ConMem:
Detecting Crash-Triggering Concurrency Bugs
through an Effect-Oriented Approach

Wei Zhang?

Chong Sun?

Junghee Lim?

Shan Lul!

Thomas Reps’?

LComputer Sciences Department, University of Wisconsin— Madison
2GrammaTech,Inc

{wzh,chong,junghee,shanlu,reps}@cs.wisc.edu

Multicore technology is making concurrent programs increasingly pervasive. Unfortunately, it is difficult
to deliver reliable concurrent programs, because of the huge and non-deterministic interleaving space. In
reality, without the resources to thoroughly check the interleaving space, critical concurrency bugs can slip
into production versions and cause failures in the field. Approaches to making the best use of the limited
resources and exposing severe concurrency bugs before software release would be desirable.

Unlike previous work that focuses on bugs caused by specific interleavings (e.g., races and atomicity
violations), this paper targets concurrency bugs that result in one type of severe effect: program crashes.
Our study of the error-propagation process of real-world concurrency bugs reveals a common pattern (50% in
our non-deadlock concurrency bug set) that is highly correlated with program crashes. We call this pattern
concurrency-memory bugs: buggy interleavings directly cause memory bugs (NULL-pointer-dereferences,
dangling-pointers, buffer-overflows, uninitialized-reads) on shared memory objects.

Guided by this study, we built ConMem to monitor program execution, analyze memory accesses and
synchronizations, and predictively detect these common and severe concurrency-memory bugs. We also
built a validator,ConMem-v, to automatically prune false positives by enforcing potential bug-triggering
interleavings.

We evaluated ConMem using 7 open-source programs with 10 real-world concurrency bugs. ConMem
detects more tested bugs (9 out of 10 bugs) than a lock-set-based race detector and an unserializable-
interleaving detector, which detect 4 and 6 bugs, respectively, with a false-positive rate about one tenth of
the compared tools. ConMem-v further prunes out all the false positives. ConMem has reasonable overhead
suitable for development usage.

Categories and Subject Descriptors: D.Zi&dqting and Debuggind: Testing Tools
General Terms: Languages, Reliability

Additional Key Words and Phrases: Software testing, caeaay bugs

1. INTRODUCTION
1.1. Motivation

Multicore technology is making concurrent programs insiegly pervasive. Unfortunately, con-
current programs are prone to bugs. To exacerbate the pnololencurrency bugs are particularly
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difficult to detect and diagnose due to their non-deterrtimihavior. Concurrency bugs can caug
severe software failures and real-world disasters, sutheallortheastern Blackout of 2003 [Secu-
rityFocus ]. As concurrent programs grow increasingly papuweveloping effective approaches to
detecting concurrency bugs is vital.

A fundamental challenge in concurrency-bug detection ésethormous size of concurrent pro-
grams’ interleaving space (exponential in the executiagtle for each input). Thoroughly checking
this large space is crucial because concurrency bugs omyfesaunder certain interleavings. Un-
fortunately, due to limited computational resources,safe-development teams can only afford to
check a small part of this large space. Determiniidch part of the interleaving spachould be
checked is a critical open problem.

To address the above challenge, previous tools for coneeyiieug detection and testing focus on
certain interleaving patterns that are prone to concugréngs. Widely used patterns include data
races (un-synchronized conflicting accesses to sharedbles) [Netzer and Miller 1991; Savage
et al. 1997; Yu et al. 2005; Flanagan and Freund 2009], aigmimlations (an interleaving that
makes certain code regions unserializable) [Flanagan asghB 2004; Xu et al. 2005; Lu et al.
2006; Chen et al. 2008; Flanagan et al. 2008; Sadowski eb@@]2and order violations (an execu-
tion that flips the expected order between two operations fr@o threads) [Lucia and Ceze 2009;
Shi et al. 2010].

Although great progress has been made, previous workesillds some issues unsolved.

First, a high false-positive rate could cause programneigite up on using a tool. Previous
research [Narayanasamy et al. 2007; Burnim and Sen 2008hassthat only approximately 2—
10% ofreal data races are harmful; a similar trend is also seen amorgyiatigzable interleavings
[Park et al. 09 a].

Second, not all bugs represent equally harmful end effgetsthe different effects of different
bugs are not considered during existing bug-detectiongeses. Table | illustrates this trend by
breaking down the relationship between faults (i.e., buigtgrleaving patterns) and failures in 70
real concurrency bugs that have been reported and fixed in-sperce software. (Section 3 will
explain how we get this data.)

Crash| Hang | Wrong Output and Other Misbehaviots
Atomicity Violation 26 3 19
Order Violation 11 3 6
Other 0 1 1

Table I: Types of failures vs. types of faults (Note: The abdata comes frorfixedbugs in open-
source software. Therefore, bugs that lead to minor or lreeffgcts are under-represented in this
table.)

Figure 1 depicts the limitations of previous work (and oupogunities) by projecting a concur-
rent program’s interleavings onto a two-dimensional sp@be x-axis and y-axis represent different
effectsand different patterns of interleavings (i.@ijlures andfaults for buggy interleavings), re-
spectively. Note that this is only a conceptual projectibime different categories along the y-axis
can actually overlap; some horizontal stripes may haveslgsgrtions of benign effects than others.

Previous work has considered differdmtrizontal stripeof the above 2-D space. These horizon-
tal approaches inevitably suffer from the following lintitans.

First, lack of goodcoverage for certain type of failures Developers naturally want to know
about all (or most) interleavings that can cause certaissela of negative effects, such as software
crashes. Unfortunately, interleavings that cause cedti@tts span vertically in the space and are
difficult to capture adequately through a horizontal apphod his difficulty is reflected in every
column in Table I: no single interleaving pattern can captume type of failure.
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Benign/  Wrong
Minor Issues Output Hangs CrashesOthers Effects

Atomicity Violation Atomicity Bug Detectors
Order Violation|
Data Races
Race Detector
Other

Causes This paper

Fig. 1: A conceptual two-dimensional depiction of appraescto finding flaws in concurrent pro-
grams

Second, a large number &dlse positives This is observed in the real world [Burnim and Sen
2009; Narayanasamy et al. 2007; Park et al. 09 a], and is reflé@c Figure 1, where each horizontal
stripe inevitably covers interleavings with benign effect

Third, a lack ofseverity differentiation. Severityis a qualitative metric for software failures. In
practice [Apache Bugzilla ; Bugzilla@Mozilla ], bugs thatd to ‘trashes and loss of datare
considered to have higseverity and bugs that only lead tarinor loss of function or cosmetic
problems$ are consideredninor or trivial . Without considering different effects of bugs, as shown
in each row of Table I, the horizontal approach cannot focusavere bugs.

Causes Propagation Benign Effects
Certain correct intermediate sta Minor 'Ssﬁgﬁgs
interleaving intermediate error: Crashes

pattern Other:

Fig. 2: The cause—effect chain

We can deepen our understanding of the false positive amdigeigsues by looking at the cause—
effect chains in concurrent programs. As shown in Figuratrieaving patterns like data races and
atomicity violations are only the start of potential erreopagation chains. Some interleaving pat-
terns do not propagate to any incorrect states (e.g., nog piece of code is intended to be atomic).
For those that do cause incorrect states, their interme@iaibrs might be masked during further
propagation (e.g., due to redundant paths [Narayanasaaly2207]), or end up as a minor issue
hardly visible to users. In many such cases, data races @riafizable interleavings are inten-
tionally left there by developers for better performanceg (econflicting accesses to a performance
counter [Yu et al. 2005]). A pair of concrete examples is shdawFigure 3. These two real-world
bugs start with similar bug-triggering interleavings, Ib@ivolving data races and unserializable in-
terleavings. However, one causes a server crash, whiletliee loas an almost invisible effect at the
end.

Thread 1 Thread 2 Thread 1 Thread 2
S1: if (thd—>prociinf(f_\s3: thd—>proc_info = NULL; S1: tmp = gOffset; — S3: tmp = gOffset;
N 7
S2:  printf ("%s\n", thd—>proc_info); ™~ (a) S2: gOffset = tmp + 1'/8? gOffset = tmp + 1{b)

Fig. 3: (a) A severe real-world concurrency bug from MySQltadese server. (MySQL execution
usually follows the dotted line, but it crashes when itsrilei@ving follows the solid line.)

(b) A non-critical concurrency bug that existed in Mozillar fyears without any complaint.
(gOr f set holds browsing statistics. Throughout Mozilla, it is readiyoonce in a statistics-printing
function.)

The false-positive issue has already caught the attenfioraay researchers. Various innovative
approaches, such as training [Lu et al. 2006], automatethgefPark et al. 09 a; Sen 2008] and
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heuristics-based ranking, have been proposed to mitig@eptoblem. However, without chang-
ing the underlying horizontal mechanism, these propos#liseqjuire significant manual effort for
specification writing and test-oracle design, as well asgelamount of computational resources to
perform many rounds of testing or training.

The severity issue has not received the attention it desarveoncurrency-bug -detection re-
search. Severity guidance is important for concurrent o due to several reasons: (1) in gen-
eral, developers use severity to prioritize their diagaamnd repair efforts [Apache Bugzilla ;
Bugzilla@Mozilla ]. This is also observed by a recent stuflizioux kernel developers’ reactions
to static bug-detection reports [Guo and Engler 2009]; li2) huge interleaving space makes the
prioritization process extremely important; (3) non-detemism makes minor-impact concurrency
bugs more trivial than their sequential counterparts; a)dixing concurrency bugs often results
in performance penalties, which make developers moretahtito fix inconsequential concurrency
bugs. In reality, programmers are even willing to introdungsv non-severe concurrency bugs in
order to fix severe concurrency bugs [Mozilla Developers].

In summary, this paper presents a bug-detection approatfottuses on certaivertical stripes
of the interleaving space — specifically, tbshstripe that spans across all kinds of (horizontal)
interleaving patterns. This vertical approach will commpént existing bug detectors and provide
better guidance to expose severe concurrency bugs.

1.2. Contributions

This paper proposes a concurrency bug-detection-toolMeom, which is guided not by certain
interleaving patterns, but by one important class of buga#, namely, program crashes. By doing
so, we circumvent the problem of detecting the complicatedd causes. We essentially mitigate
the problem by identifying the most common patterns of paogicrashes and let ConMem go
after each. As a dynamic monitoring tool, ConMeamcurately and predictively detects severe
concurrency bugs that can lead to program crashes, no mattewhich interleaving pattern
(race, atomicity violation, order violation, etc.) is the @use

To capture the crash stripe in the interleaving space, wd teelwok backward along the cause—
effect chain and find a pattern that can predict crashes.

Our characteristics study of tlrause-effect chairef 70 real-world concurrency bugs in Section 3
reveals an error-propagation pattern that is common ankhyhigprrelated with software crashes.
This pattern covers almost half of the examined bugs andtitotes more than 85% of crash-
inducing bugs. It occurs when unsynchronized memory omerstlirectly lead to memory errors,
including NULL-shared-pointer dereferences, danglinghpers to shared memory, un-initialized
shared-memory reads, and shared-buffer overflows. Wetefhis pattern asoncurrency-memory
errors.

Run-time Detection Report of Crash Bugs Off-line Validation
(online/offline) (optional)
memory—error—component identificatipn Bugs (B)
+ controlled
Triggering interleavingperturbation

interleavings (1)
(try to exercise | and validate

a test One Run of -
input_ & Concurrent Program

synchronization analysis

Fig. 4: The flow and components of ConMem

Based on the above observation, ConMem (Figure 4) is desdigoepredictively catch
concurrency-memory errors and to report fatal interlegsiefore they occur. Under each test
input, ConMem monitors one run of the test concurrent pnogra uses run-time information to
first identify ingredients of potential concurrency-memeirrors (e.g., a NULL-assignment and
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a dereference of a shared pointer from different threadsrapedients of a concurrency-NULL-
dereference bug). It then analyzes synchronizations ardli@se suspect ingredients to decide
whether fatal interleavings exist that trigger a concucsememory error.

Furthermore, we built an active-testing tool ConMem-v taoawatically validate whether the
fatal interleavings reported by ConMem can truly occur.ditgh ConMem-v, developers can easily
validate a ConMem report and reliably repeat true bugs.

Overall, this paper makes the following contributions:

First, the paper reports the first characteristic study enciuse-effect chains of real-world con-
currency bugs. Our study is based on 70 fixed, real-world eoeacy bugs collected by a previous
study [Lu et al. 2008] from four widely-used C/C++ applicats (Apache, Mozilla, MySQL, and
OpenOffice). The study reveals several interesting findi{isconcurrency bugs that can cause
program crashes are common among fixed bugs, constitutm@e@mately 50% of non-deadlock
bugs in the study; (2) interleaving patterns have littlerelation with bug severity; (3) most (about
85%) examined crash concurrency bugs share one errorgatipa pattern: the buggy interleav-
ings directly cause memory bugs on shared-memory objects(4) above concurrency-memory
errors can be further classified into four types: NULL-slthpwinter dereferences, shared-buffer-
overflows, uninitialized reads to shared variables, andytitag pointers to shared memory.

Second, the paper introduces a new perspective on chedienguige interleaving space. Tradi-
tional bug detectors focus on thauseof concurrency bugs and work horizontally in the interleayi
space shown in Figure 1. ConMem complements them by focusirggrtaineffectsand working
vertically. Specifically, traditional tools identify alhstances of certain interleaving patterns and rely
on testing, training, or manual inspection to determinechitian truly cause (severe) failures. Con-
Mem benefits from its effect-oriented vertical approach effelctively prioritizes its bug-detection
effort towards severe software bugs, instead of benignivdatinterleaving problems.

Third, the paper provides a bridge between the well-studiedhory-bug problem and the chal-
lenging concurrency-bugissue. Memory-bug-detectioni@es are already mature for sequential
programs [Coverity ; Hastings and Joyce 1992; NethercadeéSaward 2007]. However, they are not
as effective in concurrent programs for several reasomst & all, dynamic memory-bug detectors
are sensitive to interleaving. They can only catch bugs viheyoccur, unable to predict what might
happen under future interleavings. Furthermore, everhfosé bugs that do occur during the moni-
tored run, memory-bug detectors cannot identify the roaseéi.e., buggy interleaving) and cannot
help developers fully understand and fix the bug. Staticyemlis not sensitive to interleaving.
However, even with recent inspiring progress [Chugh et @08}, its scalability and effectiveness
in concurrent programs are still limited by the fundamepthter-alias and concurrency-analysis
problems. ConMem combines classic memory-bug-deteaticmiiques with predictive interleav-
ing analysis and interleaving testing, thus solving thevaljoroblems (more discussion is in Sec-
tion 8).

Fourth, the paper describes a tool, ConMem, that effegtidetects severe concurrency bugs and
validates the results through controlled testing. ConMgimplemented using binary instrumenta-
tion. By design, ConMem has several advantages: (1) it usshqpive bug detection, and thus is
less sensitive to interleaving; (2) it has no training regonent; (3) it reports easy-to-validate bug-
detection results (i.e., memory errors), with no need fonaaly written oracles to judge execution
correctness; (4) it has high accuracy and coverage on sewarirrency bugs; and (5) it supports
a simplified diagnosis process via ConMem-v. In fact, thelesign of ConMem and ConMem-v
also helped to simplify some detection algorithms in ConMeithout causing more false positives
to be reported to developers.

ConMem is evaluated on 7 open-source programs with 10 redbveoncurrency bugs, 9 of
which can cause programs to crash. These programs include #erver applications (Apache
HTTP server, MySQL database server, and Cherokee HTTP r¥etlieee client/utility applica-
tions (Mozilla, Transmission, and PBZIP2), and one scienéipplication from SPLASH2 [Woo
et al. 1995].
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Our results show that ConMem can effectively detect 9 ouOakEsted concurrency bugs, which
is better than both a race-based detector (4 out of 10) anamdity-violation based detector (6 out
of 10) to which ConMem is compared. Furthermore, ConMemdet®s false-positive rate is about
one tenth of the race-based and atomicity-violation-bastelctors. ConMem-v further prunes all
false positives without introducing false negatives. CemMdetection’s run-time overhead is com-
parable to previous software bug-detection tools and igBlg for in-house bug detection. Each
ConMem detector introduces 2—16 times slowdown for clierfitwgare and the SPLASH2 bench-
mark, and 3—29% overhead for server applications.

ConMem is also evaluated on an open-source prograngltblemodular router [Click 2010], for
which no concurrency bugs were previously known. Using taadard test suite released together
with Click, ConMem detects 2 previously unknown concurrency bugsabald lead to software
crashes. This result further demonstrates ConMem’s chyatbi expose previously unknown con-
currency bugs during in-house testing.

The remainder of the paper is organized as follows: backyt@nd our cause-effect character-
istics study are presented in Sections 2 and 3, respecti8elgtion 4 discusses ConMem’s bug-
detection method. The ConMem validator is presented in@ebt Section 6 and Section 7 present
evaluation methodology and experimental results. Finedhated work is presented in Section 8.

2. BACKGROUND

Memory bugs are very common and also severe [Sullivan anb@ge 1992; Z. Li et. al. 2006].
Many of them can cause program crashes, data loss, and euxaityseroblems. This section pro-
vides a brief review of memory bugs.

2.1. Typical Memory Bugs

NULL pointer dereferences happen when the program dereferences a NULL-valued pointer
causes the program to immediately crash. Much work has beee on static detection of NULL-
pointer dereferences. However, their accuracy and sdigjabilimited by pointer-alias problems.
Un-initialized reads occur when a valid memory location is read before it is prhpitialized.

It could cause incorrect output or a crash. Dynamically clidtg un-initialized reads is straight-
forward. In practice, sophisticated memory detectors, Walgrind [Nethercote and Seward 2007],
also consider the context of the un-initialized read, anly o@port bugs when the un-initialized
value is used in a critical scenario.

Accesses to invalid memory locationsinclude dangling-pointer bugs (accessing memory loca-
tions that are already freed), buffer-overflow bugs (adogssmiemory locations that are beyond the
buffer's boundary), and stack smashing (overwriting catidata stored on the stack). These bugs
can cause not only incorrect outputs, but also crashes anditsevulnerabilities.

Other memory bugs include double-free bugs (a memory location is freed twice@mory-leak
bugs, and complicated bugs, such as accessing legitimatedaurect memory locations. Various
algorithms have been proposed to detect such bugs [Joné&iind 997; Ruwase and Lam 2004].

2.2. Memory Bugs in Concurrent Programs

Memory bugs in concurrent programs can be classified intotyyes. The first type only involves
one thread and can be deterministically triggered by spemats. In terms of dynamic detection,
testing, and diagnosis, this type of bugs is no differentiftbose in sequential programs.

The second type, such as the one shown in Figure 3 (a), is roarplicated. They involve more
than one thread and require not only special inputs but gsaial interleavings to occur. These
bugs are actually side-effects of more fundamental coeaasr bugs. As discussed in Section 1,
these bugs cannot be addressed by existing dynamic-memgmydiectors because their existence
under future interleavings cannot be predicted by existipgamic detectors. Even when they do
occur under the current interleaving, their root causdiscstinnot be correctly identified.
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Categories Description

Con-Memory Errors* Wrong execution order among shared memory operationsthjiteansit to memory bugs
Buffer Overflow Conflicting accesses to shared buffer and buffer index/Bagnvariables cause buffer overflow.
Dangling Pointer A thread deallocates a shared buffer before another threzebaes it (Figure 8).

NULL Pointer A thread dereferences a shared pointer that is assigned Niylanother thread (Figure 3(a)).
Uninitialized Read A thread reads a shared variable before the variable isilizitid by another thread (Figure 7).
Con-Semantic Errors | Interleaving causes unexpected variable values and progates.

Table II: Categorization of intermediate errors directhused by buggy interleavings (*:memory
bugs such as double-frees and memory-leaks are unlikelgfpdn as direct effects of buggy inter-
leavings).

3. CAUSE-EFFECT CHARACTERISTICS

Before describing ConMem, we first present a study of thergaropagation chains of 70 real-world
concurrency bugs. This study will help us understand howglgugterleavings gradually affect the
program state and ultimately cause various software fsluespecially those that are severe (e.g.,

crashes).
@ Error Propagatio

Buggy Interleavings Intermediate Errors Visible Software Failu

Fig. 5: Cause-effect chain

3.1. Methodology and Caveat

Bug Source This study uses a set of 70 real-world non-deadlock connayrbugs collected in [Lu
et al. 2008]1 All of these 70 bugs are reported by users and fixed by devesdpmn four widely-
used C/C++ open-source applications: Apache HTTP serw8QL database server, Mozilla web
browser, and OpenOffice office tool-kits. These bugs arectat by previous researchers through
random sampling among all fixed bugs in the bug databasesh@éese to focus on non-deadlock
concurrency bugs, because deadlocks have much more reffelets and are better understood and
addressed than non-deadlock bugs.

Characteristics in study Previous characteristics studies [Farchi et al. 2003; Lal.e2008]
focus primarily on the interleaving patterns that causecthecurrency bugs. This work will study
the error-propagation process from its cause (buggy edeihgs), through intermediate errors, to
the final effects (demonstrated by Figure 5).

In terms ofcauseswe refer to previous work [Lu et al. 2008] to consider two sasI atomicity-
violation and order-violation. Data races are orthogoaahese two and are not separately consid-
ered here.

In terms ofeffects we follow previous general bug-characteristics studieésL]i et. al. 2006;
Sullivan and Chillarege 1992] and consider three main &fecrashes, hangs, and minor wrong
functionality issues (including wrong outputs). Strictgeaking, there could also be severe bugs
like loss of data, but the bug set we use does not contain stachg@es.

The most difficult part of our categorization is thrdermediate errorsSince there has been no
previous study regarding this, based on our own observaoil inspiration from studies of gen-
eral software bugs, we classify intermediate errors into tmajor categoriesntermediate memory
errors andintermediate semantic errars

An intermediate memory erraxccurs when the buggy interleaving changes the executatar of
a set of shared memory operations so that these operatems#ivesiirectlyinstantiate a memory
bug. Afterward, the program fails similarly to those caubganemory bugs in sequential programs.

1The original list in [Lu et al. 2008] includes 74 bugs. 4 ofthelo not have enough error-propagation information and are
discarded in this study.
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This paper refers to such error chainsamcurrency-memory errorg hey are further classified
based on which types of memory bugs are instantiated, asrsimovable II.

An intermediate semantic errarccurs when the buggy interleaving causes new and unexpecte
program states that are not handled by the program. Onceitieaipected state happens, the pro-
gram fails, as happens with semantic bugs in sequentiatanug

These two categories are usually easy to classify, exceptfiav complicated cases, such as the
Mozilla bug shown in Figure 6. This bug and the MySQL bug inUfeg3(a) both result in NULL-
pointer dereferences followed by a crash. However, theg llifferent error-propagation processes.
In the MySQL example, the NULL pointer is a shared variabie] the NULL-pointer dereference
is adirectresult of the buggy interleaving. However, in the Mozillaghthe NULL-assignmen)
and NULL-dereferences3) both occur in one thread as a result of an unexpefiteckey 1} pair
caused by the buggy interleaving. Our principle is to catiegaerrors based on thdirectimpact of
interleavings. Therefore, Figure 6 is considered a comray-semantic error.

Thread 1 Thread 2
S1:id = hash_lookup (keyly™ > S4: hash_delete (key2);

if (id != INVALID_ID ) { X hash_lookup returns an ‘id’ for future hash-table retrie;‘:!a
S2:p = hash_get_property(id, key1); hash_get_property returns NULL with invalid id—key pair
S3: printf ("%s\n", *p); | !

}

id, key1, key2, p are local; hash table is shared
i keyl = key2 when the bug manifest

Fig. 6: A complicated concurrency bug with an intermediamantic error (simplified from a real
Mozilla bug). The buggy interleaving causes an (unexpégyedvalid {i d,keyl} pair, which
causehash_get property toreturn NULL.

CaveatsWe attempted to the best of our ability to use representatigs and correctly classify
them. We do not intend to draw general conclusions for albtargd all applications. We only plan to
use those trends that are consistent throughout our bug gatde effect-oriented concurrency-bug
detection. We warn readers to interpret the findings beloth thie methodology in mind. Because
this study focuses on C/C++ programs, the cause-effecactaistics may not apply to other types
of programs, e.g., Java programs. Of course, because malythmeaded programs, especially
client/server programs, are still written in C/C++, we gt our study is representative of a large
class of important applications.

3.2. Results and Implications

Many interesting results were revealed in this study. Heeelimit ourselves to findings that are
closely related to the design of effect-oriented concuwyesug-detection tools.

Crash| Hang | Wrong Func.| Total
Mozilla 24 4 12 40
MySQL 5 0 10 15
Apache 7 2 1 10
OpenOffice| 1 1 3 5
ALL 37 7 26 70

Table I1I: Effects (failure types) of concurrency bugs

Finding 1 Approximately 50% of the studied non-deadlock bugs canecptyram crashesas
shown in Table Ill. This indicates that crash concurrenaysbare not only severe, but also common
among those reported-and-fixed bugs. Detecting them isatruc
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Finding 2 There is no correlation between the cause and the effect @hawrency bug. A
breakdown between the types of interleaving patterns éswend the types of failures (effects) is
presented in Table I. As discussed in Section 1, it is diffitupredict the final effect or severity of
a concurrency bug based on its root cause interleavingrpatte

Crash| Hang | Minor Func. Issueg
Con-Memoryerr. | 31 0 3
Con-Semanticerr, 6 7 23

Table IV: Types of failures vs. types of intermediate errors

Finding 3 Approximately 84% (31 out of 37) of the studied concurrenmstihat cause crashes
have concurrency-memory error patteras shown in Table IV. The few exceptions are similar to
the Mozilla bug shown in Figure 6. This finding provides a pising avenue for tool builders: by
focusing on the concurrency-memory error pattern, we cardlgamost severe concurrency bugs
that can cause program crashes (at least in C/C++ programs).

Finding 4 Approximately 90% (31 out of 34) of the intermediate memaongre in our bug set
cause program crashes at the enals shown in Table IV. This finding is consistent with the trend
in sequential programs [Z. Li et. al. 2006]. It further derstyates that by targeting concurrency-
memory errors, we can effectively focus the bug-detectioth @sting effort upon severe concur-
rency bugs, without wasting resources on benign or noieatinterleaving problems.

Memory Errors Semantic
NULL | Uninit | Dangling | Overflow | Errors
Mozilla 9 0 8 4 19
MySQL 3 1 1 0 10
Apache 2 0 3 1 4
OpenOffi 1 1 0 0 3
ALL 15 2 12 5 36

Table V: Breakdown of intermediate errors

Finding 5 Concurrency-memory errors include four common patteA&swe can see in Table V,
all'the concurrency-memory errors in our study fall into fewell-defined categories: NULL-pointer
dereferences, dangling-pointers, buffer-overflows, anititialized-reads. For simplicity, we will
refer to these four sub-types of concurrency-memory easf®llows:Con-NULL (NULL-pointer
dereference directly caused by a buggy interleavi@g)-Unlnit (uninitialized read directly caused
by a buggy interleaving)zon-Dangling (dangling pointer directly caused by a buggy interleaving)
andCon-Overflow (buffer overflow directly caused by a buggy interleavingy.Birectly caused”,
we mean a memory error is caused by unsynchronized sharetbmeaccesses, such as the bug
shown in Figure 3 (a), instead of local-memory accesseshitneg data/control dependence with
unsynchronized shared-memory accesses, such as the g ishieigure 6.

These regular bug patterns provide clear guidance to art eifected at concurrency-bug detec-
tion; we will show that, by focusing on these four types of uge can build a bug-detection tool
that finds serious concurrency errors with a low false-pasitate. This is precisely the approach
followed by ConMem.

4. DETECTING SEVERE CONCURRENCY BUGS

4.1. Overview

ConMem includes four dynamic bug-detection modules thatrasponsible for detecting Con-
NULL, Con-Unlnit, Con-Dangling, and Con-Overflow bugs, pestively. The design of ConMem
is guided by our characteristics study, and follows threegiples:
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Error Conditions Can synchronization avoid the error?
Basic Ingredients Timing Condition Order Synch.* | Mutual Exclusion
Con- (1) r p: from t1, reads pointept r (1) wp executes beforep Yes Yes
NULL (2) wp: from t2, (2) No write topt r
writes NULL topt r betweerr p, wp
(1) r: from t1, reads variable
Con- (2) w: from t1, writesv beforer r executes befores Yes Not by itself
Uninit (3) w: from t2, initializesv,
usually beforer
Con- (1) a: from t1, accesses memony | aexecutes afteffr ee(M) Yes Not by itself
Dangling (2) Free(M): fromt2,me M
(1) v: a buffer-index/boundary var.| Data race betweesl anda2
Con- (1) al: from t1, accesses (approximated condition) Yes Yes
Overflow || (2)a2: from t2, accesses

Table VI: The conditions for Concurrency-Memory errors: ¢rder synchronization represents
barrier-style synchronizations).

(1) Effect-oriented, instead of interleaving-orientedn®™em tries not to analyze an interleaving
pattern unless it is related to concurrency-memory eridigreover, ConMem does not limit itself
to any specific interleaving pattern.

(2) Predictive bug detection. ConMem bug detection is moitéd to the monitored interleaving.
Instead, it aims to report concurrency bugs that could ogoder future interleavings. This property
is critical due to concurrent programs’ non-determinism.

(3) Balance between analysis accuracy and complexity. igecthe validator ConMem-v can
help prune out false positives, ConMem has the luxury ofitig@ccuracy for simplicity, when
necessary.

Following these principles, ConMem dynamically and prati@ly detects concurrency-memory
errors in two steps.

First, it identifies basic ingredients of concurrency-meynerrors from a monitored program
execution. The basic ingredients are memory operatiortd) ag a pointer dereference, a NULL
assignment, a buffer deallocation, etc. Their existenageiessary to a concurrency-memory er-
ror and is (fortunately) usually insensitive to interleays. They will be detected by the memory
checking part of ConMem.

Second, it analyzes whether special timing conditions esssltisfied among those basic ingredi-
ents during future execution. Special timing, such as tealing a memory objedieforeanother
thread accesses it, can turn a set of memory operations int@ &#ug. Whether a timing condition
can be satisfied in future interleavings depends on the sgnization operations in the program.
The synchronization-analysis part of ConMem is respoadil making this decision and reporting
bugs.

A summary of the ingredient-and-timing conditions for eacffo-type of concurrency-memory
error is shown in Table VI. The following sub-sections wilalorate on how to detect each sub-
type of concurrency-memory error.

4.2. Con-NULL Detection

4.2.1. What is a Con-NULL bug?. Con-NULLs are NULL-pointer dereference errors directly
caused by buggy interleavings. An example of Con-NULL isvaldn Figure 3 (a). As we can
see there2 from thread 1 dereferences a shared pointer vartaite— pr oc_i nf o, andS3 from
thread 1 assigns NULL to the same variable. Under a buggyléaiang,S3 executes right between
S1 andS2, immediately causing a NULL-pointer dereference and a ®lly$rash. Of course, the
above buggy interleaving occurs only rarely, and MySQL riydsthaves correctly.

In general, thebasic ingredients of Con-NULL bugsclude two pointer accesses, denoted as
wp andr p. wp writes NULL to a shared pointer variabpg r , andr p readspt r from a different
thread that later performs a pointer dereference. We censiach{wp,r p} pair to be a bug suspect.

The timing condition of Con-NULLs to executemp beforer p with no other write topt r in
between. A bug suspect is reported only if the timing condittan be satisfied.
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4.2.2. Con-NULL detection algorithm. The algorithm includes two parts.

Detecting the basic ingredientsBuilding a run-time monitoring tool to identiffwp, r p} pairs
is straightforward using binary instrumentation. Speaifig for every heap/global accessCon-
Mem collects its thread-id, program counter, memory laoatand store-value information at run-
time. Analyzing this information can easily reveal Con-NlUguspects. The only issue remaining is
to differentiate memory locations that hold pointers frdrage that hold normal integer or Boolean
variables. This matter will be discussed later.

Checking the timing condition After a Con-NULL error suspect (i.e., wp,r p} pair) is dis-
covered, the next step is to check whether the synchroaizafyerations in the program allomp
to execute beforep without another interfering definition in between.

Without losing generality, ConMem separately considatgual-exclusiorsynchronization and
order synchronizationlf the timing condition explained above is not prohibiteddither of them,
the corresponding suspect will be reported as a Con-NULL bug

Order-synchronizatioroperations [Netzer and Miller 1991; Park et al. 09 a], suclbasiers,
set up a happens-before partial order among all accesske iconhcurrent execution. Under this
happens-before order, two accesses are either strictgreddr concurrent with one another.

Order synchronization could make a Con-NULL timing cordatitinfeasible if and only if one
of these two conditions are satisfied: (1) the NULL-assignine strictly ordered after the pointer
read; or (2) another write to the pointer is strictly ordeledween the NULL-assignment and the
read. The ‘order’ here is determined by the happens-be&ationship.

Mutual exclusionsuch as locks and transactions, prevents those code saiahare protected
by the same lock or covered in transactions from interfeviity one another.

Mutual exclusion could protect thiavp,r p} pair and prevent a Con-NULL error in two ways:
(1) r p and an earlier write t@t r from the same thread are atomic with respeaiytg or (2) wp
and a later write t@t r from the same thread are atomic with respeatpo In the former case, p
always uses a definition from its own thread, insteadifIn the latter casem’s assignments are
always overwritten before reachimgp.

ConMem monitors mutual-exclusion and order synchronretiat run time. By checking against
the above conditions, ConMem can identify Con-NULL suspéicat are properly protected and
report the remaining suspects as Con-NULL bugs.

Note that, the above analysis is different from traditiodata race checkings. fwp,r p} pair
doesnot need to be a data race in order to be a Con-NULL bug. As disdwssaeve, a Con-NULL
bug could occur betweenwap and a strictly happened-aftep, which is not a data race; a Con-
NULL bug could also occur betweenvap and ar p that are protected by the same lock variable.
The same is true for Con-Unlnit and Con-Dangling. In factn®@em can detect many bugs that
cannot be caught by race detectors, as shown in the Table VIII

Of course, our synchronization analysis is neither sourrccomplete, because it does not con-
sider potential control-flow changes under future interiegs. We believe it provides a good bal-
ance between analysis complexity and analysis accurasy)@gn by our experimental results in
Section 7.

4.2.3. Implementation. ConMem implements the above algorithm using run-time réiogy(with
PIN [Luk et al. 2005] binary instrumentation) and off-lima¢e analysis. We choose trace analysis
over pure run-time detection due to the algorithm compjexit

The run-time component logs three types of information. Thst type is information
about accesses to a global or to heap memory, which is usedetttify basic ingredients
(i.e., {wp, rp}). The second type is the synchronization operations, dictybarri er,
pt hr ead_mut ex_(un) | ock, pthread._create/join,etc. This partis used to check sus-
pects’ timing conditions. The last type is information aballimalloc/free operations. Since virtual

?Data stored on the stack is not usually shared across thasatis therefore ignored in our current prototype.
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addresses could be recycled through malloc/free, the liatt@rmation helps us to identify which
memory locations are truly holding the same memory objelee fecycling issue is similarly han-
dled in the three remaining detection modules.

Con-NULL only needs to record and analyze memory accessasiter variables. Our current
implementation differentiates pointers from non-pointariables based on the value stored in a
memory location. That is, an access to a memory locatias ignored by Con-NULL if the value
stored inmis neither O nor within the range of the stack, the heap, ogtbbal data region. This
scheme works well in practice.

The trace-analysis includes three major steps: (1) idealif{wp,r p} pairs; (2) analyze mutual-
exclusion synchronization; and (3) analyze order syndaedion.

The first step is straightforward. By checking the memorg+ads, thread-id, and store-value
information in the trace, we can easily find all Con-NULL sests.

The second step is to analyze mutual-exclusion synchrbaizdollowing our earlier discussion,
for every suspecfwp, r p} pair, ConMem identifies the preceding writerg (refer to asr p-p)
and the follow-up write ofwp (refer to asamp-f) from the trace. It then calculates the lock-sets that
protectr p, {r p-p,r p}, wp, and{wp,wp-f}. Any lock-set overlap betweefr p-p,r p} andwp or
overlap betweedwp,wp-f} andr p indicates that this suspect is well-protected and shouldeo
reported as a bug.

The last step is to determine whether order synchronizatiam protect gwp, r p} pair from
NULL-pointer dereference. This analysis is conductedulgiovector timestamp comparisons.

Our run-time updates and logs the vector timestamp of eaaadhright after everyprder-
enforcingsynchronization operation, includingt hr ead_nut ex_cr eat e/ j oi n and barriers,
based on the Lamport logical-timestamp algorithm [Lam@A®&8]. During trace analysis, we can
easily obtain the vector timestamp of each memory acaésshreadt , which is the latest times-
tamp logged befora in the log oft .

With the timestamp information, we want to check (1) whethewill always execute afterp,
and (2) whethewp will always be overwritten before it reachep. If neither is true, a Con-NULL
bug is reported. This checking could be time-consumingabse for each suspefiyp, r p} pair
that accesses memory locatiptir , it requires comparing their timestamps with the timestarhp
everywrite access t@t r . Our implementation simplifies this checking using a heiarisf there
exists apt r -definition that is strictly ordered betweewp andr p, it usually comes from either
the thread ofap or the thread of p. Under this heuristic, we only need to check two candidates
that might sit betweenp andwp: the write topt r onr p’s thread right before p and the write
topt r onwp’s thread right aftesp. Overall, our implementation has a modest complexitydme
in the number of suspedivp, r p} pairs, and works well in our bug-detection experimentsenev
introducing false positives.

Discussions Con-NULL predicts concurrency bugs that could occur in thieife based on the
observation of one program execution. This predictioniiiaély has false positives and false nega-
tives.

The false positiveof Con-NULL detection mainly have two sources. The first isdentified
custom synchronization, an issue shared with many prewionsurrency-bug-detection tools [Sav-
age et al. 1997]. Without knowledge about some custom sygnération operations, such as spin
loops and producer-consumer queues, ConMem will mistglaanisider some timing conditions as
feasible and report false positives. Section 4.6 discuss&go prune some of these false positives.
The second sources of false positives are due to simplificatinade by our implementation. One
simplification that has not yet been mentioned is that we docheck whether a pointer read is
used for dereferencing. Sometimes, a pointer read is ugecbfadition-checking, where reading
a NULL-valued pointer does not cause any problem. We prunehisi type of false positive by
checking whether a pointer read has a NULL value during theitaced run. If it does, we do not
report the bug. This pruning has been very effective, as vleseg in Section 7.

Thefalse negativesf Con-NULL detection mainly come from the code/path cogerproblem.
Under a fixed input and different interleavings, the preticariable of a branch could have dif-
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ferent values and lead to different execution paths. If atrirction is executed only under rare
interleavings or if two instructions access the same merwagtion only under rare interleavings,
ConMem may miss the basic ingredients of potential Con-NWugs and have false negatives.
This type of false negatives exist in all ConMem detectiggoathms and also previous work that
tries to predict future interleavings based on one obsentedeaving [Savage et al. 1997; Flanagan
and Freund 2004; Chen et al. 2008; Joshi and Sen 2008; Yi20@9; Park et al. 09 a]. Fortunately,
it rarely occurs in practice, based on our experience. Intixid this problem can be mitigated by
making ConMem observe more than one run of the program uhdesame input and analyze each
run independently. If one of the runs reaches a path that eclgrbe observed in a rare interleaving,
then ConMem is able to report bugs on this path. ConMem cankasefit from techniques that
improve the testing code coverage in concurrent programs g&d Agha 2006].

Finally, trace sizds a potential concern for all trace-based analysis toatseSCon-NULL only
records heap/global memory accesses that touch (likeiptgrovariables, its traces will be signif-
icantly smaller than those generated by deterministicaggpbols [Park et al. 09 b]. Based on our
experience, it is rarely a problem for Con-NULL, as shown actn 7. One could also split the
trace of a long-running program into several sub-tracesagpdly the Con-NULL algorithm to each
sub-trace.

4.3. Con-Unlnit Detection

Thread 1 Thread 2
h = malloc();
/* h is shared; S1 is expected to initialize h—->band */

S1 h—>band = tr_bandNew(h);
S2 assert(is_band(h—>band))

Fig. 7: A concurrency bug that leads to an undefined read aralyfirauses crash (from
Transmission-1.42)

4.3.1. What is a Con-Unlnit bug?. Con-UnlInit bugs are un-initialized memory reads directly
caused by buggy interleavings. An example of a Con-Uning lsushown in Figure 7. In this
example, a shared variakthe— bandwi dt h is initialized atS1 in thread 1. Read accesses to this
variable are supposed to occur affdr Unfortunately, without proper synchronizati@&, in thread
2 can execute befoi®l and read an uninitialized value, which causes an asséddilone later.

Thebasic ingredient®f a Con-Unlnit bug typically include a read access, denasad(e.g.,S2
in Figure 7), to a memory location that should be initialigdanother thread. Thiming condition
for a Con-Unlnit bug is to executebefore the initializations by another thread.

Note that, when we observe areading a value defined by its own thread, an un-initializediris
unlikely to happen under a different interleaving. Howeteere could be exceptions. For example,
future interleavings could change the execution path ankertze local definition disappear. This
goes beyond our definition of concurrency-memory errorsiamet considered here.

4.3.2. Detection algorithm & implementation. Con-Unlnit's detection algorithm is simpler than
Con-NULL's and is implemented via run-time detection witlhtrace analysis.

Detecting the basic ingredientsThis task identifies a shared-memory read, the target memory
location of which isnot defined earlier in its own thread, but in another thread. Seels will be
considered as Con-Unlnit suspects.

This task is quite straight forward to implement during dyrn@monitoring. Relying on the PIN
instrumentation framework, we use a hash-tdhlgalizer to maintain the per-thread information
about which memory locations are already initialized irsttiiread. Specificallynitializer is in-
dexed by memory locations. Whenever a write to memory locatioccurs,Initializer is checked
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to determine whether this is the first writesdrom that thread. If it is, the information of this write
is inserted into the table. Looking upitializer at every read access to a heap variable will reveal
all Con-Unlnit suspects.

Checking the timing condition At run-time, whenever a read suspeds discovered, ConMem
must conduct a synchronization analysis and decide whéftleee exists a remote initialization
that is strictly ordered before Mutual exclusion cannot help to avoid this type of bug andds
considered here.

Conducting this task at run-time requires several piecesfofmation. Suppose that the sus-
pectr accesses memory locationThe first piece of information we need is the vector timegam
of r. ConMem maintains the vector timestamp for each threadratinoe, by intercepting order
synchronizations (i.e., barrier aqd hr ead_cr eat e/ j o0i n) and analyzing them based on the
classic Lamport algorithm [Lamport 1978]. The timestamp afan be easily retrieved from the
current timestamp of its own thread.

The second piece of information is the vector timestampIahal initializations tov from other
threads. This information is kept in tteitializer table mentioned above. Specifically, when a write
access is found to be the first writemfrom thread, t's current timestamp is inserted inftatializer.

Finally, after obtaining the above information, ConMem gqares the timestamp ofwith the
timestamps of remote initializers. A Con-Unlnit bug is reged whenr is concurrentwith all the
recorded initialization timestamps.

As an optimization, we only conduct the above check for tha fiead from each thread to a
memory locatiorv. This is sufficient to detect Con-Unlnit bugs enif they exist.

Discussions The sources of false negatives and false positives for CalmiUdetection are
similar to those of Con-NULL, except for one unique sourcdadge positives. That is, some un-
initialized reads may not cause negative effects, a prgphfterent from NULL-pointer deref-
erences, dangling pointers, and buffer-overflows. Pres/meguential bug detectors, such as Val-
grind [Nethercote and Seward 2007], have considered thishaose to report bugs only when the
un-initialized value is used for critical operations, imding system calls, condition checking, and
memory-address calculation. ConMem could borrow this igeprune this set of false positives,
but this is not included in the present implementation.

In contrast with Con-NULL, Con-Unlnit does not dump tracaed does not have the trace-size is-
sue. However, since Con-Unlnit conducts all its analysiimms, its run-time analysis will consume
more memory than Con-NULL. The memory consumption of Conrifiis mainly for storing the
initialization timestamp for each active heap/global meyiocation. It is linear in the heap/global
memory footprint of a program, like many previous dynamig loietectors [Lu et al. 2006]. It will
notincrease with longer executions, as long as the progrartitgeamemory consumption does not
change.

4.4. Con-Dangling Detection

Thread 1 (main thread) Thread 2 (worker thread )
S2while (fifo->empty) {
Sldelete q; }
‘g is a pointer local to thread 1; it points to the memory region that contains fifo—>em

Fig. 8: A concurrency bug that leads to a dangling pointerfamally causes crash (from PBZIP2-
0.9.4)

4.4.1. What is a Con-Dangling bug?. A Con-Dangling bug occurs when buggy interleavings
directly cause dangling pointer accesses. Figure 8 demadast bug from PBZIP2. In this example,
pointerq (a local variable in thread 1) points to a heap object shaydtread 1 and thread 2{ f o
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in thread 2 points to the same object). Due to lack of syndhedion, thread 2 can access the shared
object at2 when it is already deleted by thread 1S4t which can cause PBZIP2 to crash.

As we can see, thkasic ingredient®f a Con-Dangling bug is a memory access whose target
memory location is de-allocated by a different thread. filnéng conditionof Con-Dangling is to
conduct the memory access after the de-allocation.

4.4.2. Detection algorithm & implementation. Similar to Con-Unlinit detection, Con-Dangling is
implemented in PIN as a pure run-time bug detector with ncetanalysis.

The algorithms ofletecting basic ingredientsandchecking timing conditionsare straightfor-
ward here. For the first task, we must identify all memory ases whose target memory locations
are de-allocated by a different thread. For the second tesknust analyze order synchronizations
to determine whether the accesses are concurrent with Hadlatmtion operation. Just like with
Con-UnlInit, mutual exclusion itself cannot avoid Con-Dmg bugs and is not considered in the
following.

In our PIN-based implementation, eversil | oc andf r ee invocation is intercepted, in addition
to every order synchronization and heap access. A kg oc_Map is used to maintain a list of
currently active heap memory regions, ordered by theitisgaddresses. A new entry is inserted
in Mal | oc_Map at everymal | oc. At every heap access, ConMem looksd | oc _Map with
the accessed heap address to find the corresponding erdrfhemupdates the entry to record the
latest access from each thread to each memory region. Weeakv ee is invoked, the timestamp
of thisf r ee will be compared with the timestamps of the latest accesstgd to-be de-allocated
memory region from each thread. A Con-Dangling bug is regmbvthen we find a concurrent access
(based on timestamps) from a different thread.

4.5. Con-Overflow Detection
4.5.1. What is a Con-Overflow bug?. Buffer overflow occurs when a buffer access goes beyond

the buffer boundary. In concurrent programs, interleasiegn cause additional buffer-overflow
problems when buffer-index or buffer-boundary variablesshared among different threads.

Thread 1 Thread 2
s1 if (buf-—>cnt + len > LOG_SIZE ) {
Jel

";se{ S2 buf->cnt += len;
memcpy (&buf[buf-—>cnt], str, len);

} . buf->cnt is a shared variable that represents the current index of a buffe

Fig. 9: A concurrency bug that can lead to a buffer overflow anlsequent crash (from Apache-
2.0.45)

Figure 9 shows an example of a typical Con-Overflow bug. Tthfeaonducts a sanity check at
S1 on buffer index variableuf —cnt to ensure that the laterenc py will not overflow the buffer
buf . Unfortunately, the index variable is shared with threadfe to lack of synchronization,
thread 2 can change the buffer index between the sanity chiedkhe real buffer access, thus
causing a buffer overflow.

Accurately reporting Con-Overflow bugs is difficult becaes@osing buffer-overflow bugs re-
quires not only a certain order of memory operations, but akstain variable values. Even when
an index variable is unexpectedly corrupted by a differaread, buffer overflow may not occur,
depending on the new value stored into the index. In the éygymbolic-execution and constraint-
solving techniques [Cadar et al. 2008] can potentially adslthe issue of identifying whether prob-
lematic values can arise.

In our current prototype, we only consider a common subse&ai-Overflow bugs: conflict-
ing accesses to shared buffer-index variables cause boNtflows. Specifically, we report all
data races on shared buffer-index variables as potentiatflow-Con bugs, and we rely on our
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ConMeme-validator (Section 5) to prune out false positivés.leave the more general Con-overflow
detection problem to future work.

4.5.2. Detection algorithm & implementation. Con-Overflow detection includes two steps. The
first step detects data races in the execution. The secqmdtséenpts to identify accesses to buffer-
index variables among those data races.

The first step is conducted through an existing lock-setrétlyn [Savage et al. 1997]. The sec-
ond step can be conducted in different ways. Our solutioraget on the heuristic that an index
variable should be used to generate buffer-access addrsssaer or later. Currently, we imple-
ment this step as an additional run of dynamic data-depexdenalysis. That is, after we have
information about data races in hand, the program is exd@itecond time. Whenever a memory
location involved in a race is read, the dependence anadyaits, tracking the data flow to deter-
mine whether the read value would be used to generate a ¢fielbal address within a threshold
number of steps. In addition, we also make sure the read vialelé is not already a global/heap
address. Full dependence-analysis has large overhead vs@need to keep track of both local and
shared memory accesses. Fortunately, we only need to tnask iccesses and memory locations
related to races and currently we set the number of stepsité &rs 3. Therefore, the overhead is
acceptable.

Our current implementation of Con-Overflow requires twogoiithe program — one to find races
and one to perform dependence analysis. We expect that tbadeun is not always necessary.
After one variable or one instruction is marked as acces@ngot accessing) a buffer index, this
information can be kept for future use. Static analysis ds laelp identify instructions that access
buffer-index variables and potentially remove the secamdaf the program.

In summary, ConMem bug detection includes four sub-toab®-Oninit and Con-Dangling bugs
are detected and reported at run-time. Con-NULLs and Coer@w bugs are reported after a
post-mortem analysis. Itis also conceivable to combinthabe four modules into one big run-time
bug-detection tool in the future.

4.6. Handling Spin-Loop Synchronizations

As discussed in Sections 4.2 and 4.3, a major source of falséiyies in ConMem is custom-
synchronization operations, as demonstrated by Figura)10his subsection discusses how to
handle one common type of custom synchronization, synératian loops (also called spin loops).
The algorithm presented below is aptionalstep in ConMem. It is neither sound nor complete. Its
usage in practice will be evaluated in Section 7.2.

Thread 1 Thread 2 Thread 1 Thread 2
lock (L);

S1: thd->proc_info="..."; S2: thd_stop=TRUE;
S2: thd_stop=TRUE; signal(cond);
S1: thld—k> Lroc_lnfo:"...";
unlocl N

lock (L); < )

S3: while (! thd_stop){
cond_wait(cond, L);

Happens-before Order Happens-before Order

S4: thd=NULL; forced by while-loop unlock (L); forced by loop+lock
@ S4: thd=NULL; ()

S3: while (! thd_stop){

Fig. 10: Examples of spin-loop synchronization (tstdp is a volatile variable). (a) A NULL-pointer
dereference can never occur between S4 and S1, becausg thceanot execute S4 until its S3-
loop is terminated by S2 in thread 2. (b) Synchronizationdsi@ved by a spin looand locks.
Without locks, the execution order between S1 and S4 is netifiwith locks, S1 will always be
executed before S4 just as that in (a). Natmdwait implicitly releases the lock L, thus there is no
potential deadlock.
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4.6.1. Spin-loop identification. This analysis algorithm is inspired by SyncFinder [Xiongagt
2010], and involves two steps.

First, identifying loops. This step is conducted through CodeSurfer/x86 [Balakashat al.
2005], a static-analysis framework for x86 executablesddegSurfer/x86 identifies every loop in
the program'’s control-flow graph. To identify nested lodpsnplementsBourdoncless algorithm
[Bourdoncle 1993], which recursively decomposes an SC€ snb-SCCs, etc. For each loop, we
use CodeSurfer/x86 to identify all (conditional) jump insttions that jump out of the loop, referred
to asloop-exit jumpsWe then use static slicing, also a functionality suppoltg&odeSurfer/x86,
to find all read instructions in the loop for which there is dhpaf control-dependence or data-
dependence edges from the read to a loop-exit jump. We kethese read instructions petential
loop-exit reads

Secondjdentifying synchronization loopsThis step is conducted through run-time analysis —
a loop that is always terminated by reading a value defineddifferent thread is considered to be
a synchronization loop.

To conduct this analysis, we record a trace of three typesigfuctions at run-time: (1) all
potential loop-exit reads; (2) all loop-exit jumps; (3) @lstructions in the program that write global
or heap variables.

In trace analysis, we first identifghe loop-exit readr for each loopL — a potential loop-exit
read that obtains the same value from a variabile all but the last iteration oE. We then iden-
tify the write w that defines the value read Ibyin the last loop iterationL is considered to be a
synchronization loop ifv always comes from a different thread tharin that casew, such as S2
in Figure 10(a), is marked as a synchronization write, arddlop-exit read, such as S3 in Figure
10(a), is marked as a synchronization read. We can exeauf@digram several times to prune false
positives. If a loop is ever observed to be terminated by andiefin from the same thread, it will
never be considered to be a synchronization loop. If theevafiv changes from non-loop-exiting
to loop-exiting for more than once in one run, the correspioogtbop will never be considered to be
a synchronization loop. Actually, this type of loop likelglbngs to a custom lock implementation,
which our current implementation does not handle.

Note that, how to accurately identify all custom-syncheaiion operations is an open problem
in concurrency-bug detection [Tian et al. 2008; Chen et@D& Xiong et al. 2010]. Our approach
is inspired by SyncFinder [Xiong et al. 2010]. SyncFindegritifies synchronization loops purely
based on static analysis. We use dynamic analysis at thexdestep, which suits the dynamic
nature of ConMem. Dynamic analysis also gets us around thkeciges of pointer alias analysis
and statically figuring out which code regions could execatecurrently.

Like previous work that tries to identify custom-synchrzation operations [Tian et al. 2008;
Chen et al. 2008; Xiong et al. 2010], our analysis is neitloainsl nor complete, because it makes
decisions based only on the runs that are observed in thémaanalysis. A loop that can be
terminated by a write from its own thread may never be obskteeexit in that manner, and thus
will be mistaken for a synchronization loop. A loop that isregtimes used for synchronization and
sometimes not is always considered to be a non-synchrémidabp by us.

4.6.2. Integrating synchronization-loops into ConMem. A synchronization loop is one type of
‘order synchronization’ discussed in Table VI — it forces aphens-before order between op-
erations before the synchronization write in one thread @perations after the synchronization
loop in another thread. Because the synchronization aisalysConMem already covers order-
synchronization operations, here we only discuss how tasadhe logical time-stamps given
synchronization-loop information. After properly adjing} the time-stamps, ConMem can easily
prune the false positives that would otherwise be repoxethie examples in Figure 10.

When ConMem monitors a test run, we instrument not only nbrsgachronization opera-
tions, such apt hr ead_nmut ex_(un) | ock andpt hr ead_j oi n, but also every synchronization
read/write and exit jump of each synchronization loop. At-time, we maintain a hash-table in-
dexed by memory locations. Whenever a synchronizatiorewris executed by threadbn memory
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locationm, them entry in the hash-table is updated with t's current time-stamp Whenever a
synchronization read in threatis executed, we look up the information about its definitiaitev
in the hash-table. This information will be used to updésetime-stamp, whenever it exits a syn-
chronization loop.

Sometimes, locks can be used together with spin-loops t@eelsynchronization, as demon-
strated in Figure 10(b). ConMem considers this interadbeveen mutual-exclusion synchroniza-
tion and order synchronization, and adjusts the time-stapgate accordingly.

We provide the above analysis as an option to ConMem usersWleate its effect in Sec-
tion 7.2.

5. BUG EXPOSING AND VALIDATION

The design of ConMem-v is inspired by previous tools thaideé data-race [Park and Sen 2008]
and atomicity-violation bug reports [Park et al. 09 a]. Caerivtv takes every bug report from Con-
Mem as its input. It tries to trigger the buggy interleaviqpgedicted in ConMem'’s bug reports by
carefully perturbing the concurrent execution. The whalecpss is automated.

ConMem-v serves two purposes. The firstis to prune falsdipesihat are caused by customized
synchronization and by some of the approximations made mMemn'’s detection algorithms. The
second is to provide developers with a reliable way to reffesatrue bugs reported by ConMem.

In the following, we discuss the design and implementatib@anMem-v, explaining what is
the interleaving enforcement target and how to provoke &ipdiming condition. ConMem-v
is implemented using PIN [Luk et al. 2005] binary instrunsitn. For the sake of brevity, some
implementation details are omitted.

Validating Con-NULL reports From a{wp,r p} pair of a Con-NULL bug report, ConMem-v
aims to executap beforer p, with minimized timing distance in between.

To enforce such a timing condition, ConMem-v instrumenéstiimary code right before and after
wp andr p. At run-time, whenevenp orr p is to be executed, ConMem-v checks whether the other
instruction has already ‘arrived’. If soyp will be arranged to execute first, immediately followed
by r p. If not, an artificial delay (several iterations 0§l eep) is added to the current thread, in
the hope that the other instruction will arrive from a diffat thread. This process is illustrated in
Figure 11 (consider A asp, B asr p).

= the first arrival

<— delay

; ,
B~ the real executiot
point

Fig. 11: lllustration of how ConMem-v perturbs execution

Note that, as a general principle in ConMem-v, ConMem-v émigroves the chances of a bug
to occur and does not provide any guaranfdethe delays inserted by ConMem-v have time-outs,
so that the program will not hang.

Validating Con-Unlnit reports The input to Con-Unlnit validation is a list of instructioraips
{w,r} from the Con-UnlInit bug reportv is an instruction that initializes a memory location that is
later read by from a different thread.

ConMem-v’s target here is to executeafterr. To achieve this target, ConMem-v instruments
the binary code to postpone the executiomah an attempt to wait for to execute first (consider
as A andw as B in Figure 11). ConMem-v can keep track of all heap/glelraés to know whether
an uninitialized read has truly occurred. In practice, pisserving whether is executed beforey
pretty much already tells users whether the Con-Uninit lgprt is a true bug.
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Validating Con-Dangling reports The input to Con-Dangling validation is a list of instruatio
pairs{F,a}.F isacal | instruction that invokes a de-allocation operation on a mmegion that
contains the memory location accessedlisom a different thread.

ConMem-v’s target here is to postpone the executioaiofan attempt to have the occur first,
as illustrated in Figure 11His A, ais B). To know whether a dangling pointer has been produced,
ConMem-v records and compares the memory address accesaetht the range of the memory
region freed byF.

Validating Con-Overflow reports The input to Con-Overflow validation is a list of data-racéaga
{i1,i2}.i1 andi2 race upon a shared buffer-index variable. The target oMBon-v is to make the
race truly occur (i.e., first execut# right before P without any other instruction in the middle and
theni2 right before 1) and observe what happens after the race.

ConMem-Vv’s perturbation strategy for Con-Overflow bugsimikr to those for the three dis-
cussed above. The unique complexity of Con-Overflows is¢kian if a buffer index is corrupted
to an incorrect value through a data race, overflow may nopéaplin our current validator, we
look for fail-stop symptoms (crash or assertion failure)teth whether buffer overflow has hap-
pened, which can be improved by more accurate buffer-owerdietection techniques designed for
sequential programs [Nethercote and Seward 2007; Hastimdjgoyce 1992].

In the end, a ConMem bug report is generated. It includes thelicting instruction pair,
their corresponding call stacks, and the bug category (§0ht/Con-Uninit/Con-Dangling/Con-
Overflow). When ConMem-v successfully exposes the bug, tigeréport also includes the corre-
sponding failure-triggering thread-scheduling, i.e. véhand how long are the injected delays.

Discussion Two types of interleaving-enforcement approaches wer@gsed before. One is to
execute programs on single-core machines and control tredsding [Musuvathi et al. 2008; Sen
2008]; the other is to insert artificial delays [Park et al. @9%Edelstein et al. 2002]. ConMem-v
chooses the latter for more effective use of the existingircore machines.

In summary, ConMem-v does not report false positives. Initamd benefiting from the clear
error-pattern of memory bugs, ConMem-v does not need mnwatten oracles to judge whether
a bug has occurred. ConMem-v could have false negativesyitmmss some bugs whose manifes-
tation requires very sophisticated interleaving manipoia

6. EVALUATION METHODOLOGY

Applications ConMem is evaluated using 7 widely-used C/C++ applicatiomduding 3 server
(Apache HTTP server, MySQL data base server, and Cherokdét$€rver), 3 desktop (Mozilla
web browser, PBZIP2 parallel decompressor, and Transomdsitorrent client) and 1 scientific
application from SPLASH2 (FFT) [Woo et al. 1995].

Apart from these 7 applications, ConMem is also evaluatedhenlatest version of a multi-
threaded software system, Click [Click 2010], for which mmcurrency bug was previously known.
ConMem uses the standard test inputs released by Click@®esl and is able to find previously
unknown concurrency bugs. The detailed set-up and reselisrasented in Section 7.5.

Bugs in evaluation For evaluation, we use 10 real-world concurrency Bubat were introduced
by the original developers of the above 7 applications. Softihese 10 bugs can cause client and
server crashes. We carefully set up this bug set to make sisresipresentative, covering different
types of faults and error-propagation patterns, as showalite VII. One of these 10 bugs does not
lead to software crash. It was introduced by external Iypd@velopers of FFT. This FFT bug will
help measure the false-positive rate and overhead of ContMescientific applications.

Experiment setup The experiments are conducted on dual quad-core Intel X2@YGHz)
machines, with Linux, version 2.6.18. We use the PIN [Luk [e2805] binary instrumentation
framework for all our tools. We use Valgrind—Helgrind [Netote and Seward 2007] as the race-
detection front-end for Con-Overflow.

30ne of these 10 bugs, PBZIP2-2, was not reported in previoasrdents. It was first detected in our ConMem experiments.
It can be fixed by the same patch that fixes PBZIP2-1.
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Bug-ID Causes Effect Description Software version
MySQL-1 Atom. Server crash at NULL-ptr dereference MySQL-4.0.19
MySQL-2 Atom. Server crash at NULL-ptr dereference MySQL-5.1.28
PBZIP2-1 Order/Atom. | Crash at NULL-ptr dereference Pbzip2-0.94
Apache-1 Multi-Atom. | Crash due to dangling ptr Apache-2.0.46
Mozilla Multi-Atom. | Crash due to dangling ptr Mozilla-JS1.5
PBZIP2-2 Order Crash due to dangling ptr Pbzip2-0.94
Apache-2 Atom. Crash/corrupted-log due to overflow | Apache-2.0.46
Cherokee Atom. Crash/wrong-message due to overflowCherokee-0.9.2
Transmission| Order Crash due to uninitialized read Transmission-1.42
FFT Order/Atom. | Wrong output due to uninitialized read N/A

Table VII: 10 bugs in evaluation (Atom.: single-variablemicity violation; Order: order violation;
Multi-Atom.: multi-variable involved atomicity violatio.)

Our experiments use bug-triggering inputs reported by tlser,ulike previous dynamic
concurrency-bug detectors [Xu et al. 2005; Lu et al. 2006jteNthat the bugsever manifest
during our bug-detection runs. Actually, many concurrebags do not manifest even after multi-
ple days’ worth of execution with bug-triggering inputs fR&t al. 09 a; Musuvathi et al. 2008],
which is exactly why ConMem'’s predictive detection will bgediul.

Our evaluation executes each bug-triggering input (or afdaig-triggering client requests) to the
end in order to measure both false positives and performdarwereported performance numbers
are the averages across multiple runs. By default, the alagiorithm for custom-synchronization
(Section 4.6) isot applied. We evaluate how that algorithm further improvesahcuracy of Con-
Mem in Section 7.

ConMem includes four sub-tools for four types of concursentemory errors. Each application
was executed with the bug-triggering input once for eachtsobh We present the bug-detection
results for each sub-tool. When ConMem is compared withrodleéection tools, the true bugs
as well as the false positives from all four sub-tools aretpgether. The artificial delay used by
ConMem-v is 1 millisecond at a time.

We also compare ConMem with two state-of-the-art inteiilegchecking approaches: race-
based (denoted bRRacg§ and atomicity-violation-based (denoted Byom). Raceis a lock-set—
happens-before hybrid race detector [Dinning and Schanb@®1; O’Callahan and Choi 2003],
originally implemented in the widely-used Valgrind-Helgt detector [Nethercote and Seward
2007] and slightly modified by us for better race coveragemwas implemented by us based on
an algorithm described in previous work [Park et al. 09 gjrédictively identifies each static mem-
ory instruction that can be unserializably interleavedwitis preceding access to the same memory
location from the same thread (the most common type of afyniiag [Lu et al. 2008; Vaziri et al.
2006; Lu et al. 2006]). There are other race and atomicity detgctors, such as happens-before
race detectors [Netzer and Miller 1991] and training-basedicity detectors [Lu et al. 2006]. We
did not choose them, because their training requirementterleaving-sensitive design makes for
an apples-to-oranges comparison.

7. EXPERIMENTAL RESULTS
7.1. Overall Results
Overall, as shown in Table VIII, ConMem can detect 9 out ofdsi¢d concurrency bugs, showing
a good coverage on this set of severe concurrency bugs. IpaaonRaceandAtomdetect 4 and
6 out of the 10 bugs, respectivély

ConMem shows a good bug-detection capability on these atedlbugs, because it effectively
captures the most common pattern among concurrency bugwish-effects. Specifically, three

“We treat these 10 known bugs as the ground truth in our expetirAdmittedly, there could be some unknown bugs lurking
and hence some missed false negative problems, which un&tely has no conceivable way to accurately measure.
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Bug-ID ConMem | Race| A
MySQL-1
MySQL-2
PBZIP2
Apache-1
Mozilla
PBZIP2-2
Apache-2
Cherokee
Transmission
FFT

3

R R SRNEN P PP RNENENES:

ANENENENANDIRNENENEN
XX | NN XX XN XN

Table VIII: Bug-detection results (Key:— bug was detectedk — bug not detected.)

App. [ #ShrMemInst [[ Races [ Atom. [[ Con+ull [ Con-bangling] Con-uninit | Con-ovii [ ConMem Tota|

| static [ Dynamic || #FP#Bug | #FP#Bug || #FP#Bug| #FP#Bug | #FP#Bug | #FP#Bug|  #FP#Bug |
Apache 297 76540 14:1 157:2 4:0 6:3 0: 0:1 10:4
MySQL 1086 17379 267:2 155:2 4:2 1:0 11:0 0:0 16:2
Transm. | 507 978 42:0 33:0 2:0 3:0 3:1 0:0 8:1
PBZIP2 93 1744 17:6 21:4 6:6 0:2 3:0 0:0 9:8
FFT 205 182532 8:0 16:5 0:0 0:0 0:4 0:0 0:4
Cherokee 598 48502 8:2 28:2 0:0 0:0 0:0 0:1 0:1
Mozilla 76 18330 13:0 48:0 0:0 0:0 2:0 0:0 2:0

[ False Positive Rates [ 36911 | 458:15 | 16:8 | 105 | 195 | 02 | 4520 |

Table 1X: Bug reports and false positives before ConMemunprg (Note: 1. the bug report num-
ber here is larger than that in Table VIII, because some bpgrte share one root cause. There are 9
distinct root causes of these 20 bug reports. 2. #FP: # of fadsitives; #Bug: # of bugs; #ShrMem
Inst: instructions that access variables truly shared gmbreads. 3. The special ConMem algo-
rithm to handle custom synchronizatiomist applied here. It will be discussed in connection with
Table X)

bugs (MySQL-1, MySQL-2, and PBZIP2) are detected by Con-N{Apache-1 and PBZIP2-2 are
detected by Con-Dangling; Apache-2 and Cherokee are eeftégt Con-Overflow; Transmission
and FFT are detected by Con-Unlinit.

ConMem still misses one severe bug in Mozilla. This is a cacapéd concurrency bug that
requires more than one rare timing condition to manifesec#jrally, a rare atomicity violation
among accesses to a shared pointer first causes two threadstadenly read from the same heap
object, which does not lead to any visible software failluaer on, another rare timing could cause
one thread to delete this heap object while the other thieatilli using it, which finally causes the
program to crash. This complicated bug is not detected byMewn, because the buggy interleaving
does notdirectly lead to memory errors. It is cannot be detectedRaceor Atomeither, because
it is a multi-variable bug. Note that, Apache-1 bug is alsowdtiavariable atomicity-violation bug.

It can be detected by ConMem, because its manifestationreglyires one rare timing between a
deletion and a heap-object read access.

AtomandRacefailed to detect 3 and 4 severe concurrency bugs, respictare detected by
ConMem, mainly because these bugs are not caused by dasaorasienple atomicity violations.
For example, Apache-1 is caused by conflicting accesses ltiptawariables. Therefore, it is not
detected by eitheRaceor Atom PBZIP2-2 and Transmission are both caused by order-idolat
problems and are missed by Atom. In addition, the heuristse in the Valgrind-Helgrind algo-
rithm to prune false positives also lead to some false negminRace

Overall, ConMem has good coverage on the evaluated redthaoncurrency bugs that can cause
crashes, and is not limited to any specific interleavinggpattits algorithms complement existing
race and atomicity-violation bug-detection tools.
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7.2. False-Positive Results

Before automated pruning

Table IX shows the number of false positives (vs. true bu@sllidhe tools on the 7 evaluated
applications. Every report dRaceis a pair of static race instructions; every reportAtbmis a
static instruction that can be unserializably interleawgith its preceding access; every report of
ConMem is a static instruction that, under certain intesilegs, can dereference a NULL-pointer,
access a freed memory region, etc. These reports are othtzéfereapplying automatic bug expos-
ing. Automatic bug exposing could help prune out most falsgtjves forRace Atom[Park et al.
09 a], and ConMem, at the cost of testing time. Each bug répgutiged to be a false positive or
a true bug report based on our manual inspection and conopaaigainst all known concurrency
bugs in the bug database of the corresponding softia8&ce some bug reports in Table 1X share
the same root cause, the total number of true bug reports théarger than that in Table VIII.

In general, ConMem'’s false-positive rate is much lower tRateand Atom— about one tenth
of their false-positive-rates — befitting its effect-oried approach. ConMem’s false-positive rate
(about 2.5 false positives per true bug) is reasonably lawsictering ConMem’s predictive detection
capability on severe concurrency bugs.

All these tools, includindqRaceand Atom have done a good job in identifying bug-prone inter-
leavings from the huge interleaving space. As we can seehlfe TX (the ShrMem-Inst column),
the number of dynamic memory accesses to memory locati@stk truly shared among threads
ranges from 978 to 182532. The interleaving space size geoysnentially in that number. In
contrast, many fewer interleavings are singled ouRayge Atom and ConMem.

ConMem has much smaller false-positive rates tRaneandAtom mainly because of its effect-
oriented approach (i.e., taking vertical stripes in thedfeaspace of Figure 1). As discussed in
Section 1, races and unserializable interleavings do nedya end up as bugs. Although the al-
gorithms inRaceand Atomalready use good heuristics to prune false positives, tlse-faositive
problem is still there.

Table X provides a further breakdown of the false positiwgmrted by ConMem. As we can see,
43 of the 45 false positives are caused by unidentified cusymmhronizations. These 43 bug reports
involve infeasible interleavings and can never actuallpuncConMem mistakenly reported these
43 bugs because it did not consider while/if-flags and predeonsumer queue synchronizations in
the program. The remaining 2 false positives come from hesmuninitialized reads, as discussed
in Section 4.3.

Note that, according to Table Jmost all buggy interleavings reported by ConMem are tmeé a
severe bugs, as long as they are feasibles is a big accuracy improvement over race detectors and
atomicity violation detectors: many races and atomicitylations are intentionally introduced by
developers for performance or semantic reasons [Naragamast al. 2006; Burnim and Sen 2009;
Park et al. 09 a].

Pruning false positives via custom-synchronization anakis

We also evaluated the synchronization-loop analysis disiin Section 4.6. As shown in Ta-
ble X, this analysis can further prune out 16 ConMem falsétpes, which is more than one third
of all ConMem false positives. During this process, no trug is pruned. The false-positive rate of
ConMem is thus decreased to 1.45 false positives per trugThegrun-time overhead of custom-
synchronization identification is similar with that of Comelh bug detection, because it records
similar amount of memory-access information as ConMem latgation.

Automated false positive pruning of ConMem-v

Allthe 75 bugs reported by ConMem in Table IX are sent to ConmMefor validation. As a result,
ConMem-v automatically prunes oall false positives, without introducing any false negativas f
the bugs shown in Table VIII and Table VII.

5Code regions that are problematic only under weak memorgistamcy models are not considered as bugs here, similar
with previous work [Park et al. 09 a; Savage et al. 1997]
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App. Benign | # of F.P. caused by custom synchronization|  # of F.P. pruned by
Unlinit | Producer-Consumer Queue If/While-flag Section 4.6 syn-loop analysis
Apache 0 5 5 0
MySQL 0 3 13 5
Transm. 2 0 6 5
PBZIP2 0 3 6 6
FFT 0 0 0 0
Cherokee 0 0 0 0
Mozilla 0 0 2 0
Total 2 11 32 16

Table X: Causes of ConMem false positives

Specifically, among the 20 true bug reports from ConMem, Cemw successfully makes 15
bug reports manifest through its systematic perturbatiach of these 15 can be reliably (almost
deterministically) exposed under ConMem-v, which willhelevelopers diagnose and fix the root
causes. There are still 5 bug reports that are actually tngs.lHowever, the manifestation condi-
tion is complicated, requiring artificial delays at mulgglaces, and is not handled by our current
prototype of ConMem-v. Recall that some of these 20 bugsesharsame root cause. The 15 bugs
successfully exposed by ConMem-v have already covereti@lidot causes. Therefore, failing to
expose the rest 5 bug reports did not cause ConMem-v to nysahcause.

The ConMem-v validation phase is fast, because of the smatlber of ConMem bug reports.
For example, validating the 17 bug reports of PBZIP2 onlyesaR0.02 seconds, roughly equal to
executing PBZIP2 without any instrumentation 30 times.

Discussion One question the above evaluation does not directly answeow false positives
would change under longer executions with more inputs oremons of one input. As discussed
in Section 4.2, the bug-detection ability of ConMem is sevesito the code/path coverage, like
all dynamic bug detectors [Savage et al. 1997; Lu et al. 20@8hercote and Seward 2007], and
is mostly insensitive to small differences in timing (givére same input). Therefore, we expect
ConMem to report more true bugs and more false positives \ttedaserves more program runs that
touch previously unobserved code/paths. We also expedv€ors false-positive rate to remain
low for most applications and most inputs, because of itscéfbriented design philosophy. For
example, if a program performs few NULL-pointer assignnsettiere will be few bug reports, no
matter how long the execution is.

7.3. Time and Space Overhead

Table XI shows the run-time overhead of ConMem. Con-NULIloalseds trace analysis. Therefore,
the off-line analysis time for Con-NULL is also listed. Oa#lf ConMem’s analyses have reasonable
run-time overhead: around 16X slow down for memory intee$i¥ T and 3—29% latency overhead
for I/O-intensive server applications. This overhead imparable to previous concurrency bug-
detection tools [Lu et al. 2006; Xu et al. 2005; Savage et@9.7]1 and is suitable for developers’
use.

Con-Overflow's major overhead comes from Valgrind-Helgniace detector. The overhead of its
dependence-analysis ranges from 5% overhead (servecapgtis) to 13X slow down (for FFT).

Currently, Con-NULL, Con-Unlnit, Con-Dangling, and Con«flow are implemented as sepa-
rate tools. Since many tasks conducted by them overlap waith ether, we expect the overhead of
the combined tool to be smaller than running each of them gramb.

In terms of space overhead, Con-NULL is the only tool in ConMébat generates traces. In our
experiments, the traces are reasonably small under therigggring inputs, ranging from 50KB
to 30 MB. The fact that Con-NULL only analyzes memory accessepointer variables greatly
mitigates the trace-size problem that is encountered biyaae-based analysis tools. Because the
disk sizes keep increasing, we believe that trace size wiilbe an issue for the usage of Con-NULL.
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Bug-ID Base* Con-NULL Con-Dangling| Con-UnlInit
Line | Run-time| Off-line Analysis Run-time Run-time
Apache 0.154s| 19% 0.118s 28% 28%
MySQL 0.034s| 29% 0.029s 24% 13%
Cherokee 0.072s| 7.6% 0.012s 2.7% 6.6%
Mozilla 1.010s| 505% 0.030s 185% 196%
PBZIP2 0.662s| 116% 0.019s 76% 78%
Transmission| 1.362s| 82% 0.005s 79% 80%
FFT 0.001s| 1113% 0.000s 1285% 1556%

Table XI: ConMem Run-time overhead (%) and off-line anaysne (*: BaseLine is to execute the
application’s test input from the beginning to the end withany instrumentation. Sever applica-
tions, like Apache and Cherokee, each serves a set of rexfuast multiple clients.)

7.4. Synchronization Analysis in ConMem

When detecting Con-NULL, Con-Unlnit, and Con-Dangling bugonMem conducts synchroniza-
tion analysis to check whether the timing condition of bugpgcts can be satisfied in the future
or not. ConMem prunes out those suspects that are wellqisatdoy mutual exclusion or order
synchronization. Table XII shows the number of bug suspibetsare pruned out by this analysis.
As we can see, the pruning is effective. The remaining fatsitipes mainly come from two types
of unidentified custom synchronizations. One type is imddsenon-loop control dependency. As
illustrated in Figure 12(a), the reported Con-Dangling B2 SIan never happen due to the con-
trol dependency imposed I81andS4 The second type is imposed by producer-consumer queues.
As illustrated in Figure 12(b), the assignmen8hcan never affecd5 becaus&5can only access
objects from the queuexlist and the update made Bilis already overwritten b2whenS3puts
the shared object pointed liyd into the queugrxlist.

Thread 1 Thread 2 Thread 1 Thread 2
S1: if(obj->cleanup ){ S3: if(lobj->cleanup){ || S1: thd->query = NULL; S4: thd = get_head (trxlist);
S2:  free(obj); S4:  obj->cleanup = 1;|| S2: thd->query = “select”;

S5: fputs(thd->query,...);
(@) Custom synchronization imposed S3: add(thd ’trXIISt); (b) Custom synchronization imposed
by control dependency other than loop by data dependency

Fig. 12: Two false positive examples caused by unidentifiestamn synchronization

Bug-ID Con-Unlnit | Con-Dangling] Con-NULL
Apache 0 0 4
Mozilla 10 0 0
MySQL 62 2 74
PBZIP2 18 0 8
Cherokee 109 21 64
Transmission 25 0 18
FFT 28 0 0

Table XII: Bug suspects pruned by synchronization analysis
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7.5. Testing experience with  Click

To better evaluate the in-house testing capability of Comyiee applied ConMem to the latest
version of an open-source software systéiick [Click 2010], for which no concurrency bugs had
been previously reported.

Experimental setup Click is a popular open-source software router, originally depetl by a
research group at MITClick contains around 220K lines of source code. It uses mulgatiing
experimentally to speed up processing network packets.

The latest version (v-1.8.0) @lick contains an input suite designed Glick developers to test
the basic functionality o€lick. This suite includes 22 test cases in total. We applied Cankoeall
7 of the test cases that do not require modification of theaipey system (i.e., building modules
into the kernel).

The testing process is straightforward. We executed eatlinggut once with one ConMem-tool
attached to it. No modification was needed to eithélick or ConMem.

Bug detection resultsConMem reports 4-9 buggy interleavings for each test irgmishown in
Table XIllII. Since some code regions, such as the start-up and shut-down code, are covered by
most or all test inputs, there are many overlapping bug ts@onong the 7 test inputs. After manual
inspection, we found that the false-positive-vs-true-batip ranges from 3:1 to 2:4 for each test
input. Altogether, ConMem reports 6 distinct buggy intarimgs that can lead to severe software
failures, such as program crashes. These 6 buggy intenigsaare caused ®/different root causes
in the program. One buggy interleaving reported by Con-Diagds demonstrated in Figure 13.
As we can see, the master threadGhick maintains a meta-data objectout er _t hr ead, for
each router thread. Because the code does not perform aclyreyrization, the master thread could
delete that object prematurely while it is still being usgdhie router thread. This bug can lead to a
crash inClick.

Thread 1 Thread 2
(master thread ) pua® (router thread)

,SZ: router_thread .driver->driver_lock_tasks();

S1: delete router_thread ; — A
<" el

Under a bad execution order, thread 2 could access an object already deleted by thread 1.

Fig. 13: A concurrency bug that leads to a dangling pointerfarally a crash (fronClick-1.8.0)

ConMem has about a 1:1 false-positive-vs-true-bug rate&Cfimk, which is consistent with the
earlier experiments shown in Table IX. The false positiveretare mainly caused by a complicated
if-condition control-flow synchronization. This customnghronization forces the dereferences to
certain shared pointers to either happen before the padetetion or to get by-passed. This type of
custom synchronization is not handled by ConMem.

As shown in Table XllI, we also trieRacesand Atomon these 7 test cases. The results follow
a similar trend to that in Table IXRacesand Atomcannot detect the bugs that ConMem detected.
For example, the bug depicted in Figure 13 is neither a racam@tomicity violation. Race bugs
and atomicity-violation bugs should involve several asesgo the same memory location with at
least one write. This is not true for the bug in Figure 13 thablves a call to a C++ library function
in Thread 1 and some reads in Thread 2. Currently, neRasesor Atominstruments the library
code. Evenif they do, there is a large chance that no writed@onflicting memory location exists,
depending on how delete is implemented in the library.

6Currently, the Con-NULL, Con-Dangling, Con-Unlnit, andiG0vfl are implemented as four separate Pin tools. Thergfore
we executed each test input four times, with each tool ath¢h one run. We could combine these four into one Pin tool,
and each test input would only need to be executed once.
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‘ App. || Races | Atom. [ Con-Null | Con-Dangling [ Con-Uninit [ Con-Ovfl | ConMem Total |
| #FP:#Bug | #FP#Bug || #FP#Bug | #FP#Bug | #FP#Bug | #FP#Bug| #FP#Bug |

Test 1 13:0 20:0 1:0 1:4 0:0 0:0 2:4

Test 2 18:0 22:0 3:0 1:4 10 : 5:4

Test 3 18:0 18:0 1:0 1:4 0:0 0:0 2:4

Test4 19:0 41:0 2:0 1:2 0:0 0:0 3:2

Test5 10:0 17:0 1:0 2:3 0:0 0:0 3:3

Test6 28:0 25:0 1:0 2:1 0:0 0:0 3:1

Test7 8:0 41:0 1:0 2:1 0:0 0:0 3:1

Table XIII: Clicks ConMem testing reports. The false-positive numbers akected before
ConMem-v pruning (Notes: 1. The bugs detected by ConMem hatvdeen reported before. 2.
There is overlap among the bugs reported for the 7 inputs.).

Performance Click has two execution modes. The normal execution mode is I€hsive,
whereClick listens to the network. Under this mode, the overhead of GemMiepends on the
network traffic and is usually negligible. The other exesatmode (“simulation mode”) is CPU-
and memory-intensive, whe€dick reads packages from a trace. Under the memory-intensivemod
each ConMem testing run introduces about a 20-times slawnd@/ithout ConMem, the original
7 test cases take 0.259 seconds to finish. ConMem testing 22k&08 seconds in total, including
0.028 seconds for off-line analysis, and 22.08 seconds éor-Kull, Con-Dangling, Con-Uninit,
and Con-Overflow testing runs. The trace size of ConMem-NU# 16K bytes on average for the
7 test cases.

Summary Our experience of applying ConMem @lick is summarized as follows:

— ConMem is easy to use, straight out of box. The user needsotade nothing other than the
standard test suite.

— ConMem is effective, it can detect previously unknown agmnency bugs.

— ConMem is accurate, compared to many traditional toosfalse-positive rate was low enough
to allow us to manually inspect every bug report.

— ConMem imposes low-enough overhead for use during inhi¢esting. For CPU and memory
intensive applications, such &dick in simulation mode, ConMem imposes about an 80-fold run-
time overhead (= 4 tools, each with about 20x slowdown) agdires about 500KB/sec for storing
traces. We also see two approaches that can significanthgae ConMem’s overheads in the
future: (1) Combining all four ConMem tools into one, becawmach ConMem tool has only
about 20 times overhead ddlick and there is a lot of redundancy among the four tools. (2)
Saving redundant interleaving testing among inputs the¢ lowerlapped code coverage. This is
obviously more challenging, but is also promising. As d&sad in connection with Table XIllI,
there is overlap among the concurrency bugs revealed bsrdift inputs.

— While we have had a fairly positive experience with appdy@onMem to Click, some additional
features can make ConMem easier to use in the future: (1)iddngvcall stack information for
reported bugs to ease debugging. (2) Providing informatimyut why a bug suspect is not exposed
by ConMem-v.

8. RELATED WORK

Much related work has been discussed in earlier sectiorBidisection, we only discuss a few that
are closely related and were not discussed previously.

Empirical studies of concurrent programs Due to the lack of concurrency bug sources, only a
few studies [Farchi et al. 2003; Lu et al. 2008] have been dane they mostly focus on the inter-
leaving patterns. Most recently, interesting studies H@en conducted to evaluate how new syn-
chronization primitives (such as Transactional Memory) ba used in concurrent programs [Ross-
bach et al. 2009]. Our paper complements previous studidediing at the error-propagation
process in concurrency bugs.
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Concurrency bug detection, testing, and avoidanceExisting concurrency-bug detectors can be
categorized as performing race detection such like [NeirerMiller 1991], Eraser [Savage et al.
1997], RaceTrack [Yu et al. 2005] and FastTrack [Flanagahraeund 2009]; atomicity-violation
detection such like Atomizer [Flanagan and Freund 2004 $Xu et al. 2005], AVIO [Lu et al.
2006], jPredictor [Chen et al. 2008], Velodrome [Flanageal €2008], and SingleTrack [Sadowski
et al. 2009]; and multi-variable atomicity violation detiea such like ColorSafe [Lucia et al. 2010].
ConMem complements existing tools by focusing on crasliceffenstead of specific interleaving
patterns. The predictive interleaving analysis in ConMsimspired by previous predictive race and
atomicity-violation detectors like Atomizer [Flanagarddfreund 2004] and jPredictor [Chen et al.
2008]. Many innovative approaches, such as training (AVl@ ¢t al. 2006]), noise-making (Con-
Test [Edelstein et al. 2002]) and active testing (RaceRy&am 2008],CTrigger [Park et al. 09 a]),
have been proposed to address the false-positive probleanicurrency-bug detection. ConMem
uses synchronization analysis and perturbation-basedéaving-enforcement techniques that is
similar to some of these tools like CTrigger [Park et al. 09GgnMem complements those tools by
considering the problem from a different perspective. tiuses on certain effects of concurrency
bugs, instead of a specific interleaving pattern.

Atom-Aid [Lucia et al. 2008] and PSet [Yu and Narayanasamy@@xtended existing dynamic
bug detectors by prohibiting certain patterns of interlegs at run time by using hardware support
to survive concurrency bugs during production runs. Soféa@nly tools like Grace [Berger et al.
2009] and Kendo [Olszewski et al. 2009] achieve similar gdai certain types of multithreaded
programs at runtime. ConMem complements such work by ergasincurrency bugs before they
escape to production runs.

Interleaving testing tool such as CHESS [Musuvathi et 20&®vorks by systematically explor-
ing the interleaving space. ConMem complements such wonrbyiding a different perspective
on splitting the interleaving space. Work on deterministiecution such like DMP [Devietti et al.
2009] and Kendo [Olszewski et al. 2009] also tries to solittierleaving space challenge by
limiting the number of interleavings that a program candall

Concurrent program analysis and model checking A lot of inspiring research has been con-
ducted on static analysis and model checking of concurnagirams. A recent study [Chugh et al.
2008] inventively proposes leveraging race detection tprowe data-flow analysis in concurrent
programs. The idea is promising; however, due to pointeisadg and other issues, there are still
as many as 40% of all pointer dereferences in the progranctratot be proved to be safe in their
experiments. ConMem has a completely different design fyoal static-analysis tools. ConMem
does not aim to provide any guarantee. Actually, ConMem dtszs not aim to report all poten-
tial memory errors in concurrent programs. By focusing amdhbncurrency-memory error pattern,
ConMem can use relatively simple algorithms to effectivadyect severe concurrency bugs. In ad-
dition, as a dynamic bug-detection tool, ConMem naturadly the advantage of no pointer-aliasing
problem and can achieve better accuracy and scalability.

Model checking can also be used to validate certain pragseini concurrent programs. A lot of
progress has been made [Godefroid 1996; Qadeer and Wu 2@0¥gdan and Godefroid 2005;
Musuvathi et al. 2008] in model checking large concurremigpams. However, the state-space-
explosion problem still exists. We expect the effect-aghapproach and the error-propagation
characteristics studied in this paper will help provide fitics that can be used in future model
checkers.

General software failure diagnosisThe effect-oriented approach used in ConMem shares a simila
flavor with failure-diagnosis tools [Sumner and Zhang 2@@yitrov and Zhou 2009] that look for
the root causes of observed failures through data slicinfailare that has already occurred and
been recorded is essential to these tools. Diagnosis tool$o designed to focus on concurrency
bugs, such as CCI [Jin et al. 2010], Falcon [Park et al. 2Cdr@}},Recon [Lucia et al. 2011]. These
tools can identify shared-memory accesses that are &taligicorrelated with software failures and
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thus help debugging. Where ConMem differs is that it searébieunknown interleaving errors that
can cause previously unobserved failures.

9. CONCLUSIONS AND FUTURE WORK

This paper proposes an effect-oriented approach to degestivere concurrency bugs. By focusing
on the concurrency-memory error-propagation patternai@eeby our characteristics study, Con-
Mem effectively and predictively detects concurrency bwih crash effects. In our evaluation with
10 real-world severe concurrency bugs, ConMem detects imgge with significantly fewer false
positives than race and atomicity-violation detectorsadidition, ConMem-v prunes out all false
positives and provides a reliable way to expose all the tugsieported by ConMem.

In general, ConMem has several nice features to help desdppredictive bug detection, no
training requirement, easy-to-validate bug results, lgturacy, and high coverage on crash-effect
concurrency bugs. By looking at the interleaving space feodhifferent perspective, ConMem com-
plements existing concurrency bug-detection tools.

In the future, ConMem can be extended in the following waystFve could use static analysis
to improve ConMem’s ability to identify pointer variableadbuffer-index variables. Second, we
could try to identify more kinds of customized synchroniaatand further decrease the remaining
false positives of ConMem. Finally, we could also apply tffea-oriented idea to detecting other
types of severe bugs (e.g., security vulnerabilitiesnsitkata corruption, etc.) in both C programs
and Java programs.
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