every left* R*-module is the direct sum of a semisimple module and a semilocal module with essential radical;*
- (d) *every left* R*-module with small radical is weakly supplemented;*
- (e) *every finitely generated left* R*-module has finite hollow dimension;*
- (f) *every product of semisimple left* R*-modules is semisimple;*
- (g) *there exists an* $n \in \mathbb{N}$ *and a map* $d : \mathbb{R} \to \{0, 1, \ldots, n\}$ *such that for all* $a, b \in R$ *the following holds:*
	- (i) $d(a) = 0 \Rightarrow a$ *is a unit*;
	- (ii) $d(a(1-ba)) = d(a) + d(1-ba)$;
- (h) *there exists a partial ordering* (R, \leq) *such that:*
	- (i) (R, \leq) *is an artinian poset*;
	- (ii) *for all* $a, b \in R$ *such that* $1 ba$ *is not a unit, we have* $a >$ $a(1 - ba)$.

In this case hdim $(R) \leq n$ *holds.*

Proof. $(a) \Leftrightarrow (b) \Leftrightarrow (c) \Leftrightarrow (d) \Leftrightarrow (e)$ follow from Theorem [3.1.](#page-7-0)

 $(b) \Rightarrow (f)$ By the remark above, semilocal rings are good rings and hence Rad $(M) = \text{Jac}(R)M$ holds for every left R-module. Let M be a product of semisimple modules. Since for all $m \in M$ Jac $(R)Rm = 0$ holds as Rm is semisimple, we have Rad $(M) = \text{Jac}(R)M = 0$. By (b) M is semisimple.

 $(f) \Rightarrow (a) R/\text{Jac}(R)$ is a submodule of a product of simple modules. By (f) this product is semisimple and so is $R/\mathrm{Jac}(R)$.

 $(a) \Rightarrow (g)$ By Corollary [3.2](#page-7-0) RR has finite hollow dimension. By Theorem [1.5](#page-2-0) there is a map d'. Set $d(a) := d'(Ra)$ for all $a \in R$ and (i) and (ii) follow easily from the properties of d' .

 $(g) \Rightarrow (h)$ Let $a < b$: $\Leftrightarrow d(a) < d(b)$ and $a = b$: $\Leftrightarrow d(a) = d(b)$ for all $a, b \in R$. If $1 - ba$ is not a unit, then $d(1 - ba) > 0$ implies $d(a) < d(a(1 - ba))$ and hence $a > a(1 - ba)$.

 $(h) \Rightarrow (a)$ Assume that there exists a left ideal $I \subset R$ that has no weak supplement. Then we can construct an infinite descending chain of elements

$$
1 > b_1 > b_2 > \cdots > b_n > \cdots
$$

such that for all $n \in \mathbb{N}$ we have $I + Rb_n = R$. Since (R, \leq) is artinian - this is a contradiction, hence I must have a weak supplement in R. By Corollary [3.2](#page-7-0) R is semilocal.

We can construct the chain as follows: Let $n = 1$. Since $I \nleq R$ there is an $a \in I$ such that $1 - a$ is not a unit in R. Hence $1 > 1 - a =: b_1$ and $I + Rb_1 = R$ holds.

Now assume that we constructed a chain $1 > b_1 > b_2 > \cdots > b_n$ for $n \geq 1$ with $I + Rb_n = R$. By assumption $I \cap Rb_n \nleq R$ implies that there is an $r \in R$, such that $rb_n \in I$ and $x := 1 - rb_n$ is not a unit in R. Hence

$$
b_n > b_n(1 - rb_n) = b_n x =: b_{n+1}.
$$

Moreover, by the modularity law, we have $Rb_n = (I \cap Rb_n) + (Rb_n \cap Rx)$. Together with Lemma [3.4](#page-8-0), $R = I + Rb_n = I + (Rb_n \cap Rx) = I + Rb_{n+1}$ holds. \square

Remark 3.6. Theorem [3.5](#page-8-0) generalizes the well-known fact that a ring R is semiperfect if and only if every finitely generated R-module is supplemented.

Recall that every finitely generated R-module over a semiperfect ring R has a projective cover.

Corollary 3.7. *Every finitely generated* R*-module over a semilocal ring* R *is a direct summand of a module having a finitely generated free cover.*

Proof. Let M be a finitely generated R -module. Then there exists a number k and an epimorphism $f: R^k \to M$. Since R is semilocal, R^k is weakly supplemented. Hence $K := \text{Ker}(f)$ has a weak supplement $L \subseteq R^k$. Thus the natural projection $R^k \to M \oplus (R^k/L)$ with kernel $K \cap L \ll R^k$ implies that R^k is a projective cover for $M \oplus (R^k/L)$. \Box

Comparing semiperfect and semilocal rings the following fact is of interest:

Theorem 3.8. *For a ring* R *the following statements are equivalent.*

- (a) R *is semiperfect;*
- (b) R *is semilocal and every simple* R*-module has a flat cover;*
- (c) R *is semilocal and every finitely generated* R*-module has a flat cover.*

Proof. (a) \Rightarrow (c) holds since projective modules are flat.

 $(c) \Rightarrow (b)$ is trivial.

 $(b) \Rightarrow (a)$ Assume R is semilocal and consider $R/\text{Jac}(R) = E_1 \oplus \cdots \oplus E_n$ E_n with E_i simple R-modules. Every simple R-module is isomorphic to one of the E_i 's. By hypothesis every E_i has a flat cover L_i . Thus $L := L_1 \oplus \cdots \oplus L_n$ is a flat cover of $R/\text{Jac}(R)$. Hence we obtain the following diagram:

$$
R
$$

\n
$$
\downarrow
$$

\n
$$
L \xrightarrow{f} R/\text{Jac}(R) \longrightarrow 0
$$

that can be extended by a homomorphism $g : R \to L$. Since f is a small epimorphism and gf is epimorph, g must be epimorph with Ker $(g) \subseteq$ Ker $(gf) = \text{Jac}(R)$. Hence R is a projective cover of the flat module L. By [\[W](#page-16-0), 36.4], $L \simeq R$ and hence all L_i must be projective. Thus each simple R -module has a projective cover and so R is semiperfect (see [\[W](#page-16-0), 42.6]). \square

Remark 3.9. It follows also from Theorem[[W,](#page-16-0) 36.4] that a ring R is semisimple if and only if R is semilocal and every simple R -module is flat. Since in this case R is a projective cover of the flat module $R/\mathrm{Jac}(R)$ and hence $R \simeq R/\mathrm{Jac}(R)$ holds.

The following result was first proved by T.Takeuchi in[[T94\]](#page-16-0). We will give a new proof of his result.

Theorem 3.10 (Takeuchi). *Let* M *be a self-projective* R*-module. Then* M has finite hollow dimension if and only if $S := \text{End}(M)$ is semilocal. *Moreover we have* $hdim_R(M) = hdim(S)$ *.*

Proof. \Rightarrow : Let $\{I_1, \ldots, I_n\}$ be a coindependent family of proper left ideals of ${}_{S}S$. By Lemma [1.2](#page-1-0), we may assume that the I_{k} 's are finitely generated. Consider the epimorphism

 $S \longrightarrow \bigoplus_{k=1}^n S/I_k \longrightarrow 0.$

Applying $M \otimes_S -$ we get the exact sequence

 $M \longrightarrow \bigoplus_{k=1}^{n} M/M I_k \longrightarrow 0,$

since $M \otimes_{S} S/I_{k} \simeq M/MI_{k}$. We have $I_{k} =$ Hom (M, MI_{k}) and hence $MI_k \neq M$. Thus $hdim(S) \leq hdim(RM)$ and so S is semilocal by Corollary [3.2](#page-7-0).

 \Leftarrow : Consider an epimorphism (with $N_i \neq M$)

 $M \longrightarrow \bigoplus_{i=1}^n M/N_i \longrightarrow 0.$

Since M is self-projective, Hom $(M, -)$ yields an exact sequence

 $S \longrightarrow \bigoplus_{i=1}^n \text{Hom}(M, M/N_i) \longrightarrow 0,$

showing that $hdim_R(M) \leq hdim(S)$. \Box

Remark 3.11. More generally, if P is an M-projective module that generates M, then one can apply Hom $(P, -)$ in the same way as in Theorem [3.10](#page-11-0) to obtain $hdim_R(M) \leq hdim(SHom(P, M))$, where $S :=$ $End(P)$.

The following Corollaries are immediate consequences from Takeuchi's result.

Corollary 3.12. *A ring* R *is semilocal if and only if every finitely generated, self-projective left (or right)* R*-module has a semilocal endomorphism ring.*

Proof. The assertion follows from Theorem [3.5](#page-8-0) and Theorem [3.10.](#page-11-0) \Box

Corollary 3.13. *Let* M *be a self-projective* R*-module with semilocal endomorphism ring. Then* End (M/N) *is semilocal for any fully invariant submodule* N *of* M*.*

Proof. Since M is self-projective and N fully invariant we get by [[W,](#page-16-0) 18.2] that M/N is self-projective. By Theorem [3.10](#page-11-0) we have $hdim(End(M)) = hdim(M) \geq hdim(M/N) = hdim(End(M/N)).$

Analogous to the fact that a projective module has a semiperfect endomorphism ring if and only if it is finitely generated and supplemented (see $[W, 42.12]$) we get the following corollary:

Corollary 3.14. *Let* M *be a self-projective* R*-module.* M *is finitely generated and weakly supplemented if and only if* End (M) *is semilocal and* Rad $(M) \ll M$.

Proof. This follows from Theorem [2.7,](#page-6-0) Theorem [3.10](#page-11-0) and the fact that a module with finite hollow dimension and small radical is finitely generated. \Box

The author does not know if the hypothesis of a small radical of M is necessary. He raises the following

Question: Is every (self-)projective R-module with semilocal endomorphism ring finitely generated ?

Remark 3.15. This question is closely related to an old problem of D. Lazard. He considered rings with the property that all projective modules P with $P/Rad(P)$ finitely generated are already finitely generated. Following H. Zöschinger, rings with this property are called L-rings. He proved in[[Z81](#page-16-0)] that this property is left-right symmetric, i.e. R is a left L-ring if and only if it is a right L-ring. Moreover he showed that a ring R is an L-ring if and only if every supplement in R is a direct summand ([\[Z81,](#page-16-0) Satz 2.3]). Hence semiperfect and semiprimitive rings, i.e rings with zero Jacobson radical, are L-rings. In[[J\]](#page-15-0), S.Jøndrup showed that every PI-ring is an L-ring. A good resource for some characterizations of L-rings is [\[MS](#page-15-0)].

Corollary 3.16. *Let* R *be an* L*-ring and* P *a projective* R*-module. Then* P *is finitely generated and weakly supplemented if and only if* End (P) *is semilocal.*

Proof. Assume End (P) to be semilocal. By Takeuchi's result (Theo-rem [3.10](#page-11-0)) P has finite hollow dimension and hence $P/Rad(P)$ is finitely generated. As R is an L-ring, P is finitely generated. \Box

Remark 3.17. In [\[GS\]](#page-15-0) V.N. Gerasimov and I.I. Sakhaev constructed a non - commutative semilocal ring that is not an L-ring (see also[[S91\]](#page-16-0), [[S93](#page-16-0)]). Hence a negative answer to the question above might be more likely, but the condition of a semilocal endomorphism ring $End(P)$ is stronger than P/R ad (P) being finitely generated.

A ring R is left f*-semiperfect* or *semiregular* if every finitely generated left ideal has a supplement in $_R R$, equivalently, $R/\text{Jac}(R)$ is von Neumann regular and idempotents in $R/\text{Jac}(R)$ can be lifted to $_RR$ (see $[W, 42.11]$). Analogous to that we have:

Proposition 3.18. *For any ring* R *the following statements are equivalent:*

- (a) *every principal left ideal of* R has a weak supplement in $_R R$;
- (b) R/Jac (R) *is von Neumann regular;*
- (c) *every principal right ideal of* R has a weak supplement in R_R ;

Proof. (a) \Rightarrow (b) Let $a \in R$. By assumption there exists a weak supplement $I \subset R$ of Ra. Hence there exist $b \in R$ and $x \in I$ such that $x = 1 - ba$. Moreover, by Lemma [3.4,](#page-8-0) $Rax = Ra \cap Rx \subseteq Ra \cap I \ll R$ implies $ax = a - aba \in \text{Jac}(R)$. Thus $R/\text{Jac}(R)$ is von Neumann regular.

 $(b) \Rightarrow (a)$ For any $a \in R \setminus \text{Jac}(R)$ we get an element $b \in R \setminus \text{Jac}(R)$ such that $a - aba \in \text{Jac}(R)$. Hence $R(1 - ba)$ is a weak supplement of Ra in $_RR$ by Lemma [3.4](#page-8-0).

 $(b) \Leftrightarrow (c)$ analogous. \square

Remark 3.19. It is not difficult to see that Ra has a weak supplement in RR if and only if aR has a weak supplement in R_R for all $a \in R$. The situation for supplements is not that clear. Indeed H.Zöschinger proved that the property: Ra has a supplement in $_R\ddot{R}$ implies $a\ddot{R}$ has a supplement in R_R is equivalent with R being an L-ring (see [\[Z81](#page-16-0)]).

The following proposition, due to S. Page, relates uniform and hollow dimension.

Proposition 3.20 (Page). Let _RQ be an injective cogenerator in R-*Mod,* $T = \text{End}(Q)$ *and M any R*-module. Then $hdim_R(M) = \text{udim}(\text{Hom}(M, Q)_T)$.

Proof. See [\[P](#page-15-0), Proposition 1]. \square

Remark 3.21. More generally this result can be extended to any injective cogenerator $_RQ$ in σ_RM - the full subcategory of R-Mod that contains all M-subgenerated left R-modules. Hence for any $_RN \in$ $\sigma[M]$ the formula $hdim_RN) = udim(\text{Hom}(N,Q)_T)$ holds where $T :=$ End (Q) (see [\[Lo\]](#page-15-0) for details).

Using S. Page's result we get another characterization of semilocal rings in terms of hollow and uniform dimension.

Theorem 3.22. *The following statements are equivalent for a ring* R*.*

- (a) R *is semilocal;*
- (b) *there exists a generator* $_{R}G$ *in* R-Mod such that $G_{\text{End}(G)}$ has finite *hollow dimension;*
- (b) *for any generator* $_{R}G$ *in* R-Mod, $G_{\text{End}(G)}$ *has finite hollow dimension;*
- (c) there exists an injective cogenerator $_RQ$ in R-Mod such that $Q_{\text{End (Q)}}$ *has finite uniform dimension;*
- (c') *for any injective cogenerator* $_RQ$ *in* R *-Mod,* $Q_{\text{End}(Q)}$ *has finite uniform dimension.*

In this case hdim($G_{\text{End}(G)}$) = length($R/\text{Jac}(R)$) = udim($Q_{\text{End}(Q)}$) *holds.*

Proof.Let $_R G \in R$ -Mod and $S =$ End (G) . From [[W,](#page-16-0) 18.8] we know that $_R G$ is a generator in R-Mod if and only if G_S is finitely generated, projective in S-Mod and $R \simeq End_S(G_S)$. Hence by Theorem [3.10](#page-11-0), we get $hdim(G_S) = hdim(End_S(G_S)) = hdim(R)$. This proves $(a) \Leftrightarrow$ $(b) \Leftrightarrow (b')$.

By Page's Proposition [3.20](#page-14-0) we have $hdim(R) = \text{udim}(Q_T)$ where $T =$ End (Q) for any injective cogenerator $_RQ$. This proves $(a) \Leftrightarrow$ $(c) \Leftrightarrow (c')$. \Box

REFERENCES

- [CD] R.Camps and W.Dicks, On semilocal rings, Israel J. Math. 81, 203 221 (1993)
- [GP] P.Grezeszcuk and E.R.Puczy lowski, On Goldie and dual Goldie dimension, J. Pure and Applied Algebra 31, 47-54 (1984)
- [GS] V.N. Gerasmiov and I.I. Sakhaev, A counterexample to two hypotheses on projective and flat modules, Siberian Math. J. 25, 855 - 859 (1984)
- [HaS] A.Hanna and A.Shamsuddin, Dual Goldie dimension, Rendiconti dell' Istitutio di Mathematica dell' Universita di Trieste 24, No.1-2, 25-38 (1992)
- [HeS] D.Herbera and A.Shamsuddin, Modules with semi-local endomorphism ring, Proceedings American Math. Soc. 123, 3593-3600 (1995)
- [J] S. Jøndrup, Projective modules, Proceedings American Math. Soc. 59, 217 221 (1976)
- [La] D. Lazard, Liberte des gros modules projectifs, J. Algebra 31, 437 451 (1974)
- [Lo] C.Lomp, On dual Goldie dimension, Diplomarbeit, HHU Düsseldorf (1996)
- [MS] A. Mohammed and F.L. Sandomierski, Complements in projective modules J. Algebra 127, 206 - 217 (1989)
- [P] S.Page Relatively semiperfect rings and corank of modules Communication Algebra, 21, 975 - 990 (1993)

16

- [Re] E.Reiter, A dual to the Goldie ascending chain condition on direct sums of submodules, Bulletin Calcutta Math. Soc. 73, 55-63 (1981)
- [Ru] P.Rudlof, On the structure of couniform and complemented modules, J. Pure and Applied Algebra 74, 281 - 305 (1991)
- [SV] B.Sarath and K.Varadarajan, Dual Goldie dimension II, Communication Algebra, 7, 1885 - 1899 (1979)
- [S91] I.I. Sakhaev, On lifting finite generacy of a projective module modulo its radical, Math. Notes 49, 293 - 301 (1991)
- [S93] I.I. Sakhaev, The finite generation of projective modules, Algebra(Proc. Int. Conf. Krasnoyarsk 1993), edited by Y.L. Ershov et al., 209-216, de Gruyter, Berlin 1996
- [T76] T.Takeuchi, On cofinite-dimensional modules, Hokkaido Math. J. 5, 1-43 (1976)
- [T94] T.Takeuchi, Coranks of a quasi-projective module and its endomorphism ring, Glasgow Math. J. 36, 381 - 383 (1994)
- [V] K.Varadarajan, Dual Goldie dimension, Communication Algebra, 7, 565-610 (1979)
- [W] R.Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading (1991)
- [Z78a] H.Zöschinger, *Invarianten wesentlicher Überdeckungen*, Math. Annalen 237, 193 - 202 (1978)
- [Z78b] H.Zöschinger, Über Torsions- und κ -Elemente von Ext(C, A), J. Algebra 50, 295 - 336 (1978)
- [Z81] H.Zöschinger, Projektive Moduln mit endlich erzeugtem Radikalfaktormodul, Math. Annalen 255, 199 - 206 (1981)
- [Z86] H.Zöschinger, *Minimax-Moduln*, J. Algebra 102, 1-32 (1986)