ON SEMILOCAL MODULES AND RINGS

CHRISTIAN LOMP

HEINRICH HEINE UNIVERSITÄT D-40225 DÜSSELDORF, GERMANY LOMPMATH.UNI-DUESSELDORF.DE

ABSTRACT. It is well-known that a ring R is semiperfect if and only if $_{R}R$ (or R_{R}) is a supplemented module. Considering weak supplements instead of supplements we show that weakly supplemented modules M are semilocal (i.e., M/Rad(M) is semisimple) and that R is a semilocal ring if and only if $_{R}R$ (or R_{R}) is weakly supplemented. In this context the notion of finite hollow dimension (or finite dual Goldie dimension) of modules is of interest and yields a natural interpretation of the Camps-Dicks characterization of semilocal rings. Finitely generated modules are weakly supplemented if and only if they have finite hollow dimension (or are semilocal).

1. Preliminaries

Let R be an associative ring with unit and throughout the paper M will be a left unital R-module. By $N \leq M$ we denote an essential submodule $N \subset M$. M is uniform if $M \neq 0$ and every non-zero submodule is essential in M, and M has finite uniform dimension (or finite Goldie dimension) if there exists a sequence

$$0 \longrightarrow \bigoplus_{i=1}^n U_i \xrightarrow{f} M,$$

where all the U_i are uniform and the image of f is essential in M. Then n is called the uniform dimension of M and we write udim(M) = n. It is well known that this is equivalent to M having no infinite

I would like to thank Nyguen Viet Dung for bringing the R. Camps and W. Dicks paper to my attention. Moreover I want to express my thanks to Patrick F. Smith and Robert Wisbauer for their interest and helpful suggestions.

independent family of non-zero submodules (there is a maximal finite independent family of uniform submodules).

We denote a small submodule N of M by $N \ll M$. A module M is said to be *hollow* if $M \neq 0$ and every proper submodule is small in M. M is said to have *finite hollow dimension* (or *finite dual Goldie dimension*) if there exists an exact sequence

$$M \xrightarrow{g} \bigoplus_{i=1}^n H_i \longrightarrow 0$$

where all the H_i are hollow and the kernel of g is small in M. Then n is called the hollow dimension of M and we write hdim(M) = n.

B. Sarath and K. Varadarajan showed in [SV, Theorem 1.8] that in this case M does not allow an epimorphism to a direct sum with more than n summands. Dual to the notion of an independent family of submodules we have:

Definition 1.1. Let M be an R-module and $\{K_{\lambda}\}_{\Lambda}$ a family of proper submodules of M. $\{K_{\lambda}\}_{\Lambda}$ is called coindependent (see [T76]) if for every $\lambda \in \Lambda$ and finite subset $J \subseteq \Lambda \setminus \{\lambda\}$

$$K_{\lambda} + \bigcap_{j \in J} K_j = M$$

holds (convention: if J is the empty set, then set $\bigcap_J K_j := M$).

For finitely generated modules it usually suffices to consider coindependent families of finitely generated submodules as our next observation shows.

Lemma 1.2. Let M be a finitely generated R-module and $\{N_1, \ldots, N_m\}$ a coindependent family of submodules. Then there exists a coindependent family of finitely generated submodules $L_i \subseteq N_i$, $1 \leq i \leq m$.

Proof. Since M is finitely generated, for each $1 \leq i \leq m$, there exist finitely generated submodules $X_i \subseteq N_i$ and $Y_i \subseteq \bigcap_{j \neq i} N_j$ such that $X_i + Y_i = M$. Let $L_i := X_i + \sum_{j \neq i} Y_j \subseteq N_i$. As $L_i + \bigcap_{j \neq i} L_j \supseteq X_i + Y_i = M$ holds the result follows. \Box

Theorem 1.3 (Grezeszcuk, Puczyłowski, Reiter, Takeuchi, Varadarajan). For an R-module M the following statements are equivalent:

- (a) *M* has finite hollow dimension.
- (b) *M* does not contain an infinite coindpendent family of submodules.
- (c) There exists a unique number n and a coindependent family $\{K_1, \ldots, K_n\}$ of proper submodules, such that $M/K_1, \ldots, M/K_n$ are hollow modules and $K_1 \cap \cdots \cap K_n \ll M$.
- (d) For every descending chain $K_1 \supset K_2 \supset K_3 \supset \cdots$ of submodules of M, there exits a number n such that $K_n/K_m \ll M/K_m$, for all $m \ge n$.

Proof. The equivalence of (b), (c), (d) can be found in [GP]. The equivalence of (a) and (c) is given by the chinese remainder theorem (see [W, 9.12]). \Box

Remark 1.4. Let M be an R-module and N, L submodules of M. Then the following properties hold:

- (1) $hdim(M/N) \le hdim(M);$
- (2) $N \ll M \Rightarrow hdim(M) = hdim(M/N);$
- (3) $hdim(N \oplus L) = hdim(N) + hdim(L).$

Moreover if M is self-projective and has finite hollow dimension, then every surjective endomorphism is an isomorphism.

We refer to [GP], [HaS], [HeS], [Lo], [Re], [T76] and [V] for more information on dual Goldie dimension.

The following theorem can be seen as an attempt to transfer R. Camps and W. Dicks characterization of semilocal rings [CD] to arbitrary modules with finite hollow dimension. Denote by $\mathcal{L}(M)$ the lattice of submodules of a module M.

Theorem 1.5. For M the following statements are equivalent:

- (a) *M* has finite hollow dimension.
- (b) There exists an $n \in \mathbb{N}$ and a mapping $d : \mathcal{L}(M) \to \{0, 1, \dots, n\}$ such that for all $N, L \in \mathcal{L}(M)$:
 - (i) If d(N) = 0, then N = M.
 - (ii) If N + L = M, then $d(N \cap L) = d(N) + d(L)$.
- (c) There exists a partial ordering $(\mathcal{L}(M), \leq)$ such that
 - (i) $(\mathcal{L}(M), \leq)$ is an artinian poset;

(ii) for all $N, L \in \mathcal{L}(M)$ with N + L = M: if $L \neq M$, then $N > N \cap L$.

Proof. $(a) \Rightarrow (b)$ Let d(N) := hdim(M/N); then the conditions (i) and (ii) are easily checked.

 $(b) \Rightarrow (c)$ Let $N < L :\Leftrightarrow d(N) < d(L)$ and $N = L :\Leftrightarrow d(N) = d(L)$ then $(\mathcal{L}(M), \leq)$ is artinian. Let $N, L \in \mathcal{L}(M)$ with N + L = M and $L \neq M$. By (i) and (ii) we have $d(N \cap L) = d(N) + d(L) < d(N)$. Hence $N > N \cap L$.

 $(c) \Rightarrow (a)$ Assume that $\{K_i\}_{\mathbb{N}}$ is an infinite coindependent family of submodules of M. Then we have for all $i \in \mathbb{N}$: $K_1 \cap \cdots \cap K_i + K_{i+1} = M$ and $K_{i+1} \neq M$. Hence by (ii) we get the infinite descending chain

$$K_1 > K_1 \cap K_2 > \dots > K_1 \cap \dots \cap K_i > \dots$$

contradicting property (i). Hence M does not contain an infinite coindependent family of submodules. \Box

2. Weakly Supplemented Modules

Dual to a complement of a submodule N of M the supplement of N is defined as a submodule L of M minimal with respect to N + L = M. This is equivalent to N + L = M and $N \cap L \ll L$. Recall that M is supplemented if every submodule has a supplement in M.

More generally, a submodule N of M has a weak supplement L in M if N + L = M and $N \cap L \ll M$, and M is called weakly supplemented if every submodule N of M has a weak supplement (see Zöschinger [Z78a]). Examples for weakly supplemented modules are supplemented, artinian, linearly compact, uniserial or hollow modules. For supplemented modules over commutative local noetherian rings we refer to [Z78a], [Z78b], [Z86] and [Ru].

Before we give a summarizing list of properties of weakly supplemented modules, we will state a general result:

Proposition 2.1. For a proper submodule $N \subset M$, the following are equivalent:

(a) M/N is semisimple;

- (b) for every $L \subseteq M$ there exists a submodule $K \subseteq M$ such that L + K = M and $L \cap K \subseteq N$;
- (c) there exists a decomposition $M = M_1 \oplus M_2$ such that M_1 is semisimple, $N \leq M_2$ and M_2/N is semisimple.

Proof. (a) \Rightarrow (c) Let M_1 be a complement of N. $M_1 \simeq (M_1 \oplus N)/N$ is a direct summand in M/N, hence semisimple and there is a semisimple submodule M_2/N such that $(M_1 \oplus N)/N \oplus M_2/N = M/N$. Thus $M = M_1 + M_2$ and $M_1 \cap M_2 \subseteq N \cap M_1 = 0$ implies $M = M_1 \oplus M_2$. Since M_1 is a complement we have by the natural isomorphisms $N \simeq (M_1 \oplus N)/M_1 \leq M/M_1 \simeq M_2$ that $N \leq M_2$.

(c) \Rightarrow (a) \Rightarrow (b) clear.

(b) \Rightarrow (a) Let $L/N \subseteq M/N$; then there exists a submodule $K \subseteq M$ such that L+K = M and $L \cap K \subseteq N$. Thus $L/N \oplus (K+N)/N = M/N$. Hence every submodule of M/N is a direct summand. \Box

Let $\operatorname{Rad}(M)$ denote the radical of M. We call M a semilocal module if $M/\operatorname{Rad}(M)$ is semisimple. Any semilocal module M is a good module, i.e., for every homomorphism $f: M \to N$, $f(\operatorname{Rad}(M)) = \operatorname{Rad}(f(M))$ (see [W]).

We call N a small cover of a module M if there exists an epimorphism $f : N \to M$ such that Ker $(f) \ll M$. Then f is called a small epimorphism. N is called a flat cover, projective cover resp. free cover of M if N is a small cover of M and N is a flat, projective resp. free module. Note that this definition of a flat cover is different from Enochs' definition.

Proposition 2.2. Assume M to be weakly supplemented. Then:

- (1) M is semilocal;
- (2) $M = M_1 \oplus M_2$ with M_1 semisimple, M_2 semilocal and $\operatorname{Rad}(M) \trianglelefteq M_2$;
- (3) every factor module of M is weakly supplemented;
- (4) any small cover of M is weakly supplemented;
- (5) every supplement in M and every direct summand of M is weakly supplemented.

Proof. (1) and (2) follow from Proposition 2.1 since for every $L \subseteq M$ there exists a weak supplement $K \subseteq M$ such that L + K = M and $L \cap K \subseteq \text{Rad}(M)$.

(3) Let $f: M \to N$ be an epimorphism and $K \subset N$, then $f^{-1}(K)$ has a weak supplement L in M and it is straightforward to prove that f(L) is a weak supplement of K in N.

(4) Let N be a small cover of M and $f : N \to M$ be a small epimorphism. First note that $f^{-1}(K) \ll N$ for every $K \ll M$ holds since Ker $(f) \ll N$. Let $L \subset N$. Then f(L) has a weak supplement X in M. Again it is easy to check that $f^{-1}(X)$ is a weak supplement of L in N.

(5) If $N \subseteq M$ is a supplement of M, then N + K = M for some $K \subseteq M$ and $K \cap N \ll N$. By (3), $M/K \simeq N/(N \cap K)$ is weakly supplemented and by (4), N is weakly supplemented. Direct summands are supplements and hence weakly supplemented. \Box

Let length(M) denote the length of the module M.

Corollary 2.3. An *R*-module *M* with Rad (M) = 0 is weakly supplemented if and only if *M* is semisimple. In this case hdim(M) = length(M) holds.

Proof. This follows by Proposition 2.2(1). \Box

We need the following technical lemma to show that every finite sum of weakly supplemented modules is weakly supplemented.

Lemma 2.4. Let M be an R-module with submodules K and M_1 . Assume M_1 is weakly supplemented and $M_1 + K$ has a weak supplement in M. Then K has a weak supplement in M.

Proof. By assumption $M_1 + K$ has a weak supplement $N \subseteq M$, such that $M_1 + K + N = M$ and $(M_1 + K) \cap N \ll M$. Because M_1 is weakly supplemented, $(K + N) \cap M_1$ has a weak supplement $L \subseteq M_1$. So

 $M = M_1 + K + N = L + ((K + N) \cap M_1) + K + N = K + (L + N)$ and

 $K \cap (L+N) \subseteq ((K+L) \cap N) + ((K+N) \cap L \subseteq ((K+M_1) \cap N) + ((K+N) \cap L) \ll M.$ Hence N + L is a weak supplement of K in M. \Box **Proposition 2.5.** Let $M = M_1 + M_2$, where M_1 and M_2 are weakly supplemented, then M is weakly supplemented.

Proof. For every submodule $N \subseteq M$, $M_1 + (M_2 + N)$ has the trivial weak supplement 0 and by the Lemma above $M_2 + N$ has a weak supplement in M as well. Applying the Lemma again we get a weak supplement for N. \Box

Corollary 2.6. Every finite sum of weakly supplemented modules is weakly supplemented.

The relationship between the concepts 'hollow dimension' and 'weakly supplemented' is expressed in the following theorem.

Theorem 2.7. Consider the following properties:

- (i) *M* has finite hollow dimension;
- (ii) *M* is weakly supplemented;
- (iii) *M* is semilocal.

Then $(i) \Rightarrow (ii) \Rightarrow (iii)$ and $hdim(M) \ge length(M/Rad(M))$ holds. If $Rad(M) \ll M$ then $(iii) \Rightarrow (ii)$ holds.

If M is finitely generated then $(iii) \Rightarrow (i)$ and hdim(M) = length(M/Rad(M)) holds.

Proof. $(i) \Rightarrow (ii)$ There is a small epimorphism $f : M \to \bigoplus_{i=1}^{n} H_i$ with hollow modules H_i . Since hollow modules are (weakly) supplemented we get by Corollary 2.6 that $\bigoplus_{i=1}^{n} H_i$ is weakly supplemented. Since fis a small epimorphism we get by Proposition 2.2(4) that M is weakly supplemented.

 $(ii) \Rightarrow (iii)$ by Propositon 2.2(1).

If $Rad(M) \ll M$, then $(iii) \Rightarrow (ii)$ follows by Proposition 2.2(4).

If M is finitely generated and (iii) holds, then M is a small cover of M/Rad(M). By Corollary 2.3, hdim(M/Rad(M)) = length(M/Rad(M)), and by remark 1.4(2), hdim(M) = length(M/Rad(M)). \Box

3. Semilocal Modules and Rings

Let Gen(M) denote the class of *M*-generated modules.

Theorem 3.1. The following statements about M are equivalent:

- (a) *M* is semilocal;
- (b) any $N \in Gen(M)$ is semilocal;
- (c) any $N \in Gen(M)$ is a direct sum of a semisimple module and a semilocal module with essential radical;
- (d) any $N \in Gen(M)$ with small radical is weakly supplemented;
- (e) any finitely generated $N \in Gen(M)$ has finite hollow dimension.

Proof. $(a) \Rightarrow (b)$ For every $N \in Gen(M)$ there exists a set Λ and an epimorphism $f: M^{(\Lambda)} \to N$. Since $f(\operatorname{Rad}(M^{(\Lambda)})) \subseteq \operatorname{Rad}(N)$ and $M^{(\Lambda)}/\operatorname{Rad}(M^{(\Lambda)}) \simeq (M/\operatorname{Rad}(M))^{(\Lambda)}$ always holds we get an epimorphism $\overline{f}: (M/\operatorname{Rad}(M))^{(\Lambda)} \to N/\operatorname{Rad}(N)$. Hence N is semilocal.

- $(b) \Rightarrow (a)$ trivial.
- $(b) \Leftrightarrow (c)$ by Proposition 2.1.
- $(b) \Leftrightarrow (d) \Leftrightarrow (e)$ by Theorem 2.7 \Box

Recall that the ring R is *semilocal* if $_{R}R$ (or R_{R}) is a semilocal R-module.

Corollary 3.2. For a ring R the following statements are equivalent:

- (a) $_{R}R$ is weakly supplemented;
- (b) $_{R}R$ has finite hollow dimension;
- (c) R is semilocal;
- (d) R_R has finite hollow dimension;
- (e) R_R is weakly supplemented.

In this case $hdim(_{R}R) = length(R/Jac(R)) = hdim(R_{R})$.

Proof. Apply Theorem 2.7 and use that 'semilocal' is a left-right symmetric property. \Box

Remark 3.3. Consider the ring

$$R := \mathbb{Z}_{p,q} := \left\{ \frac{a}{b} | a, b \in \mathbb{Z}, b \neq 0, p \nmid b \text{ and } q \nmid b \right\},\$$

where p and q are primes. Then R is a commutative uniform semilocal noetherian domain with two maximal ideals. Since R is uniform, the decomposition of R/Jac(R) cannot be lifted to R. Moreover the maximal ideals pR and qR are weak supplements but not supplements of each other. So R is a semilocal ring which is not semiperfect.

For our next result we need the following:

Lemma 3.4. Let R be a ring, $r, a \in R$ and b := 1-ra. Then $Ra \cap Rb = Rab$.

Proof. $x \in Ra \cap Rb$, then $x = ta = sb = s(1 - ra) \Rightarrow s = (t + sr)a \in Ra$. Hence $Ra \cap Rb \subseteq Rab$. Conversely $Rab = Ra(1 - ra) = R(1 - ar)a \subseteq Ra \cap Rb$. \Box

We are now ready to give characterizations of semilocal rings in terms of finite hollow dimension and to prove results from Camps-Dicks (see [CD, Theorem 1]) in a module-theoretic way.

Note that for a semilocal ring R, $_RR$ is a good module, and so for any left R-module N we have Rad (M) = Jac(R) M (see [W, 23.7]).

Theorem 3.5. For any ring R the following statements are equivalent:

- (a) R is semilocal;
- (b) every left *R*-module is semilocal;
- (c) every left R-module is the direct sum of a semisimple module and a semilocal module with essential radical;
- (d) every left *R*-module with small radical is weakly supplemented;
- (e) every finitely generated left R-module has finite hollow dimension;
- (f) every product of semisimple left R-modules is semisimple;
- (g) there exists an $n \in \mathbb{N}$ and a map $d : R \to \{0, 1, ..., n\}$ such that for all $a, b \in R$ the following holds:
 - (i) $d(a) = 0 \Rightarrow a$ is a unit;

(ii) d(a(1-ba)) = d(a) + d(1-ba);

- (h) there exists a partial ordering (R, \leq) such that:
 - (i) (R, \leq) is an artinian poset;
 - (ii) for all $a, b \in R$ such that 1 ba is not a unit, we have a > a(1 ba).

In this case $hdim(R) \leq n$ holds.

Proof. $(a) \Leftrightarrow (b) \Leftrightarrow (c) \Leftrightarrow (d) \Leftrightarrow (e)$ follow from Theorem 3.1.

 $(b) \Rightarrow (f)$ By the remark above, semilocal rings are good rings and hence Rad (M) = Jac(R)M holds for every left *R*-module. Let *M* be a product of semisimple modules. Since for all $m \in M$ Jac (R)Rm = 0holds as Rm is semisimple, we have Rad (M) = Jac(R)M = 0. By (b)*M* is semisimple.

 $(f) \Rightarrow (a) R/\operatorname{Jac}(R)$ is a submodule of a product of simple modules. By (f) this product is semisimple and so is $R/\operatorname{Jac}(R)$.

 $(a) \Rightarrow (g)$ By Corollary 3.2 $_{R}R$ has finite hollow dimension. By Theorem 1.5 there is a map d'. Set d(a) := d'(Ra) for all $a \in R$ and (i) and (ii) follow easily from the properties of d'.

 $(g) \Rightarrow (h)$ Let $a < b :\Leftrightarrow d(a) < d(b)$ and $a = b :\Leftrightarrow d(a) = d(b)$ for all $a, b \in R$. If 1 - ba is not a unit, then d(1 - ba) > 0 implies d(a) < d(a(1 - ba)) and hence a > a(1 - ba).

 $(h) \Rightarrow (a)$ Assume that there exists a left ideal $I \subset R$ that has no weak supplement. Then we can construct an infinite descending chain of elements

$$1 > b_1 > b_2 > \cdots > b_n > \cdots$$

such that for all $n \in \mathbb{N}$ we have $I + Rb_n = R$. Since (R, \leq) is artinian - this is a contradiction, hence I must have a weak supplement in R. By Corollary 3.2 R is semilocal.

We can construct the chain as follows: Let n = 1. Since $I \not\ll R$ there is an $a \in I$ such that 1 - a is not a unit in R. Hence $1 > 1 - a =: b_1$ and $I + Rb_1 = R$ holds.

Now assume that we constructed a chain $1 > b_1 > b_2 > \cdots > b_n$ for $n \ge 1$ with $I + Rb_n = R$. By assumption $I \cap Rb_n \not\ll R$ implies that there is an $r \in R$, such that $rb_n \in I$ and $x := 1 - rb_n$ is not a unit in R. Hence

$$b_n > b_n(1 - rb_n) = b_n x =: b_{n+1}.$$

Moreover, by the modularity law, we have $Rb_n = (I \cap Rb_n) + (Rb_n \cap Rx)$. Together with Lemma 3.4, $R = I + Rb_n = I + (Rb_n \cap Rx) = I + Rb_{n+1}$ holds. \Box **Remark 3.6.** Theorem 3.5 generalizes the well-known fact that a ring R is semiperfect if and only if every finitely generated R-module is supplemented.

Recall that every finitely generated R-module over a semiperfect ring R has a projective cover.

Corollary 3.7. Every finitely generated R-module over a semilocal ring R is a direct summand of a module having a finitely generated free cover.

Proof. Let M be a finitely generated R-module. Then there exists a number k and an epimorphism $f: \mathbb{R}^k \to M$. Since R is semilocal, \mathbb{R}^k is weakly supplemented. Hence K := Ker(f) has a weak supplement $L \subseteq \mathbb{R}^k$. Thus the natural projection $\mathbb{R}^k \to M \oplus (\mathbb{R}^k/L)$ with kernel $K \cap L \ll \mathbb{R}^k$ implies that \mathbb{R}^k is a projective cover for $M \oplus (\mathbb{R}^k/L)$. \Box

Comparing semiperfect and semilocal rings the following fact is of interest:

Theorem 3.8. For a ring R the following statements are equivalent.

- (a) R is semiperfect;
- (b) R is semilocal and every simple R-module has a flat cover;
- (c) R is semilocal and every finitely generated R-module has a flat cover.

Proof. $(a) \Rightarrow (c)$ holds since projective modules are flat.

 $(c) \Rightarrow (b)$ is trivial.

 $(b) \Rightarrow (a)$ Assume R is semilocal and consider $R/\operatorname{Jac}(R) = E_1 \oplus \cdots \oplus E_n$ with E_i simple R-modules. Every simple R-module is isomorphic to one of the E'_i s. By hypothesis every E_i has a flat cover L_i . Thus $L := L_1 \oplus \cdots \oplus L_n$ is a flat cover of $R/\operatorname{Jac}(R)$. Hence we obtain the following diagram:

$$L \xrightarrow{f} R/\text{Jac}(R) \longrightarrow 0$$

that can be extended by a homomorphism $g: R \to L$. Since f is a small epimorphism and gf is epimorph, g must be epimorph with Ker $(g) \subseteq$ Ker (gf) = Jac (R). Hence R is a projective cover of the flat module L. By [W, 36.4], $L \simeq R$ and hence all L_i must be projective. Thus each simple R-module has a projective cover and so R is semiperfect (see [W, 42.6]). \Box

Remark 3.9. It follows also from Theorem [W, 36.4] that a ring R is semisimple if and only if R is semilocal and every simple R-module is flat. Since in this case R is a projective cover of the flat module R/Jac(R) and hence $R \simeq R/\text{Jac}(R)$ holds.

The following result was first proved by T.Takeuchi in [T94]. We will give a new proof of his result.

Theorem 3.10 (Takeuchi). Let M be a self-projective R-module. Then M has finite hollow dimension if and only if S := End(M) is semilocal. Moreover we have $hdim(_RM) = hdim(S)$.

Proof. \Rightarrow : Let $\{I_1, \ldots, I_n\}$ be a coindependent family of proper left ideals of ${}_SS$. By Lemma 1.2, we may assume that the I_k 's are finitely generated. Consider the epimorphism

 $S \longrightarrow \bigoplus_{k=1}^n S/I_k \longrightarrow 0.$

Applying $M \otimes_S -$ we get the exact sequence

 $M \longrightarrow \bigoplus_{k=1}^n M/MI_k \longrightarrow 0,$

since $M \otimes_S S/I_k \simeq M/MI_k$. We have $I_k = \text{Hom}(M, MI_k)$ and hence $MI_k \neq M$. Thus $hdim(S) \leq hdim(_RM)$ and so S is semilocal by Corollary 3.2.

 \Leftarrow : Consider an epimorphism (with $N_i \neq M$)

 $M \longrightarrow \bigoplus_{i=1}^n M/N_i \longrightarrow 0.$

Since M is self-projective, Hom (M, -) yields an exact sequence

 $S \longrightarrow \bigoplus_{i=1}^{n} \operatorname{Hom}(M, M/N_{i}) \longrightarrow 0,$

showing that $hdim(_RM) \leq hdim(S)$. \Box

Remark 3.11. More generally, if P is an M-projective module that generates M, then one can apply Hom (P, -) in the same way as in Theorem 3.10 to obtain $hdim(_RM) \leq hdim(_S\text{Hom}(P, M))$, where S := End (P).

The following Corollaries are immediate consequences from Takeuchi's result.

Corollary 3.12. A ring R is semilocal if and only if every finitely generated, self-projective left (or right) R-module has a semilocal endomorphism ring.

Proof. The assertion follows from Theorem 3.5 and Theorem 3.10. \Box

Corollary 3.13. Let M be a self-projective R-module with semilocal endomorphism ring. Then End (M/N) is semilocal for any fully invariant submodule N of M.

Proof. Since M is self-projective and N fully invariant we get by [W, 18.2] that M/N is self-projective. By Theorem 3.10 we have $hdim(End(M)) = hdim(M) \ge hdim(M/N) = hdim(End(M/N))$. \Box

Analogous to the fact that a projective module has a semiperfect endomorphism ring if and only if it is finitely generated and supplemented (see [W, 42.12]) we get the following corollary:

Corollary 3.14. Let M be a self-projective R-module. M is finitely generated and weakly supplemented if and only if End (M) is semilocal and Rad $(M) \ll M$.

Proof. This follows from Theorem 2.7, Theorem 3.10 and the fact that a module with finite hollow dimension and small radical is finitely generated. \Box

The author does not know if the hypothesis of a small radical of M is necessary. He raises the following

Question: Is every (self-)projective R-module with semilocal endomorphism ring finitely generated ?

Remark 3.15. This question is closely related to an old problem of D. Lazard. He considered rings with the property that all projective modules P with P/Rad(P) finitely generated are already finitely generated. Following H. Zöschinger, rings with this property are called L-rings. He proved in [Z81] that this property is left-right symmetric, i.e. R is a left L-ring if and only if it is a right L-ring. Moreover he showed that a ring R is an L-ring if and only if every supplement in R is a direct summand ([Z81, Satz 2.3]). Hence semiperfect and semiprimitive rings, i.e rings with zero Jacobson radical, are L-rings. In [J], S.Jøndrup showed that every PI-ring is an L-ring. A good resource for some characterizations of L-rings is [MS].

Corollary 3.16. Let R be an L-ring and P a projective R-module. Then P is finitely generated and weakly supplemented if and only if End (P) is semilocal.

Proof. Assume End (P) to be semilocal. By Takeuchi's result (Theorem 3.10) P has finite hollow dimension and hence P/Rad(P) is finitely generated. As R is an L-ring, P is finitely generated. \Box

Remark 3.17. In [GS] V.N. Gerasimov and I.I. Sakhaev constructed a non - commutative semilocal ring that is not an *L*-ring (see also [S91], [S93]). Hence a negative answer to the question above might be more likely, but the condition of a semilocal endomorphism ring End (P) is stronger than P/Rad(P) being finitely generated.

A ring R is left *f*-semiperfect or semiregular if every finitely generated left ideal has a supplement in $_RR$, equivalently, R/Jac(R) is von Neumann regular and idempotents in R/Jac(R) can be lifted to $_RR$ (see [W, 42.11]). Analogous to that we have:

Proposition 3.18. For any ring R the following statements are equivalent:

- (a) every principal left ideal of R has a weak supplement in $_{R}R$;
- (b) R/Jac(R) is von Neumann regular;
- (c) every principal right ideal of R has a weak supplement in R_R ;

Proof. $(a) \Rightarrow (b)$ Let $a \in R$. By assumption there exists a weak supplement $I \subset R$ of Ra. Hence there exist $b \in R$ and $x \in I$ such that x = 1 - ba. Moreover, by Lemma 3.4, $Rax = Ra \cap Rx \subseteq Ra \cap I \ll R$ implies $ax = a - aba \in Jac(R)$. Thus R/Jac(R) is von Neumann regular.

 $(b) \Rightarrow (a)$ For any $a \in R \setminus \text{Jac}(R)$ we get an element $b \in R \setminus \text{Jac}(R)$ such that $a - aba \in \text{Jac}(R)$. Hence R(1 - ba) is a weak supplement of Ra in $_{R}R$ by Lemma 3.4.

 $(b) \Leftrightarrow (c)$ analogous. \Box

Remark 3.19. It is not difficult to see that Ra has a weak supplement in $_{R}R$ if and only if aR has a weak supplement in R_{R} for all $a \in R$. The situation for supplements is not that clear. Indeed H.Zöschinger proved that the property: Ra has a supplement in $_{R}R$ implies aR has a supplement in R_{R} is equivalent with R being an L-ring (see [Z81]).

The following proposition, due to S. Page, relates uniform and hollow dimension.

Proposition 3.20 (Page). Let $_RQ$ be an injective cogenerator in R-Mod, T = End(Q) and M any R-module. Then $hdim(_RM) = udim(\text{Hom}(M, Q)_T)$.

Proof. See [P, Proposition 1]. \Box

Remark 3.21. More generally this result can be extended to any injective cogenerator $_RQ$ in $\sigma[_RM]$ - the full subcategory of R-Mod that contains all M-subgenerated left R-modules. Hence for any $_RN \in \sigma[M]$ the formula $hdim(_RN) = udim(\text{Hom }(N, Q)_T)$ holds where T := End (Q) (see [Lo] for details).

Using S. Page's result we get another characterization of semilocal rings in terms of hollow and uniform dimension.

Theorem 3.22. The following statements are equivalent for a ring R.

- (a) R is semilocal;
- (b) there exists a generator $_{R}G$ in R-Mod such that $G_{\text{End}(G)}$ has finite hollow dimension;

- (b') for any generator $_{R}G$ in R-Mod, $G_{\text{End}(G)}$ has finite hollow dimension;
- (c) there exists an injective cogenerator $_{R}Q$ in R-Mod such that $Q_{\text{End}(Q)}$ has finite uniform dimension;
- (c') for any injective cogenerator $_{R}Q$ in R-Mod, $Q_{\text{End}(Q)}$ has finite uniform dimension.

In this case $hdim(G_{End}(G)) = length(R/Jac(R)) = udim(Q_{End}(Q))$ holds.

Proof. Let $_RG \in R$ -Mod and S = End(G). From [W, 18.8] we know that $_RG$ is a generator in R-Mod if and only if G_S is finitely generated, projective in S-Mod and $R \simeq End_S(G_S)$. Hence by Theorem 3.10, we get $hdim(G_S) = hdim(End_S(G_S)) = hdim(R)$. This proves $(a) \Leftrightarrow$ $(b) \Leftrightarrow (b')$.

By Page's Proposition 3.20 we have $hdim(R) = udim(Q_T)$ where T = End(Q) for any injective cogenerator $_RQ$. This proves $(a) \Leftrightarrow (c) \Leftrightarrow (c')$. \Box

References

- [CD] R.Camps and W.Dicks, On semilocal rings, Israel J. Math. 81, 203 221 (1993)
- [GP] P.Grezeszcuk and E.R.Puczyłowski, On Goldie and dual Goldie dimension, J. Pure and Applied Algebra 31, 47-54 (1984)
- [GS] V.N. Gerasmiov and I.I. Sakhaev, A counterexample to two hypotheses on projective and flat modules, Siberian Math. J. 25, 855 - 859 (1984)
- [HaS] A.Hanna and A.Shamsuddin, Dual Goldie dimension, Rendiconti dell' Istitutio di Mathematica dell' Universita di Trieste 24, No.1-2, 25-38 (1992)
- [HeS] D.Herbera and A.Shamsuddin, Modules with semi-local endomorphism ring, Proceedings American Math. Soc. 123, 3593-3600 (1995)
- [J] S. Jøndrup, *Projective modules*, Proceedings American Math. Soc. 59, 217 -221 (1976)
- [La] D. Lazard, Liberte des gros modules projectifs, J. Algebra 31, 437 451 (1974)
- [Lo] C.Lomp, On dual Goldie dimension, Diplomarbeit, HHU Düsseldorf (1996)
- [MS] A. Mohammed and F.L. Sandomierski, Complements in projective modules J. Algebra 127, 206 - 217 (1989)
- [P] S.Page Relatively semiperfect rings and corank of modules Communication Algebra, 21, 975 - 990 (1993)

16

- [Re] E.Reiter, A dual to the Goldie ascending chain condition on direct sums of submodules, Bulletin Calcutta Math. Soc. 73, 55-63 (1981)
- [Ru] P.Rudlof, On the structure of couniform and complemented modules, J. Pure and Applied Algebra 74, 281 - 305 (1991)
- [SV] B.Sarath and K.Varadarajan, Dual Goldie dimension II, Communication Algebra, 7, 1885 - 1899 (1979)
- [S91] I.I. Sakhaev, On lifting finite generacy of a projective module modulo its radical, Math. Notes 49, 293 - 301 (1991)
- [S93] I.I. Sakhaev, The finite generation of projective modules, Algebra(Proc. Int. Conf. Krasnoyarsk 1993), edited by Y.L. Ershov et al., 209-216, de Gruyter, Berlin 1996
- [T76] T.Takeuchi, On cofinite-dimensional modules, Hokkaido Math. J. 5, 1-43 (1976)
- [T94] T.Takeuchi, Coranks of a quasi-projective module and its endomorphism ring, Glasgow Math. J. 36, 381 - 383 (1994)
- [V] K.Varadarajan, Dual Goldie dimension, Communication Algebra, 7, 565-610 (1979)
- [W] R.Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading (1991)
- [Z78a] H.Zöschinger, Invarianten wesentlicher Überdeckungen, Math. Annalen 237, 193 - 202 (1978)
- [Z78b] H.Zöschinger, Über Torsions- und κ -Elemente von Ext(C, A), J. Algebra 50, 295 336 (1978)
- [Z81] H.Zöschinger, Projektive Moduln mit endlich erzeugtem Radikalfaktormodul, Math. Annalen 255, 199 - 206 (1981)
- [Z86] H.Zöschinger, Minimax-Moduln, J. Algebra 102, 1-32 (1986)