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ON SEMILOCAL MODULES AND RINGS
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Abstract. It is well-known that a ring R is semiperfect if and

only if RR (or RR) is a supplemented module. Considering weak

supplements instead of supplements we show that weakly supple-

mented modules M are semilocal (i.e., M/Rad(M) is semisimple)

and that R is a semilocal ring if and only if RR (or RR) is weakly

supplemented. In this context the notion of finite hollow dimen-

sion (or finite dual Goldie dimension) of modules is of interest and

yields a natural interpretation of the Camps-Dicks characterization

of semilocal rings. Finitely generated modules are weakly supple-

mented if and only if they have finite hollow dimension (or are

semilocal).

1. Preliminaries

Let R be an associative ring with unit and throughout the paper

M will be a left unital R-module. By N E M we denote an essential

submodule N ⊂ M . M is uniform if M 6= 0 and every non-zero

submodule is essential in M , and M has finite uniform dimension (or

finite Goldie dimension) if there exists a sequence

0 −−−→
⊕n

i=1 Ui

f
−−−→ M,

where all the Ui are uniform and the image of f is essential in M . Then

n is called the uniform dimension of M and we write udim(M) =

n. It is well known that this is equivalent to M having no infinite
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independent family of non-zero submodules (there is a maximal finite

independent family of uniform submodules).

We denote a small submodule N of M by N ≪ M . A module M

is said to be hollow if M 6= 0 and every proper submodule is small in

M . M is said to have finite hollow dimension (or finite dual Goldie

dimension) if there exists an exact sequence

M
g

−−−→
⊕n

i=1 Hi −−−→ 0

where all the Hi are hollow and the kernel of g is small in M . Then n

is called the hollow dimension of M and we write hdim(M) = n.

B. Sarath and K. Varadarajan showed in [SV, Theorem 1.8] that in

this case M does not allow an epimorphism to a direct sum with more

than n summands. Dual to the notion of an independent family of

submodules we have:

Definition 1.1. Let M be an R-module and {Kλ}Λ a family of proper

submodules of M . {Kλ}Λ is called coindependent (see [T76]) if for

every λ ∈ Λ and finite subset J ⊆ Λ \ {λ}

Kλ +
⋂

j∈J

Kj = M

holds(convention: if J is the empty set, then set
⋂

J Kj := M).

For finitely generated modules it usually suffices to consider coinde-

pendent families of finitely generated submodules as our next observa-

tion shows.

Lemma 1.2. Let M be a finitely generated R-module and {N1, . . . , Nm}

a coindependent family of submodules. Then there exists a coindepen-

dent family of finitely generated submodules Li ⊆ Ni, 1 ≤ i ≤ m.

Proof. Since M is finitely generated, for each 1 ≤ i ≤ m, there exist

finitely generated submodules Xi ⊆ Ni and Yi ⊆
⋂

j 6=i Nj such that

Xi + Yi = M . Let Li := Xi +
∑

j 6=i Yj ⊆ Ni. As Li +
⋂

j 6=i Lj ⊇

Xi + Yi = M holds the result follows. �

Theorem 1.3 (Grezeszcuk, Puczy lowski, Reiter, Takeuchi, Varadarajan).

For an R-module M the following statements are equivalent:
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(a) M has finite hollow dimension.

(b) M does not contain an infinite coindpendent family of submodules.

(c) There exists a unique number n and a coindependent family {K1, . . . , Kn}

of proper submodules, such that M/K1, . . . , M/Kn are hollow mod-

ules and K1 ∩ · · · ∩ Kn ≪ M .

(d) For every descending chain K1 ⊃ K2 ⊃ K3 ⊃ · · · of submodules

of M , there exits a number n such that Kn/Km ≪ M/Km, for all

m ≥ n.

Proof. The equivalence of (b), (c), (d) can be found in [GP]. The

equivalence of (a) and (c) is given by the chinese remainder theorem

(see [W, 9.12]). �

Remark 1.4. Let M be an R-module and N, L submodules of M .

Then the following properties hold:

(1) hdim(M/N) ≤ hdim(M);

(2) N ≪ M ⇒ hdim(M) = hdim(M/N);

(3) hdim(N ⊕ L) = hdim(N) + hdim(L).

Moreover if M is self-projective and has finite hollow dimension, then

every surjective endomorphism is an isomorphism.

We refer to [GP], [HaS], [HeS],[Lo], [Re], [T76] and [V] for more

information on dual Goldie dimension.

The following theorem can be seen as an attempt to transfer R.

Camps and W. Dicks characterization of semilocal rings [CD] to ar-

bitrary modules with finite hollow dimension. Denote by L(M) the

lattice of submodules of a module M .

Theorem 1.5. For M the following statements are equivalent:

(a) M has finite hollow dimension.

(b) There exists an n ∈ IN and a mapping d : L(M) → {0, 1, . . . , n}

such that for all N, L ∈ L(M):

(i) If d(N) = 0, then N = M .

(ii) If N + L = M , then d(N ∩ L) = d(N) + d(L).

(c) There exists a partial ordering (L(M),≤) such that

(i) (L(M),≤) is an artinian poset;
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(ii) for all N, L ∈ L(M) with N + L = M : if L 6= M , then

N > N ∩ L.

Proof. (a) ⇒ (b) Let d(N) := hdim(M/N); then the conditions (i)

and (ii) are easily checked.

(b) ⇒ (c) Let N < L :⇔ d(N) < d(L) and N = L :⇔ d(N) = d(L)

then (L(M),≤) is artinian. Let N, L ∈ L(M) with N + L = M and

L 6= M . By (i) and (ii) we have d(N ∩ L) = d(N) + d(L) < d(N).

Hence N > N ∩ L.

(c) ⇒ (a) Assume that {Ki}IN is an infinite coindependent family of

submodules of M . Then we have for all i ∈ IN : K1∩· · ·∩Ki+Ki+1 = M

and Ki+1 6= M . Hence by (ii) we get the infinite descending chain

K1 > K1 ∩ K2 > · · · > K1 ∩ · · · ∩ Ki > · · ·

contradicting property (i). Hence M does not contain an infinite coin-

dependent family of submodules. �

2. Weakly Supplemented Modules

Dual to a complement of a submodule N of M the supplement of N

is defined as a submodule L of M minimal with respect to N +L = M .

This is equivalent to N + L = M and N ∩ L ≪ L. Recall that M is

supplemented if every submodule has a supplement in M .

More generally, a submodule N of M has a weak supplement L in

M if N + L = M and N ∩ L ≪ M , and M is called weakly sup-

plemented if every submodule N of M has a weak supplement (see

Zöschinger [Z78a]). Examples for weakly supplemented modules are

supplemented, artinian, linearly compact, uniserial or hollow modules.

For supplemented modules over commutative local noetherian rings we

refer to [Z78a], [Z78b], [Z86] and [Ru].

Before we give a summarizing list of properties of weakly supple-

mented modules, we will state a general result:

Proposition 2.1. For a proper submodule N ⊂ M , the following are

equivalent:

(a) M/N is semisimple;
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(b) for every L ⊆ M there exists a submodule K ⊆ M such that

L + K = M and L ∩ K ⊆ N ;

(c) there exists a decomposition M = M1 ⊕ M2 such that M1 is

semisimple, N E M2 and M2/N is semisimple.

Proof. (a) ⇒(c) Let M1 be a complement of N . M1 ≃ (M1⊕N)/N is a

direct summand in M/N , hence semisimple and there is a semisimple

submodule M2/N such that (M1 ⊕ N)/N ⊕ M2/N = M/N . Thus

M = M1 + M2 and M1 ∩ M2 ⊆ N ∩ M1 = 0 implies M = M1 ⊕ M2.

Since M1 is a complement we have by the natural isomorphisms N ≃

(M1 ⊕ N)/M1 E M/M1 ≃ M2 that N E M2.

(c) ⇒(a) ⇒ (b) clear.

(b) ⇒(a) Let L/N ⊆ M/N ; then there exists a submodule K ⊆ M

such that L+K = M and L∩K ⊆ N . Thus L/N⊕(K+N)/N = M/N .

Hence every submodule of M/N is a direct summand. �

Let Rad(M) denote the radical of M . We call M a semilocal module if

M/Rad(M) is semisimple. Any semilocal module M is a good module,

i.e., for every homomorphism f : M → N , f(Rad (M)) = Rad (f(M))

(see [W]).

We call N a small cover of a module M if there exists an epimor-

phism f : N → M such that Ker (f) ≪ M . Then f is called a

small epimorphism. N is called a flat cover, projective cover resp. free

cover of M if N is a small cover of M and N is a flat, projective resp.

free module. Note that this definition of a flat cover is different from

Enochs’ definition.

Proposition 2.2. Assume M to be weakly supplemented. Then:

(1) M is semilocal;

(2) M = M1⊕M2 with M1 semisimple, M2 semilocal and Rad(M) E

M2;

(3) every factor module of M is weakly supplemented;

(4) any small cover of M is weakly supplemented;

(5) every supplement in M and every direct summand of M is weakly

supplemented.
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Proof. (1) and (2) follow from Proposition 2.1 since for every L ⊆ M

there exists a weak supplement K ⊆ M such that L + K = M and

L ∩ K ⊆ Rad (M).

(3) Let f : M → N be an epimorphism and K ⊂ N , then f−1(K)

has a weak supplement L in M and it is straightforward to prove that

f(L) is a weak supplement of K in N .

(4) Let N be a small cover of M and f : N → M be a small

epimorphism. First note that f−1(K) ≪ N for every K ≪ M holds

since Ker (f) ≪ N . Let L ⊂ N . Then f(L) has a weak supplement X

in M . Again it is easy to check that f−1(X) is a weak supplement of

L in N .

(5) If N ⊆ M is a supplement of M , then N + K = M for some

K ⊆ M and K ∩ N ≪ N . By (3), M/K ≃ N/(N ∩ K) is weakly

supplemented and by (4), N is weakly supplemented. Direct summands

are supplements and hence weakly supplemented. �

Let length(M) denote the length of the module M .

Corollary 2.3. An R-module M with Rad (M) = 0 is weakly sup-

plemented if and only if M is semisimple. In this case hdim(M) =

length(M) holds.

Proof. This follows by Proposition 2.2(1). �

We need the following technical lemma to show that every finite sum

of weakly supplemented modules is weakly supplemented.

Lemma 2.4. Let M be an R-module with submodules K and M1. As-

sume M1 is weakly supplemented and M1 + K has a weak supplement

in M . Then K has a weak supplement in M .

Proof. By assumption M1 + K has a weak supplement N ⊆ M , such

that M1 +K +N = M and (M1 +K)∩N ≪ M . Because M1 is weakly

supplemented, (K + N) ∩ M1 has a weak supplement L ⊆ M1. So

M = M1 +K +N = L+((K +N)∩M1)+K +N = K +(L+N) and

K∩(L+N) ⊆ ((K+L)∩N)+((K+N)∩L ⊆ ((K+M1)∩N)+((K+N)∩L) ≪ M.

Hence N + L is a weak supplement of K in M . �
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Proposition 2.5. Let M = M1 + M2, where M1 and M2 are weakly

supplemented, then M is weakly supplemented.

Proof. For every submodule N ⊆ M , M1 + (M2 + N) has the trivial

weak supplement 0 and by the Lemma above M2 + N has a weak

supplement in M as well. Applying the Lemma again we get a weak

supplement for N . �

Corollary 2.6. Every finite sum of weakly supplemented modules is

weakly supplemented.

The relationship between the concepts ’hollow dimension’ and ’weakly

supplemented’ is expressed in the following theorem.

Theorem 2.7. Consider the following properties:

(i) M has finite hollow dimension;

(ii) M is weakly supplemented;

(iii) M is semilocal.

Then (i) ⇒ (ii) ⇒ (iii) and hdim(M) ≥ length(M/Rad(M)) holds.

If Rad(M) ≪ M then (iii) ⇒ (ii) holds.

If M is finitely generated then (iii) ⇒ (i) and hdim(M) = length(M/Rad(M))

holds.

Proof. (i) ⇒ (ii) There is a small epimorphism f : M →
⊕n

i=1 Hi with

hollow modules Hi. Since hollow modules are (weakly) supplemented

we get by Corollary 2.6 that
⊕n

i=1 Hi is weakly supplemented. Since f

is a small epimorphism we get by Proposition 2.2(4) that M is weakly

supplemented.

(ii) ⇒ (iii) by Propositon 2.2(1).

If Rad(M) ≪ M , then (iii) ⇒ (ii) follows by Proposition 2.2(4).

If M is finitely generated and (iii) holds, then M is a small cover of

M/Rad(M). By Corollary 2.3, hdim(M/Rad(M)) = length(M/Rad(M)),

and by remark 1.4(2), hdim(M) = length(M/Rad (M)). �
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3. Semilocal Modules and Rings

Let Gen(M) denote the class of M-generated modules.

Theorem 3.1. The following statements about M are equivalent:

(a) M is semilocal;

(b) any N ∈ Gen(M) is semilocal;

(c) any N ∈ Gen(M) is a direct sum of a semisimple module and a

semilocal module with essential radical;

(d) any N ∈ Gen(M) with small radical is weakly supplemented;

(e) any finitely generated N ∈ Gen(M) has finite hollow dimension.

Proof. (a) ⇒ (b) For every N ∈ Gen(M) there exists a set Λ and

an epimorphism f : M (Λ) → N . Since f(Rad (M (Λ))) ⊆ Rad (N) and

M (Λ)/Rad (M (Λ)) ≃ (M/Rad (M))(Λ) always holds we get an epimor-

phism f̄ : (M/Rad (M))(Λ) → N/Rad (N). Hence N is semilocal.

(b) ⇒ (a) trivial.

(b) ⇔ (c) by Proposition 2.1.

(b) ⇔ (d) ⇔ (e) by Theorem 2.7 �

Recall that the ring R is semilocal if RR (or RR) is a semilocal R-

module.

Corollary 3.2. For a ring R the following statements are equivalent:

(a) RR is weakly supplemented;

(b) RR has finite hollow dimension;

(c) R is semilocal;

(d) RR has finite hollow dimension;

(e) RR is weakly supplememted.

In this case hdim(RR) = length(R/Jac (R)) = hdim(RR).

Proof. Apply Theorem 2.7 and use that ’semilocal’ is a left-right

symmetric property. �

Remark 3.3. Consider the ring

R := ZZp,q :=
{a

b
|a, b ∈ ZZ, b 6= 0, p ∤ b and q ∤ b

}

,
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where p and q are primes. Then R is a commutative uniform semilocal

noetherian domain with two maximal ideals. Since R is uniform, the

decomposition of R/Jac (R) cannot be lifted to R. Moreover the max-

imal ideals pR and qR are weak supplements but not supplements of

each other. So R is a semilocal ring which is not semiperfect.

For our next result we need the following:

Lemma 3.4. Let R be a ring, r, a ∈ R and b := 1−ra. Then Ra∩Rb =

Rab.

Proof. x ∈ Ra ∩ Rb, then x = ta = sb = s(1 − ra) ⇒ s = (t + sr)a ∈

Ra. Hence Ra ∩ Rb ⊆ Rab. Conversely Rab = Ra(1 − ra) = R(1 −

ar)a ⊆ Ra ∩ Rb. �

We are now ready to give characterizations of semilocal rings in terms

of finite hollow dimension and to prove results from Camps-Dicks (see

[CD, Theorem 1]) in a module-theoretic way.

Note that for a semilocal ring R, RR is a good module, and so for

any left R-module N we have Rad (M) = Jac (R) M (see [W, 23.7]).

Theorem 3.5. For any ring R the following statements are equivalent:

(a) R is semilocal;

(b) every left R-module is semilocal;

(c) every left R-module is the direct sum of a semisimple module and

a semilocal module with essential radical;

(d) every left R-module with small radical is weakly supplemented;

(e) every finitely generated left R-module has finite hollow dimension;

(f) every product of semisimple left R-modules is semisimple;

(g) there exists an n ∈ IN and a map d : R → {0, 1, . . . , n} such that

for all a, b ∈ R the following holds:

(i) d(a) = 0 ⇒ a is a unit;

(ii) d(a(1 − ba)) = d(a) + d(1 − ba);

(h) there exists a partial ordering (R,≤) such that:

(i) (R,≤) is an artinian poset;

(ii) for all a, b ∈ R such that 1 − ba is not a unit, we have a >

a(1 − ba).
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In this case hdim(R) ≤ n holds.

Proof. (a) ⇔ (b) ⇔ (c) ⇔ (d) ⇔ (e) follow from Theorem 3.1.

(b) ⇒ (f) By the remark above, semilocal rings are good rings and

hence Rad (M) = Jac (R)M holds for every left R-module. Let M be

a product of semisimple modules. Since for all m ∈ M Jac (R)Rm = 0

holds as Rm is semisimple, we have Rad (M) = Jac (R)M = 0. By (b)

M is semisimple.

(f) ⇒ (a) R/Jac(R) is a submodule of a product of simple modules.

By (f) this product is semisimple and so is R/Jac (R).

(a) ⇒ (g) By Corollary 3.2 RR has finite hollow dimension. By

Theorem 1.5 there is a map d′. Set d(a) := d′(Ra) for all a ∈ R and

(i) and (ii) follow easily from the properties of d′.

(g) ⇒ (h) Let a < b :⇔ d(a) < d(b) and a = b :⇔ d(a) = d(b)

for all a, b ∈ R. If 1 − ba is not a unit, then d(1 − ba) > 0 implies

d(a) < d(a(1 − ba)) and hence a > a(1 − ba).

(h) ⇒ (a) Assume that there exists a left ideal I ⊂ R that has no

weak supplement. Then we can construct an infinite descending chain

of elements

1 > b1 > b2 > · · · > bn > · · ·

such that for all n ∈ IN we have I + Rbn = R. Since (R,≤) is artinian

- this is a contradiction, hence I must have a weak supplement in R.

By Corollary 3.2 R is semilocal.

We can construct the chain as follows: Let n = 1. Since I 6≪ R there

is an a ∈ I such that 1 − a is not a unit in R. Hence 1 > 1 − a =: b1

and I + Rb1 = R holds.

Now assume that we constructed a chain 1 > b1 > b2 > · · · > bn for

n ≥ 1 with I + Rbn = R. By assumption I ∩ Rbn 6≪ R implies that

there is an r ∈ R, such that rbn ∈ I and x := 1 − rbn is not a unit in

R. Hence

bn > bn(1 − rbn) = bnx =: bn+1.

Moreover, by the modularity law, we have Rbn = (I∩Rbn)+(Rbn∩Rx).

Together with Lemma 3.4, R = I +Rbn = I +(Rbn ∩Rx) = I + Rbn+1

holds. �
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Remark 3.6. Theorem 3.5 generalizes the well-known fact that a ring

R is semiperfect if and only if every finitely generated R-module is

supplemented.

Recall that every finitely generated R-module over a semiperfect ring

R has a projective cover.

Corollary 3.7. Every finitely generated R-module over a semilocal

ring R is a direct summand of a module having a finitely generated

free cover.

Proof. Let M be a finitely generated R-module. Then there exists a

number k and an epimorphism f : Rk → M . Since R is semilocal, Rk

is weakly supplemented. Hence K := Ker (f) has a weak supplement

L ⊆ Rk. Thus the natural projection Rk → M ⊕ (Rk/L) with kernel

K ∩ L ≪ Rk implies that Rk is a projective cover for M ⊕ (Rk/L). �

Comparing semiperfect and semilocal rings the following fact is of

interest:

Theorem 3.8. For a ring R the following statements are equivalent.

(a) R is semiperfect;

(b) R is semilocal and every simple R-module has a flat cover;

(c) R is semilocal and every finitely generated R-module has a flat

cover.

Proof. (a) ⇒ (c) holds since projective modules are flat.

(c) ⇒ (b) is trivial.

(b) ⇒ (a) Assume R is semilocal and consider R/Jac(R) = E1⊕· · ·⊕

En with Ei simple R-modules. Every simple R-module is isomorphic

to one of the E ′
is. By hypothesis every Ei has a flat cover Li. Thus

L := L1 ⊕ · · · ⊕ Ln is a flat cover of R/Jac (R). Hence we obtain the

following diagram:

R




y

L
f

−−−→ R/Jac (R) −−−→ 0
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that can be extended by a homomorphism g : R → L. Since f is a small

epimorphism and gf is epimorph, g must be epimorph with Ker (g) ⊆

Ker (gf) = Jac (R). Hence R is a projective cover of the flat module

L. By [W, 36.4], L ≃ R and hence all Li must be projective. Thus

each simple R-module has a projective cover and so R is semiperfect

(see [W, 42.6]). �

Remark 3.9. It follows also from Theorem [W, 36.4] that a ring R

is semisimple if and only if R is semilocal and every simple R-module

is flat. Since in this case R is a projective cover of the flat module

R/Jac (R) and hence R ≃ R/Jac (R) holds.

The following result was first proved by T.Takeuchi in [T94]. We

will give a new proof of his result.

Theorem 3.10 (Takeuchi). Let M be a self-projective R-module. Then

M has finite hollow dimension if and only if S := End(M) is semilocal.

Moreover we have hdim(RM) = hdim(S).

Proof. ⇒: Let {I1, . . . , In} be a coindependent family of proper left

ideals of SS. By Lemma 1.2, we may assume that the Ik
′s are finitely

generated. Consider the epimorphism

S −−−→
⊕n

k=1 S/Ik −−−→ 0.

Applying M ⊗S − we get the exact sequence

M −−−→
⊕n

k=1 M/MIk −−−→ 0,

since M ⊗S S/Ik ≃ M/MIk. We have Ik = Hom (M, MIk) and hence

MIk 6= M . Thus hdim(S) ≤ hdim(RM) and so S is semilocal by

Corollary 3.2.

⇐: Consider an epimorphism (with Ni 6= M)

M −−−→
⊕n

i=1 M/Ni −−−→ 0.

Since M is self-projective, Hom (M,−) yields an exact sequence

S −−−→
⊕n

i=1 Hom (M, M/Ni) −−−→ 0,

showing that hdim(RM) ≤ hdim(S). �
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Remark 3.11. More generally, if P is an M-projective module that

generates M , then one can apply Hom (P,−) in the same way as in

Theorem 3.10 to obtain hdim(RM) ≤ hdim(SHom(P, M)), where S :=

End (P ).

The following Corollaries are immediate consequences from Takeuchi’s

result.

Corollary 3.12. A ring R is semilocal if and only if every finitely

generated, self-projective left (or right) R-module has a semilocal endo-

morphism ring.

Proof. The assertion follows from Theorem 3.5 and Theorem 3.10. �

Corollary 3.13. Let M be a self-projective R-module with semilocal

endomorphism ring. Then End (M/N) is semilocal for any fully in-

variant submodule N of M .

Proof. Since M is self-projective and N fully invariant we get by

[W, 18.2] that M/N is self-projective. By Theorem 3.10 we have

hdim(End(M)) = hdim(M) ≥ hdim(M/N) = hdim(End(M/N)). �

Analogous to the fact that a projective module has a semiperfect en-

domorphism ring if and only if it is finitely generated and supplemented

(see [W, 42.12]) we get the following corollary:

Corollary 3.14. Let M be a self-projective R-module. M is finitely

generated and weakly supplemented if and only if End (M) is semilocal

and Rad (M) ≪ M .

Proof. This follows from Theorem 2.7, Theorem 3.10 and the fact

that a module with finite hollow dimension and small radical is finitely

generated. �

The author does not know if the hypothesis of a small radical of M

is necessary. He raises the following

Question: Is every (self-)projective R-module with semilocal endo-

morphism ring finitely generated ?
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Remark 3.15. This question is closely related to an old problem of

D. Lazard. He considered rings with the property that all projective

modules P with P/Rad (P ) finitely generated are already finitely gen-

erated. Following H. Zöschinger, rings with this property are called

L-rings. He proved in [Z81] that this property is left-right symmetric,

i.e. R is a left L-ring if and only if it is a right L-ring. Moreover he

showed that a ring R is an L-ring if and only if every supplement in R is

a direct summand ([Z81, Satz 2.3]). Hence semiperfect and semiprim-

itive rings, i.e rings with zero Jacobson radical, are L-rings. In [J],

S.Jøndrup showed that every PI-ring is an L-ring. A good resource for

some characterizations of L-rings is [MS].

Corollary 3.16. Let R be an L-ring and P a projective R-module.

Then P is finitely generated and weakly supplemented if and only if

End (P ) is semilocal.

Proof. Assume End (P ) to be semilocal. By Takeuchi’s result (Theo-

rem 3.10) P has finite hollow dimension and hence P/Rad(P ) is finitely

generated. As R is an L-ring, P is finitely generated. �

Remark 3.17. In [GS] V.N. Gerasimov and I.I. Sakhaev constructed

a non - commutative semilocal ring that is not an L-ring (see also [S91],

[S93]). Hence a negative answer to the question above might be more

likely, but the condition of a semilocal endomorphism ring End (P ) is

stronger than P/Rad (P ) being finitely generated.

A ring R is left f -semiperfect or semiregular if every finitely gener-

ated left ideal has a supplement in RR, equivalently, R/Jac (R) is von

Neumann regular and idempotents in R/Jac (R) can be lifted to RR

(see [W, 42.11]). Analogous to that we have:

Proposition 3.18. For any ring R the following statements are equiv-

alent:

(a) every principal left ideal of R has a weak supplement in RR;

(b) R/Jac (R) is von Neumann regular;

(c) every principal right ideal of R has a weak supplement in RR;
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Proof. (a) ⇒ (b) Let a ∈ R. By assumption there exists a weak

supplement I ⊂ R of Ra. Hence there exist b ∈ R and x ∈ I such that

x = 1 − ba. Moreover, by Lemma 3.4, Rax = Ra ∩ Rx ⊆ Ra ∩ I ≪ R

implies ax = a − aba ∈ Jac (R). Thus R/Jac (R) is von Neumann

regular.

(b) ⇒ (a) For any a ∈ R \ Jac (R) we get an element b ∈ R \ Jac (R)

such that a− aba ∈ Jac (R). Hence R(1− ba) is a weak supplement of

Ra in RR by Lemma 3.4.

(b) ⇔ (c) analogous. �

Remark 3.19. It is not difficult to see that Ra has a weak supplement

in RR if and only if aR has a weak supplement in RR for all a ∈ R.

The situation for supplements is not that clear. Indeed H.Zöschinger

proved that the property: Ra has a supplement in RR implies aR has

a supplement in RR is equivalent with R being an L-ring (see [Z81]).

The following proposition, due to S. Page, relates uniform and hollow

dimension.

Proposition 3.20 (Page). Let RQ be an injective cogenerator in R-

Mod, T = End(Q) and M any R-module. Then hdim(RM) = udim(Hom(M, Q)T ).

Proof. See [P, Proposition 1]. �

Remark 3.21. More generally this result can be extended to any in-

jective cogenerator RQ in σ[RM ] - the full subcategory of R-Mod that

contains all M-subgenerated left R-modules. Hence for any RN ∈

σ[M ] the formula hdim(RN) = udim(Hom (N, Q)T ) holds where T :=

End (Q) (see [Lo] for details).

Using S. Page’s result we get another characterization of semilocal

rings in terms of hollow and uniform dimension.

Theorem 3.22. The following statements are equivalent for a ring R.

(a) R is semilocal;

(b) there exists a generator RG in R-Mod such that GEnd (G) has finite

hollow dimension;
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(b’) for any generator RG in R-Mod, GEnd (G) has finite hollow dimen-

sion;

(c) there exists an injective cogenerator RQ in R-Mod such that QEnd (Q)

has finite uniform dimension;

(c’) for any injective cogenerator RQ in R-Mod, QEnd (Q) has finite

uniform dimension.

In this case hdim(GEnd (G)) = length(R/Jac (R)) = udim(QEnd (Q))

holds.

Proof. Let RG ∈ R-Mod and S = End (G). From [W, 18.8] we know

that RG is a generator in R-Mod if and only if GS is finitely generated,

projective in S-Mod and R ≃ EndS(GS). Hence by Theorem 3.10,

we get hdim(GS) = hdim(EndS(GS)) = hdim(R). This proves (a) ⇔

(b) ⇔ (b′).

By Page’s Proposition 3.20 we have hdim(R) = udim(QT ) where

T = End (Q) for any injective cogenerator RQ. This proves (a) ⇔

(c) ⇔ (c′). �
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