arXiv:1109.5433v1 [cs.IR] 26 Sep 2011

Optimal Precoding Design and Power Allocation
for Decentralized Detection of Deterministic Signals

Jun Fang, Hongbin LiSenior Member, IEEE, and Shaogian Li

Abstract— We consider a decentralized detection problem in a exponentially complex because the optimal local threshatéd
power-constrained wireless sensor networks (WSNs), in wth a  generally different and need to to be jointly determinedhglo
number of sensor nodes collaborate to detect the presence af \yiih the global fusion rule. Also, in many works, it is assume
deterministic vector signal. The signal to be detected is aamed . . .
known apriori. Given a constraint on the total amount of transmit that thg local blnqry deC|S|0q (?an ,be reliably reported ® th
power, we investigate the 0ptima| linear precoding designdr FC. ThIS assumptlon may fa|| N Wll‘e|eSS sensor netWOI’kS as
each sensor node. More specifically, in order to achieve theebt the information is transmitted over wireless links.
detection performance, shall sensor nodes transmit theiraw data In this paper, the problem of decentralized detection id-stu
to the fusion center (FC), or transmit compressed versions fo ied under an explicit total transmit power constraint. Bajt

their original data? The optimal power allocation among sersors . .
is studied as well. Also, assuming a fixed total transmit powge powered wireless sensor networks are plagued with stringen

we examine how the detection performance behaves with the €nergy constraints. It is therefore of utmost importgnce to
number of sensors in the network. A new concept “detection incorporate energy awareness into the decentralizedtaatec

outage” is proposed to quantify the reliability of the overdl algorithm design. We suppose that each sensor uses a simple
detection system. Finally, decentralized detection with mknown analog amplify-and-forward transmission scheme to transm
signals is studied. Numerical results are conducted to coaborate . . .
our theoretical analysis and to illustrate the performanceof the their data. As in [16], the local processing at each sensor
proposed algorithm. node is confined to be a linear operator, which is referred
to aslinear precoding. This linear precoding allows for a
simple implementation and is suitable for low-cost sensors
with limited computational resources. However, unlike][16
in our study, we do not restrict the linear precoder to be a
. INTRODUCTION compression vector. In fact, since we already imposed a powe
Decentralized detection is an important problem that haenstraint, there is no need to explicitly specify the numbe
attracted much attention over the past decade [1]-[17]. InoAmessages sent by each sensor.
wireless sensor network (WSN), a large number of sensordnstead, we are interested in examining the following fun-
are deployed in an area to monitor the environment. Eagamental question: shall each node transmit its raw data to
sensor makes noisy observations of a binary hypothesis the FC, or shall each node send a compressed version of
the state of the environment and transmits its data to tHee original data to the FC? Since the total transmit power
fusion center (FC), where a final decision regarding ttie fixed, sending more messages means that a single message
state of nature is made. Due to stringent power/bandwidthtransmitted with less power, which results in a poor link
constraints, each sensor needs to compress its original d#uality. The FC, however, can collect more information from
before the transmission. A typical processing is to conductsensors. On the other hand, sending less messages renders
local detection at each node. The local binary decisionaa tha better channel quality, but with less information prodde
sent to the FC for reaching a global decision. A large numbter the FC. The choice between these two strategies seems
of studies [1]-[14] were carried out in this context. A keyifficult before conducting a thorough mathematical analys
problem that appeared in the above setting is the optinoizatiThis optimal precoding design problem will be investigated
of local decision rules such that the probability of detati in this paper. Note that although linear precoding design
error is minimized. It was shown in [2], [3], [5] that forfor decentralized detection remains new, its counterpart f
both Bayesian and Neyman-Pearson criteria, the optimal lodlistributed estimation has been extensively investigagegl
sensor decision for a binary hypotheses testing problem i$18], [19]. In addition, the asymptotic behavior of the cader
likelihood ratio test (LRT). This property drastically nezks detection performance with an increasing number of sensors
the search space for an optimal collection of local detsctds examined, and a generalized likelihood ratio test (GLRT)
[14]. Nevertheless, the search of optimal local detecwstill proposed for the scenario of unknown signals. We noticed tha
the problem of decentralized detection in a power-corrstichi
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anb_x’l[mdm] The FC, based upon the received déga }, forms a final

decision concerning the presence or absence.ofig. [1
X
Gn:")_‘[ Precoder 2 ]
Hy/H,

problem of interest is to determine the precoding matrix for
u/n, each sensor, and to develop an optimal detector to detect
6 for the FC. Note that a transmit power constraint has to
be imposed on the sensor nodes, otherwise we can always
ensure ideal links between sensors and the FC by scaling the
precoding matrices with an arbitrarily large factor. Lgtand

Sensor Xy
N Precoder N
Q»[ J P, denote the prior probabilities of the hypothedés and

H,, respectively. The average power radiated from sensor
Fig. 1. Decentralized detection in a power-constrainedvodt. Each node is given by
processes its vector observations through a linear prechigssages are then
sent to the FC via wireless channels.

provides an illustration of the decentralized detectiohe T

PoE[[|Crx[3| Ho] + PLE[| Coxn |31 H1)

=Pytr{C,R,,C]}
an optimal Bayesian decision rule at the FC. The optimal T aeT T -
precoding design and optimal power allocation (among sen- +P1tr{Can00 H,C, + CannCn}
sors) are studied in Sectidn]IV. The impact of number of :tr{C R, CT + P,C, H OOTHTCT} 3)
sensors on the overall detection performance is analyZ&tl in e e nen
Decentralized detection with unknown parameters is diseis However, in some detection applications, determining tiier p

in V1] followed by concluding remarks in Sectign VII. probabilities of the respective hypotheses may not be plessi
In this case, Neyman-Pearson detection without requitieg t

Il. PROBLEM FORMULATION prior probabilities can be used. If the target/event to be de

We consider a binary hypothesis testing problem in WhiCtﬁCted occurs with a very small but unknown probability gthi

is exactly the case for many disaster detection applicg}ion
a number of sensors collaborate to detect the presence. o? y Y pplicali

a known deterministic vector signdl € RP. The binary is Teasonable .to Consid.er a power constra_\int un_der hypethes
hypothesis testing problem is formulated as Tollows: Hy only [15], i.e. [3) with P, = 0. More discussions of the

' Neyman-Pearson detection will be provided later in thisgpap
Hy : Xn = Wp, Vn=1,...,N In the following, assuming that the precoding matrices are

re-specified, we will first develop a Bayesian detector at th

Hy: Xn = Hn6 + wn, vn=1.. N (1) IEC. TF:1e precoding matrix designri)s thenyinvestigated based o
whereH,, € R%*? is the known observation matrix definingthe detection performance analysis.
the input/output relationx,, € R denotes the sensor’s vector
observation,w,, € R denotes the additive multivariate
Gaussian noise with zero mean and covariance m&trjx,
and the noise is assumed independent across the sensorSuppose that the precoding matrigs,,} are prescribed.
Unlike many existing works, the signal to be detected hereligt y £ y7 yI ... y&§]7 denote the vector received at
assumed to be a vector instead of a scalar. Vector modets afise FC,y,, is a Gaussian random vector with its mean and
from a variety of scenarios. For example, if the underlyingovariance matrix given by
phenomena to be detected is a dynamic process, we can obtain

IIl. BAYESIAN DETECTOR

vector signals by sampling the dynamic process at different N(0,%,) Hy
time instances. Sensing of a target using multiple moealiti Yn ™~ N(C,H,0,%,) H “)
(e.g. optical, chemical, thermal, magnetic, ultrasoriic.)@lso
leads to multidimensional signals. in which
Let C,, denote the precoding matrix for sensarWithout
loss of generality, we assume th@t, is a ¢, x ¢, matrix 3, £ C,R,, Cl +02 T )

that could be full rank or rank deficient. Each sensor uses an . ) . .
uncoded analog amplify-and-forward scheme to transmit Qur objective is to design a decision rule that minimizes the

data to the FC. The signal at the FC received from ile 2Verage probability of error, i.e.

sensor is given by Po = P(Ho|Hy) Py + P(Hy|Ho) Py ()
yn = Cnxp + vy n=1,...,N (2) . . . .

whereP(H;|H;) is the probability of decidind?; whenH; is
wherev,, represents the additive channel noise, and is assunige. According to [20], in order to achieve a minimufg the
Gaussian with zero-mean and covariance ma&rﬁggl. The decision rule is a likelihood ratio test (LRT) given as fol
channel matrix is implicitly set equal to an identity mateg o) P
the multiplicative effect can be removed, given the knogked L(y) = M > o
of the channel state information. p(ylHo) m, Pr

(>

n (7)



Noting that{y,} are mutually independent for a given hy-under the null and alternative hypotheses remains the same.
pothesis, the LRT can be further expressed as This hypothesis testing problem is called thean-shifted

N Gauss-Gauss problem. For this type of detection problem,
w the detection performance is monotonic with the deflection

L(y) =

[13_1p(yn|Ho) coefficienty [20]:
N
Ts—1 _ 2
= eXp{ Zl (YH Z:'n. Cano X é (‘uuvl 0—2:u71«70) (13)

H
- leTHZngglanne)} 2177 (8) that is, P, decreases monotonically with. With 1,0 = A
2 Ho andu, 1 = A+ o2, itis easy to derive that
Taking logarithms on both sides &1l (8), the Bayesian degisio

rule can finally be put in the following form: x=o (14)
which indicates that the larger the variancg the better the
an}’n + A logn (9)  detection performance. As shown [nX1&} is a function of
n=1 {C,.}. Therefore the problem of minimizing is equivalent
where to

w, 2%, 'C,H,0

, max o _ZOTHTCT(C R,, CI'+ 02 1)7'C,H,0
A Ty T Ty —1

A2 Z_: S0TH[CIx'C .0 (15)

A is a constant independent of the observed data. Hence Aswe mentioned before, we have to impose a transmit power

LRT-based fusion rule is in fact a weighted linear combimrati constraint on the sensor nodes, otherwise the optimization

of the data{y,}. is ill-posed since we can always ensure ideal links between
Define sensors and the FC by scaling the precoding matrices with an
arbitrarily large factor. To make the problem meaningfug w
e Z wly, +A hereby impose an average total transmit power constrai. T
n=1 precoding design can therefore be formulated as follows
Sincew is a summation of a set of Gaussian random variables, N

u also follows a Gaussian distribution. It can be readilyvsdti = 5% Z OTHZCZ(Cann cl++217'C,H,0
that its mean and variance under hypotheHgsand H, are {C»} ;=] "

given respectively as N
st. Y tr {canncf + P,C,H,00"H'CT } < Tiotal

2
U~ N(A g ) Hy (10) n=1
N(A+Uuaau) Hl (16)
where The above optimization can be decoupled into two sequential
N subtasks, namely, a power allocation (among sensors)grobl
24 Z 0 HTCTE 'c,H,6 and a set of independent precoding design problems.

n=1

N
Z 0"HICT(C,R,, CT + 02 1)"'C,H,6 (11) A. Optimum Precoding Design

Let us suppose, for the time being, that a power allocation
are dependent on the precoding matri¢€s,}. Clearly, the is pre-specified and given a&T},T»,...,Tx}. Then the
detection performance of the Bayesian detector fundartentaptimum precoding matrix for each sensor can be obtained

relies on the choice of these precoding matrices. by solving
TyyT T T 2 -1
IV. PRECODINGDESIGN & POWERALLOCATION e ¢"H, C, (CnRy,C;, +0, )7 C,H,,0
Iq this ;e(;tion, we .egam_ine the problem _of the precoding _ tr{(CnR CT 4 o2 I)flannoeTﬂzcz}
design, aiming at minimizing the probability of errdr.. "

Recalling results in the previous section, we know that thes.t. tr{CannCZ+P10an00THZCZ =T,

FC makes a global decision based on (17)
H
U zllogn (12) where the power constraint is represented as an equality
Ho instead of an inequality because the objective function is a
where v is a Gaussian random variable with meap, = monotonically increasing function of the transmit poweneT

A if Hy is true, otherwiseu,1 = A + o2; the variance optimization [I¥) is complicated in its current form. To neak



the proplem simplifie(_j, we, in _the following, perform a serie g — m i=1 (24)
of matrix transformations. Define (A

0 otherwise
C. AC.RZ Proof: See AppendikA. ]
" " X o L Utilizing Lemmald, we can determine the optimal precoding
G, éR;fHHGOTHZRZUE (18) matrix. The results are summarized as follows.

Theorem 1. The optimal precoding matrix, that is, the op-
timal solution to [[IV), is a matrix with its first row a nonzero
vector, whereas all other rows equal to zeros, i.e.

and substitute them int@_(IL7), the optimization becomes

max tr{(énég + Ufnl)_lénGnéf}

., THTR-1
o _ _ wre e H R~ i=1

sit. tr{cnc£ + Planan} =T, (19) Culiri] = {o e g} 2
Furthermore, letC,, = UDV?” denote the singular value Where
decomposition (SVD) ofC,,, in which we drop the subscript R 1 T
n for those matrice{U, D, V} for simplicity. Without loss p=— -

. T . . —3 1+ PA G,
of generality, we assume that the diagonal maBishas non- I6THI R || | 1+ PiAmadGn)
negative diagonal elements, i&; > 0. Substituting the SVD s a scaling factor to satisfy the power constraint.
into (19), we arrive at a new optimization that searches fora  pygof- Clearly, we have C* = C*Rf% _

1 n n*vWn

optimal orthonormal matri% and an optimal diagonal matrix
D (U can be any orthonormal matrix as it turns out thats
independent of the optimization problem)

U*D*(V*)TR,2. The optimalD* is a diagonal matrix with
its diagonal elements given bl (24). Frdfih= VTG, V, it
is easy to deduce that the orthonormal malvixthat yields

max tr{D(D*+02 I)"'DV'G,V} (23) must be
{V,D} n

st t{D*+ PD*VTG,V} =T, (20) V=1, (26)

whereU,, is an orthonormal matrix obtained from the eigen-

LetF £ VI'G,V, and f“ denote t_heith diag_onal eIer_nent value décomposition (EVD)G,, = anD%Ug . in which
of F. We have the following properties regarding the diagongle diagonal elements db,, are arranged in "a descending
elements{ fii }: order. Also, we assumdJ* = I since U* can be any
. orthonormal matrix. Therefore we have
B fi=0 )
) an C;, =D*U] Ry}
(”) ;fu /\maX(Gn) (21) B {d/’{l(Ugn [:’ 1])TR;% i—1
In above properties, the first follows from the fact tHat 0 1€{2, .}
is a positive-semidefinite matrix. The second can be easily ¢0TH£R;U71 i=1
derived by resorting to the trace identitf AB) = tr(BA) o e {2,....qn} (27)
and noting thatG,, is a rank-one matrix (c.f.[(18)), where
Amax(A) denotes the largest eigenvalue Af yvhere the last equ_ality comes f_rom the fact th@&t,
TreatingF as a new optimization variable, the optimizatioS @ rank-one matrix and the eigenvector 6, cor-
(20) can be re-expressed as resQondlng to the nlonzero/largest eigenvalue is equal to
o , R,2H,0/|0"HTR,,2 2. The proof is completed here.m
max Z di; fii Note that the optimal solutiol (25) has only one nonzero
{dii.fii} p dz + o2, row. This suggests that in order to achieve best detection
an performance, a compression-transmission strategy, tiaer
s.t. dei(l + Py fi) =Ty a non-compression transmission strategy, should be adiopte
=1 and each sensor’s local measurements should be compressed
fi>0 Vi into only one message. Also, it can be readily observed lieat t
an compression/precoding vector is exactly a matched filtea in
Zf“' = Amax(Gn) (22) vector form. Matched filter detection in a conventional ot
i=1 (i.e. centralized and no power constraint) is a well-stddie

topic. Nevertheless, to our best knowledge, the optimalfty

Wh'Ch’. as we can see, |.nvolves.only the d|qgonal elementstﬁe matched filter in distributed power-constrained neksor
F, while irrespective of its off-diagonal entries. The saluat .
has never been established before.

to (22) is given in the following lemma.

Lemma 1: The optimal solution to[{22) is given by
B. Optimum Power Allocation

1= Amax(Gn) i =1 (23 In previous subsection, we studied the optimum precoding
" 0 otherwise design when a power assignment among sensors is specified.



It turns out that the optimal precoding is a compressic

vector which converts each sensor's obseryations intogie;ir_w : —IOptimal p;recoding ;
message. Substituting the optimum precoding vector baok it - i - - - No precoding ¥
(@8), we obtain the following power allocation problem [

N

rror
[any
o

Tn Amax(Gn)
WY LT e (1 Pel o)

n=1

N
S.t. Z Tn < Ttotal
n=1

Average Probability o

T, >0 (28)

It is easy to verify that the optimization problem[28) is zer I
because its Hessian matrix, which is a diagonal matrix - . . . .
this case, is positive semidefinite on the convex set defin 10 0 2 4 6 ) 10

by the linear constraints. Although(28) is efficiently saihle Transmit Power (Watts)

by numerical methods, it can also be solved analytically by

resorting to the Lagrangian function and Karush-Kuhn-TRuckFig. 2. Average probability of error vs. transmit power fgtional precoding
(KKT) conditions, which leads to a water-filling type powef"d o precoding strategies.

allocation scheme. The details are elaborated in Appdnbix D

Briefly speaking, for a threshold that is uniquely determined
by a procedure described in Appendik D, we have

be seen that the optimal compression strategy outperfdrens t
non-compression strategy, which corroborates our thieafet

1 (\/E _ ) an > ¢ analysis.
T, =" ¢ . (29) The detection performance under different power alloca-
0 otherwise tion schemes is also investigated. We $ét = 20, and
where H, = I, R,, = 0.5I for all n. The channel signal-to-
. Amaxn noise ratio (SNR) is assumed to be,|?, where|r,|'s are
Qn = independent and identically distributed (i.i.d.) Rayteigding

o2 (1+ P
o 11 man) random variables with unit variance. Since the channel gain

o2 (15 P 3 is normalized to unity .in our problem formglation (c.El (2)
Un 17 imaxn we setl/o2 = |r,|*. Fig.[3 plots the detection performance
and \max,, Stands for\max(G,) for notational convenience. of two different power allocation schemes, namely, an ogtim
power allocation and an equal power allocation. Results are
C. Summary and Numerical Results averaged over one million independent runs. For both sckeme
optimal precoding vectors (conditioned on optimal and équa

tioEor clarity, we now summarize the proposed optimal SOILﬁ)_ower allocation) are used. From Fg. 3, we see that for.i.i.d

) . . .. Rayleigh-fading channels, optimal power allocation pnés@
1) Given the prior knowledge of the noise staflisticgjear performance advantage over the equal power allatatio
{Run}, {02 }, the signald, and the observation ma-

. scheme.
trices{H, }, compute{«,} and{5,}.
2) Given the total power constraifity,, find the optimal _ _
power allocation among sensors vial(28). The solutidd. Extension to Neyman-Pearson Detection

of (28) is elaborated in Appendix]D. The extension of our theoretical results to the Neyman-
3) With the optimal power assignment, determine the opfearson variant of the detection problem is straightfodwar
mal precoding matrice¢C,,} via (14), whose solution This is because the decision rule for the Neyman-Pearson
is given by [25). detector is still an LRT, except that the threshold is debeeah
We now provide numerical examples to verify the analyticély the prescribed false alarm probability. As indicatediear
results. In the simulations, the prior probabilities of &l in the Neyman-Pearson formulation, the prior probabdité
and alternative hypotheses are assumed identical. Thervedhe null and alternative hypotheses are unknown. Neverssel
parameter is a three-dimensional vector with its entriesabg when the event/taget to be detected has a rare occurreece, th
to one, i.e.® = [1 1 1]7. We first consider a single-sensolpower constraint could be a constraint on the behavior of the
system which has only one sensor node. The observatsystem under hypothesig, (corresponding taP;, = 0) [15].
matrix, observation noise covariance matrix, and the celann The Neyman-Pearson detection aims at maximizing the
noise variance are set equal B = I, R,, = 0.5I, and detection probability subject to a given false alarm pralitso
o2 = 0.5, respectively. Figl]2 shows the average probabilityhe decision rule is also a LRT which is given as
of error P, as a function of the transmit power for both
optimal precoding and no precoding, in which no precoding L(y) = IM fg (30)
corresponds to sending the original data, (&= I. It can p(y|Ho) m,

(1>

B
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Fig. 3. Average probability of error vs. transmit power fgstimal power Fig. 4. Average probability of error vs. transmit power faffetent number
allocation and equal power allocation schemes. of sensors.

where 7 is the threshold determined by the specified falsg/hen the total number of sensoré, increases without bound,
alarm probability. Following a similar derivation, we kndhat  asymptotically approaches

the precoding design under the Neyman-Pearson framework is

still given by the optimizatior{16), but witf, = 0. Therefore N p1

the optimal precoding desigh (25) and the optimal powerallo X = Z m

cation [28) hold valid for the Neyman-Pearson detectorpsim ";1 "

with P, replaced by zero. It can be readily observed that the _ Z 1 (ﬂ _ pP1P2 >

optimal precoding design for Neyman-Pearson detectdr stil — N \o2  Noi +po2

has a matched filter structure, but with a different scalaxgdr Nesoo 1A

to satisfy the power constraint. ="p1E[l/o, ] = X (32)

. . . Numbers (LLN). The detection performance under different

In this section, we analyze the impact of number of sensars e ) :
. . number of sensors is illustrated in Fig. 4. In this example,

on the overall detection performance, given the total arhoun

. . W
of transmit power fixed. The channels between sensors :ﬁe% — L R, — 0.5I for all n. We seto? = 1/]r, 2 to

the FC are assumed i.i.d. channels. Note that as we indic . , . / .
. . - . - .~ _simulate i.i.d. channels, whefe,|'s are i.i.d. Rayleigh-fading
earlier, since the channel gain is normalized to unity in odr

. . random variables with unit variance. Results are averaged o
problem formulation (see[]2)), we, alternatively, set a S o .
. : i n one million independent random realizations. The asymptot
random variable to simulate i.i.d. channels.

- . ) erformance when the number of sensors increases without
To facilitate our analysis, we consider an equal-powér . . . .
und is also included for comparison. We see from Fig.

allocation scheme in which all sensors transmit the sa 8

amount of power. Also. we assume a homodeneous scen i})hat, for a fixed amount of transmit power, the detection
whereH 7DI andR T o2 1. Vn. When optir?1a| precoding performance improves notably as we increase the number of
n o Wn — Yw .

vectors (conditional on the equal-power allocation) aredys sensor nodes, which suggests that exploiting channelsitiyer

. . L can achieve a substantial performance improvement.
according to[(28), the deflection coefficientis given b . . . . :
g ) onls g y The detection diversity gain can be explored from a differen

assume thathy, = P, = 05, 0 = [1 1 1), and

_ i Tiotarmax(Gr ) perspective. Inspired by the notion of “estimation outagebp
X _n—l T+ NoZ (1 + Pidmax(Gn)) ability” proposgq in [21], we mtroduc_e a_\_concept “det_ent|o
N outage probability” to quantify the reliability of the deteon
(;)Z Tiotall| 013 (31) System. The detection outage probability is defined as the
“— 03 Tiow + Nog (o3, + P1]0]13) probability of the detection probability being less than a

where (a) comes from the fact thakma(Gyn) — [0]3/0” specified requirement given a certain false alarm prolgbili
max n) — 2

. . . w' e,
For notational convenience, define

p a TtotaIHGH% Poutageé Pr{PD < 7’D|PFA} (33)
1="3 2

Tw -i;P1H0||2 Recall that the test statisti¢ is a Gaussian random variable
po & o Thotal with its mean and variance under null and alternative hy-

o2+ Pi|6]3 potheses given by (10). Therefore for a prescribed falsenala



probability, the detection probabilit¥’, is given as

“A—g2
=Q (Q 7} (Pra) — o) (34) >
whereQ(z) denotes th&)-function. Utilizing the above result, <
the detection outage probability can be rewritten as '5
_ o
Poutage:Pr (Q(Q 1(PFA) - Uu) < TD) %
:PI’(Q_I(PFA) — Oy > Q_I(TD)) g 10_2:_ i
=Pr (0, < Q7' (F) = Q' () ° =
=Pr(x <¢) (35) |- - -N=6
in which ¢ 2 (Q '(Pa) — Q '(m))%. We see that the 108 0 N=9 | | | |
detection outage probability is in fact the probability bt 1 15 2 2.5 3 35 4
deflection coefficient being less than a certain threshold. Transmit Power (Watts)

From [32), it can be observed that whahis sufficiently N _ _
Iarge, the deflection coeﬁiciemis approximately equa| to the Fig. 5. Outage probability vs. total transmit power for eiint number of
.. . 2 . Sensors.
sample mean of i.i.d. random variablgs; /o; }. According
to the large deviation theory [22], for agy< .., we have the
outage probability decreasing exponentially withas follows A. GLRT Detector

Poutage~ exp(—N15(¢/p1)) (36) Suppose that the precoding \/_ector@n}_ are pre-
determined, we can use a generalized likelihood ratio test

(GLRT) which replaces the unknown signal with their max-
imum likelihood estimates (MLES). In the case there are no
unknown parameters undéfy, the GLRT decidedd; if

where~ means asymptotic convergence/dsbecomes large,
w is the common distribution ofz,, £ 1/02 , and I (z) is
the rate function oto:

I, (x) = sup(tx — log M (t 37 A
with M, (¢) the moment-generating function af. From [38), p(y|Ho)
we see that if the specifieff-a and 7p satisfy the following where@ is the MLE of 6 found by maximizing
condition: 1

- - 0;H)=—————

(@ (Pea) = @1 (70))* < xoe @) PYIOH) =GN
then the (_jetectio_n outage probability can be made_ arbijtrari % exp{ _ l(y —POTE Ny — PG)} (40)
small by increasing the number of sensdfs even with the 2

total transmit power fixed. Note that singe, is proportional jn which  is a diagonal matrix with itsith diagonal element
to the total transmit power, the condition {38) can alwaygiven byc,R., c? + o2 , and

be met for a sufficiently large transmit power. The behavior

of the outage probability with different number of sensors ciHy

is illustrated in Fig.[b. We sef’, = 0, Prsa = 0.1 and pa coHp (41)
7 = 0.9, and assume other simulation parameters the same B :

as in previous example. Results are averaged over one millio
independent random realizations. It can be verified that the ) )
condition [38) is satisfied as long & > 1. From Fig.[5, The MLE of @ can be so_lved by tgklng the logarithm pf
we see that the outage probability decreases dramatiaaily eP(y|0; H1) and setting the first derivative equal to zero, which

cvHy

we slightly increase the number of sensors. gives
n_ Tws—1 —1pTvy—1
VI. DECENTRALIZED DETECTIONWITH UNKNOWN 0=F 3PP Xy (42)
SIGNALS Note thatP has to be full column rank, otherwise the MLE

From preceding analyses, we see that the decision rule atff@uires solving an ill-posed inverse problem (more detail
FC, the precoding design, and the power allocation all requf€darding the choice of the precoding vectors such Ehas
the knowledge of the sign#l to be detected. A fundamentalfull column rank will be provided later). Substitutiry back
assumption made in previous sections is that the signial into (39), thus we have
knowna priori or the signal can be estimated from the trainin 1 _ ey — _
data befgre the detect?on task is performed. In the follgwing InLa(y) = §yTz PRTZTP) PRy (43)
we discuss, if the knowledge of the signal to be detectedtis i we decideH; if

available, how to form a final decision at the FC and design Tt T T a1 ,
the precoding vector for each sensor. y PP YTP)P Yy > (44)



It is shown in [20, Section 6.5] that whe¥i — oo, the GLRT The individual deflection coefficient can be re-expressed in
statistic2 In L (y) under hypothesi#l, follows a chi-squared terms ofv,, and p,,

distribution withp degrees of freedom, which does not depend Unfin
on any unknown parameters. Therefore the threshold redjuire Xn = m
to maintain a constan®:, can be found. "

(50)

and the power constrairff (48) can be rewritten as
Un(14+ Pip,) =T (51)

Solvingv,, from the power constrainf (b1), and substituting it
back into [BD), we arrive at

B. Precoding Design With Unknown Signals

When @ is unknown or the estimate &f is not available,
determining the optimal precoding vectors is not possile.
this case, we propose a heuristic method for precoding desig o = Tpn (52)

In practice, the plus or minus signs of the vectyr £ " TH402 (1+ Piun)

R.,2H,0 may be obtained from the signal dynamic rang€learly, the individual deflection coefficient, is a monoton-
or estimated from the observations. This knowledge can Reilly increasing function ofs,. If @ is known, the optimal
exploited for precoding vector design. Let $gh be a sign precoding vector which maximizes, can be determined, and
column vector with its elements given by g@g), where it can be easily derived that the maximym is equal to
sgn(z;) = 1if z; > 0, and sgi;) = —1 otherwise. We q

design the precoding vector for each sensor as follows Limax = )\max(R;%HBG'THTR;%) —glg = Zgzz (53)

=1

_1
¢ = Pn(lral © Sgr(gn))Tan? vn (45) 1 ] ) )
_ _ whereg £ R, 2H0, ¢ is the dimension og. On the other
wherer, is a column vector whose entries are randomlyand, for the heuristic precoding designl(4p), is given by
generated according to a Gaussian distribution with zerarme

and unit variance|r,| is a vector whose entries are the i = (ra| © sgrie))" gg” (Ira| © sgre))
absolute values af,,, © denotes the entry-wise multiplication, (Irn| © sgn(g))” (Irn| © sgr(g))

and 1), is a scaling factor which ensures that the precoding (T e, gil)? (54)
vector satisfies the specified power constraint (notethatan N S

be determined without the knowledge &fif we set P, = 0). For notational convenience, latsu and xopt respectively

Recalling that the matrb defined in [41) has to be full denote the overall deflection coefficients attained by thee pr

column rank, generating _the precoding vector; in a r?ndq{ading design[(45) and the optimal precoding design. The rat
manner guarantees th&t is full column rank with a high ¢ ihege two deflection coefficients is then given as

probability.
Itis interesting to examine how well this heuristic precuyli Xsub 2on % 2on %
design performs. We consider a homogeneous scenario whereXTpt :Z T e > > T e
sensors have identical observation matrices and obsenvati n Tag, (1% P max) n Tag, (1% P max)
noise covariance matrices, iH, = H, R,,, = R,, for all 1 N fn  N—soo
n. Also, we assume an equal power allocation throughout our N Z Limax =" Elun/pmay (55)
following discussion. The deflection coefficient is thenagiv n=1
by (c.f. (I8)) which converges toE|u,/umad @s the number of sensors

v N increases. Utilizing[(33)E(%4), we have
_ q 2
X =) (caRucl +02 ) 'c,HOO"H [ £ ", (46) B [ fin ] _E[ (qu:; Irnigqil) i ]
n=1 ( i=1 rnl)( i=1 gi)
q

2 2
T g;
>E|: 1=1"n;Jt :|
( (1'121 7’7211)( 321912)

n=1 Hmax

in which

Xn 2 (cpRycl + agn)_lanHOTHTCZ (47)

q
o _ iy SR R o 0] it
denotes the individual deflection coefficient for each senso 4 g2 ¢ v 4 r2
. . . =191 ;—q i=1"mn;
The precoding vector, at the same time, has to satisfy the q
transmit power constraint ~ ql Z {92E[r2 ]E{ . 1 } }
K3 Kz
T TexT T i1 9% i—1 >ie1 T
cnRyc,, + Pic,HOO"H ¢, =T (48) a9
= T (56)
whereT = Tioa/N Since we assume an equal power alloca- (—2)>L,92) g
tion. Define

where the last equality comes from the fact tHaf } are

v, 2e, Ryt i.i.d. chi-square random variables with one degree-aédam.
" . Combining [55)-1(56), we conclude that the ratio of the deflec
2 HOO H c, (49) tion coefficient achieved by the precoding desigd (45) td tha

Hn,
c,Rych attained by the optimal precoding design is withify.



Numerical results showed that a substantial performanee im
—————— provement can be achieved by exploiting channel diversity.
- Besides, a new concept “outage probability” was introduoed
. guantify the system detection reliability. Our analysiggests
that if a certain condition is satisfied, then the outage arob
bility can be made arbitrarily small by increasing the numbe
of sensors. Finally, a GLRT detector and a heuristic prewpdi
design were proposed when the exact knowledge of the signal
. to be detected is not available. Numerical results wereigeal
oy to illustrate its performance and its comparison with the
i —__LRT—oP | Neyman—Pearson detector which assumes the knowledge of
./ '='='GLRT-precoding the signal.
- = =GLRT-No precoding
1 1

o
fes)
T

o
o
T

©

n
T
<
~
i

Detection Probability

o
N
T

~

O 1 1
0 0.2 0.4 0.6 0.8 1 APPENDIXA

Transmit Power (Watts) PROOF OFTHEOREMI

Fig. 6. Detection probability vs. total transmit power folLlRT with Let a; £ dfi/agn, andb; £ P, f;;. The optimization[(22)
precoding [(4b) and no precoding, and NP test with optimatqung (OP). can be rewritten as

. . . S aib . b
Simulations are conducted to illustrate the performance of max Z <= min Z

the GLRT with precoding desigi_(¥5) (denoted as GLRT- {asbi} o G o i
precoding), and its comparison with the GLRT with no pre- In Tn A -~
coding (that is,C,, = I,Vn), and the Neyman-Pearson test st Zai(l +bi) = o2 Tn
which assumes the knowledge 6f and employs optimal ’ '
precoding design (denoted as NP-OP). In our simulations,
we setP, = 0, H, = I, R,,, = 0.5I for all n, and by >0 Vi

0 = [cos(1) cos(2) cos(3)]T. There are 100 sensors. The 4n

channels between sensors and the FC are generated in a > bi = Pidmax(Gn) £ A (57)
same way as we did in previous examples. The false alarm i=1

probability is set taPra = 0.05. The detection probabilities of -Hhe above optimization involves optimizing two sets of vari

the GLRT and NP-OP are shown in Fig. 6. We see that GLRabI : __
. . es{a;} and{b;}. To solve [5¥), we first optimize one set
with precoding [(4b) presents a clear performance advantaﬁe {ai} {b:} v ), we fi plmiz
r

GLRT with ding. Thi h variables, given that the other set of variables are fixed.
over with no precoding. This suggests that a prope uppose tha{b;} are pre-determined, and are arranged in a
designed precoding, even not optimal, is more energy-effici

descending order, i.é; > by > ... > b, . Then optimizing

than no precoding. Also, it can be observed that to aChl?gi} conditional on fixed{b;} can be formulated as

a same detection performance, the GLRT with precoding
requires about twice of the transmit power needed by NP-OP. i b,
min :
VIl. CONCLUSIONS {ai} —aitl
We considered a decentralized detection problem in which ¢ In 14b) =T
a number of sensors collaborate to detect the presence of st Zai( +bi) =Tn

a deterministic vector signal. The sensor network is stibjec
to a total power constraint, and each sensor uses an analog

amplify-and-forward transmission scheme to send theia d%hich can be analvtically solved by resorting to the La-
to the FC. In this context, we studied the optimal precodi y y y 9

né;r : . "
) I o . angian function and Karush-Kuhn-Tucker (KKT) conditon
deS|gn_ for each sensor, aiming at minimizing th? p_rot_)g t (details are elaborated in AppendiX B). The optimal sohutio
detection error at the FC. Our theoretical analysis indg#tat

the optimal precoder is a compression vector which conveftsd"Ve" by

each sensor’s original measurements into a single message, i

and the optimal precoder is exactly a matched filter in a vecto a; — [ b; 1 i (59)
¢( )

form. Although matched filter detection is a well-studiepitg 1+ b;
its optimality in a distributed power-constrained netwbiks
never been established before. The optimal power allatatiohere[z]* is equal tox if = > 0, otherwise it is zerop is
among sensors was examined as well. It is found that theparameter that is uniquely determined from the procedure
optimal power allocation is a water-filling type scheme.  described in Appendiik]B.

Given a fixed power constraint, the impact of the number Let {a}(b)} denote the optimal solution conditional on
of sensors on the overall detection performance was ardlyzgivenb = [b; by ... b, ]. Substituting:; (b) back into [57),
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we come to an optimization involving onkp; }: be further lower bounded as

qn dn

an b; b b;
) bi Z 7 2 _ 1 + Z 7
I{IZE? ;af(b)—i—l Swtl %-ﬁ-l P
st b;>0 Vi b b b
an =gt — Z
- Toy 49 a3+l _74ai—|—1
> b= (60) 1+b =
i=1 b In bl
_ . . >—2 4+ (67)
In the following, we show that the optimal solution fo{60) n2 41 et
P 1+b2
is given by . i _ _ _
A i=1 in which bo £ b1 + by + bg, Tn72 £ Tn71 + Tn72 + Tn,Sn and
b; = : (61) the inequality, again, comes by usifg](65). So on and so,forth
0 otherwise e o
we can reach that the objective function is eventually lower
Notice that the parametes in (59) needs to be determinedPounded by
through an iterative search. Therefore we cannot directly Iy A
substitute the solution aff (b) into (60). To make the problem Z o jL 12 F (68)
tractable, we start from a two-dimensional cage= 2. The i=1 " T Tl
extension to arbitrary dimensiap can be accomplished basedind this lower bound is attained only when
on the two-dimensional results, which will be shown later. ,
Define b* = Ai=1 (69)
; ! 0 otherwise
ab) £y ——2— (62) £
“~ a;(b) +1 af = { THX i=1 _ (70)
0 otherwise
b 2\ 0] Therefore[(6R)-(70) are the optimal solution[tol (57). Theopr
is completed here.
In Appendix @, we proved tha(? is the optimal solution to
(60) for g, = 2, that is, APPENDIXB

AN ANALYTICAL SoLUTION To (58)

(b”) > 7(b) (63) . . _ . o
The Lagrangian function associated with](58) is given by

for any b # b(9) satisfying the constraints defined in_[60).

Therefore forg,, = 2, the optimal solution td(37) is given by Lq(ai; ¢ i) . .
n bZ - n n

T, o N I
aj,ay} =4 ——, which gives the following conditions :

T,ab T 0 (64) which he foll KKT d [23]

In other words, we have —m +o(1+b;) —v; =0 Vi

1?,\ +1 meitl i=1

for any {a1,az,b1,b2} satisfyinga; > 0, b; > 0, Vi, and vid z
bi+ba =X a1(1+b1) + az(1+ b)) =T, v; >0 Vi
We now discuss the generalization of our results to arlyitrar a; 20 Vi

dimensional case. Again, suppose tHaf} are arranged in By solving the first equation of the above KKT conditions, we

descending order, and I&t, ; £ a;(1+b;). Then the objective

) . . obtain
function of [57) is lower bounded by
b; .

qn bi 2 bl dn bq, a; = m — 1 VZ (72)

I R I =

=1 =1 =3 Also, the KKT conditionsy;a; = 0, v; > 0, anda; > 0 imply
@ b b that we have eithefr; = 0,a; > 0} or {v; > 0,a; = 0}.
2 Foy 4 q + ; a; + 1 (66)  Therefore [(7P) becomes

1+b]

Jr
. . - - bi ,
in which by £ by +ba, Ty,1 = Ty.1 + Ty,.2, and the inequality a; = [1 / o010 1] Vi (73)
(a) comes by utilizing[{€5). The above objective function can '
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where [z]T is equal toz if x > 0, otherwise it is zero. The Substituting the optimal solutiofu}(b)} into (62), we have
Lagrangian multiplierp and the number of nonzero elements

(a; > 0) can be uniquely determined from the second equation W(b(o)) :M
of the KKT conditions. The procedure is described as follows Tn+1+A

Suppose we hav& € {1,...,¢q,} nonzero elements, i.e. (b) :(/\j §)(1+A—9) Iy (79)
a; >0,Vi=1,..., K (note that{a;} are in descending order T,+14+AX-0
since we assumé; > by > ... > b, ). Thereforep can be and
solved by substitutingas, as, . ..,ax} into the second KKT Fos T s
condition: W(b) _ﬂ_(b(O)) — T - T;\z —; 7% S (80)

S VR | . A m o L
¢ = Tn+ZK_1(1+bi) (74) " Therefore for anyb € Ry (0 < § < min(\/2,7)), the
= inequality

Now substituting¢ back to [7B), we get a new solution ©
{ay,db, ... dl sy, .. al, }. If for this new solution, we m(b") < 7(b)

havea; = 0 for 7 > K. Then it is the true solution we are
looking for; otherwise we have to choose anothéto repeat
the above procedure.

holds. Also, from [(8D), we know that(b) increases with
an increasing. It means that from the starting poipt 0],
when the poinb comes closer to the end poit— = 7], the
function valuer(b) increases.

APPENDIXC We now prover(b(®)) < 7(b) for anyb € R,. We first
PROOF OFINEQUALITY (63) show that forb € R, m(b) increases with an increasirg

] ] ) _Note that the regiorR, can be rewritten as
Note that for the two-dimensional case, the feasible region

{b = [b1 bo]} of the optimization problem[(60) is in fact Ro 2 {b=[\/2+ X\/2-¢] | & €[0,\/2—7]}
a line segment between the two poirfids 0] and [\/2 A/2] (81)
(note that we assumig > b, without loss of generality). Let

R denote the set which consists of all feasible solutionseixce Nerefore proving that (b) increases with an increasigis
b(©. We divide the regiorR into two disjoint regions. One equivalent to showing that(b) decreases with an increasing

of the two disjoint regions is defined as ¢'. For anyb € Ry, the optimal solution{a;} of (58)
conditional onb has the following form:

Ri2{b=[\-696 § € (0, min(\/2,7 75 . . .
wherer > ( is a threshold such that & < 7, then the optimal
solution{a;} to (88) conditional orb € R, has the following

form:

wherea; (b) > 0 for ¢ = 1, 2. Substituting the optimal solution
a*(b) into 7(b), we have

2
> 2@ VY Vui(1+b)
; i=1

a*(b) = [aj(b) 0] (76) 7(b) . o) 1

~

Note thaté has to be smaller thak/2 to ensure thafb,} are 2
arranged in descending order.7f> /2, thenR; = R. For <Zf_1 Voi(1+ bi)>
the caser < \/2, the complementary region is given by = 5

T+ 205 (14 bi)

Ry2{b=[\-0d4] | s€[rr/2]} (77) A+ A2 2

== + — K
It can be easily verified thaR,; U R, = R. Clearly, the two Tot+2+X Ta+2+A
disjoint regions are obtained by breaking the line segmerhere(a) comes by utilizing[(59)(b) follows from (74), and
into two pieces, withR; corresponding to the line segment

—~
=

(") (83)

between the point§\ 0] and [\ — 7 7] (end points are not K(8') £/biba(1+ A + biba) — bibe
included), andR, corresponding to the line segment between \/ﬁ A2 9
A —7 7] and[\/2 A/2]. =Vt —ad®+ - +0
To prove thatb(®) is the optimal solution to[{80), we first
show thatr(b(®) < n(b) for any b € R;. It is easy to R A2
derive that the optimal solutions:; (b)} conditional onb(®) a=l+A+ o
andb € R, are respectively given as A3 2
BE + -+
© T 16 4 4
* 0 _ n
{ai (b)) _{1+/\’0} Lett £ 2, and define

‘b)) = — "o 78 AN sy SR
{ai( )}—{mv} (78) R(t) = t2—o¢t+ﬂ—z+t (84)



We compute the first derivative &f(¢):
OR(t) 2t — «
o  J2—at+p
It is easy to verify that for any > 0, and\?/4 >t > 0, we

have
a—2t>\t2—at+p

OR(t)
o5 <0 (86)

Therefore#(¢) is a monotonically decreasing function of

+1 (85)

for \2/4 > t > 0. Consequentlyx(§’) decreases with an

increasingy’ for A/2 > §’ > 0, so does the function(b). In
other words, fob € R, m(b) increases with an increasirg
It means that from the starting poift— 7 7], when the point
b approaches the end poiit/2 A/2], the function valuer(b)
increases. Due to the continuity of the functiefb), hence
we have

7(b®) < 7(bW) < 7(b?) (87)

for any b € R, andb® € R,. The proof is completed
here.

APPENDIXD
AN ANALYTICAL SOLUTION To (28)

For notational convenience, [8tax, stand forAmax(G).
Define

o & Amaxn
" 012}71 (1 + Pl Ama)gn)
o 2 1

o, (1 + PrAmaxn)
The Lagrangian functiod. associated with[(28) is given by

L(Tn; (b; Vn)

N N
Tiom ﬂ)— v T, (88)
ZMH o= 1) - 3

which gives the following KKT conditions [23]:
(7%

— + n =0 V
NCED A "
N
Tiotal — Z T, =0
n=1
v, =0 Vn
v, >0 Vn
T, >0 Vn
By solving the first equation of the above KKT conditions, w
obtain
1 a
Bn |: ¢ —vn :|

Also, the KKT conditions,,T;, = 0, v,, > 0, andT,, > 0
imply that we have eithefv,, = 0,7T,, > 0} or {v,, > 0,T,, =
0}. Therefore[(8P) becomes
1 a +
T, = — -1 Vn 90
e 0

fiz)

12

where[z]T is equal tox if = > 0, otherwise it is zero. The La-
grangian multiplierp and the number of active sensors (those
are assigned nonzero power) can be uniquely determined from
the power constraint.

Suppose we hav& € {1,..., N} active nodes, according
to (90), theseX nodes must béky, ks, ..., ki }, where{k;}
is a set of indices such thaf,, > ax, > ... > ai, . Therefore
¢ can be solved by substitutingl’y, , Tk,, - - ., Tk, } into the
second KKT condition, wher&, is given by

O,

1
jk‘ﬁl{ ¢_%

Now we substitute¢ back to [QD). We will get a new
solution{7}_,Ty ,..., T}y Ty ..., T} }. If this new so-

. i 1 2] T kK K+1 N X
lution is exactly identical to the one we assumed before, i.e
{Tk,, Thyy - Thy» 0,...,0}. Then it is the true solution we
are looking for; otherwise we have to choose anotheto
repeat the above procedure. Also, it has been proved thhat suc
a solution is unique and always exists [24].

(91)
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