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An innocent form of emergence—what I call "weak emergence"—is
now a commonplace in a thriving interdisciplinary nexus of scientific
activity—sometimes called the "sciences of complexity"—that include
connectionist modelling, non-linear dynamics (popularly known as "chaos"
theory), and artificial life.1  After defining it, illustrating it in two contexts,
and reviewing the available evidence, I conclude that the scientific and
philosophical prospects for weak emergence are bright.

Emergence is a tantalizing topic because examples of apparent
emergent phenomena abound.  Some involve inanimate matter; e.g., a
tornado is a self-organizing entity caught up in a global pattern of behavior
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1Accessible introductions to the study of chaos, with references to more
technical treatments, include Crutchfield et al. (1986), Gleick (1987), and
Kellert (1993).  The bible of connectionism is Rumelhart and McClelland
(1986); discussions for philosophers, and references to the technical literature,
can be found in Bechtel and Abrahamsen (1990), Horgan and Tienson (1991),
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et al. (1992).



that seems to be autonomous with respect to the massive aggregation of air
and water molecules which constitute it.  Another source of examples is the
mind; our mental life consist of an autonomous, coherent flow of mental
states (beliefs, desires, etc.) that presumably somehow ultimately arise out of
the swarm of biochemical activity among our brain's neurons.  Life is a third
rich source of apparent emergence.  For example, the hierarchy of life
embraces ecosystems composed of organisms, which are composed of organs,
which are composed of cells, which are composed of molecules, but each level
in this hierarchy exhibits behavior that seems autonomous with respect to
the behavior found at the level below.

These examples highlight two admittedly vague but nevertheless
useful hallmarks of emergent phenomena:

(1) Emergent phenomena are somehow    constituted by    , and
generated from      , underlying processes.

(2) Emergent phenomena are somehow     autonomous    from
underlying processes.

If we place these hallmarks against a backdrop of abundant apparently
emergent phenomena, it is clear why emergence is a perennial philosophical
puzzle.  At worst, the two hallmarks seem to make emergent phenomena
flat-out inconsistent.  At best, they still raise the specter of illegitimately
getting something from nothing.

So, aside from precisely defining what emergence is, any philosophical
defense of emergence should aim to explain—ideally, explain away—its
apparently illegitimate metaphysics.  Another important goal should be to
show that emergence is consistent with reasonable forms of materialism.  But
perhaps the most important goal should be to show that emergent properties
are useful in empirical science, especially in accounts of those phenomena
like life and mind that have always seemed to involve emergence.  A defense
of emergence will be secure only if emergence is more than merely a
philosophical curiosity; it must be shown to be a central and constructive
player in our understanding of the natural world.

I will argue that      weak emergence     (defined below) meets these three
goals: it is metaphysically innocent, consistent with materialism, and
scientifically useful, especially in the sciences of complexity that deal with life
and mind.  But first I will briefly illustrate the scientific irrelevance
characteristic of stronger, more traditional conceptions of emergence.

Problems with Strong Emergence.

To glimpse the problems with stronger forms of emergence, consider the
conception of emergence defended by Timothy O'Conner (1994).  O'Conner's
clearly articulated and carefully defended account falls squarely within the
broad view of emergence that has dominated philosophy this century.  His



definition2 is as follows:  Property     P     is an emergent property of a
(mereologically-complex) object      O      iff     P     supervenes on properties of the parts
of      O     ,     P     is not had by any of the object's parts,     P     is distinct from any structural
property of      O     , and     P     has a direct ("downward") determinative influence on
the pattern of behavior involving      O     's parts.

The pivotal feature of this definition, to my mind, is the strong form of
downward causation involved.  O'Conner (pp. 97f) explains that he wants

to capture a very strong sense in which an emergent's causal influence
is irreducible to that of the micro-properties on which it supervenes; it
bears its influence in a direct 'downward' fashion, in contrast to the
operation of a simple structural macro-property, whose causal
influence occurs via the activity of the micro-properties which
constitute it.

I call O'Conner's notion "strong" emergence to contrast it with the
weaker form of emergence, defended below, that involves downward
causation only in the weak form created by the activity of the micro-
properties that constitute structural macro-properties.

It is worth noting that strong emergence captures the two hallmarks of
emergence.  Since emergent phenomena supervene on underlying processes,
in this sense the underlying processes constitute and generate the emergent
phenomena.  And emergent phenomena are autonomous from the
underlying processes since they exert an irreducible form of downward causal
influence.  Nevertheless, strong emergence has a number of failings, all of
which can be traced to strong downward causation.

Although strong emergence is logically possible, it is uncomfortably
like magic.  How does an irreducible but supervenient downward causal
power arise, since by definition it cannot be due to the aggregation of the
micro-level potentialities?  Such causal powers would be quite unlike
anything within our scientific ken.  This not only indicates how they will
discomfort reasonable forms of materialism.  Their mysteriousness will only
heighten the traditional worry that emergence entails illegitimately getting
something from nothing.

But the most disappointing aspect of strong emergence is its apparent
scientific irrelevance.  O'Conner finds evidence that strong emergence is
useful in the empirical sciences in "the recent proposals of macro-
determinitive influence on lower-level sub-structure by Polanyi and Sperry
with respect to embryonic cells and consciousness, respectively" (p. 99).  But
these references to Polanyi and Sperry provide little evidence of the empirical
viability of strong emergence unless they refer to a flourishing scientific
research program.  Our doubts about this should be raised when we note that
in the recent philosophical literature on emergence (including O'Conner) all
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citations are to the    same     Polanyi and Sperry papers, which generally date back
twenty five years.  This is not the trail left by a thriving research program.
Strong emergence is perhaps    compatible     with current scientific knowledge.
But if Sperry and Polanyi are the best defense of strong emergence's empirical
usefulness, then its scientific credentials are very weak.  We should avoid
proliferating mysteries beyond necessity.  To judge from the available
evidence, strong emergence is one mystery which we don't need.

Weak emergence contrasts with strong emergence in this respect;
science apparently     does    need weak emergence.  Fortunately, there are no
mysteries like irreducible downward causation in weak emergence, to which
we will now turn.

Definition of Weak Emergence.

Weak emergence applies in contexts in which there is a system, call it     S    ,
composed out of "micro-level" parts; the number and identity of these parts
might change over time.      S     has various "macro-level" states (macrostates)
and various "micro-level" states (microstates).      S    's microstates are the
intrinsic states of its parts, and its macrostates are structural properties
constituted wholly out of its microstates.3   Interesting macrostates typically
average over microstates and so compresses microstate information.  Further,
there is a microdynamic, call it      D     , which governs the time evolution of     S    ' s
microstates.  Usually the microstate of a given part of the system at a given
time is a result of the microstates of "nearby" parts of the system at preceding
times; in this sense,      D      is "local".  Given these assumptions, I define weak
emergence as follows:

Macrostate     P     of     S     with microdynamic      D      is      weakly emergent    iff     P     can
be derived from      D      and     S    's external conditions but only by
simulation.4

                                                
3The macrostate     P     might fall into a variety of categories.  It might be a

property of     S    , possibly one involving various other macrostates of     S    ; it might
be some phenomenon concerning     S    , possibly involving a variety of     S    's other
macrostates; it might be a pattern of     S    's behavior, possibly including other
macrostates of     S    .  There are also more complicated cases, in which the
macrostate is "supple" or "fluid", and the structural definition of the
macrostate might be infinitely long.  This latter issue is developed in Bedau
(1995   c   ).

4This definition is explicitly restricted to a given macrostate of a given
system with a given microdynamic.  This is the    core     or    focal    notion in a
family of related notions of weak emergence, all others of which would be
defined by reference to the core notion and would crucially invoke
underivability without simulation.  For example, one can speak of a weak
emergent    law      when it is a law that a given macrostate of a given system with
a given microdynamic is weakly emergent from a range of initial conditions;



Conditions affecting the system's microstates are "external" if they are
"outside" the system.  If      D      is deterministic and the system is closed, then there
is just one external condition: the system's initial condition.  Every
subsequent microstate of the system is determined by elements inside the
system (the microdynamic      D      and the system's microstates).  If the system is
open, then another kind of "external" condition is the contingencies of the
flux of parts and states through     S    .  If the microdynamic is nondeterministic,
then each accidental effect is an "external" condition.  With external
conditions understood in this fashion, it is coherent to speak of macrostates
being "derivable" from external conditions even in nondeterministic
systems.

Although perhaps unfamiliar, the idea of a macrostate being derived
"by simulation" is straightforward and natural.  Given a system's initial
condition and the sequence of all other external conditions, the system's
microdynamic completely determines each successive microstate of the
system.  To simulate the system one iterates its microdynamic, given a
contingent stream of external conditions as input.  Since the macrostate P is a
structural property constituted out of the system's microstates, the external
conditions and the microdynamic completely determine whether     P    
materializes at any stage in the simulation.  By simulating the system in this
way one can derive from the microdynamic plus the external conditions
whether P obtains at any given time after the initial condition.  What
distinguishes a weakly emergent macrostate is that this sort of simulation is
required to derive the macrostate's behavior from the system's
microdynamic.  Crutchfield et al. (1986, p. 49) put the essential point especially
clearly: the algorithmic effort for determining the systems behavior is roughly
proportional to how far into the future the system's behavior is derived.  It is
obvious that the algorithmic effort required for a simulation is proportional
to how far into the future the simulation goes.

                                                                                                                                                
this law is underivable without simulations across many initial conditions.
Similarly, one can speak of a weak emergent     pattern     involving a range of
suitably related macrostates, microdynamics, or systems, but I will not attempt
here to define weak emergence in this whole family of contexts.  The guiding
strategy behind these definitional extensions is reasonably clear.  The range of
new contexts for weak emergence is limited only by our imagination.

It is worth at least mentioning that the notion of underivability
without simulation provides another dimension along which notions of
weak emergence can vary.  There is a range of more or less stringent
conditions.  For example, consider a macrostate that in principle is derivable
without simulation, yet the derivation uses vastly more resources (e.g.,
"steps") than any human could grasp; or consider a macrostate that is
derivable (only) by simulation but the simulation is infinitely long.  I will not
elaborate on this dimension here.  The paradigm of weak emergence
involves underivability except by finite simulation.



The need for simulations in the study of low-dimensional chaos has
been emphasized before (see, e.g., Crutchfield et al. 1986, Stone 1989, Kellert
1993).  Weak emergence has a special source in this kind of chaos: exponential
divergence of trajectories, also known as sensitive dependence on initial
conditions or "the butterfly effect".  This particular mechanism does not
underlie all forms of weak emergence, though.  On the contrary, weak
emergence seems to rampant in     all    complex systems, regardless of whether
they have the underlying mechanisms that produce chaos.  In fact, some
include weak emergence as part of the definition of what it is to be a complex
adaptive system in general (Holland 1992).  Indeed, it is the ubiquity of weak
emergence in complex systems that makes weak emergence especially
interesting.

Derivations that depend on simulations have certain characteristic
limitations.  First, they are massively contingent, awash with accidental
information about the system's components and external conditions.  The
derivations can be too detailed and unstructured for anyone to be able to
"survey" or understand how they work.  The derivations also can obscure
simpler macro-level explanations of the same macrostates that apply across
systems with different external conditions and different microdynamics.  But
none of this detracts from the fact that all of the system's macrostates can be
derived from its microdynamic and external conditions with a simulation.

The modal terms in this definition are metaphysical, not
epistemological.  For     P     to be weakly emergent, what matters is that    there is    a
derivation of     P     from      D      and     S    's external conditions and     any     such derivation is
a simulation.  It does not matter whether anyone has discovered such a
derivation or even suspects that it exists.  If     P     is a weakly emergent, it is
constituted by, and generated from, the system's underlying microdynamic,
whether or not we know anything about this.  Our need to use a simulation is
due neither to the current contingent state of our knowledge nor to some
specifically human limitation or frailty.  Although a Laplacian
supercalculator would have a decisive advantage over us in simulation
speed, she would still need to simulate.  Underivability without simulation is
a purely formal notion concerning the existence and nonexistence of certain
kinds of derivations of macrostates from a system's underlying dynamic.

Weak Emergence in the Game of Life.

A good way to grasp the concept of weak emergence is through examples.
One of the simplest source of examples is the Game of Life devised more than
a generation ago by the Cambridge mathematician John Conway and
popularized by Martin Gardner.5 This "game" is "played" on a two-
dimensional rectangular grid of cells, such as a checker board.  Time is
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discrete.  A cell's state at a given time is determined by the states of its eight
neighboring cells at the preceding moment, according to the birth-death rule:
A dead cell becomes alive iff 3 neighbors were just alive, and a living cell dies
iff fewer than 2 or more than 3 neighbors were just alive.  (Living cells with
fewer than two living neighbors die of "loneliness", those with more than
three living neighbors die of "overcrowding", and a dead cell becomes
populated by a living cell if it has the three living neighbors needed to
"breed" a new living cell.)  Although Conway's Game of Life does not
represent the state of the art of scientific attempts to understand complex
systems, it is a well-known and exquisitely simple illustration of many of the
principles of complexity science, including weak emergence, and it illustrates
a    class    of systems—so called "cellular automata"—that are one central
paradigm for how to understand complexity in general (see, e.g., Wolfram
1994).

One can easily calculate the time evolution of certain simple Life
configurations.  Some remain unchanging forever (so-called "still lifes"),
others oscillate indefinitely (so-called "blinkers"), still others continue to
change and grow indefinitely.  Figure 1 shows seven time steps in the history
of six small initial configurations of living cells; some are still lifes, others are
blinkers.  Examining the behavior of these initial configurations allows one
to derive their exact behavior indefinitely far into the future.  More complex
patterns can also be produced by the simple birth-death rule governing
individual cells.  One simple and striking example—dubbed the "glider",
shown as (f) in Figure 1—is a pattern of five living cells that cycles through
four phases, in the processes moving one cell diagonally across the Life field
every four time steps.  Some other notable patterns are "glider
guns"—configuration that periodically emit a new glider—and
"eaters"—configurations that destroy any gliders that collide with them.
Clusters of glider guns and eaters can function in concert just like AND, OR,
NOT, and other logic gates, and these gates can be connected into complicated
switching circuits.  In fact, Conway proved (Berlekamp et al. 1982) that these
gates can even be cunningly arranged so that they constitute a universal
Turing machine, and hence are able to compute literally every possible
algorithm, or, as Poundstone vividly puts it, to "model every precisely
definable aspect of the real world" (Poundstone 1985, p. 25).

There is no question that every event and pattern of activity found in
Life, no matter how extended in space and time and no matter how
complicated, is generated from the system's microdynamic—the simple birth-
death rule.  Every event and process that happens at any level in a Life world
can be deterministically derived from the world's initial configuration of
states and the birth-death rule.  It follows that a structural macrostate in Life
will be weakly emergent if deriving its behavior requires simulation.  Life
contains a vast number of macrostates that fill this bill.  Some are not
especially interesting; others are fascinating.  Here are two examples.



                               (a)             (b)          (c)             (d)                 (e)                    (f)
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Figure 1.  Seven time steps in the evolution of some simple configurations in the Game of Life.
Configuration (a) is a "fuse" burning at both ends; after two time steps it is entirely consumed
and no life remains.  Configuration (b), a still life called the "block", never changes.
Configuration (c), a "traffic light", is a blinker with period two.  Configuration (d) evolves
after two time steps into the "beehive," another still life.  Configuration (e) evolves after five
time steps into a period two blinker consisting of four traffic lights.  Configuration (f) is a
glider, a period four pattern that moves diagonally one cell per period.



R pentomino growth    .  The R pentomino is a wildly unstable five-cell
edge-connected pattern.  Figure 2 shows the first seven time steps in the
evolution of the R pentomino; Figure 3 shows the pattern at time step 100
(above) and time step 150 (below).  Listen to part of Poundstone's description
(1985, p. 33) of what the R pentomino produces:  "One configuration leads to
another and another and another, each different from all of its predecessors.
On a high-speed computer display, the R pentomino roils furiously.  It
expands, scattering debris over the Life plane and ejecting gliders."

time 0

time 1

time 2

time 3

time 4

time 5

time 6

time 7

Figure 2.  The first seven time steps in the evolution of the R pentomino (the figure at time 0),
showing slow and irregular growth.
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Figure 3.  Above: The R pentomino after 100 timesteps.  The configuration contains five blocks, a
traffic light, a glider, and some unstable clusters of cells.  Below:  The R pentomino after 150
timesteps.  The configuration now includes three blocks, a traffic light, two gliders, and some
unstable clusters of cells.  The pattern continues to grow steadily but irregularly.



Indefinite growth (i.e., increase in number of living cells) is a structural
macrostate constituted by the cells in Life.6  Does the R pentomino (on an
infinite Life grid) grow indefinitely?  Some Life configurations do grow
forever, such as glider guns, which continually spawn five-cell gliders that
glide off into the indefinite distance.  So, if the R pentomino continually
ejects gliders that remain undisturbed as they travel into the infinite distance,
for example, then it would grow forever.  But does it?  There is no simple way
to answer this question.  As far as anyone knows, all we can do is let Life
"play" itself out when given the R pentomino as initial condition, i.e.,
observe the R pentomino's behavior.  As it happens (Poundstone 1985, p. 35),
after 1103 time steps it settles down to a stable state that just fits into a 51-by-
109 cell region.  Thus, the finite bound of the R pentomino is a weak
emergent macrostate of the Game of Life.

The R pentomino is one of the simplest Life configurations that is
underivable.  What makes Life's underivability so striking is that its
microdynamic—the underlying birth-death rule—is so simple.

Glider Spawning    .  Let      G      be the structural macrostate of quickly
spawning a glider.  (To make this property precise, we might define      G      as, say,
the property of exhibiting a glider that survives for at least a three periods, i.e.,
twelve time steps, within one hundred time steps of evolution from the
initial condition.)  It is easy to derive that certain Life configurations never
spawn a glider and so lack property      G     .  As illustrations, a little a priori
reflection allows one to derive that      G      is absent from each of the five the
configurations in Figure 1 (a) - (e), from any configuration consisting of a
sparse distribution of those five configurations, from a configuration
consisting of all dead cells or all living cells, and from a configuration split
straight down the middle into living and dead cells.   Similarly, no
simulation is necessary to see that some Life configurations have      G     ; for
example, consider the configuration consisting of one glider, Figure 1 (f).  In
general, though, it is impossible to tell whether a given initial Life
configuration will quickly spawn a glider, short of observing how the initial
condition evolves. Thus,      G      (or non-     G     ) is weakly emergent in most of the Life
configurations that possess (or lack) it, as contemplating a couple of examples
makes evident.   Figures 4 and 5 show two random initial configurations
(above) and their subsequent evolution (below).  By timestep 115 the
configuration in Figure 4 has spawned no gliders, while by timestep 26 a
glider has already emerged from the pattern in Figure 5.

                                                
6Specifically, indefinite growth is the macrostate defined as the

(infinite) disjunction of all those (infinite) sequences    s    of life states such that,
for each positive integer     n    , there is a time    t    when    s    contains more than     n    
living cells.
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Figure 4.  Above: A random distribution of living cells.  Below: The distribution after 115
timesteps.  No glider has appeared yet.
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Figure 5.  Above: A random distribution of living cells.  Below: The distribution after 26
timesteps.  A glider is emerging from an unstable cluster of cells at the lower left.



Being weakly emergent does not prevent us from readily discovering
various laws involving      G     .  If one observes the frequency of occurrence of
gliders in lots of random initial configurations, one discovers that usually
gliders are quickly spawned;      G      is true of most random Life fields.  Extensive
enough observation allows one to measure the prevalence of      G      quite
accurately, and this information can then be summarized in a little
probabilistic law about all random Life fields     X    , of this form: prob(    X     is      G     ) =     k    .

Although perhaps not especially fascinating or profound, this little law
of the Game of Life nicely illustrates how empirical observation of computer
simulations can unearth evidence for laws involving the Game of Life's
weakly emergent states.

Empirical observation is generally the     only     way to discover these laws.
With few exceptions, it is impossible without simulation to derive the
behavior of any macrostate in a Life configuration even given complete
knowledge of the configuration.  In fact, since a universal Turing machine
can be embedded in Life, the undecidability of the halting problem proves
that in principle there can be no algorithm for determining whether the
behavior exhibited in an arbitrary Life world will ever stabilize.  Yet all Life
phenomena can be derived from the initial conditions and the birth-death
rule.  Thus, Conway's Game of Life abounds with weakly emergent
properties.

The Game of Life is an exceptionally simple system, simpler than many
systems studied in the sciences of complexity.  For example, recent artificial
life work brims with weak emergence.  I will present one illustration
involving the emergence of evolvability.  Although not as simple as the
Game of Life, this next illustration will be more typical of current work in the
sciences of complexity.

Weak Emergence in a Model of Evolving Life.

Evolving life forms display various macro-level patterns on an evolutionary
time scale.  For example, advantageous traits that arise through mutations
tend,    ceteris paribus   , to persist and spread through the population.
Furthermore, organisms' traits tend, within limits and    ceteris paribus   , to
adapt to changing environmental contingencies.  These sorts of supple
dynamics of adaptation result not from any explicit macro-level control (e.g.,
God does not adjust allele frequencies so that creatures are well adapted to
their environment); rather, they emerge statistically from the micro-level
contingencies of natural selection.

Norman Packard devised a simple model of evolving sensorimotor
agents which demonstrates how these sorts of supple, macro-level
evolutionary dynamic can emerge implicitly from an explicit microdynamical
model (Packard 1989, Bedau and Packard, 1992; Bedau, Ronneburg, and Zwick,
1992; Bedau and Bahm, 1993 and 1994; Bedau 1994; Bedau and Seymour, 1994;
Bedau 1995    a    ).  What motivates this model is the view that evolving life is
typified by a population of agents whose continued existence depends on their



sensorimotor functionality, i.e., their success at using local sensory
information to direct their actions in such a way that they can find and
process the resources they need to survive and flourish.  Thus, information
processing and resource processing are the two internal processes that
dominate the agents' lives, and their primary goal—whether they know this
or not—is to enhance their sensorimotor functionality by coordinating these
internal processes.  Since the requirements of sensorimotor functionality may
well alter as the context of evolution changes, continued viability and vitality
requires that sensorimotor functionality can adapt in an open-ended,
autonomous fashion.  Packard's model attempts to capture an especially
simple form of this open-ended, autonomous evolutionary adaptation.

The model consists of a finite two-dimensional world with a resource
field and a population of agents.  An agent's survival and reproduction is
determined by the extent to which it finds enough resources to stay alive and
reproduce, and an agent's ability to find resources depends on its
sensorimotor functionality—that is, the way in which the agent's perception
of its contingent local environment affects its behavior in that environment.
An agent's sensorimotor functionality is encoded in a set of genes, and these
genes can mutate when an agent reproduces.  Thus, on an evolutionary time
scale, the process of natural selection implicitly adapts the population's
sensorimotor strategies to the environment.  Furthermore, the agents'
actions change the environment because agents consume resources and
collide with each other.  This entails that the mixture of sensorimotor
strategies in the population at a given moment is a significant component of
the environment that affects the subsequent evolution of those strategies.
Thus, the "fitness function" in Packard's model—what it takes to survive and
reproduce—is constantly buffeted by the contingencies of natural selection
and unpredictably changes (Packard 1989).

All macro-level evolutionary dynamics produced by this model
ultimately are the result of an explicit micro-level microdynamic acting on
external conditions.  The model explicitly controls only local micro-level
states: resources are locally replenished, an agent's genetically encoded
sensorimotor strategy determines its local behavior, an agent's behavior in its
local environment determines its internal resource level, an agent's internal
resource level determines whether it survives and reproduces, and genes
randomly mutate during reproduction.  Each agent is autonomous in the
sense that its behavior is determined solely by the environmentally-sensitive
dictates of its own sensorimotor strategy.  On an evolutionary time scale these
sensorimotor strategies are continually refashioned by the historical
contingencies of natural selection.  The aggregate long-term behavior of this
microdynamic generates macro-level evolutionary dynamics only as the
indirect product of an unpredictably shifting agglomeration of directly
controlled micro-level events (individual actions, births, deaths, mutations).
Many of these evolutionary dynamics are weakly emergent; although
constituted and generated solely by the micro-level dynamic, they can be
derived only through simulations.  I will illustrate these emergent dynamics



with some recent work concerning the evolution of evolvability (Bedau and
Seymour 1994).

The ability to adapt successfully depends on the availability of viable
evolutionary alternatives.  An appropriate quantity of alternatives can make
evolution easy; too many or too few can make evolution difficult or even
impossible.  For example, in Packard's model, the population can evolve
better sensorimotor strategies only if it can "test" sufficiently many
sufficiently novel strategies; in short, the system needs a capacity for
evolutionary "innovation."  At the same time, the population's
sensorimotor strategies can adapt to a given environment only if strategies
that prove beneficial can persist in the gene pool; in short, the system needs a
capacity for evolutionary "memory."

Perhaps the simplest mechanism that simultaneously affects both
memory and innovation is the mutation rate.  The lower the mutation rate,
the greater the number of genetic strategies "remembered" from parents.  At
the same time, the higher the mutation rate, the greater the number of
"innovative" genetic strategies introduced with children.  Successful
adaptability requires that these competing demands for memory and
innovation be suitably balanced.  Too much mutation (not enough memory)
will continually flood the population with new random strategies; too little
mutation (not enough innovation) will tend to freeze the population at
arbitrary strategies.  Successful evolutionary adaptation requires a mutation
rate suitably intermediate between these extremes.  Furthermore, a suitably
balanced mutation rate might not remain fixed, for the balance point could
shift as the context of evolution changes.

One would think, then, that any evolutionary process that could
continually support evolving life must have the capacity to adapt
automatically to this shifting balance of memory and innovation.  So, in the
context of Packard's model, it is natural to ask whether the mutation rate that
governs    first-order    evolution could adapt appropriately by means of a    second-   
order    process of evolution.  If the mutation rate can adapt in this way, then
this model would yield a simple form of the evolution of evolvability and,
thus, might illuminate one of life's fundamental prerequisites.

Previous work (Bedau and Bahm 1993, 1994) with    fixed     mutation rates
in Packard's model revealed two robust effects.  The first effect was that the
mutation rate governs a phase transition between genetically "ordered" and
genetically "disordered" systems.  When the mutation rate is too far below
the phase transition, the whole gene pool tends to remain "frozen" at a given
strategy; when the mutation rate is significantly above the phase transition,
the gene pool tends to be a continually changing plethora of randomly related
strategies.  The phase transition itself occurs over a critical band in the

spectrum of mutation rates, µ, roughly in the range 10-3 ≤ µ ≤ 10-2.  The
second effect was that evolution produces maximal population fitness when
mutation rates are around values just below this transition.  Apparently,
evolutionary adaptation happens best when the gene pool tends to be
"ordered" but just on the verge of becoming "disordered."



In the light of our earlier suppositions about balancing the demands for
memory and innovation, the two fixed-mutation-rate effects suggest the
balance hypothesis    that the mutation rates around the critical transition
between genetic "order" and "disorder" optimally balance the competing
evolutionary demands for memory and innovation.  We can shed some light
on the balance hypothesis by modifying Packard's model so that each agent
has an additional gene encoding its personal mutation rate.  In this case, two
kinds of mutation play a role when an agent reproduces: (i) the child inherits
its parent's sensorimotor genes, which mutate at a rate controlled by the
parent's personal (genetically encoded) mutation rate; and (ii) the child
inherits its parent's mutation rate gene, which mutates at a rate controlled by
a population-wide meta-mutation rate.  Thus, first-order (sensorimotor) and
second-order (mutation rate) evolution happen simultaneously.  So, if the
balance hypothesis is right and mutation rates at the critical transition
produce optimal conditions for sensorimotor evolution because they
optimally balance memory and innovation, then we would expect second-
order evolution to drive mutation rates into the critical transition.  It turns
out that this is exactly what happens.

Figure 6 shows four examples of how the distribution of mutation rates
in the population change over time under different conditions.  As a control,
distributions (a) and (b) show what happens when the mutation rate genes
are allowed to drift randomly: the bulk of the distribution wanders aimlessly.
By contrast, distributions (c) and (d) illustrate what happens when natural
selection affects the mutation rate genes: the mutation rates drop
dramatically.  The meta-mutation rate is lower in (a) than in (b) and so, as
would be expected, distribution (a) is narrower and changes more slowly.
Similarly, the meta-mutation rate is lower in (c) than in (d), which explains
why distribution (c) is narrower and drops more slowly.

If we examine lots of simulations and collect suitable macrostate
information, we notice the pattern predicted by the balance hypothesis:
Second-order evolution tends to drive mutation rates down to the transition
from genetic disorder to genetic order, increasing population fitness in the
process.  This pattern is illustrated in Figure 7, which shows time series data
from a typical simulation.  The macrostates depicted in Figure 7 are (from top
to bottom): (i) the mutation rate distribution, as in Figure 6; (ii) a blow up
distinguishing very small mutation rates in the distribution (bins decrease in

size by a factor of ten, e.g., the top bin shows mutation rates between 10-0 and

10-1, the next bin down shows mutation rates between 10-1 and 10-2, etc.); (iii)
the mean mutation rate (note the log scale); (iv) the uningested resources in
the environment; (v) three aspects of the genetic diversity in the population's
sensorimotor strategies; and (vi) the population level.



Figure 6.  Evolutionary dynamics in mutation rate distributions from four simulations of the
model of sensorimotor agents.  Time is on the X-axis (100,000 timesteps) and mutation rate is on
the Y-axis.  The gray-scale at a given point (    t    ,      m      ) in this distribution shows the frequency of the
mutation rate       m       in the population at time     t    .  See text.



Figure 7.  Time series data from a simulation of the model of sensorimotor agents, showing how
the population's resource gathering efficiency increases when the mutation rates evolve
downward far enough to change the qualitative character of the population's genetic diversity.
From top to bottom, the data are: (i) the mutation rate distribution; (ii) a blow up of very small
mutation rates; (iii) the mean mutation rate (note the log scale); (iv) the uningested resource in
the environment; (v) three aspects of the diversity of the sensorimotor strategies in the
population; (vi) the population level.  See text.



The composite picture provided by Figure 7 can be crudely divided into
three epochs: an initial period of (relatively) high mutation rates, during the
time period 0 – 20,000; a transitional period of falling mutation rates, during
the time period 20,000 – 40,000; and a final period of relatively low mutation
rates, throughout the rest of the simulation.  The top three time series are
different perspectives on the falling mutation rates, showing that the
mutation rates adapt downwards until they cluster around the critical

transition region, 10-3 ≤ µ ≤ 10-2.  Since resources flow into the model at a
constant rate and since survival and reproduction consume resources, the
uningested resource inversely reflects the population fitness.  We see that the
population becomes more fit (i.e., more efficiently gathers resources) at the
same time as the mutation rates drop.  Although this is not the occasion to
review the different ways to measure the diversity of the sensorimotor
strategies in the population, we can easily recognize that there is a significant
qualitative difference between the diversity dynamics in the initial and final
epochs.  In fact, these qualitative differences are characteristic of precisely the
difference between a "disordered" gene pool of randomly related strategies
and a gene pool that is at or slightly below the transition between genetic
order and disorder (see Bedau and Bahm 1993, 1994, Bedau 1995).

If the balance hypothesis is the correct explanation of this second-order
evolution of mutation rates into the critical transition, then we should be
able to change the mean mutation rate by dramatically changing where
memory and innovation are balanced.  And, in fact, the mutation rate     does   
rise and fall along with the demands for evolutionary innovation.  For
example, when we randomize the values of all the sensorimotor genes in the
entire population so that every agent immediately "forgets" all the genetically
stored information learned by its genetic lineage over its entire evolutionary
history, the population must restart its evolutionary learning job from
scratch.  It has no immediate need for memory (the gene pool contains no
information of proven value); instead, the need for innovation is
paramount.  Under these conditions, we regularly observe the striking
changes illustrated around timestep 333,333 in Figure 8.  The initial segment
(timesteps 0 – 100,000) in Figure 8 shows a mutation distribution evolving
into the critical mutation region, just as in Figure 7 (but note that the time
scale in Figure 8 is compressed by a factor of five).  But at timestep 333,333 an
"act of God" randomly scrambles all sensorimotor genes of all living
organisms.  At just this point we can note the following sequence of events:
(a) the residual resource in the environment sharply rises, showing that the
population has become much less fit; (b) immediately after the fitness drop
the mean mutation rate dramatically rises as the mutation rate distribution
shifts upwards; (c) by the time that the mean mutation rate has risen to its
highest point the population's fitness has substantially improved; (d) the
fitness levels and mutation rates eventually return to their previous
equilibrium levels.



Figure 8.  Time series data from a simulation of the model of sensorimotor agents.  From top to
bottom, the data are: (i) a blow up of very small mutation rates in the mutation rate
distribution; (ii) mean mutation rate (note the log scale); (iii) the level of uningested resources
in the world; (iv) population level.  At timestep 333,333 all sensorimotor genes of all living
organisms were randomly scrambled.  See text.



All of these simulations show the dynamics of the mutation rate
distribution adjusting up and down as the balance hypothesis would predict.
Temporarily perturbing the context for evolution can increase the need for
rapid exploration of a wide variety of sensorimotor strategies and thus
dramatically shift the balance towards the need for innovation.  Then,
subsequent sensorimotor evolution can reshape the context for evolution in
such a way that the balance shifts back towards the need for memory.  This all
suggests that,    ceteris paribus   , mutation rates adapt so as to balance
appropriately the competing evolutionary demands for memory and
innovation, and that,    ceteris paribus   , this balance point is at the genetic
transition from order to disorder.  An indefinite variety of environmental
contingencies can shift the point at which the evolutionary need for memory
and innovation are balanced, and the perturbation experiments show how
mutation rates can adapt up or down as appropriate.

This sort of supple adaptability in Packard's model can be counted
among the hallmarks of life in general (Maynard Smith 1975, Cairns-Smith
1985, Bedau 1995    b    ).  And, clearly, these evolutionary dynamics are weakly
emergent.  The model's macro-level dynamic is wholly constituted and
generated by its micro-level phenomena, but the micro-level phenomena
involve such a kaleidoscopic array of non-additive interactions that the
macro-level dynamics cannot be derived from micro-level information
except by means of simulations, like those shown above.  In a similar fashion,
many other characteristic features of living systems can be captured as
emergent phenomena in artificial life models; see, e.g., Farmer     et al   . (1986),
Langton (1989), Langton     et al   . (1992), Varela and Bourgine (1992), Brooks and
Maes (1994), Gaussier and Nicoud (1994), Stonier and Yu (1994), Banzhaf and
Eeckman (1995).

Support for Weak Emergence.

Conway's Game of Life and Packard's model of evolving life serve to clarify
weak emergence and illustrate its role in the sciences of complexity.  But one
might still ask whether weak emergence is philosophically interesting and,
indeed, whether it deserves the name "emergence" at all.  These questions
deserve answers, especially since weak emergence differs significantly from
traditional twentieth century accounts of emergence.

For example, since weakly emergent properties can be derived (via
simulation) from complete knowledge of micro-level information, from that
information they can be     predicted    , at least in principle.  If we have been
observing a simulation of some system     S     and at time    t    we saw that     S     was in
state     P    , then we know that there is an appropriate derivation that     S     will be in
macrostate     P     at    t   .7  So, if we are give a system's microdynamic and all relevant
                                                

7This can be spelled out as follows:  Let     C       i    be the set of microstates of all

the parts of     S     at time    i   .  Apply      D      (possibly with nondeterministic steps) to the
S    's initial condition     C        0     (and possibly include a property synchronized



external conditions, then in principle we can derive the system's behavior
because we can simulate the system and observe its behavior for as long as
necessary.  And if we can derive how the system will behave, we can predict
its future behavior with complete certainty.  Thus, on this key issue weak
emergence parts company with at least the    letter    of those traditional
conceptions of emergence (e.g., Broad 1925, Pepper 1926, Nagel 1961) that focus
on in principle unpredictability of macrostates even given complete
microstate information.

At the same time, weak emergence does share much of the    spirit    of
those traditional views that emphasize unpredictability.  For one thing, in the
case of open systems, making the prediction would require prior knowledge
of all details of the flux of accidental changes introduced by contact with the
external world; and in the case of nondeterministic systems, it would require
knowledge of all the nondeterministic events affecting the system's behavior.
This sort of knowledge is beyond us, except "in principle;" so weak emergent
macrostates of such systems are predictable     only     "in principle."  Furthermore,
even for closed and deterministic systems, weak emergent macrostates can be
"predicted"     only     by observing step-by-step how the system's behavior unfolds.
For example, one can "predict" whether an R pentomino will grow forever
only by observing in time what happens to the configuration.  Some might
find this so unlike what should be expected of a prediction that they would
agree with Stone (1989) that it is no prediction at all.

One might worry that the concept of weak emergence is fairly useless
since we generally have no     proof    that a given macrostate of a given system is
underivable without simulation.8  For example, I know no proof that the
unlimited growth of the R pentomino and glider-spawning probability can be
derived only by simulation; for all I know there    is    no such proof.  On these
grounds some might conclude that weak emergence "suffers in the course of
application in practice", to use Klee's words (1984, p. 49).  I would strenuously
disagree, however, since unproven weak emergence claims can, and often do,
still possess substantial     empirical    support.  My earlier weak emergence claims
about R pentomino growth and random glider spawning, although
unproved, still have more than enough empirical support.  Similar weak
emergence claims have substantial empirical support.  A significant part of
the activity in artificial life consists of examining empirical evidence about
interesting emergent phenomena in living systems;       mutatis mutandis   , the
same holds for the rest of the sciences of complexity.

                                                                                                                                                
sequence of external conditions) through successor conditions     C       i    until      D     

yields     C    t.  From     C    t and the structural definition of     P    , determine whether     P    
obtains at    t   .

8It is a mathematical fact whether a given macrostate of a given system
is underivable from the system's microdynamics and external conditions.  So,
unless it's undecidable, it's provable.  Nevertheless, being provable does not
entail that it is easy, or even humanly possible, to find and evaluate the proof.



One might object that weak emergence is    too     weak to be called
"emergent", either because it applies so widely or arbitrarily that it does not
demark an interesting class of phenomena, or because it applies to certain
phenomena that are not emergent.  For example, indefinitely many arbitrary,
ad hoc Life macrostates are (for all we know) underivability without
simulation.  Or, to switch to a real world example, even though the
potentiality of a certain knife to slice a loaf of bread is "not the sort [of
macrostate] emergence theorists typically have in mind" (O'Conner 1994, p.
96), the knife's potentiality might well be weakly emergent with respect to its
underlying molecular microdynamic.  But this breadth of instances, including
those that are arbitrary or uninteresting to "emergence theorists", is not a
problem or flaw in weak emergence.  Weak emergence explicates an everyday
notion in complexity science.  It is not a special, intrinsically interesting
property; rather, it is widespread, the rule rather than the exception.  So not
all emergent macrostates are interesting; far from it.  A central challenge in
complexity science is to identify and study those exceptional, especially
interesting weak emergent macrostates that reflect fundamental aspects of
complex systems and are amenable to empirical investigation.  Simulation
gives us a new capacity to identify and study important macrostates that
would otherwise beyond the reach of more traditional mathematical or
empirical methods.

The micro-level derivability of weak emergent phenomena might be
thought to deprive them of the right to be called "emergent"; they might not
seem "emergent" enough.  The impetus behind this worry might come partly
from the history of emergence concepts being ineliminably and unacceptably
mysterious—as if no acceptable and non-mysterious concept could deserve to
be called "emergence."  By contrast, part of my defense of weak emergence is
precisely that it avoids the traditional puzzles about emergence.

In any event, there are good reasons for using the word "emergence" in
this context.  For one thing, complexity scientists themselves routinely use
this language and weak emergence is an explication of their language.9

                                                
9Even if we adopt the quite simplistic expedient of restricting our

attention to the    titles    of research reports, we can easily generate a rich range of
examples of this language.  E.g., rummaging for a few minutes in a handful of
books within easy reach produced the following list, all of which speak of
emergence in the weak sense defined here in their titles: "Emergent
Colonization in an Artificial Ecology" (Assad and Packard 1992), "Concept
Formation as Emergent Phenomena" (Patel and Schnepf 1992), "A Behavioral
Simulation Model for the Study of Emergent Social Structures" (Drogoul et
al. 1992), "Dynamics of Artificial Markets: Speculative Markets and Emerging
'Common Sense' Knowledge" (Nottola, Leroy, and Davalo 1992),     Emergent
Computation: Self-Organizing, Collective, and Cooperative Phenomena in
Natural and Artificial Computing Networks    (Forrest 1989), "Emergent Frame
Recognition and its Use in Artificial Creatures" (Steels 1991),"The Coreworld:
Emergence and Evolution of Cooperative Structures in a Computational



Another compelling reason for allowing the "emergence" language is that
weak emergence has the two hallmarks of emergent properties.  It is quite
straightforward how weak emergent phenomena are constituted by, and
generated from, underlying processes.  The system's macrostates are
constituted by its microstates, and the macrostates are entirely generated
solely from the system's microstates and microdynamic.  At the same time,
there is a clear sense in which the behavior of weak emergent phenomena are
autonomous with respect to the underlying processes.  The sciences of
complexity are discovering simple, general macro-level patterns and laws
involving weak emergent phenomena.  There is no evident hope of side-
stepping a simulation and deriving these patterns and laws of weak emergent
phenomena from the underlying microdynamic (and external conditions)
alone.  In fact, as I emphasized earlier, the micro-level "explanations" of weak
emergence are typically so swamped with accidental micro-details that they
obscure the macro-level patterns.  In general, we can formulate and
investigate the basic principles of weak emergent phenomena only by
empirically observing them at the macro-level.  In this sense, then, weakly
emergent phenomena have an autonomous life at the macro-level.  Now,
there is nothing inconsistent or metaphysically illegitimate about underlying
processes constituting and generating phenomena that can be derived only by
simulation.  In this way, weak emergence explains away the appearance of
metaphysical illegitimacy.

It is also clear why weak emergence is consistent with reasonable forms
of materialism.  By definition, a weak emergent property can be derived from
its microdynamic and external conditions.  Any emergent phenomenon that
a materialist would want to embrace would have materialistic micro-level
components with materialist micro-properties governed by a materialistic
microdynamic.  Thus, the weak emergent phenomena of interest to the
materialists would have a completely materialistic explanation.

Conclusion.

Weak emergence is no universal metaphysical solvent.  For example, if
(hypothetically, and perhaps     per impossible    ) we were to acquire good
evidence that human consciousness is weakly emergent, this would not
immediately dissolve all of the philosophical puzzles about consciousness.
Still, we      would     learn the answers to some questions:  First, a precise notion of
emergence    is    involved in consciousness; second, this notion of emergence is
metaphysically benign.  Thus, free from special distractions from emergence,
we could focus on the remaining puzzles just about consciousness itself.

As Conway's Game of Life and Packard's model of evolving
sensorimotor agents illustrate, weak emergence is ubiquitous in the
burgeoning, interdisciplinary nexus of scientific research about complex

                                                                                                                                                
Chemistry" (Rasmussen, Knudsen, and Feldberg 1991), "Spontaneous
Emergence of a Metabolism" (Bagley and Farmer 1992).



systems.  The central place of weak emergence in this thriving scientific
activity is what provides the most substantial evidence that weak emergence
is philosophically and scientifically important.  It is striking that weak
emergence is so prominent in scientific accounts of exactly those especially
puzzling phenomena in the natural world—such as those involving life and
mind—that perennially generate sympathy for emergence.  Can this be an
accident?
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