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Abstract. We develop an Auslander-Reiten theory for triangulated categories which
is based on Brown’s representability theorem.

In a fundamental article [3], Auslander and Reiten introduced almost split sequences
for the category of finitely generated modules over an artin algebra. These are short
exact sequences which look almost like split exact sequences, but many authors prefer
to call them Auslander-Reiten sequences. This concept is one of the most successful
in modern algebra representation theory (cf. [4] for a good introduction). In fact, the
existence theorem for almost split sequences has been generalized in various directions
and became the starting point of what is now called Auslander-Reiten theory. Let us
mention some of the main ingredients of classical Auslander-Reiten theory:

• the Auslander-Reiten formula,
• almost split sequences,
• morphisms determined by objects,
• Auslander’s defect formula.

In this paper we discuss analogous concepts and results for compactly generated trian-
gulated categories. This includes, for example, the stable homotopy category of CW-
spectra, or the derived category of modules over some fixed ring.

For each of the above concepts from classical Auslander-Reiten theory there is a
corresponding section in this paper. In addition, we have included an appendix which
provides a brief introduction into classical Auslander-Reiten theory and sketches the
parallel between Auslander-Reiten theory for module categories and the new Auslander-
Reiten theory for triangulated categories.

In this paper, no attempt has been made to present a unified approach towards
a general Auslander-Reiten theory which covers module categories and triangulated
categories at the same time. For this we refer to recent work of Beligiannis [5].

1. Brown representability

Throughout this paper we fix a triangulated category S and make the following ad-
ditional assumptions:

• S has arbitrary coproducts;
• the isomorphism classes of compact objects in S form a set;
• Hom(C,X) = 0 for all compact C implies X = 0 for every object X in S.

Recall that an object X in S is compact if the representable functor Hom(X,−) pre-
serves arbitrary coproducts. A functor S → Ab into the category of abelian groups is
exact if it sends every triangle to an exact sequence. The following characterization of
representable functors is our main tool for proving the existence of maps and triangles.

Theorem (Brown). A contravariant functor F : S → Ab is isomorphic to a repre-
sentable functor Hom(−,X) for some X ∈ S if and only if F is exact and sends arbitrary
coproducts to products.
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Proof. See [7, 11].

Let us give an example. We fix a compact object C in S and a ring homomorphism
Γ→ End(C). Given any injective Γ-module I, Brown’s theorem provides an object TCI
in S such that

HomΓ(Hom(C,−), I) ∼= Hom(−, TCI).
It follows from Yoneda’s lemma that the representing object TCI is unique up to a
canonical isomorphism. The defining isomorphism for TCI is functorial in I; it is also
functorial in C if Γ acts centrally on S. For example, if S is the appropriate derived
category of sheaves on some space X over a field k, and Γ = k, then the functoriality in
C gives the corresponding Serre duality functor for X (cf. [6]). However, in this paper
we shall concentrate on the functoriality in I.

2. Auslander-Reiten triangles

The analogue of an almost split sequence for a triangulated category was introduced
by Happel (cf. [9]).

Definition 2.1. A triangle X
α→ Y

β→ Z
γ→ ΣX is called Auslander-Reiten triangle if

the following conditions hold:

(1) every map X → Y ′ which is not a section factors through α;
(2) every map Y ′ → Z which is not a retraction factors through β;
(3) γ 6= 0.

Note that the end terms X and Z of an Auslander-Reiten triangle are indecompos-
able objects with local endomorphism rings. Moreover, each end term determines an
Auslander-Reiten triangle up to isomorphism.

Theorem 2.2. Let Z be a compact object and suppose that the endomorphism ring
Γ = End(Z) is local. Denote by µ : Γ/rad Γ→ I an injective envelope in the category of
Γ-modules and let TZI be the object in S such that

HomΓ(Hom(Z,−), I) ∼= Hom(−, TZI).(∗)
Then there exists an Auslander-Reiten triangle

Σ−1(TZI)
α−→ Y

β−→ Z
γ−→ TZI

where γ denotes the map which corresponds under (∗) to the canonical map

Hom(Z,Z)
π−→ Γ/rad Γ

µ−→ I.

The existence of the object TZI is guaranteed by Brown’s representability theorem.
In fact, Σ−1(TZI) is the analogue of the dual of transpose DTrC for a finitely presented
module C which leads to an almost split sequence 0→ DTrC → B → C → 0.

Before giving the proof of the theorem, let us recall some generalities from Auslander-
Reiten theory. A map α : X → Y is called left almost split if α is not a section and any
map X → Y ′ which is not a section factors through α. Dually, β : Y → Z is right almost
split if β is not a retraction and any map Y ′ → Z which is not a section factors through
β. We note the following easy observation.

Lemma 2.3. Let X → Y be left almost split. Then X has a local endomorphism ring.

A map α : X → Y is called left minimal if every endomorphism φ : Y → Y satisfying
φ ◦α = α is an isomorphism. Dually, β : Y → Z is right minimal if every endomorphism
φ : Y → Y satisfying β ◦φ = β is an isomorphism.
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Lemma 2.4. Let α : X → Y be a non-zero map and suppose that End(Y ) is local. Then
α is left minimal.

Proof. Let φ : Y → Y be a map such that φ ◦α = α. Applying Nakayama’s lemma to
the End(Y )-submodule of Hom(X,Y ) generated by α, one shows that φ does not belong
to the radical of End(Y ). Thus φ is invertible since End(Y ) is local.

Lemma 2.5. Let X
α→ Y

β→ Z
γ→ ΣX be a triangle. Then β is right minimal if and

only if γ is left minimal.

Proof. Straightforward.

The following lemma is due to Assem, Beligiannis, and Marmaridis [1]; it is the
analogue of a characterization of almost split sequences due to Auslander and Reiten.
We include a short proof; it is different from the one in [1] which also covers right
triangulated catories.

Lemma 2.6. Let ε : X
α→ Y

β→ Z
γ→ ΣX be a triangle and suppose that β is right

almost split. Then the following are equivalent:

(1) End(X) is local.
(2) β is right minimal.
(3) α is left almost split.
(4) ε is an Auslander-Reiten triangle.

Proof. (1)⇒ (2) Suppose that End(X) ∼= End(ΣX) is local. Using Lemma 2.4, it follows
that γ is left minimal. An application of Lemma 2.5 shows that β is right minimal.

(2) ⇒ (3) The map α is not a section since β is not a retraction. Now suppose that
φ : X → X ′ is a map which is not a section. Completing the composition φ ◦(−Σ−1γ)
to a triangle, we get the following map between triangles:

X
α−→ Y

β−→ Z
γ−→ ΣXyφ yψ ∥∥∥ yΣφ

X ′
α′−→ Y ′

β′−→ Z
γ′−→ ΣX ′

We claim that α′ is a section. If not, the map β′ factors through β, say β′ = β ◦ψ′, and
we get another commutative diagram:

X ′
α′−→ Y ′

β′−→ Z
γ′−→ ΣX ′yφ′ yψ′ ∥∥∥ yΣφ′

X
α−→ Y

β−→ Z
γ−→ ΣX

(2) implies that ψ′ ◦ψ is an isomorphism. Therefore φ′ ◦φ is an isomorphism and φ is a
section. This contradicts our assumption on φ, and therefore α′ is a section. The map
φ factors through α via (α′)−1 ◦ψ and this shows that α is left almost split.

(3) ⇔ (4) This is just a reformulation of the definitions.
(3) ⇒ (1) Use Lemma 2.3.

Proof of Theorem 2.2. We check the conditions (1) – (3) for the triangle

Σ−1(TZI)
α−→ Y

β−→ Z
γ−→ TZI.

(3) The map γ corresponds, by definition, under (∗) to a non-zero map. Thus γ 6= 0.
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(2) Let φ : Y ′ → Z be a map in S which is not a retraction. It follows that the
image of the induced map Hom(Z, Y ′) → Hom(Z,Z) is contained in the radical of
End(Z). Therefore the composition with µ ◦π : Hom(Z,Z) → I is zero. However,
Hom(Z,φ) ◦ µ ◦π corresponds under (∗) to the map γ ◦φ, and this implies γ ◦φ = 0.
Thus φ factors through β.

(1) Applying Lemma 2.6, it is sufficient to show that the endomorphism ring of
Σ−1(TZI) is local. This ring is isomorphic to End(TZI), and applying the isomorphism
(∗) twice we obtain

End(TZI) ∼= HomΓ(Hom(Z, TZI), I) ∼= HomΓ(HomΓ(Hom(Z,Z), I), I) ∼= EndΓ(I).

The injective Γ-module I is indecomposable since Γ/rad Γ is simple, and therefore
EndΓ(I) is local.

Given a compact object Z with local endomorphism ring, it seems to be an interesting
project to compute the other endterm of an Auslander-Reiten triangle

Σ−1(TZI) −→ Y −→ Z −→ TZI.

We shall discuss this problem in three examples.
(1) Let Λ be a finite dimensional algebra over a field k and consider the derived cate-

gory D(Λ) of unbounded complexes of Λ-modules. An object in D(Λ) is compact if and
only if it is isomorphic to a bounded complex (P i)i∈Z of finitely generated projective Λ-
modules. The Auslander-Reiten triangle corresponding to an indecomposable compact
object Z = (P i)i∈Z has been computed by Happel in [9]. One gets

TZI ∼= (P i ⊗Λ DΛ)i∈Z

where DΛ = Homk(Λ, k). Note that TZI is compact whenever the Λ-module DΛ has
finite projective dimension.

(2) Let Λ be a symmetric finite dimensional algebra, for example the group algebra
of a finite group. We consider the stable category Mod Λ of Λ-modules where for two
modules X and Y one defines Hom(X,Y ) to be the group of Λ-module homomorphisms
modulo the subgroup of all maps which factor through a projective module. An object
Z in Mod Λ is compact if and only if it is isomorphic to a finitely generated Λ-module.
Moreover, if End(Z) is local then we can assume that Z is a finitely generated indecom-
posable and non-projective Λ-module. There exists an almost split sequence

0 −→ Ω2Z −→ Y −→ Z −→ 0

in the category of Λ-modules (cf. [4]), and this induces an Auslander-Reiten triangle

Ω2Z −→ Y −→ Z −→ ΩZ

in Mod Λ where ΩX denotes the kernel of a projective cover for a Λ-module X. Note
that ΩX is finitely generated if X is finitely generated.

(3) Consider the stable homotopy category of CW-spectra. A spectrum Z is a com-
pact object if and only if it is finite. Suppose therefore that Z is finite with local
endomorphism ring and let Z → TZI be the third map in the Auslander-Reiten tri-
angle corresponding to Z. This map induces the zero map π∗(Z) → π∗(TZI) between
the stable homotopy groups since no map Sn → Z is a retraction. Assuming Freyd’s
Generating Hypothesis (cf. [8]) it follows that TZI is not a finite spectrum. Hence the
other end term Σ−1(TZI) of the Auslander-Reiten triangle for Z is not compact.
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3. Pure-injective objects

The concept of purity for triangulated categories has been introduced in [10]. For the
purpose of this paper it is important to have relative versions of some results in [10].
In fact, we shall always work with a fixed set of compact objects instead of taking a
representative set of all compact objects.

Let C be a set of objects in S. We shall view C as a full subcategory of S. A C-
module is by definition an additive functor Cop → Ab into the category Ab of abelian
groups, and a map between two C-modules is a natural transformation. The C-modules
form an abelian category which we denote by ModC. For example, if C consists of one
object C, then ModC is the category of modules over the endomorphism ring of C.
Note that (co)kernels and (co)products in ModC are computed pointwise: for instance,
a sequence X → Y → Z of maps between C-modules is exact if and only if the sequence
X(C)→ Y (C)→ Z(C) is exact in Ab for all C ∈ C. Every object X in S gives rise to
a C-module

Hom(C,X) = Hom(−,X)|C : Cop −→ Ab

and we get a functor

Hom(C,−) : S −→ModC, X 7→ Hom(C,X).

Suppose now that C is a set of compact objects, and let I be an injective C-module.
Then we denote by TCI the dual of C with respect to I which is defined by the isomor-
phism

Hom(Hom(C,−), I) ∼= Hom(−, TCI).

In fact, the contravariant functor Hom(Hom(C,−), I) : S → Ab is exact and sends
coproducts to products, since I is injective and every object in C is compact; it is
therefore representable by Brown’s theorem. Next we discuss some basic properties of
TCI.

Lemma 3.1. Hom(C, TCI) ∼= I.

Proof. Combine the defining isomorphism of TCI with Yoneda’s lemma.

Proposition 3.2. Let C be a set of compact objects and Y be an arbitrary object in S.
Then the following conditions are equivalent:

(1) Y ∼= TCI for some injective C-module I.
(2) The map Hom(X,Y ) → Hom(Hom(C,X),Hom(C, Y )), φ 7→ Hom(C, φ), is an

isomorphism for every X in S.

Proof. (1) ⇒ (2) We get an inverse for the map

Hom(X,TCI) −→ Hom(Hom(C,X),Hom(C, TCI)), φ 7→ Hom(C, φ)

if we take the composition

Hom(Hom(C,X),Hom(C, TCI)) ∼= Hom(Hom(C,X), I) ∼= Hom(X,TCI)

where the first map is induced by the isomorphism in Lemma 3.1 and the second is the
defining isomorphism for TCI.

(2) ⇒ (1) Let µ : Hom(C, Y ) → I be an injective envelope, and put Z = TCI. The
map µ corresponds to a map Y → Z which we complete to a triangle

X
α−→ Y

β−→ Z
γ−→ ΣX.

Note that µ is isomorphic to Hom(C, β) by Lemma 3.1. Therefore the induced map
Hom(C,X)→ Hom(C, Y ) is zero, and (2) implies that α = 0. Thus β is a section, and
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it follows that µ is a section. In fact, the minimality of an injective envelope implies
that µ is an isomorphism. Now consider a map β′ : Z → Y such that β′ ◦β = idY . It
follows that β ◦β′ induces the identity

Hom(C, Z) −→ Hom(C, Y ) −→ Hom(C, Z).

Therefore β ◦ β′ = idZ by the first part of the proof and we conclude that Y ∼= TCI.

Corollary 3.3. Let C be a set of compact objects in S and denote by InjC the full
subcategory of injective C-modules. Then the assignment I 7→ TCI induces a fully
faithful functor InjC→ S.

Let us include a characterization of those objects in S which are of the form TCI for
some set C of compact objects and some injective C-module I. To this end recall the
following definition from [10].

Definition 3.4. An object X in S is pure-injective if any map X → Y is a section
whenever it induces a monomorphism Hom(C,X) → Hom(C,Y ) for every compact C
in S.

Proposition 3.5. The following are equivalent for an object X in S:

(1) X is pure-injective.
(2) X ∼= TCI for some set C of compact objects and some injective C-module I.
(3) The summation map

∐
ΩX → X factors through the canonical map

∐
ΩX →∏

ΩX for every set Ω.

Proof. Adapt the argument of Theorem 1.8 in [10].

4. Morphisms determined by objects

Given an object Y in S, we may ask for a classification of all maps X → Y ending
in Y , where two such maps αi : Xi → Y (i = 1, 2) are isomorphic if there exists an
isomorphism φ : X1 → X2 such that α1 = α2 ◦φ.

In this section we give an answer to that question which is based on the concept of
a map which is determined by an object. Originally, this concept was introduced by
Auslander in order to give a conceptual explanation for the existence of left or right
almost split maps.

Definition 4.1. A map α : X → Y is said to be right determined by a set C of objects
if for every map α′ : X ′ → Y the following conditions are equivalent:

(1) α′ factors through α;
(2) for every C ∈ C and every map φ : C → X ′ the map α′ ◦φ factors through α.

Given a map α : X → Y in S, we denote by ImHom(C, α) the image of the induced
map Hom(C,X)→ Hom(C, Y ). Note that an equivalent formulation of condition (2) is

(2’) ImHom(C, α′) ⊆ ImHom(C, α).

For example, a map α : X → Y is right almost split if and only if Γ = End(Y ) is a local
ring, α is right determined by Y , and ImHom(Y, α) = radΓ.

Our main existence result for maps determined by objects is the following.

Theorem 4.2. Let C be a set of compact objects and Y be an arbitrary object in S.
Suppose that H is a C-submodule of Hom(C, Y ). Then there exists, up to isomorphism,
a unique right minimal map α : X → Y which is right determined by C and satisfies
ImHom(C, α) = H.
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Proof. Let µ : Hom(C, Y )/H → I be an injective envelope and define Z = TCI which
gives an isomorphism

Hom(Hom(C,−), I) ∼= Hom(−, Z).

Note that I ∼= Hom(C, Z) by Yoneda’s lemma. Now let β : Y → Z be the map corre-
sponding to the composition

Hom(C, Y )
π−→ Hom(C, Y )/H

µ−→ I.

We complete β to a triangle X
α→ Y

β→ Z
γ→ ΣX and claim that α has the desired

properties. Clearly, ImHom(C, α) = H since there exists an exact sequence

Hom(C,X) −→ Hom(C, Y ) −→ Hom(C, Z) ∼= I

where the composition Hom(C, Y ) → I is just µ ◦π. The right minimality of α is
equivalent to the left minimality of β by Lemma 2.5. Now let φ : Z → Z be a map such
that φ ◦ β = β. Applying Hom(C,−), we get a map ψ : I → I such that ψ ◦µ = µ. The
map µ is an injective envelope and therefore left minimal. Thus ψ is an isomorphism and
it follows from Proposition 3.2 that φ is an isomorphism. It remains to show that α is
right determined by C. To this end let α′ : X ′ → Y be a map such that for every C ∈ C
and every map φ : C → X ′ the map α′ ◦φ factors through α. Thus ImHom(C, α′) ⊆ H
and therefore Hom(C, β ◦α′) = 0. Another application of the defining isomorphism for
Z gives β ◦α′ = 0 and this implies that α′ factors through α.

The next result characterizes the maps which are determined by compact objects.
Recall that the cofibre of a map α : X → Y is the object which occurs as the third term
in a triangle

X
α−→ Y −→ Z −→ ΣX.

Theorem 4.3. Let C be a set of compact objects. Then the following conditions are
equivalent for a map α : X → Y .

(1) The map α is right determined by C.
(2) There exists a decomposition X = X ′

∐
X ′′ such that α|X′ is right minimal and

right determined by C, and α|X′′ = 0.
(3) There exists a decomposition X = X ′

∐
X ′′ such that the cofibre of α|X′ is iso-

morphic to TCI for some injective C-module I, and α|X′′ = 0.

Moreover, the restriction α|X′ of α as in (2) is unique up to isomorphism.

Proof. (1) ⇒ (2) Let H = ImHom(C, α) and denote by α′ : X ′ → Y the right mini-
mal and right C-determined map satisfying ImHom(C, α′) = H which exists by Theo-
rem 4.2. Assuming (1), there are maps φ : X ′ → X and φ′ : X → X ′ such that α′ = α ◦φ
and α = α′ ◦φ′. Thus α′ = α′ ◦(φ′ ◦φ) and φ′ ◦φ is an isomorphism since α′ is right mini-
mal. It follows that φ is a section, and completing it to a triangle X ′ → X → X ′′ → ΣX ′

gives a decomposition X = X ′
∐
X ′′ as in (2).

(2) ⇒ (3) Let X = X ′
∐
X ′′ be a decomposition with α|X′′ = 0. We complete α|X′

to a triangle X ′ → Y → Z → ΣX ′. Now suppose that the map α|X′ is right minimal
and right determined by C. Then we deduce from the construction given in the proof
of Theorem 4.2 that Z ∼= TCI for some injective C-module I.

(3) ⇒ (1) Let X = X ′
∐
X ′′ be a decomposition as in (3). Clearly, α is right de-

termined by C if and only α|X′ is right determined by C. Therefore we may assume
X ′′ = 0. Now complete α to a triangle

X
α−→ Y

β−→ TCI
γ−→ ΣX.
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In order to show that α is right determined by C let α′ : W → Y be a map such that
for every C ∈ C and every map φ : C → W the map α′ ◦φ factors through α. We need
to show that α′ factors through α. Clearly, this equivalent to showing that β ◦α′ = 0.
However, it follows from Proposition 3.2 that β ◦α′ = 0 since Hom(C, β ◦α′) = 0 by the
assumption on α′. Thus α′ factors through α.

Corollary 4.4. The following conditions are equivalent for a map α : X → Y .

(1) The map α is right determined by a set of compact objects.
(2) There exists a decomposition X = X ′

∐
X ′′ such that the cofibre of α|X′ is pure-

injective and α|x′′ = 0.

5. A defect formula

The defect of a triangle is the analogue of the defect of a short exact sequence.

Definition 5.1. Given a triangle ε : X
α→ Y

β→ Z
γ→ ΣX and a set C of objects in S,

the defect of ε with respect to C is defined as follows:

∆ε(C) = Coker(Hom(C, Y )→ Hom(C, Z)),

∇ε(C) = Coker(Hom(Y,C)→ Hom(X,C)).

Note that ∆ε and ∇ε are functorial in ε. More precisely, any map ε → ε′ between
triangles induces natural transformations ∆ε → ∆ε′ and ∇ε′ →∇ε.

The covariant defect ∇ε(C) and the contravariant defect ∆ε(C) of a triangle ε are
related by a formula which is an analogue of a formula of Auslander for the defect of a
short exact sequence.

Theorem 5.2. Let ε be a triangle and C be a set of compact object in S. Also let I be
an injective C-module. Then there exists an isomorphism

Hom(∆ε(C), I) ∼= ∇ε(Σ−1(TCI))

which is functorial in ε and I.

Proof. Fix a triangle ε : X → Y → Z → ΣX. Applying the defining isomorphism of
TCI, we obtain the following commutative diagram with exact rows:

((C,ΣY ), I) → ((C,ΣX), I)
φ→ ((C, Z), I) → ((C, Y ), I)∥∥∥o ∥∥∥o ∥∥∥o ∥∥∥o

(ΣY, TCI) → (ΣX,TCI) → (Z, TCI) → (Y, TCI)∥∥∥o ∥∥∥o ∥∥∥o ∥∥∥o
(Y,Σ−1(TCI)) → (X,Σ−1(TCI))

ψ→ (Σ−1Z,Σ−1(TCI)) → (Σ−1Y,Σ−1(TCI))

The assertion now follows since

Hom(∆ε(C), I) ∼= Imφ ∼= Imψ ∼= ∇ε(Σ−1(TCI)).

Note that the isomorphism of the defect formula specializes to the isomorphism defin-
ing TCI if one takes a triangle X → Y → Z → ΣX with Y = 0. The following
application illustrates the defect formula.

Corollary 5.3. Let X
α→ Y

β→ Z
γ→ ΣX be a triangle in S. Let C be a set of compact

objects in S and suppose that I is an injective cogenerator for the category of C-modules.
Then the following are equivalent:
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(1) every map C → Z with C ∈ C factors through β;
(2) every map X → Σ−1TCI factors through α.

Appendix: Classical Auslander-Reiten theory

In this appendix we sketch the parallel between the classical Auslander-Reiten theory
and the material of this paper. We follow Auslander’s exposition in his Philadelphia
notes [2]. Throughout we fix an associative ring Λ with identity. The category of
Λ-modules is denoted by Mod Λ, and modΛ denotes the full subcategory of finitely
presented modules. The stable category of mod Λ modulo projectives is denoted by
modΛ. The transpose

Tr: (mod Λ)op −→ modΛop

is an equivalence which relates the stable categories of Λ and its opposite ring Λop (cf.
[2, p.27]).

5.1. The Auslander-Reiten formula. The main ingredient for constructing maps
and triangles in the previous sections of this paper is the fact that for every compact
object C with Γ = End(C) and for every injective Γ-module I, there exists an object
TCI such that

HomΓ(Hom(C,−), I) ∼= Hom(−, TCI).
The following Auslander-Reiten formula plays an analogous role for the category of
Λ-modules (cf. Proposition I.3.4 in [2]).

Theorem (Auslander/Reiten). Let C be a finitely presented Λ-module and suppose
that TrC is a Λop-Γ-bimodule. Let I be an injective Γ-module. Then there exists an
isomorphism

HomΓ(HomΛ(C,−), I) ∼= Ext1
Λ(−,HomΓ(TrC, I))

which is functorial in I.

5.2. Almost split sequences. A short exact sequence 0→ X
α→ Y

β→ Z → 0 is called
almost split if α is left almost split and β is right almost split. The following existence
result is taken from Proposition II.5.1 in [2]; it generalizes the corresponding result for
modules over artin algebra from [3].

Theorem (Auslander). Let Z be a finitely presented non-projective Λ-module with
local endomorphism ring. Let Γ = EndΛop(TrZ) and denote by I an injective envelope
of Γ/rad Γ. Then there exists an almost split sequence

0 −→ HomΓ(TrX, I) −→ Y −→ Z −→ 0.

5.3. Pure-injective modules. Auslander noticed the relevance of pure-injective mod-
ules (cf. Section I.10 in [2]) even though he did not exploit this fact systematically. In
any case, the following result (cf. Proposition I.3.8 in [2]) deals implicitly with pure-
injectives and plays a key role; it is the analogue of our Corollary 3.3.

Proposition (Auslander). Let C be a finitely presented Λop-module. Let Γ = EndΛop(C)
and denote by Inj Γ the full subcategory of injective Γ-modules. Then the functor

Inj Γ −→Mod Λ, I 7→ HomΓ(C, I)

is fully faithful.
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Note that HomΓ(C, I) is a pure-injective Λ-module whenever I is an injective Γ-
module. The inverse for the functor I 7→ HomΓ(C, I) is given byX 7→ X⊗ΛC. Therefore
HomΓ(C,−) is the analogue of our functor TC, whereas −⊗Λ C is the analogue of our
functor Hom(C,−).

5.4. Morphisms determined by modules. The concept of a map which is deter-
mined by an object was introduced by Auslander in order to give a conceptual expla-
nation for the existence of almost split sequences. The main existence result is the
following theorem (cf. Theorem I.3.9 in [2]).

Theorem (Auslander). Let C be a finitely presented Λ-module. Let Y be an arbi-
trary Λ-module and suppose that H is an EndΛ(C)-submodule of HomΛ(C,Y ). Then
there exists, up to isomorphism, a unique right minimal map α : X → Y which is right
determined by C and satisfies ImHomΛ(C,α) = H.

5.5. Auslander’s defect formula. Given a short exact sequence ε : 0 → X → Y →
Z → 0 and a module C, the definition of the defect ∆ε(C) and ∇ε(C) is completely
analogous to that of Definition 5.1. The following formula (cf. Theorem III.4.1 in [2])
relates the contravariant and the covariant defect of a short exact sequence.

Theorem (Auslander). Let ε be a short exact sequence and C be a finitely presented
module in Mod Λ. Suppose that TrC is a Λop-Γ-bimodule and let I be an injective
Γ-module. Then there exists an isomorphism

HomΓ(∆ε(C), I) ∼= ∇ε(HomΓ(TrC, I))

which is functorial in ε and I.

Note that this isomorphism specializes to the Auslander-Reiten formula mentioned
above if one takes a short exact sequence ε : 0→ X → Y → Z → 0 with Y projective.
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