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Optimal Precoding Design and Power Allocation
for Decentralized Detection of Deterministic Signals

Jun Fang, Hongbin Li,Senior Member, IEEE, and Shaoqian Li

Abstract— We consider a decentralized detection problem in a
power-constrained wireless sensor networks (WSNs), in which a
number of sensor nodes collaborate to detect the presence ofa
deterministic vector signal. The signal to be detected is assumed
known a priori. Given a constraint on the total amount of transmit
power, we investigate the optimal linear precoding design for
each sensor node. More specifically, in order to achieve the best
detection performance, shall sensor nodes transmit their raw data
to the fusion center (FC), or transmit compressed versions of
their original data? The optimal power allocation among sensors
is studied as well. Also, assuming a fixed total transmit power,
we examine how the detection performance behaves with the
number of sensors in the network. A new concept “detection
outage” is proposed to quantify the reliability of the overall
detection system. Finally, decentralized detection with unknown
signals is studied. Numerical results are conducted to corroborate
our theoretical analysis and to illustrate the performanceof the
proposed algorithm.

Index Terms— Decentralized detection, precoding design, de-
tection outage, wireless sensor networks.

I. I NTRODUCTION

Decentralized detection is an important problem that has
attracted much attention over the past decade [1]–[17]. In a
wireless sensor network (WSN), a large number of sensors
are deployed in an area to monitor the environment. Each
sensor makes noisy observations of a binary hypothesis on
the state of the environment and transmits its data to the
fusion center (FC), where a final decision regarding the
state of nature is made. Due to stringent power/bandwidth
constraints, each sensor needs to compress its original data
before the transmission. A typical processing is to conducta
local detection at each node. The local binary decision is then
sent to the FC for reaching a global decision. A large number
of studies [1]–[14] were carried out in this context. A key
problem that appeared in the above setting is the optimization
of local decision rules such that the probability of detection
error is minimized. It was shown in [2], [3], [5] that for
both Bayesian and Neyman-Pearson criteria, the optimal local
sensor decision for a binary hypotheses testing problem is a
likelihood ratio test (LRT). This property drastically reduces
the search space for an optimal collection of local detectors
[14]. Nevertheless, the search of optimal local detectors is still
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exponentially complex because the optimal local thresholds are
generally different and need to to be jointly determined along
with the global fusion rule. Also, in many works, it is assumed
that the local binary decision can be reliably reported to the
FC. This assumption may fail in wireless sensor networks as
the information is transmitted over wireless links.

In this paper, the problem of decentralized detection is stud-
ied under an explicit total transmit power constraint. Battery-
powered wireless sensor networks are plagued with stringent
energy constraints. It is therefore of utmost importance to
incorporate energy awareness into the decentralized detection
algorithm design. We suppose that each sensor uses a simple
analog amplify-and-forward transmission scheme to transmit
their data. As in [16], the local processing at each sensor
node is confined to be a linear operator, which is referred
to as linear precoding. This linear precoding allows for a
simple implementation and is suitable for low-cost sensors
with limited computational resources. However, unlike [16],
in our study, we do not restrict the linear precoder to be a
compression vector. In fact, since we already imposed a power
constraint, there is no need to explicitly specify the number
of messages sent by each sensor.

Instead, we are interested in examining the following fun-
damental question: shall each node transmit its raw data to
the FC, or shall each node send a compressed version of
the original data to the FC? Since the total transmit power
is fixed, sending more messages means that a single message
is transmitted with less power, which results in a poor link
quality. The FC, however, can collect more information from
sensors. On the other hand, sending less messages renders
a better channel quality, but with less information provided
to the FC. The choice between these two strategies seems
difficult before conducting a thorough mathematical analysis.
This optimal precoding design problem will be investigated
in this paper. Note that although linear precoding design
for decentralized detection remains new, its counterpart for
distributed estimation has been extensively investigated, e.g.
[18], [19]. In addition, the asymptotic behavior of the overall
detection performance with an increasing number of sensors
is examined, and a generalized likelihood ratio test (GLRT)is
proposed for the scenario of unknown signals. We noticed that
the problem of decentralized detection in a power-constrained
sensor network was also studied in [15], in which the optimal
transmission mapping strategy was investigated in the asymp-
totic regime where the total transmit power tends to infinity.

The rest of the paper is organized as follows. In Section
II, we introduce the data model, basic assumptions, and the
decentralized detection problem. Section III first develops
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Fig. 1. Decentralized detection in a power-constrained network. Each node
processes its vector observations through a linear precoder. Messages are then
sent to the FC via wireless channels.

an optimal Bayesian decision rule at the FC. The optimal
precoding design and optimal power allocation (among sen-
sors) are studied in Section IV. The impact of number of
sensors on the overall detection performance is analyzed inV.
Decentralized detection with unknown parameters is discussed
in VI, followed by concluding remarks in Section VII.

II. PROBLEM FORMULATION

We consider a binary hypothesis testing problem in which
a number of sensors collaborate to detect the presence of
a known deterministic vector signalθ ∈ R

p. The binary
hypothesis testing problem is formulated as follows:

H0 : xn = wn, ∀n = 1, . . . , N

H1 : xn = Hnθ +wn, ∀n = 1, . . . , N (1)

whereHn ∈ R
qn×p is the known observation matrix defining

the input/output relation,xn ∈ R
qn denotes the sensor’s vector

observation,wn ∈ R
qn denotes the additive multivariate

Gaussian noise with zero mean and covariance matrixRwn
,

and the noise is assumed independent across the sensors.
Unlike many existing works, the signal to be detected here is
assumed to be a vector instead of a scalar. Vector models arise
from a variety of scenarios. For example, if the underlying
phenomena to be detected is a dynamic process, we can obtain
vector signals by sampling the dynamic process at different
time instances. Sensing of a target using multiple modalities
(e.g. optical, chemical, thermal, magnetic, ultrasonic, etc.) also
leads to multidimensional signals.

Let Cn denote the precoding matrix for sensorn. Without
loss of generality, we assume thatCn is a qn × qn matrix
that could be full rank or rank deficient. Each sensor uses an
uncoded analog amplify-and-forward scheme to transmit its
data to the FC. The signal at the FC received from thenth
sensor is given by

yn = Cnxn + vn n = 1, . . . , N (2)

wherevn represents the additive channel noise, and is assumed
Gaussian with zero-mean and covariance matrixσ2

vnI. The
channel matrix is implicitly set equal to an identity matrixas
the multiplicative effect can be removed, given the knowledge
of the channel state information.

The FC, based upon the received data{yn}, forms a final
decision concerning the presence or absence ofθ. Fig. 1
provides an illustration of the decentralized detection. The
problem of interest is to determine the precoding matrix for
each sensor, and to develop an optimal detector to detect
θ for the FC. Note that a transmit power constraint has to
be imposed on the sensor nodes, otherwise we can always
ensure ideal links between sensors and the FC by scaling the
precoding matrices with an arbitrarily large factor. LetP0 and
P1 denote the prior probabilities of the hypothesesH0 and
H1, respectively. The average power radiated from sensorn
is given by

P0E[‖Cnxn‖
2
2|H0] + P1E[‖Cnxn‖

2
2|H1]

=P0tr
{

CnRwn
CT

n

}

+ P1tr
{

CnHnθθ
THT

nC
T
n +CnRwn

CT
n

}

=tr
{

CnRwn
CT

n + P1CnHnθθ
THT

nC
T
n

}

(3)

However, in some detection applications, determining the prior
probabilities of the respective hypotheses may not be possible.
In this case, Neyman-Pearson detection without requiring the
prior probabilities can be used. If the target/event to be de-
tected occurs with a very small but unknown probability (this
is exactly the case for many disaster detection applications), it
is reasonable to consider a power constraint under hypothesis
H0 only [15], i.e. (3) withP1 = 0. More discussions of the
Neyman-Pearson detection will be provided later in this paper.

In the following, assuming that the precoding matrices are
pre-specified, we will first develop a Bayesian detector at the
FC. The precoding matrix design is then investigated based on
the detection performance analysis.

III. B AYESIAN DETECTOR

Suppose that the precoding matrices{Cn} are prescribed.
Let y , [yT

1 yT
2 . . . yT

N ]T denote the vector received at
the FC,yn is a Gaussian random vector with its mean and
covariance matrix given by

yn ∼

{

N (0,Σn) H0

N (CnHnθ,Σn) H1

(4)

in which

Σn , CnRwn
CT

n + σ2
vnI (5)

Our objective is to design a decision rule that minimizes the
average probability of error, i.e.

Pe = P (H0|H1)P1 + P (H1|H0)P0 (6)

whereP (Hi|Hj) is the probability of decidingHi whenHj is
true. According to [20], in order to achieve a minimumPe, the
decision rule is a likelihood ratio test (LRT) given as follows:

L(y) =
p(y|H1)

p(y|H0)

H1

≷
H0

P0

P1
, η (7)
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Noting that {yn} are mutually independent for a given hy-
pothesis, the LRT can be further expressed as

L(y) =

∏N
n=1p(yn|H1)

∏N
n=1p(yn|H0)

= exp

{ N
∑

n=1

(

yT
nΣ

−1
n CnHnθ

−
1

2
θ
THT

nC
T
nΣ

−1
n CnHnθ

)

}

H1

≷
H0

η (8)

Taking logarithms on both sides of (8), the Bayesian decision
rule can finally be put in the following form:

N
∑

n=1

ω
T
nyn +∆

H1

≷
H0

log η (9)

where

ωn ,Σ−1
n CnHnθ

∆ ,
N
∑

n=1

1

2
θ
THT

nC
T
nΣ

−1
n CnHnθ

∆ is a constant independent of the observed data. Hence the
LRT-based fusion rule is in fact a weighted linear combination
of the data{yn}.

Define

u ,
N
∑

n=1

ω
T
nyn +∆

Sinceu is a summation of a set of Gaussian random variables,
u also follows a Gaussian distribution. It can be readily derived
that its mean and variance under hypothesesH0 andH1 are
given respectively as

u ∼

{

N (∆, σ2
u) H0

N (∆ + σ2
u, σ

2
u) H1

(10)

where

σ2
u ,

N
∑

n=1

θ
THT

nC
T
nΣ

−1
n CnHnθ

=

N
∑

n=1

θ
THT

nC
T
n (CnRwn

CT
n + σ2

vnI)
−1CnHnθ (11)

are dependent on the precoding matrices{Cn}. Clearly, the
detection performance of the Bayesian detector fundamentally
relies on the choice of these precoding matrices.

IV. PRECODING DESIGN & POWER ALLOCATION

In this section, we examine the problem of the precoding
design, aiming at minimizing the probability of errorPe.
Recalling results in the previous section, we know that the
FC makes a global decision based on

u
H1

≷
H0

log η (12)

whereu is a Gaussian random variable with meanµu,0 =
∆ if H0 is true, otherwiseµu,1 = ∆ + σ2

u; the variance

under the null and alternative hypotheses remains the same.
This hypothesis testing problem is called themean-shifted
Gauss-Gauss problem. For this type of detection problem,
the detection performance is monotonic with the deflection
coefficientχ [20]:

χ ,
(µu,1 − µu,0)

2

σ2
u

(13)

that is,Pe decreases monotonically withχ. With µu,0 = ∆
andµu,1 = ∆+ σ2

u, it is easy to derive that

χ = σ2
u (14)

which indicates that the larger the varianceσ2
u, the better the

detection performance. As shown in (11),σ2
u is a function of

{Cn}. Therefore the problem of minimizingPe is equivalent
to

max
{Cn}

σ2
u =

N
∑

n=1

θ
THT

nC
T
n (CnRwn

CT
n + σ2

vnI)
−1CnHnθ

(15)

As we mentioned before, we have to impose a transmit power
constraint on the sensor nodes, otherwise the optimization
is ill-posed since we can always ensure ideal links between
sensors and the FC by scaling the precoding matrices with an
arbitrarily large factor. To make the problem meaningful, we
hereby impose an average total transmit power constraint. The
precoding design can therefore be formulated as follows

max
{Cn}

N
∑

n=1

θ
THT

nC
T
n (CnRwn

CT
n + σ2

vnI)
−1CnHnθ

s.t.
N
∑

n=1

tr
{

CnRwn
CT

n + P1CnHnθθ
THT

nC
T
n

}

≤ Ttotal

(16)

The above optimization can be decoupled into two sequential
subtasks, namely, a power allocation (among sensors) problem
and a set of independent precoding design problems.

A. Optimum Precoding Design

Let us suppose, for the time being, that a power allocation
is pre-specified and given as{T1, T2, . . . , TN}. Then the
optimum precoding matrix for each sensor can be obtained
by solving

max
Cn

θ
THT

nC
T
n (CnRwn

CT
n + σ2

vnI)
−1CnHnθ

= tr
{

(CnRwn
CT

n + σ2
vnI)

−1CnHnθθ
THT

nC
T
n

}

s.t. tr
{

CnRwn
CT

n + P1CnHnθθ
THT

nC
T
n

}

= Tn

(17)

where the power constraint is represented as an equality
instead of an inequality because the objective function is a
monotonically increasing function of the transmit power. The
optimization (17) is complicated in its current form. To make
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the problem simplified, we, in the following, perform a series
of matrix transformations. Define

C̃n ,CnR
1
2
wn

Gn ,R
− 1

2
wn Hnθθ

T
HT

nR
− 1

2
wn (18)

and substitute them into (17), the optimization becomes

max
C̃n

tr
{

(C̃nC̃
T
n + σ2

vnI)
−1C̃nGnC̃

T
n

}

s.t. tr
{

C̃nC̃
T
n + P1C̃nGnC̃

T
n

}

= Tn (19)

Furthermore, letC̃n = UDVT denote the singular value
decomposition (SVD) of̃Cn, in which we drop the subscript
n for those matrices{U,D,V} for simplicity. Without loss
of generality, we assume that the diagonal matrixD has non-
negative diagonal elements, i.e.dii ≥ 0. Substituting the SVD
into (19), we arrive at a new optimization that searches for an
optimal orthonormal matrixV and an optimal diagonal matrix
D (U can be any orthonormal matrix as it turns out thatU is
independent of the optimization problem)

max
{V,D}

tr
{

D(D2 + σ2
vnI)

−1DVTGnV
}

s.t. tr
{

D2 + P1D
2VTGnV

}

= Tn (20)

Let F , VTGnV, and fii denote theith diagonal element
of F. We have the following properties regarding the diagonal
elements{fii}:

(i) fii ≥ 0

(ii)
qn
∑

i=1

fii = λmax(Gn) (21)

In above properties, the first follows from the fact thatF

is a positive-semidefinite matrix. The second can be easily
derived by resorting to the trace identity tr(AB) = tr(BA)
and noting thatGn is a rank-one matrix (c.f. (18)), where
λmax(A) denotes the largest eigenvalue ofA.

TreatingF as a new optimization variable, the optimization
(20) can be re-expressed as

max
{dii,fii}

qn
∑

i=1

d2iifii
d2ii + σ2

vn

s.t.
qn
∑

i=1

d2ii(1 + P1fii) = Tn

fii ≥ 0 ∀i
qn
∑

i=1

fii = λmax(Gn) (22)

which, as we can see, involves only the diagonal elements of
F, while irrespective of its off-diagonal entries. The solution
to (22) is given in the following lemma.

Lemma 1: The optimal solution to (22) is given by

f∗
ii =

{

λmax(Gn) i = 1

0 otherwise
(23)

d∗ii =

{

√

Tn

1+P1λmax(Gn)
i = 1

0 otherwise
(24)

Proof: See Appendix A.
Utilizing Lemma 1, we can determine the optimal precoding

matrix. The results are summarized as follows.
Theorem 1: The optimal precoding matrix, that is, the op-

timal solution to (17), is a matrix with its first row a nonzero
vector, whereas all other rows equal to zeros, i.e.

C∗
n[i, :] =

{

ϕθTHT
nR

−1
wn

i = 1

0 i ∈ {2, . . . , qn}
(25)

where

ϕ ,
1

‖θT
HT

nR
− 1

2
wn ‖2

√

Tn
1 + P1λmax(Gn)

is a scaling factor to satisfy the power constraint.

Proof: Clearly, we have C∗
n = C̃∗

nR
− 1

2
wn =

U∗D∗(V∗)TR
− 1

2
wn . The optimalD∗ is a diagonal matrix with

its diagonal elements given by (24). FromF = VTGnV, it
is easy to deduce that the orthonormal matrixV that yields
(23) must be

V∗ = Ugn (26)

whereUgn is an orthonormal matrix obtained from the eigen-
value decomposition (EVD):Gn = UgnDgnU

T
gn , in which

the diagonal elements ofDgn are arranged in a descending
order. Also, we assumeU∗ = I since U∗ can be any
orthonormal matrix. Therefore we have

C∗
n =D∗UT

gnR
− 1

2
wn

=

{

d∗11(Ugn [:, 1])
TR

− 1
2

wn i = 1

0 i ∈ {2, . . . , qn}

=

{

ϕθTHT
nR

−1
wn

i = 1

0 i ∈ {2, . . . , qn}
(27)

where the last equality comes from the fact thatGn

is a rank-one matrix and the eigenvector ofGn cor-
responding to the nonzero/largest eigenvalue is equal to
R

− 1
2

wn Hnθ/‖θ
THT

nR
− 1

2
wn ‖2. The proof is completed here.

Note that the optimal solution (25) has only one nonzero
row. This suggests that in order to achieve best detection
performance, a compression-transmission strategy, otherthan
a non-compression transmission strategy, should be adopted,
and each sensor’s local measurements should be compressed
into only one message. Also, it can be readily observed that the
compression/precoding vector is exactly a matched filter ina
vector form. Matched filter detection in a conventional context
(i.e. centralized and no power constraint) is a well-studied
topic. Nevertheless, to our best knowledge, the optimalityof
the matched filter in distributed power-constrained networks
has never been established before.

B. Optimum Power Allocation

In previous subsection, we studied the optimum precoding
design when a power assignment among sensors is specified.
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It turns out that the optimal precoding is a compression
vector which converts each sensor’s observations into a single
message. Substituting the optimum precoding vector back into
(16), we obtain the following power allocation problem

max
{Tn}

N
∑

n=1

Tnλmax(Gn)

Tn + σ2
vn(1 + P1λmax(Gn))

s.t.
N
∑

n=1

Tn ≤ Ttotal

Tn ≥ 0 (28)

It is easy to verify that the optimization problem (28) is convex
because its Hessian matrix, which is a diagonal matrix in
this case, is positive semidefinite on the convex set defined
by the linear constraints. Although (28) is efficiently solvable
by numerical methods, it can also be solved analytically by
resorting to the Lagrangian function and Karush-Kuhn-Tucker
(KKT) conditions, which leads to a water-filling type power
allocation scheme. The details are elaborated in Appendix D.
Briefly speaking, for a thresholdφ that is uniquely determined
by a procedure described in Appendix D, we have

Tn =

{

1
βn

(
√

αn

φ − 1
)

αn ≥ φ

0 otherwise
(29)

where

αn ,
λmax,n

σ2
vn(1 + P1λmax,n)

βn ,
1

σ2
vn(1 + P1λmax,n)

andλmax,n stands forλmax(Gn) for notational convenience.

C. Summary and Numerical Results

For clarity, we now summarize the proposed optimal solu-
tion.

1) Given the prior knowledge of the noise statistics
{Rw,n}, {σ2

vn}, the signalθ, and the observation ma-
trices{Hn}, compute{αn} and{βn}.

2) Given the total power constraintTtotal, find the optimal
power allocation among sensors via (28). The solution
of (28) is elaborated in Appendix D.

3) With the optimal power assignment, determine the opti-
mal precoding matrices{Cn} via (17), whose solution
is given by (25).

We now provide numerical examples to verify the analytical
results. In the simulations, the prior probabilities of thenull
and alternative hypotheses are assumed identical. The vector
parameter is a three-dimensional vector with its entries equal
to one, i.e.θ = [1 1 1]T . We first consider a single-sensor
system which has only one sensor node. The observation
matrix, observation noise covariance matrix, and the channel
noise variance are set equal toH = I, Rw = 0.5I, and
σ2
v = 0.5, respectively. Fig. 2 shows the average probability

of error Pe as a function of the transmit power for both
optimal precoding and no precoding, in which no precoding
corresponds to sending the original data, i.e.C = I. It can
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Fig. 2. Average probability of error vs. transmit power for optimal precoding
and no precoding strategies.

be seen that the optimal compression strategy outperforms the
non-compression strategy, which corroborates our theoretical
analysis.

The detection performance under different power alloca-
tion schemes is also investigated. We setN = 20, and
Hn = I, Rwn

= 0.5I for all n. The channel signal-to-
noise ratio (SNR) is assumed to be|rn|2, where |rn|’s are
independent and identically distributed (i.i.d.) Rayleigh-fading
random variables with unit variance. Since the channel gain
is normalized to unity in our problem formulation (c.f. (2)),
we set1/σ2

vn = |rn|2. Fig. 3 plots the detection performance
of two different power allocation schemes, namely, an optimal
power allocation and an equal power allocation. Results are
averaged over one million independent runs. For both schemes,
optimal precoding vectors (conditioned on optimal and equal
power allocation) are used. From Fig. 3, we see that for i.i.d.
Rayleigh-fading channels, optimal power allocation presents a
clear performance advantage over the equal power allocation
scheme.

D. Extension to Neyman-Pearson Detection

The extension of our theoretical results to the Neyman-
Pearson variant of the detection problem is straightforward.
This is because the decision rule for the Neyman-Pearson
detector is still an LRT, except that the threshold is determined
by the prescribed false alarm probability. As indicated earlier,
in the Neyman-Pearson formulation, the prior probabilities of
the null and alternative hypotheses are unknown. Nevertheless,
when the event/taget to be detected has a rare occurrence, the
power constraint could be a constraint on the behavior of the
system under hypothesisH0 (corresponding toP1 = 0) [15].

The Neyman-Pearson detection aims at maximizing the
detection probability subject to a given false alarm probability.
The decision rule is also a LRT which is given as

L(y) =
p(y|H1)

p(y|H0)

H1

≷
H0

η (30)
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Fig. 3. Average probability of error vs. transmit power for optimal power
allocation and equal power allocation schemes.

where η is the threshold determined by the specified false
alarm probability. Following a similar derivation, we knowthat
the precoding design under the Neyman-Pearson framework is
still given by the optimization (16), but withP1 = 0. Therefore
the optimal precoding design (25) and the optimal power allo-
cation (28) hold valid for the Neyman-Pearson detector, simply
with P1 replaced by zero. It can be readily observed that the
optimal precoding design for Neyman-Pearson detector still
has a matched filter structure, but with a different scaling factor
to satisfy the power constraint.

V. EQUAL POWER ALLOCATION : DETECTION DIVERSITY

In this section, we analyze the impact of number of sensors
on the overall detection performance, given the total amount
of transmit power fixed. The channels between sensors and
the FC are assumed i.i.d. channels. Note that as we indicated
earlier, since the channel gain is normalized to unity in our
problem formulation (see (2)), we, alternatively, setσ2

vn a
random variable to simulate i.i.d. channels.

To facilitate our analysis, we consider an equal-power
allocation scheme in which all sensors transmit the same
amount of power. Also, we assume a homogeneous scenario
whereHn = I, andRwn

= σ2
wI, ∀n. When optimal precoding

vectors (conditional on the equal-power allocation) are used,
according to (28), the deflection coefficientχ is given by

χ =

N
∑

n=1

Ttotalλmax(Gn)

Ttotal +Nσ2
vn(1 + P1λmax(Gn))

(a)
=

N
∑

n=1

Ttotal‖θ‖22
σ2
wTtotal +Nσ2

vn(σ
2
w + P1‖θ‖22)

(31)

where (a) comes from the fact thatλmax(Gn) = ‖θ‖22/σ
2
w.

For notational convenience, define

ρ1 ,
Ttotal‖θ‖22

σ2
w + P1‖θ‖22

ρ2 ,
σ2
wTtotal

σ2
w + P1‖θ‖22
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Fig. 4. Average probability of error vs. transmit power for different number
of sensors.

When the total number of sensors,N , increases without bound,
χ asymptotically approaches

χ =
N
∑

n=1

ρ1
ρ2 +Nσ2

vn

=

N
∑

n=1

1

N

(

ρ1
σ2
vn

−
ρ1ρ2

Nσ4
vn + ρ2σ2

vn

)

N→∞
= ρ1E[1/σ2

vn ] , χ∞ (32)

where the last equality follows from the strong Law of Large
Numbers (LLN). The detection performance under different
number of sensors is illustrated in Fig. 4. In this example,
we assume thatP0 = P1 = 0.5, θ = [1 1 1]T , and
Hn = I, Rwn

= 0.5I for all n. We setσ2
vn = 1/|rn|2 to

simulate i.i.d. channels, where|rn|’s are i.i.d. Rayleigh-fading
random variables with unit variance. Results are averaged over
one million independent random realizations. The asymptotic
performance when the number of sensors increases without
bound is also included for comparison. We see from Fig.
4 that, for a fixed amount of transmit power, the detection
performance improves notably as we increase the number of
sensor nodes, which suggests that exploiting channel diversity
can achieve a substantial performance improvement.

The detection diversity gain can be explored from a different
perspective. Inspired by the notion of “estimation outage prob-
ability” proposed in [21], we introduce a concept “detection
outage probability” to quantify the reliability of the detection
system. The detection outage probability is defined as the
probability of the detection probability being less than a
specified requirement given a certain false alarm probability,
i.e.

Poutage, Pr{PD < τD|PFA} (33)

Recall that the test statisticu is a Gaussian random variable
with its mean and variance under null and alternative hy-
potheses given by (10). Therefore for a prescribed false alarm
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probability, the detection probabilityPD is given as

PD =Pr(u > η|H1) = Q

(

η −∆− σ2
u

σu

)

=Q
(

Q−1(PFA)− σu
)

(34)

whereQ(x) denotes theQ-function. Utilizing the above result,
the detection outage probability can be rewritten as

Poutage=Pr
(

Q(Q−1(PFA)− σu) < τD
)

=Pr
(

Q−1(PFA)− σu > Q−1(τD)
)

=Pr
(

σu < Q−1(PFA)−Q−1(τD)
)

=Pr(χ < ζ) (35)

in which ζ , (Q−1(PFA) − Q−1(τD))
2. We see that the

detection outage probability is in fact the probability of the
deflection coefficient being less than a certain threshold.

From (32), it can be observed that whenN is sufficiently
large, the deflection coefficientχ is approximately equal to the
sample mean of i.i.d. random variables{ρ1/σ2

vn}. According
to the large deviation theory [22], for anyζ < χ∞, we have the
outage probability decreasing exponentially withN as follows

Poutage∼ exp(−NI̟(ζ/ρ1)) (36)

where∼ means asymptotic convergence asN becomes large,
̟ is the common distribution of̟ n , 1/σ2

vn , andI̟(x) is
the rate function of̟ :

I̟(x) = sup
t∈R

(tx − logM̟(t)) (37)

with M̟(t) the moment-generating function of̟. From (36),
we see that if the specifiedPFA and τD satisfy the following
condition:

(Q−1(PFA)−Q−1(τD))
2 < χ∞ (38)

then the detection outage probability can be made arbitrarily
small by increasing the number of sensorsN , even with the
total transmit power fixed. Note that sinceχ∞ is proportional
to the total transmit power, the condition (38) can always
be met for a sufficiently large transmit power. The behavior
of the outage probability with different number of sensors
is illustrated in Fig. 5. We setP1 = 0, PFA = 0.1 and
τD = 0.9, and assume other simulation parameters the same
as in previous example. Results are averaged over one million
independent random realizations. It can be verified that the
condition (38) is satisfied as long asTtotal ≥ 1. From Fig. 5,
we see that the outage probability decreases dramatically even
we slightly increase the number of sensors.

VI. D ECENTRALIZED DETECTION WITH UNKNOWN

SIGNALS

From preceding analyses, we see that the decision rule at the
FC, the precoding design, and the power allocation all require
the knowledge of the signalθ to be detected. A fundamental
assumption made in previous sections is that the signalθ is
knowna priori or the signal can be estimated from the training
data before the detection task is performed. In the following,
we discuss, if the knowledge of the signal to be detected is not
available, how to form a final decision at the FC and design
the precoding vector for each sensor.
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Fig. 5. Outage probability vs. total transmit power for different number of
sensors.

A. GLRT Detector

Suppose that the precoding vectors{cn} are pre-
determined, we can use a generalized likelihood ratio test
(GLRT) which replaces the unknown signal with their max-
imum likelihood estimates (MLEs). In the case there are no
unknown parameters underH0, the GLRT decidesH1 if

LG(y) =
p(y|θ̂;H1)

p(y|H0)
> η (39)

whereθ̂ is the MLE of θ found by maximizing

p(y|θ;H1) =
1

(2π)N/2|Σ|1/2

× exp

{

−
1

2
(y −Pθ)TΣ−1(y −Pθ)

}

(40)

in whichΣ is a diagonal matrix with itsnth diagonal element
given bycnRwn

cTn + σ2
vn , and

P ,











c1H1

c2H2

...
cNHN











(41)

The MLE of θ can be solved by taking the logarithm of
p(y|θ;H1) and setting the first derivative equal to zero, which
gives

θ̂ = (PTΣ−1P)−1PTΣ−1y (42)

Note thatP has to be full column rank, otherwise the MLE
requires solving an ill-posed inverse problem (more details
regarding the choice of the precoding vectors such thatP is
full column rank will be provided later). Substitutinĝθ back
into (39), thus we have

lnLG(y) =
1

2
yTΣ−1P(PTΣ−1P)−1PTΣ−1y (43)

or we decideH1 if

yTΣ−1P(PTΣ−1P)−1PTΣ−1y > η′ (44)
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It is shown in [20, Section 6.5] that whenN → ∞, the GLRT
statistic2 lnLG(y) under hypothesisH0 follows a chi-squared
distribution withp degrees of freedom, which does not depend
on any unknown parameters. Therefore the threshold required
to maintain a constantPFA can be found.

B. Precoding Design With Unknown Signals

Whenθ is unknown or the estimate ofθ is not available,
determining the optimal precoding vectors is not possible.In
this case, we propose a heuristic method for precoding design.

In practice, the plus or minus signs of the vectorgn ,

R
− 1

2
wn Hnθ may be obtained from the signal dynamic range

or estimated from the observations. This knowledge can be
exploited for precoding vector design. Let sgn(x) be a sign
column vector with its elements given by sgn(xi), where
sgn(xi) = 1 if xi > 0, and sgn(xi) = −1 otherwise. We
design the precoding vector for each sensor as follows

cn = ψn(|rn| ⊙ sgn(gn))
TR

− 1
2

wn ∀n (45)

where rn is a column vector whose entries are randomly
generated according to a Gaussian distribution with zero mean
and unit variance,|rn| is a vector whose entries are the
absolute values ofrn, ⊙ denotes the entry-wise multiplication,
andψn is a scaling factor which ensures that the precoding
vector satisfies the specified power constraint (note thatψn can
be determined without the knowledge ofθ if we setP1 = 0).
Recalling that the matrixP defined in (41) has to be full
column rank, generating the precoding vectors in a random
manner guarantees thatP is full column rank with a high
probability.

It is interesting to examine how well this heuristic precoding
design performs. We consider a homogeneous scenario where
sensors have identical observation matrices and observation
noise covariance matrices, i.e.Hn = H, Rwn

= Rw for all
n. Also, we assume an equal power allocation throughout our
following discussion. The deflection coefficient is then given
by (c.f. (16))

χ =

N
∑

n=1

(cnRwc
T
n + σ2

vn)
−1cnHθθ

THT cTn ,
N
∑

n=1

χn (46)

in which

χn , (cnRwc
T
n + σ2

vn)
−1cnHθθ

THT cTn (47)

denotes the individual deflection coefficient for each sensor.
The precoding vector, at the same time, has to satisfy the
transmit power constraint

cnRwc
T
n + P1cnHθθ

THT cTn = T (48)

whereT = Ttotal/N since we assume an equal power alloca-
tion. Define

υn ,cnRwc
T
n

µn ,
cnHθθ

T
HT cTn

cnRwcTn
(49)

The individual deflection coefficient can be re-expressed in
terms ofυn andµn

χn =
υnµn

υn + σ2
vn

(50)

and the power constraint (48) can be rewritten as

υn(1 + P1µn) = T (51)

Solvingυn from the power constraint (51), and substituting it
back into (50), we arrive at

χn =
Tµn

T + σ2
vn(1 + P1µn)

(52)

Clearly, the individual deflection coefficientχn is a monoton-
ically increasing function ofµn. If θ is known, the optimal
precoding vector which maximizesµn can be determined, and
it can be easily derived that the maximumµn is equal to

µmax = λmax(R
− 1

2
w Hθθ

THTR
− 1

2
w ) = gTg =

q
∑

i=1

g2i (53)

whereg , R
− 1

2
w Hθ, q is the dimension ofg. On the other

hand, for the heuristic precoding design (45),µn is given by

µn =
(|rn| ⊙ sgn(g))TggT (|rn| ⊙ sgn(g))
(|rn| ⊙ sgn(g))T (|rn| ⊙ sgn(g))

=
(
∑q

i=1 |rni
gi|)2

∑q
i=1 r

2
ni

(54)

For notational convenience, letχsub and χopt respectively
denote the overall deflection coefficients attained by the pre-
coding design (45) and the optimal precoding design. The ratio
of these two deflection coefficients is then given as

χsub

χopt
=

∑

n
Tµn

T+σ2
vn

(1+P1µn)
∑

n
Tµmax

T+σ2
vn

(1+P1µmax)

>

∑

n
Tµn

T+σ2
vn

(1+P1µmax)
∑

n
Tµmax

T+σ2
vn

(1+P1µmax)

≈
1

N

N
∑

n=1

µn

µmax

N→∞
= E[µn/µmax] (55)

which converges toE[µn/µmax] as the number of sensors
increases. Utilizing (53)–(54), we have

E

[

µn

µmax

]

=E

[

(
∑q

i=1 |rni
gi|)2

(
∑q

i=1 r
2
ni
)(
∑q

i=1 g
2
i )

]

≥E

[
∑q

i=1 r
2
ni
g2i

(
∑q

i=1 r
2
ni
)(
∑q

i=1 g
2
i )

]

=
1

∑q
i=1 g

2
i

q
∑

i=1

{

g2iE

[

r2ni
∑q

i=1 r
2
ni

]}

≈
1

∑q
i=1 g

2
i

q
∑

i=1

{

g2iE[r2ni
]E

[

1
∑q

i=1 r
2
ni

]}

=

∑q
i=1 g

2
i

(q − 2) (
∑q

i=1 g
2
i )
>

1

q
(56)

where the last equality comes from the fact that{r2ni
} are

i.i.d. chi-square random variables with one degree-of-freedom.
Combining (55)–(56), we conclude that the ratio of the deflec-
tion coefficient achieved by the precoding design (45) to that
attained by the optimal precoding design is within1/q.
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Fig. 6. Detection probability vs. total transmit power for GLRT with
precoding (45) and no precoding, and NP test with optimal precoding (OP).

Simulations are conducted to illustrate the performance of
the GLRT with precoding design (45) (denoted as GLRT-
precoding), and its comparison with the GLRT with no pre-
coding (that is,Cn = I, ∀n), and the Neyman-Pearson test
which assumes the knowledge ofθ and employs optimal
precoding design (denoted as NP-OP). In our simulations,
we set P1 = 0, Hn = I, Rwn

= 0.5I for all n, and
θ = [cos(1) cos(2) cos(3)]T . There are 100 sensors. The
channels between sensors and the FC are generated in a
same way as we did in previous examples. The false alarm
probability is set toPFA = 0.05. The detection probabilities of
the GLRT and NP-OP are shown in Fig. 6. We see that GLRT
with precoding (45) presents a clear performance advantage
over GLRT with no precoding. This suggests that a properly
designed precoding, even not optimal, is more energy-efficient
than no precoding. Also, it can be observed that to achieve
a same detection performance, the GLRT with precoding
requires about twice of the transmit power needed by NP-OP.

VII. C ONCLUSIONS

We considered a decentralized detection problem in which
a number of sensors collaborate to detect the presence of
a deterministic vector signal. The sensor network is subject
to a total power constraint, and each sensor uses an analog
amplify-and-forward transmission scheme to send their data
to the FC. In this context, we studied the optimal precoding
design for each sensor, aiming at minimizing the probability of
detection error at the FC. Our theoretical analysis indicates that
the optimal precoder is a compression vector which converts
each sensor’s original measurements into a single message,
and the optimal precoder is exactly a matched filter in a vector
form. Although matched filter detection is a well-studied topic,
its optimality in a distributed power-constrained networkhas
never been established before. The optimal power allocation
among sensors was examined as well. It is found that the
optimal power allocation is a water-filling type scheme.

Given a fixed power constraint, the impact of the number
of sensors on the overall detection performance was analyzed.

Numerical results showed that a substantial performance im-
provement can be achieved by exploiting channel diversity.
Besides, a new concept “outage probability” was introducedto
quantify the system detection reliability. Our analysis suggests
that if a certain condition is satisfied, then the outage proba-
bility can be made arbitrarily small by increasing the number
of sensors. Finally, a GLRT detector and a heuristic precoding
design were proposed when the exact knowledge of the signal
to be detected is not available. Numerical results were provided
to illustrate its performance and its comparison with the
Neyman-Pearson detector which assumes the knowledge of
the signal.

APPENDIX A
PROOF OFTHEOREM 1

Let ai , d2ii/σ
2
vn , and bi , P1fii. The optimization (22)

can be rewritten as

max
{ai,bi}

qn
∑

i=1

aibi
ai + 1

⇐⇒ min
{ai,bi}

qn
∑

i=1

bi
ai + 1

s.t.
qn
∑

i=1

ai(1 + bi) =
Tn
σ2
vn

, T̃n

ai ≥ 0 ∀i

bi ≥ 0 ∀i
qn
∑

i=1

bi = P1λmax(Gn) , λ (57)

The above optimization involves optimizing two sets of vari-
ables{ai} and{bi}. To solve (57), we first optimize one set
of variables, given that the other set of variables are fixed.
Suppose that{bi} are pre-determined, and are arranged in a
descending order, i.e.b1 ≥ b2 ≥ . . . ≥ bqn . Then optimizing
{ai} conditional on fixed{bi} can be formulated as

min
{ai}

qn
∑

i=1

bi
ai + 1

s.t.
qn
∑

i=1

ai(1 + bi) = T̃n

ai ≥ 0 ∀i (58)

which can be analytically solved by resorting to the La-
grangian function and Karush-Kuhn-Tucker (KKT) conditions
(details are elaborated in Appendix B). The optimal solution
is given by

ai =

[
√

bi
φ(1 + bi)

− 1

]+

∀i (59)

where [x]+ is equal tox if x > 0, otherwise it is zero;φ is
a parameter that is uniquely determined from the procedure
described in Appendix B.

Let {a∗i (b)} denote the optimal solution conditional on
givenb , [b1 b2 . . . bqn ]. Substitutinga∗i (b) back into (57),
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we come to an optimization involving only{bi}:

min
{bi}

qn
∑

i=1

bi
a∗i (b) + 1

s.t. bi ≥ 0 ∀i
qn
∑

i=1

bi = λ (60)

In the following, we show that the optimal solution to (60)
is given by

b∗i =

{

λ i = 1

0 otherwise
(61)

Notice that the parameterφ in (59) needs to be determined
through an iterative search. Therefore we cannot directly
substitute the solution ofa∗i (b) into (60). To make the problem
tractable, we start from a two-dimensional caseqn = 2. The
extension to arbitrary dimensionqn can be accomplished based
on the two-dimensional results, which will be shown later.
Define

π(b) ,
2

∑

i=1

bi
a∗i (b) + 1

(62)

b(0) ,[λ 0]

In Appendix C, we proved thatb(0) is the optimal solution to
(60) for qn = 2, that is,

π(b(0)) > π(b) (63)

for any b 6= b(0) satisfying the constraints defined in (60).
Therefore forqn = 2, the optimal solution to (57) is given by

{b∗1, b
∗
2} ={λ, 0}

{a∗1, a
∗
2} =

{

T̃n
1 + λ

, 0

}

(64)

In other words, we have

λ
T̃n

1+λ + 1
≥

2
∑

i=1

bi
ai + 1

(65)

for any {a1, a2, b1, b2} satisfying ai > 0, bi > 0, ∀i, and
b1 + b2 = λ, a1(1 + b1) + a2(1 + b2) = T̃n.

We now discuss the generalization of our results to arbitrary
dimensional case. Again, suppose that{bi} are arranged in
descending order, and let̃Tn,i , ai(1+bi). Then the objective
function of (57) is lower bounded by

qn
∑

i=1

bi
ai + 1

=
2

∑

i=1

bi
ai + 1

+

qn
∑

i=3

bi
ai + 1

(a)

≥
b̈1

T̈n,1

1+b̈1
+ 1

+

qn
∑

i=3

bi
ai + 1

(66)

in which b̈1 , b1 + b2, T̈n,1 , T̃n,1 + T̃n,2, and the inequality
(a) comes by utilizing (65). The above objective function can

be further lower bounded as
qn
∑

i=1

bi
ai + 1

≥
b̈1

T̈n,1

1+b̈1
+ 1

+

qn
∑

i=3

bi
ai + 1

=
b̈1

T̈n,1

1+b̈1
+ 1

+
b3

a3 + 1
+

qn
∑

i=4

bi
ai + 1

≥
b̈2

T̈n,2

1+b̈2
+ 1

+

qn
∑

i=4

bi
ai + 1

(67)

in which b̈2 , b1 + b2 + b3, T̈n,2 , T̃n,1 + T̃n,2 + T̃n,3, and
the inequality, again, comes by using (65). So on and so forth,
we can reach that the objective function is eventually lower
bounded by

qn
∑

i=1

bi
ai + 1

≥
λ

T̃n

1+λ + 1
(68)

and this lower bound is attained only when

b∗i =

{

λ i = 1

0 otherwise
(69)

a∗i =

{

T̃n

1+λ i = 1

0 otherwise
(70)

Therefore (69)–(70) are the optimal solution to (57). The proof
is completed here.

APPENDIX B
AN ANALYTICAL SOLUTION TO (58)

The Lagrangian function associated with (58) is given by

L(ai;φ; νi)

=

qn
∑

i=1

bi
ai + 1

− φ

(

T̃n −

qn
∑

i=1

ai(1 + bi)

)

−

qn
∑

i=1

νiai (71)

which gives the following KKT conditions [23]:

−
bi

(ai + 1)2
+ φ(1 + bi)− νi =0 ∀i

T̃n −

qn
∑

i=1

ai(1 + bi) =0

νiai =0 ∀i

νi ≥0 ∀i

ai ≥0 ∀i

By solving the first equation of the above KKT conditions, we
obtain

ai =

√

bi
φ(1 + bi)− νi

− 1 ∀i (72)

Also, the KKT conditions:νiai = 0, νi ≥ 0, andai ≥ 0 imply
that we have either{νi = 0, ai > 0} or {νi > 0, ai = 0}.
Therefore (72) becomes

ai =

[
√

bi
φ(1 + bi)

− 1

]+

∀i (73)
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where [x]+ is equal tox if x > 0, otherwise it is zero. The
Lagrangian multiplierφ and the number of nonzero elements
(ai > 0) can be uniquely determined from the second equation
of the KKT conditions. The procedure is described as follows.

Suppose we haveK ∈ {1, . . . , qn} nonzero elements, i.e.
ai > 0, ∀i = 1, . . . ,K (note that{ai} are in descending order
since we assumeb1 ≥ b2 ≥ . . . ≥ bqn ). Thereforeφ can be
solved by substituting{a1, a2, . . . , aK} into the second KKT
condition:

φ =

[ ∑K
i=1

√

bi(1 + bi)

T̃n +
∑K

i=1(1 + bi)

]2

(74)

Now substitutingφ back to (73), we get a new solution
{a′1, a

′
2, . . . , a

′
K , a

′
K+1, . . . , a

′
qn}. If for this new solution, we

haveai = 0 for i > K. Then it is the true solution we are
looking for; otherwise we have to choose anotherK to repeat
the above procedure.

APPENDIX C
PROOF OFINEQUALITY (63)

Note that for the two-dimensional case, the feasible region
{b = [b1 b2]} of the optimization problem (60) is in fact
a line segment between the two points[λ 0] and [λ/2 λ/2]
(note that we assumeb1 ≥ b2 without loss of generality). Let
R denote the set which consists of all feasible solutions except
b(0). We divide the regionR into two disjoint regions. One
of the two disjoint regions is defined as

R1 , {b = [λ− δ δ] | δ ∈ (0,min(λ/2, τ))} (75)

whereτ > 0 is a threshold such that ifδ < τ , then the optimal
solution{ai} to (58) conditional onb ∈ R1 has the following
form:

a∗(b) = [a∗1(b) 0] (76)

Note thatδ has to be smaller thanλ/2 to ensure that{bi} are
arranged in descending order. Ifτ ≥ λ/2, thenR1 = R. For
the caseτ < λ/2, the complementary region is given by

R2 , {b = [λ− δ δ] | δ ∈ [τ, λ/2]} (77)

It can be easily verified thatR1 ∪R2 = R. Clearly, the two
disjoint regions are obtained by breaking the line segment
into two pieces, withR1 corresponding to the line segment
between the points[λ 0] and [λ − τ τ ] (end points are not
included), andR2 corresponding to the line segment between
[λ− τ τ ] and [λ/2 λ/2].

To prove thatb(0) is the optimal solution to (60), we first
show thatπ(b(0)) < π(b) for any b ∈ R1. It is easy to
derive that the optimal solutions{a∗i (b)} conditional onb(0)

andb ∈ R1 are respectively given as

{a∗i (b
(0))} =

{

T̃n
1 + λ

, 0

}

{a∗i (b)} =

{

T̃n
1 + λ− δ

, 0

}

(78)

Substituting the optimal solution{a∗i (b)} into (62), we have

π(b(0)) =
λ(1 + λ)

T̃n + 1 + λ

π(b) =
(λ − δ)(1 + λ− δ)

T̃n + 1 + λ− δ
+ δ (79)

and

π(b)− π(b(0)) =
T̃ 2
nδ + T̃nδ

(T̃n + 1 + λ− δ)(T̃n + 1 + λ)
(80)

Therefore for anyb ∈ R1 (0 < δ < min(λ/2, τ)), the
inequality

π(b(0)) < π(b)

holds. Also, from (80), we know thatπ(b) increases with
an increasingδ. It means that from the starting point[λ 0],
when the pointb comes closer to the end point[λ− τ τ ], the
function valueπ(b) increases.

We now proveπ(b(0)) < π(b) for any b ∈ R2. We first
show that forb ∈ R2, π(b) increases with an increasingδ.
Note that the regionR2 can be rewritten as

R2 , {b = [λ/2 + δ′ λ/2− δ′] | δ′ ∈ [0, λ/2− τ ]}
(81)

Therefore proving thatπ(b) increases with an increasingδ is
equivalent to showing thatπ(b) decreases with an increasing
δ′. For any b ∈ R2, the optimal solution{ai} of (58)
conditional onb has the following form:

a∗(b) = [a∗1(b) a
∗
2(b)] (82)

wherea∗i (b) > 0 for i = 1, 2. Substituting the optimal solution
a∗(b) into π(b), we have

π(b) =

2
∑

i=1

bi
a∗i (b) + 1

(a)
=

√

φ

2
∑

i=1

√

bi(1 + bi)

(b)
=

(

∑2
i=1

√

bi(1 + bi)

)2

T̃n +
∑2

i=1(1 + bi)

=
λ+ λ2

T̃n + 2 + λ
+

2

T̃n + 2 + λ
κ(δ′) (83)

where(a) comes by utilizing (59),(b) follows from (74), and

κ(δ′) ,
√

b1b2(1 + λ+ b1b2)− b1b2

=
√

δ′4 − αδ′2 + β −
λ2

4
+ δ′2

α ,1 + λ+
λ2

2

β ,
λ4

16
+
λ3

4
+
λ2

4

Let t , δ′2, and define

κ̃(t) ,
√

t2 − αt+ β −
λ2

4
+ t (84)
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We compute the first derivative of̃κ(t):

∂κ̃(t)

∂t
=

2t− α
√

t2 − αt+ β
+ 1 (85)

It is easy to verify that for anyλ > 0, andλ2/4 ≥ t ≥ 0, we
have

α− 2t >
√

t2 − αt+ β

⇒
∂κ̃(t)

∂t
< 0 (86)

Thereforeκ̃(t) is a monotonically decreasing function oft
for λ2/4 ≥ t ≥ 0. Consequently,κ(δ′) decreases with an
increasingδ′ for λ/2 ≥ δ′ ≥ 0, so does the functionπ(b). In
other words, forb ∈ R2, π(b) increases with an increasingδ.
It means that from the starting point[λ−τ τ ], when the point
b approaches the end point[λ/2 λ/2], the function valueπ(b)
increases. Due to the continuity of the functionπ(b), hence
we have

π(b(0)) < π(b(1)) < π(b(2)) (87)

for any b(1) ∈ R1 andb(2) ∈ R2. The proof is completed
here.

APPENDIX D
AN ANALYTICAL SOLUTION TO (28)

For notational convenience, letλmax,n stand forλmax(Gn).
Define

αn ,
λmax,n

σ2
vn(1 + P1λmax,n)

βn ,
1

σ2
vn(1 + P1λmax,n)

The Lagrangian functionL associated with (28) is given by

L(Tn;φ; νn)

=−
N
∑

n=1

αnTn
βnTn + 1

− φ

(

Ttotal −
N
∑

n=1

Tn

)

−
N
∑

n=1

νnTn (88)

which gives the following KKT conditions [23]:

−
αn

(βnTn + 1)2
+ φ− νn =0 ∀n

Ttotal −
N
∑

n=1

Tn =0

νnTn =0 ∀n

νn ≥0 ∀n

Tn ≥0 ∀n

By solving the first equation of the above KKT conditions, we
obtain

Tn =
1

βn

[
√

αn

φ− νn
− 1

]

∀n (89)

Also, the KKT conditions:νnTn = 0, νn ≥ 0, andTn ≥ 0
imply that we have either{νn = 0, Tn > 0} or {νn > 0, Tn =
0}. Therefore (89) becomes

Tn =
1

βn

[√

αn

φ
− 1

]+

∀n (90)

where[x]+ is equal tox if x > 0, otherwise it is zero. The La-
grangian multiplierφ and the number of active sensors (those
are assigned nonzero power) can be uniquely determined from
the power constraint.

Suppose we haveK ∈ {1, . . . , N} active nodes, according
to (90), theseK nodes must be{k1, k2, . . . , kK}, where{ki}
is a set of indices such thatαk1

≥ αk2
≥ . . . ≥ αkN

. Therefore
φ can be solved by substituting{Tk1

, Tk2
, . . . , TkK

} into the
second KKT condition, whereTki

is given by

Tki
=

1

βki

[
√

αki

φ
− 1

]

(91)

Now we substituteφ back to (90). We will get a new
solution{T ′

k1
, T ′

k2
, . . . , T ′

kK
, T ′

kK+1
, . . . , T ′

kN
}. If this new so-

lution is exactly identical to the one we assumed before, i.e.
{Tk1

, Tk2
, . . . , TkK

, 0, . . . , 0}. Then it is the true solution we
are looking for; otherwise we have to choose anotherK to
repeat the above procedure. Also, it has been proved that such
a solution is unique and always exists [24].
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