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Abstract: Neuromorphic circuits are analog circuits that implement models of   
biological systems for sensory processing.  Because the neuromorphic circuits 
share the same physical constraints as their biological counterparts, they have 
similar organizational structures, and use   similar strategies for optimizing 
robustness to noise, and power consumption.  Silicon retinas and other 
neuromorphic vision chips, built as hardware models of biological vision 
systems, represent efficient artificial sensory pre-processors.  General 
processing networks which use detailed models of neurons are also being 
investigated.  Simple neuromorphic systems have been built, using networks 
of silicon neurons and neuromorphic chips as front-ends for  pre-processing 
incoming sensory signals. In this chapter we present  two representative case 
studies describing a single-chip vision  sensor and a multi-chip processing 
network, that contain most of the  characteristic elements found in today's 
neuromorphic systems. 

Key words: Neuromorphic, analog VLSI, silicon retina, winner-take-all, WTA, Address-
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5.1. INTRODUCTION 

Neural network theories, used as an additional methodology for solving 
pattern recognition and constraint minimization problems, have emerged in 
recent years as a practical technology and represent a well established 
research field.  Neural network algorithms, the type of non-linearities present 
in the transfer functions of their computational elements and the 
architectures that implement them are often loosely inspired by biological 
systems. 

An emerging new technology which tries to establish even closer links to 
biology, capitalizing on the advantages of interdisciplinary research, is the 
one of neuromorphic engineering. Specifically, neuromorphic engineering 
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applies the computational principles discovered in biological organisms to 
those tasks that biological systems perform easily, but which have proved 
difficult to do using traditional engineering techniques.  For example, 
biological neural systems for sensory perception and motor control are 
compact, energy efficient and robust to noise both in the input data and in 
the internal state variables.  They typically have a relatively simple 
organization, consisting of arrays of similar processing elements that interact 
in nonlinear ways mainly with nearest neighbours. Neuromorphic systems, 
rather than implementing abstract neural networks remotely related to these 
types of systems, are hardware devices, containing analog circuits, that 
attempt to model in detail, (up to the device-physics level) their properties 
and the physical processes in them embedded that underlie neural 
computation [1]. The closest medium, widely accessible to the research 
community, that allows researchers to implement detailed hardware models 
of neural systems is silicon. Using analog, continuous time circuits 
implemented with a standard CMOS VLSI technology it is possible to build 
low-cost, compact implementations of such models.  The greatest successes 
of neuromorphic analog VLSI (aVLSI) to date have been in the emulation of 
peripheral sensory transduction: Silicon retinas and silicon cochleas have 
been successfully implemented and used in a wide variety of applications [2-
4]. In these analog devices, as in their biological counterparts, it is the 
structure of the architecture, the morphology of the system, that determines 
their functionality.  This constraint is added to the ones that come from the 
fact that neuromorphic systems have to cope with issues such as minimizing 
power consumption, maximizing robustness to noise and optimizing 
reliability in their performance, while interacting in real-time with the 
environment. It is by trying to satisfy these very constraints that researchers 
are hoping to obtain more insight into the workings of biological neural 
systems. 

Neuromorphic engineering is thus mainly concerned with hardware 
correlates of biological systems. The nature of the research carried out by 
neuromorphic engineers is twofold: on one side there is the desire to learn 
more about the computational properties of the brain by tackling the same 
problems that nature and evolution solved in the course of 600 million years, 
on the other there is the desire to design and develop efficient neuromorphic 
engineered systems that can be used to solve real world problems and that 
can eventually lead to successful industrial applications. 

Rather than giving a brief overview of the progressively increasing 
number of neuromorphic devices, systems and applications present in the 
literature, in the next sections I will describe two specific examples of 
neuromorphic systems that capture main essence of this field: a single chip 
neuromorphic vision system and a multi-chip network of integrate-and-fire 
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neurons.  The former is a small compact low-power focal-plane processor 
that implements at an abstract level some of the principal visual processing 
stages observed in the primary visual cortex of mammals for visual tracking 
applications, with potential commercial valence.  The latter on the other 
hand, is the basis for implementing reconfigurable multi-chip neural network 
architectures, applied to basic scientific investigation and eventually to 
signal processing tasks. 

5.2. SINGLE-CHIP NEUROMORPHIC VISION 
SENSORS 

Neuromorphic vision sensors are typically analog VLSI devices that 
implement hardware models of biological visual systems and that can be 
used for machine vision tasks [2,3]. It is only recently that these hardware 
models have become elaborate enough for use in a variety of engineering 
applications [5]. These types of devices and systems offer an attractive, low 
cost alternative to special purpose DSPs for machine vision tasks. They can 
be used either for reducing the computational load on the digital system in 
which they are embedded or, ideally, for carrying out all of the necessary 
computation without the need of any additional hardware.  They process 
images directly at the focal plane level. Typically each pixel contains local 
circuitry that performs in real time different types of spatio-temporal 
computations on the continuous analog brightness signal. In contrast CCD 
cameras or conventional CMOS imagers merely measure the brightness at 
the pixel level, eventually adjusting their gain to the average brightness level 
of the whole scene. In neuromorphic vision chips, photoreceptors, memory 
elements and computational nodes share the same physical space on the 
silicon surface.  The specific computational function of a neuromorphic 
sensor is determined by the structure of its architecture and by the way its 
pixels are interconnected. Since each pixel processes information based on 
locally sensed signals and on data arriving from its neighbours, the type of 
computation being performed is fully parallel and distributed. Another 
important feature is the asynchronous operation of neuromorphic sensors, 
which is preferable to clocked operation for sensory processing, given the 
continuous nature of sensory signals. Clocked systems introduce temporal 
aliasing artifacts that can significantly compromise the time-dependent 
computations performed in real-time sensory processing systems. 
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Visual tracking 

Tracking features of interest as they move in the environment is a  
computationally demanding task for machine vision systems.  The control 
loop of active vision systems, comprising motors that steer the visual sensor, 
relies on the speed of the specific computation carried out. The stability of 
the system depends on the latency of the sensory-motor control loop itself.  
To reduce this latency and improve the performance of the active vision 
system several custom VLSI sensors that pre-process the input image and 
extract the position of the target, have been proposed [6-8]. Here we describe 
a tracking system that, as previously proposed solutions, reduces the 
computational cost of the processing stages interfaced to it by carrying out 
an extensive amount of computation at the focal plane itself, and 
transmitting only the result of this computation, rather than extensive 
amounts of data representing the raw input image. Despite the principle of 
the approach here followed is very similar in nature to the one followed by 
the authors cited above, the tracking architecture here described differs from 
previously proposed ones in two key features: it selects high-contrast edges 
independent of the absolute brightness of the scene (as opposed to simply 
selecting the scene's brightest [6-8]); it uses a hysteretic winner-take-all 
(WTA) network, with positive feedback and lateral coupling [9], to lock-
onto and smoothly track the selected targets (different from WTA networks 
used in other tracking device [6,8]). 
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Figure 5-1. Block diagram of single-chip tracking system. Spatial edges are detected at the 
first computational stages by adaptive photoreceptors connected to spatial-derivative circuits. 
A winner-take-all network selects the edge with strongest contrast and   a position-to-voltage 

circuit encodes its position with a single continuous analog voltage. 



5. NEUROMORPHIC ENGINEERING 5
 

 

Figure 5-2. Portion of layout of containing 7  processing columns. The   size of each 
computational stage is evidenced on the right. 

These features allow systems that use this architecture to reliably track 
edges with the highest contrast present in the sensor's field of view in a wide 
variety of illumination conditions. 

The tracking chip 

The tracking architecture here described is a one-dimensional array of 
“intelligent pixels”', structured in a hierarchical way that can be implemented 
on a single chip device. As the architecture is one-dimensional, each pixel is 
a long column of circuits. This allows the design to minimize area usage and 
to maximize the number of pixels on the device. 

Image brightness data is processed in parallel through five main 
computational stages.  A block diagram of the device's architecture is 
depicted in Fig. 5.1. The first stage is an array of adaptive photoreceptors 
[10] that map logarithmically image intensity into their output voltages.  The 
second stage is composed of circuital blocks that perform spatio-temporal 
processing on the input signal to extract high-contrast moving edges. At the 
third computational stage the polarity of each edge is gated so that the sensor 
selectively responds either to ON edges (dark to bright transitions), or to 
OFF edges (bright to dark transitions) or to both.  The fourth stage uses a 
hysteretic winner-take-all (WTA) network [9] which selects and locks onto 
the feature with strongest spatial contrast moving at the speed that best 
matches the photoreceptor's velocity tuning.  Finally in the last stage there is 
a position-to-voltage circuit [11], that encodes the spatial position of the 
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(a) (b) 

WTA network's output with a single analog value. An example of a tracker 
chip layout is shown in Fig. 5.2. 

 
Adaptive Photoreceptor Circuits. These types of photoreceptor circuits 

[10] have been used extensively in many neuromorphic sensors.  The 
response of the circuit is invariant to absolute light intensity, and changes 
logarithmically with image brightness. Fig. 5.3(a) shows the circuit diagram 
of such type of photoreceptors. It consists of a photodiode D in series with a 
transistor M1 in source-follower configuration, and a negative feedback loop 
from the source to the gate of M1.  The feedback loop consists of a high-gain 
inverting amplifier in common-source configuration (M2,M3), [10] and a 
resistive element R1.  The transient output voltage change dVout is amplified 
with respect to the DC output voltage change dVfb by the capacitive divider 
ratio AC≡(C1+C2)/C2, as long as the adaptation effect can be neglected. 
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Figure 5-3. (a) Adaptive photoreceptor circuit. (b) Response of an array   of adaptive 

photoreceptors, with fast adaptation rate, to a dark   bar on a white background moving from 
right to left with an on-chip   speed of 31mm/s (left pointing triangles) and at a slightly slower   

speed (upward pointing triangles) 

The photo sensor adapts to variations in the photo current on a long time 
scale, which usually reflect slow changes in the background illumination that 
are typical of natural lighting conditions. The adaptation state is represented 
by the charge Qfb stored on the capacitor plates of the feedback node. The 
output voltage Vout depends on this adaptation state and on the input signal 
represented by Vfb.  The adaptation dynamics are determined by the 
characteristics of the resistive element. A large resistance results in slow 
adaptation: a small resistance in fast adaptation. A linear resistor with a 
resistance R makes Vout adapt exponentially after an irradiance step. 
However, with the specific capacitance and sheet resistance values provided 
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by typical semiconductor technology the decay time constants achieved with 
linear resistors would be too small for practical applications. The resistive 
elements are therefore typically built with active elements, which can be 
operated at low currents that are matched to typical capacitance values [12]. 

Fig. 5.3(b) shows the response of an array of adaptive photoreceptors, 
containing a ``tobi-element'' [10] as a resistive element, to a moving bar.  
The photoreceptor's adaptation rate was set to be very high, such that the 
photoreceptors adapt quickly to brightness transients.  Because of its 
adaptation property, this particular type of photoreceptor has a response with 
both contrast and speed dependence. 

 
Spatial derivative circuits and edge-polarity detector circuits. Spatial 

derivative can be implemented using simple transconductance amplifiers 
operated in the subthreshold regime. The amplifiers receive input voltages 
from neighboring photoreceptors and provide a bidirectional output current 
that is proportional to the hyperbolic tangent of their differential input [12].  
The output current saturates smoothly as the differential voltage increases (in 
absolute value) beyond 200-300mV.  The possibility of electronically 
smoothing the input image (at the adaptive-photoreceptors stage) allows the 
user to operate the spatial derivative circuit always in its linear range, for a 
stimulus with fixed spatial frequencies. 
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Figure 5-4. Circuit diagram of the current polarity detector.  Positive Idiff currents are 
conveyed to the n-type current mirror M4,M5. Negative Idiff currents are conveyed to M6 

through the   p-type current mirror M1,M6.  Depending on the values of the control   voltage 
signals VCTRL and VREF, the output current Iedg represents a copy of only one of the two 

polarities of Idiff, or of both polarities of Idiff (see text for details). 

The polarity of edges in the visual scene is encoded by the sign of the 
transconductance amplifiers' currents.  Each of these currents is fed into a 
current-conveyor [13] of the type shown in Fig. 5.4. This circuit is used to 
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separate the positive component of the input current Idiff from the negative 
one, and to decouple the spatial derivative stage from the current-polarity 
selection stage.  Negative input currents are conveyed to transistor M6, while 
positive ones are flipped through the current mirror M4,M5 and conveyed to 
M8.  Transistors M6 and M8 source their currents to the polarity selection 
circuit (transistors M9-M12) [8]. Negative, positive, or combinations of both 
types of currents can be selected by properly setting the control voltages 
VCTRL and VREF.  The output currents Iedg of all edge-polarity detector circuits 
are sourced, in parallel, to the elements of the next processing stage: a 
hysteretic winner-take-all network. 

 
Hysteretic Winner-Take-All Network. CMOS implementations of 

winner-take-all (WTA) networks are an important class of circuits widely 
used in neural networks and pattern-recognition systems. They implement 
architectures that select one node, out of many, through a competition 
mechanism that depends on the amplitude of the architecture's input signals.  
Several types of WTA circuits have been proposed in the literature [9,14,15]. 
The WTA circuit proposed by Lazzaro et al. [15] optimizes power 
consumption and silicon area usage. It is ideal for applications that do not 
require high precision or high speed computation, such as sensory perception 
tasks. This circuit, proposed more than ten years ago, still remains one of the 
most compact and elegant designs of analog current-mode WTA circuits.  It 
is asynchronous; it responds in real-time; and it processes all its input 
currents in parallel, using only two transistors per node, if the output signal 
is a voltage, and four transistors if the output signal is a current.  Recently, 
some extensions to the basic design described in [15] have been proposed 
[8,9,16]. They endow the WTA circuit with local excitatory feedback [16] 
and with distributed hysteresis [8,9]. Local excitatory feedback enhances 
resolution and speed performance of the circuit, providing a hysteretic 
mechanism that withstands the selection of other potential winners unless 
they are stronger than the selected one by a set hysteretic current.  
Distributed hysteresis allows the winning input to shift between adjacent 
locations maintaining its winning status, without having to reset the network.  
These enhanced types of WTA networks are able to select and lock onto the 
input with strongest amplitude, and to track it as it shifts smoothly from one 
pixel to its neighbor [8,9]. 

Fig. 5.5 shows an example of the response of the tracker chip's hysteretic 
WTA network to a moving high-contrast bar. The top trace of the figure 
represents the net input current to the WTA network, and shows the effect of 
spatial smoothing of the sum of input currents with the hysteretic current 
from the winner's positive feedback loop. It is clear from this figure that the 
active winning cell is the one corresponding to pixel 26. The bottom trace 
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shows the instantaneous response of the adaptive photoreceptor array.  The 
input stimulus was a 1 cm-wide black bar on a white background positioned 
at approximately 17 cm away from the focal plane and imaged onto the chip 
through a 4 mm lens moving from left to right with an on chip speed of 31 
mm/s. 
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Figure 5-5. Response of the WTA network to the ON-edge  of a bar  moving   from left to 
right at an on-chip speed of 31 mm/s. The top trace   represents the currents Isum of the WTA 

array while the bottom   trace represents the voltage outputs of the array of adaptive   
photoreceptors. 

Tracking robots 

An application domain that is well suited for the visual tracking chip is 
that of vehicle-guidance and autonomous navigation.  These types of tasks in 
fact require compact and power-efficient computing devices which should be 
robust to noise, tolerant to adverse conditions induced by the motion of the 
system (e.g.  to jitter and camera calibration problems) and possibly able to 
adapt to the highly variable properties of the world.  To test our tracking 
sensor within this framework, we successfully interfaced it several types of 
robotic platforms, ranging from Koala (K-Team, Switzerland) rovers to 
LEGO toys (see Fig. 5.6). 
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Figure 5-6. Tracker chip mounted on a LEGO robot performing a ``target  exploration task''. 
Using very little CPU power, this robot is able  to simultaneously explore (make random 

body/head movements),  attend (orient the sensor toward high-contrast moving edges)  and 
pursuit (drive towards the target). 

In these applications the computationally expensive part of the 
processing (involving visual preprocessing and target selection) is done in 
real-time by the neuromorphic sensor.  Using simple control algorithms, in 
conjunction with these types of sensors, roving robots are able to reliably 
track lines randomly layed out on the floor, for a wide variety of conditions 
(e.g. floors with different texture, cables of different colors and sizes, 
extreme illumination conditions, etc.) Several robot-tracking examples, 
together with a detailed analysis of the tracking system and quantitative data, 
have been published in the literature [11]. 

As the visual processing circuits operate in a fully parallel way, and the 
hysteretic WTA circuit relies on a global competition mechanism that 
requires one single node for the whole array, tracking architectures of the 
type described above can easily be extended to two dimensions [6,7,17]. 

5.3. MULTI-CHIP NEUROMORPHIC SYSTEMS 

The single chip neuromorphic systems of the type describe above have 
great advantages, such as size, fabrication cost and low power consumption, 
and extraordinary computational capabilities. However, to design systems 
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with greater computational power and higher flexibility one needs to resort 
to multi-chip systems.  

Neuromorphic multi-chip systems generally consist of systems 
containing one or more sensory devices, such as silicon retinas, silicon 
cochleas or vision sensors, interfaced to one or more chips containing 
networks of spiking neuron circuits. These chips can process the sensory 
signals (e.g. detecting salient regions of the sensory space [18], learning 
correlations [19], etc.) and eventually transmit the processed signals to 
actuators, thus implementing complete neuromorphic sensory-motor 
systems.  

Consistent with the neuromorphic engineering approach, the strategy 
used by neuromorphic devices to communicate analog signals across chip 
boundaries is inspired from the nervous system. Analog signals are 
converted into streams of stereotyped non-clocked digital pulses (spikes) and 
encoded using pulse-frequency modulation (spike rates). These digital pulses 
are transmitted using an asynchronous communication protocol based on the 
Address-Event Representation (AER) [20-22]. 

The Address-Event Representation 
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Figure 5-7. Schematic diagram of an AER chip to chip   communication example. As soon as 
a sending node on the source chip   generates an event its address is written on the Address-

Event Bus. The destination chip decodes the address-events as they arrive and   routes them to 
the corresponding receiving nodes. 

In AER, each analog element on a sending device is assigned an address. 
When a spiking element generates a pulse its address is instantaneously put 
on a digital bus, using asynchronous logic (see Fig. 5.7).  In this 
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asynchronous representation time represents itself, and analog signals are 
encoded by the inter-spike intervals between the addresses of their sending 
nodes. Address-events are the digital pulses written on the bus.  In the case 
of single-sender/single-receiver communication, a simple handshaking 
mechanism ensures that all events generated at the sender side arrive at the 
receiver.  The address of the sending element is conveyed as a parallel word 
of sufficient length, while the handshaking control signals require only two 
lines.  Systems containing more than two AER chips are constructed by 
implementing additional special purpose off-chip arbitration schemes 
[22,23]. 

Address-Event Neuromorphic Sensors 

The two most successful types of neuromorphic sensors developed in 
previous years are silicon  cochleas [4,24] and silicon retinas [2,3,25]. The 
former implement detailed models of the human cochlea, producing outputs 
that could be useful for artificial speech recognizers, or for hearing aids.  The 
silicon retinas on the other hand implement models of the retina's early 
processing stages and typically produce images that represent local changes 
in contrast (see Fig. 5.8 for an example of a silicon retina image). 

 

Figure 5-8. Image captured from a 168×132 silicon designed  by Jörg Kramer, (at the Institute 
of Neuroinformatics, Zurich),  while the subject was moving. 

 
Until recently these sensory devices transmitted their information off-chip 
using conventional techniques, such as multiplexers or scanners. With the 
advent of the Address-Event Representation we now have also AER silicon 
retinas and cochleas that produce streams of address-events representing the 
activity of each individual pixel. With these AER sensors the bandwidth 
used for signal transmission is allocated optimally only for those pixels that 
are active (as opposed for example to scanning techniques, that allocate the 
same bandwidth for all the pixels, independent of their activity). The 
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address-events (spikes) generated by these sensors can then be processed by 
synapses and networks of spiking neurons implemented on one or more 
receiving AER chips. 
 

Address-Event Networks of Integrate-and-Fire Neurons 

A spiking neuron model that allows us to implement large, massively 
parallel networks of neurons is the Integrate-and-Fire (I&F) model.  

Networks of I&F neurons have been shown to exhibit a wide range of 
useful computational properties, including feature binding, segmentation, 
pattern recognition, onset detection, input prediction, etc. [26]. The recent 
and growing interest in pulse--based neural networks has lead to the design 
and fabrication of an increasing number of VLSI networks of 
IntegrateandFire (I&F) neurons.  These types of devices have great 
potential, allowing researchers to implement simulations of large networks 
of spiking neurons with complex dynamics in real time, possibly solving 
computationally demanding tasks. This is especially true as continuous 
improvements in VLSI technology allow for the fabrication of AER devices 
containing thousands of elements, operating in parallel.  For these devices to 
be be practically realizable, it is crucial to have pulse generating elements 
with minimal power consumption (locally) and with pulse-frequency 
saturation and adaptation mechanisms to limit and reduce the power 
consumption globally and to optimize communication bandwidth for the 
transmission of address-events.  The I&F neuron circuit depicted in Fig. 5.9 
implements these saturation and adaptation mechanisms, and has been 
shown to be one of the lowest-power circuits of its kind [27].  
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Figure 5-9. Circuit diagram of an ultra low-power integrate-and-fire  neuron. 

It comprises twenty transistors and one (explicit) capacitor.  The circuit 
can be subdivided in six main blocks: a source follower M1-M2, for 
increasing the linear integration range and for modulating the neuron's 
threshold voltage; an inverter with positive feedback M3-M7, for reducing 
power dissipation due to the switching short-circuit currents at the input; an 
inverter with controllable slew-rate M8-M11, for setting arbitrary refractory 
periods; a digital inverter M13-M14, for generating the fast digital pulse that 
signals the occurrence of a spike; a transient current-mirror integrator M15-
M19, for implementing a spike-frequency adaptation mechanism, and a 
minimum size transistor M20 for implementing a constant current leak. 

Networks of I&F neurons consist of arrays of these types of neurons 
connected to synaptic circuits that generate currents with biologically 
plausible dynamics. The synaptic circuits used in neuromorphic devices can 
exhibit simple non-linear integration properties [20], short-term depression 
Properties [28,29], or plasticity/learning properties [19,30]. 

Researchers in the neuromorphic engineering community are starting just 
now to put all these components together to form AER neural network 
devices. In Fig. 5.10 we show the activity of one of these types of devices, 
containing a network of 32 I&F neurons and of 32 × 8 plastic synapses in 
response to constant currents being injected into each neuron.  Each dot in 
Fig. 5.10 (a) represents an address-event. The address of the spiking neuron 
is on the ordinates, while time is on the abscissae.  In Fig. 5.10 (b) we 
plotted the neurons' mean firing rates as a function of their input current (set 
by changing the Vgs of Fig. 5.9), for different refractory period settings (Vrfr 
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of Fig. 5.9), on a semi-logarithmic scale. Given the exponential relationship 
between Vgs and the current of a MOSFET working in weak-inversion [12], 
Fig. 5.10 (b) shows how the firing rate is linear with the input current, 
saturating at higher asymptotic values, for increasing values of Vrfr 
(decreasing refractory period duration). 

 
 

Figure 5-10. (a) Raster plots showing the activity of an AER array of 32  I&F neurons in 
response to a constant input current, for four  decreasing values of the refractory period 
(clockwise from the top  left quadrant).  (b) Mean response of all neurons in the array to  

increasing values of a global input current, for the same refractory  period settings.  The error 
bars represent the responses standard  deviation throughout the array. 

These AER networks of I&F neurons act as transceivers: they receive 
address-events in input and generate events in output. The topology of the 
network together with the weights of the synapses interconnecting the 
neurons determine the network's functionality. Address-event systems allow 
us to arbitrarily configure network topologies by re-mapping the (digital) 
address events (e.g.using lookup tables, micro controllers, or dedicated PCI 
boards [23]). There are currently different approaches for controlling 
synaptic weights. These include the use of Floating-Gate devices [31], 
binary synapses [15], or spike-timing based weight update rules [30, 32]. 

Multi-chip AER systems are still in a developmental stage, however all 
individual components have been designed, and the AER communication 
infrastructure is starting to be well established. This technology is likely to 
become instrumental both for basic research on computational neuroscience, 
and for practical applications that involve sensory signal processing, 
adaptation to changes in the input signals, recognition, etc. 

Vrfr

(a) (b) 
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5.4. CONCLUSIONS 

During the past decade, complementary metal oxide semiconductor 
(CMOS) very large scale integration (VLSI) technology has been used to 
construct a wide range of neural analogs, from single synapses to networks 
of spiking neurons, and simple vision processing devices. These typically 
analog circuits exploit the inherent physics of transistors to produce an 
efficient computation of a particular task. The analog circuits have the 
advantage of emulating biological systems in real time. To the extent that the 
physics of the transistors matches well the computation to be performed, the 
analog VLSI circuits use less power and silicon area than would an 
equivalent digital system.  This is an important advantage because any 
serious attempt to replicate the computational power of brains must use 
resources as effectively as possible. The brain performs about 1016 
operations per second.  Using the best digital technology that we can 
envisage, this performance would dissipate over 10 MW [33], by 
comparison with the brain's consumption of only a few Watts. 
Neuromorphic analog VLSI circuits are also no match for neuronal circuits, 
but they can be a factor of 104 more power efficient than heir digital 
counterparts. 

The examples of neuromorphic systems we described in this chapter 
show how it is possible to build single-chip VLSI systems able to perform 
elaborate visual tasks, and multi-chip systems able to receive and process 
signals represented as spikes, or address-events.  Our results with the single-
chip example indicate that these types of systems can be used as efficient 
compact and low-cost solutions for real-world applications and can be 
considered as a viable alternative to conventional digital machine vision 
systems. Similarly our results with multi-chip AER systems indicate that 
those types of circuits can be reliably used in massively parallel VLSI 
networks of I&F neurons, to simulate in real--time complex spike-based 
learning algorithms, and possibly to implement complete sensory-motor 
systems that learn to interact with their environment and to adapt to its 
changing conditions. 
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