
Determining Optimal Processor Speeds for Periodic 
Real-Time Tasks with Different Power Characteristics* 

Hakan Aydin, Rami Melhem, Daniel Moss6 
Computer Science Department 

University of Pittsburgh 
Pittsburgh, PA 15260 

aydin, melhem, mosse@cs.pitt.edu 

Abstract 
In this paper, we provide an  efficient solution for peri- 
odic real-time tasks with (potentially) different power 
consumption characteristics. We show that, a task T, 
can run a t  a constant speed 5';. at every instance without 
hurting optimality. We sketch an O(n2 log n)  algorithm 
to compute the optimal S;. values. We also prove that 
the EDF (Earliest Deadline First) scheduling policy can 
be used to obtain a feasible schedule with these optimal 
speed values. 

1 Introduction 
With the advent of portable and hand-held coinput- 
ing/communicat ion systems, power consumption has re- 
cently become a critical issue in system design. Es- 
tended battery life requirements in devices such as lap- 
top computers, PCS telephones and other mobile em- 
bedded systems illustrate the need for efficient power- 
aware design and dynamic power monitoring techniques. 
Solar- and nuclear-powered systems, such as satellites 
and the MARS rover, also require serious power man- 
agement considerat ions. 

Nonetheless, in the last decade, the research coni- 
niunity has addressed the low power system design 
problems with a multi-dimensional effort by introduc- 
ing techniques involving VLSI/IC design, algorithm and 
compiler transformations, use of hierarchical memory 
systems and application specific modules, among others. 
For a detailed survey, the reader is referred to [16] and 
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[7]. Such on-going research has important implications 
for real-time systems design, simply because most of the 
applications running on power-limited systems impose 
inherently temporal constraints on the response time 
(such as real-time communication and control tasks). 

Hardware and software manufacturers have agreed to 
introduce standards such as the ACPI (Advanced COP 
figuration and Power Interface) [I11 for power manage- 
ment of laptop computers that allows several modes of 
operation, turning off some parts of the computer (e.g., 
t,he disk) after it preset period of inactivity. This sim- 
ple predictive system shutdown technique [18] is usually 
used to  turn off the power supply when the device is (and 
likely to stay) in idle mode for a considerable amount, 
of time. However, due to  the convex dependence be- 
tween the supply voltcage and the power consumption, 
t,his technique remains sub-optima.1, even for a system 
with perfect, knowledge of idle intervals. In other words, 
since a reduction in the supply voltage corresponds to 
a quadrat,ic or cubic savings in energy [2O, IO], the 0-1 
voltage supply t,echnique is clearly sub-optimal. 

On the other hand, the variable voltage scheduling 
framework, which involves dynamically adjusting the 
voltage and frequency (hence the CPU speed), has re- 
cently become a major research area. This is perhaps 
the scheme used by Transmeta, in their new proprietary 
Crusoe processor: as far as we can gather, t,heir ap- 
proach takes advantage of past history on the rate of 
CPU activity to  predict the future setting of the CPU 
speeds, for general purpose computing. 

Processors operating a t  a range of voltages and fre- 
quencies are already available [IO]. They are able to  
adjust their supply voltage, using a fine step, accord- 
ing to  the required frequency. For such processors, the 
various voltages yield different execution delays, speeds, 
and hence different energy consumptions. The ability 
tBo decrease the speed of the processor allows the system 
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t o  reduce its power consumption. 
In the realm of real-time systems, variable voltage 

scheduling focuses on minimizing energy Consumption 
of the system, while still meeting the deadlines. The 
seminal work by Yao et. a1 [20] provided a static 
off-line scheduling algorithm, assuming aperiodic tasks 
and worst-case execution times. Heuristics for on-line 
scheduling of aperiodic tasks while not hurting the fea- 
sibility of off-line periodic requests are proposed in [9]. 
Non-preemptive power aware scheduling is investigated 
in [$I. Concentrating on a periodic task set with identi- 
cal periods, the effects of having a n  upper bound on the 
voltage change rate are examined in [lo], along with a 
heuristic to  solve the problem. 

Recent work in variable voltage scheduling includes 
the exploitation of idle intervals by slowing down the 
processor whenever there is a single task eligible for exe- 
cution and its worst-case completion t ime is earlier than 
the first future arrival [17]. Although this One Task Ex- 
tension technique was originally proposed in the context 
of Rate Monotonic Scheduling, i t  is easy t o  see that  the 
idea can be applied to  any periodic scheduling discipline. 
Cyclic and EDF scheduling of periodic hard real-time 
tasks on systems with two (discrete) voltage levels, in- 
cluding dynamic energy reclaiming heuristics have been 
investigated in [12]. 

1.1 Variable Voltage Scheduling F'rame- 
work 

An important component of power-aware real-time sys- 
tems is t o  develop an efficient solution to  the variable 
voltage scheduling. This is because, as mentioned above, 
simply committing to  the maximum CPU speed and 
(predictively) shutting down the processor during idle 
intervals, despite its simplicity, yields sub-optimal re- 
sults with respect to  power consumption, in view of the 
convex power/speed relation. Since real-time systems 
are predictable (for example, advance knowledge of the 
worst case execution time of tasks is a necessary condi- 
tion to  guarantee feasibility), we can use such knowledge 
to  produce a static (off-line) solution to  conipute the op- 
timal speed for each task, assuming worst-case workload 
for each arrival. 

Our target system is one in which the actual run-time 
of applications, under a given CPU speed, exhibits small 
t o  no variations and is most often equal t o  the worst-case 
execution time (WCET) of the task. Examples of these 
applications are often encountered in embedded satellite 
systems, such as image acquisition and image process- 
ing, in which the size of images is the determining factor 
of the WCET. Low-orbit satellites processing temporal 

da ta  (e.g., audio packets) in multicast schemes are also 
excellent candidates for power-minimization while guar- 
anteeing deadlines. Thus, with the help of a static as- 
signment of the time/speed of each application, one can 
adjust (reduce) the speed of other tasks to  take benefit 
of battery power. Clearly, care must be taken not to  
cause any deadlines to  be missed. 

1.2 Task-level Energy Minimization 
The power consumption of an on-chip system is a 
strictly increasing convex function of the supply voltage 
Vdd, but its exact form depends on the technology[l0]. 
For example, the dominant component of energy con- 
sumption in widely popular CMOS technology is the 
dynamic power dissipation Pd, which is given by: 

where Cej is the effective switched capacitance and f 
is the frequency of the clock. The  value of Cej de- 
pends on two factors; namely, the capacitance C being 
chargedldischarged and the activity weight C Y ,  a mea- 
sure (or probability) of the actual switching activity: 

Cef = a . C  ( 2 )  

Changing supply voltage results in increased circuit 
delay, which is computed by, 

( 3 )  

where k is a constant, and & is the threshold volt- 
age (i.e., the minimum voltage that can be supplied 
to  the processor allowing full and correct functional- 
ity). According to  [lo] the time overhead associated 
with voltage switching significant in the order of 100s 
to  10000s of instructions in modern microprocessors. 
Fortunately, the computation itself can continue dur- 
ing the voltage change period. Froin Equations (1) and 
(3) ,  i t  is easy to  see that one can reduce the power 
(and energy) consumed a t  the expense of increased de- 
lay (reduced speed). However, Equation (3)  indicates 
a roughly linear reduction in speed while Equation (1) 
hints to  quadratic gains in power savings with the de- 
crease of V d d .  While exploiting this power/speed rela- 
tion by dynamically adjusting the voltage and frequency, 
variable voltage scheduling research so far has almost 
invariably disregarded possible variations in the effec- 
tive switched capacitance C,f by assuming it  t o  be uni- 
form throughout the operation, and especially, indepen- 
dent of the running task. The immediate iniplication of 
this assumption is to  have identical power consumption 
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functions for all the tasks, which largely simplifies the 
mathematical formulation, while impeding higher power 
savings, as we argue below. 

In fact, as Equation (2) indicates, Cef is proportional 
t o  the actual switching weight a, which represents the 
type of activities of the running task. Low-energy soft- 
ware, microarchitecture and compiler optimization re- 
search communities have already identified the largely 
variable relation between the characteristics of the code 
and the power dissipation. The power dissipation is de- 
pendent on the nature of the running software: the local- 
ity of reference exhibited, the frequency of bus/memory 
requests, the chip units on active use such as floating 
point unit(FPU) or digital signal processor(DSP), even 
the da ta  structure choices affect the switching frequency 
in integrated circuits, hence the parameter Q [14]. 

Finally, it is highly likely and desirable that aggressive 
low power techniques a t  the circuit, microarchitecture, 
compiler and OS/scheduler levels are to  be integrated 
in a common framework, which points to  the necessity 
of considering (potentially) different power dissipation 
functions for the active tasks. For instance, dynamically 
stopping the clock fed into modules such as FPU, DSP 
or application specific co-processor which are not used 
by the running task, is a powerful system-level energy 
management technique [19], resulting naturally in dif- 
ferent switching activities for different tasks. Recently, 
tasks with different power functions have been explored 
in [13]; that work proposes an empirical way to  carry 
out scheduling which takes into consideration the power 
and criticality of ready tasks. The authors base their ex- 
perimental results on the measurements obtained from 
[5], which measures the different power consumptions of 
tasks in a Palm Pilot Professional. 

1.3 Contribution 
In this paper, we address variable voltage scheduling 
of periodic real-time tasks. Our contribution is to  pro- 
vide an efficient solution for tasks with (potentially) dif- 
ferent power consumption characteristics. Examples of 
systems that justify the use of different power consump- 
tion characteristics are those in which: a) some tasks 
will be larger than others and therefore use more of the 
memory system in addition to  the cache; b) some tasks 
will use the floating point unit more than others; c) some 
will ship the task to  specialized, low-power DSPs. 

We note that accounting for different power dissi- 
pation functions a t  the task level is an important yet 
largely ignored issue. Therefore, our solution includes 
different power functions for each task. We formalize the 
scheduling problem as a nonlinear optimization problem 

and show that  a task T, can run at a constant speed Si 
a t  every instance without hurting optimality. We sketch 
an O ( n 2  logn) algorithm to  compute the optimal Si val- 
ues. We also prove that  the EDF (Earliest Deadline 
First) scheduling policy can be used to  obtain a feasible 
schedule with these optimal speed values. 

2 System Model 
We consider a set T = {TI,. . . , T,} of n periodic real- 
time tasks. The period of T, is denoted by Pi, which is 
also equal to  the deadline of the current invocation. We 
refer to  the j t h  invocation of task 7;: as T , j .  All tasks 
are assumed to  be independent and ready a t  t = 0. 

Given a CPU speed determined by a volt- 
age/frequency pair, the worst-case workload is rep- 
resented by the traditional worst-case execution t,ime 
(WCET) value. Note that, however, for variable voltage 
scheduling framework where the actual execution time 
is dependent on the CPU speed, the worst-case num- 
ber of required CPU cycles of the workload is a more 
appropriate measure. 

We denote the number of processor cycles required by 
7;: in the worst-case by Ci. Note that ,  under a constant 
speed Si (given in cycles per second), the execution time 
of t.he task is t ;  = 5. A schedule of periodic tasks is 
feasible if each task T, is assigned a t  least C; CPU cy- 
cles before its deadline a t  every invocation. We assume 
that the CPU speed can be changed between a minimum 
speed ,",in (corresponding to a minimum supply volt- 
age level necessary to  keep the system functional) and 
a maximum speed S,,,, . Without loss of generality, we 
assume 0 5 Smin 5 S,,, = 1; that  is, we normalize the 
speed values with respect to  S,,,,. 

The speed S( t )  of the processor a t  time 2 ,  can be dy- 
namically varied by adjusting the supply voltage and 
the clock frequency. In case that  there is an imposing 
bound on the rate of voltage change, the voltage change 
overhead can be incorporated in the worst-case work- 
load of each task. The power consumption of the task 
T, is given by gi (S) ,  assumed to  be a strictly increas- 
ing convex function, specifically a polynomial of a t  least 
second degree. 

If the task Ti occupies the processor during the time 
interval [ t l ,  t g ] ,  then the energy consumed during this 
interval is E(t1,tZ) = J t y g ; ( S ( t ) ) d t .  The total energy 
consumed in the system up t o t  = t 2  is therefore E(0,  t 2 ) .  

Finally, a schedule is power-optimal if it is feasible and 
the total energy consumption E(0,  P )  is minimal, where 
P is the Least Common Multiple of PI . . . P,. Note 
that it is necessary and sufficient t o  minimize the energy 
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consumption during P ,  since the schedule repeats itself 
after each P time units. 

3 Optimal Static Solution 

In this section, we investigate the static optimal solution 
to  the variable voltage scheduling problem, assuming 
that each task presents its worst-case workload to the 
processor a t  every instance. Slowing down the CPU to  
match the exact workload of the system is an attractive 
solution. For example, if loud = c ( C i / P i )  = 0.6 (under 
S,,,), the speed of the processor will be set to  0.6 for 
all tasks. This achieves a uniform speed, and allows for 
a very good result with respect to energy savings. The 
following example shows this approach in more detail. 

Consider a set with two tasks, TI has PI = 100, C1 = 
40, and gl(S) = 3S3, while T2 has P2 = 200, C2 = 40 
and gZ(S) = S3. (Note that ,  although in this example 
we consider the function g to be a polynomial of degree 
3, other examples can be easily constructed with lower- 
degree power functions, to  demonstrate the same point.) 
Note that ,  under S,,,, the utilization of the set is 0.6. 
Since the energy consumed by task i executing continu- 
ously in  interval of time I is I .si($), the total energy 
consumed during the least common multiple of the task 
periods is P.(g1&+92&) = P-(3S:  g + S :  2) = 
35'; 2C1 + Sg C'z. This is because E is the number of 
instances of task i within the least common multiple 
(LCM) of all task periods, and 2 is the length of each 
instance. 

The trivial approach would be to use always the maxi- 
inum speed s,,, = 1 and shutdown the processor when- 
ever idle (favoring this scheme, assume that  idle proces- 
sors consume no energy). This would give a total energy 
consumption of 280. .4lternatively, using the "uniform 
slow-down" method to fully utilize the CPU time avail- 
able, we would set S1 = S2 = 0.6, yielding total energy 
consumption of 101. These are significant savings, which 
can be improved upon, as shown below. 

An optimal algorithm may have more complex deci- 
sions to make. To start with, we observe that  given a 
task worst case CPU requirement Ci and the time t i j  as- 
signed by the scheduler (we make no assumption about 
the scheduling discipline) for executing T, for the j t h  
invocation, the optimal speed assignment for this invo- 
cation is Sij = 5. When one considers preemptions, 
the nature of this formula does not change: let instance 
Tij run (with possible preemptions) during time inter- 
vals [t l ,  t 2 ] ,  [ t 3 , t 4 ] ,  . . . , [tm--l, t , , , ];  we can safely commit 

to  a constant speed S;j given by: 

J;; S(t)dt  + s,; S(t)dt  + * . . + S(t)dt  s.. - 
( t 2  - t l )  + ( t 4  - t 3 )  + * - + ( tm - L - 1 )  

' 3  - 

during the entire lifetime of Sij. By doing so, we achieve 
a minimal amount of energy consumption: this follows 
from the convex nature of power (energy) / speed re- 
lation. However, the (potentially) non-identical power 
consumption functions and the feasibility requirement 
prevent us from reaching further conclusions a t  this mo- 
ment (e.g., the speed settings for each invocation could 
be different or the speed of processor for all tasks could 
be the same). 

Since the speed Sij of an  instance is constant through- 
out its execution, the energy consumed by xj (under the 
worst-case workload Ci), or Eij is simply g i ( S i j )  . t i j  = 
gi(Sij)-$$ = Ei(Sij) .  We note that  Ei(Sij)  is astrictly 
increasing convex function, since g i ( S i j )  is assumed to  
be a polynomial of a t  least second degree. At this point, 
we are ready to state the nonlinear optimization formu- 
lation of the variable voltage scheduling problem, which 
we denote by POW-OPT: 

i=l j = 1  
(4) 

'(5) 

S,,,, LS,, 5 S,,,, i E. [I, n]., j E [I, E] 6 
A feasible schedule exists with { S I 3 }  [i'] 

Above, the expression (4) indicates our aim to min- 
imize the sum of energy consumptions over all the in- 
stances of all the tasks, during the LCM P .  Recall that ,  
given a number of cycles C, to  execute under speed S,, , 
the execution time of a task z3 is t,, = 5. Thus, 
the constraint (5) merely states that  the total proces- 
sor demand during the LCM P should not exceed the 
available computing capacity, which is a necessary (but 
not sufficient) condition for schedulability. Further, the 
constraint set (6) encodes the fact that it is only natu- 
ral to have lower and upper bounds on the CPU speed, 
imposed by the technology in use. Finally, we have to 
make sure that  there exists a t  least one feasible sched- 
ule with S,, values, as required by constraint (7). Note 
that we have deliberately omitted the scheduling policy 
above: it need not and cannot be specified a t  this point. 

> P ,  or equivalently, if 
:la, > 1, there is no solution to POW-OPT. In 

other words, we should have a t  least one feasible sched- 
ule by running all the task instances a t  S,,,. Hence, 

Note that ,  if Erxl 
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hereafter, we assume that  Cy=l p,,z;az 5 1 and there 
exists at least one feasible schedule. 

Theorem 1 (Equal speeds for all instances) 
Given an instance of Problem P O  W-OPT, there exists 
an optimal solution where the speed of a task Ti is con- 
stant at every instance, that is, 

Sij = Sik = Si 1 5 j 5 k 5 E. 
Proof: Informally, the theorem can be justified by 

observing that committing to  a constant Si value for all 
instances of Ti hurts neither feasibility nor optimality. A 
set of periodic tasks with constant worst-case execution 
times, can be scheduled as long as the total utilization 
is less than 1, that  is as long as the constraint (5) is 
satisfied. On the other hand the objective function (4) is 
also minimized by this choice, since the convexity favors 
identical execution times in the optimal solution. 

To obtain a formal proof, one should observe that  
after replacing Sij by and making an initial alloca- 
tion of 2i,min = e (lower bound on execution time) 
t o  each task T,, &!I!: can easily obtain another convex 
minimization (concave maximization) problem, which 
is analogous t o  the one occurring in the Reward-Based 
Scheduling Problem [l]. Tha t  work formally proves the 
optimality of identical service times/identical speed per 

The result of the previous theorem says that, for a 
particular task, all instances will execute for the same 
amount of time. This transforms the problem into a 
periodic real-time model, where the utilization of a task 
is defined by the ratio g. In this case, it is clear that  
the following corollary holds. 

Corollary 1 When used along with the optimal Si as- 
signments, any periodic hard real-time policy which can 
fully utilize the processor (e.g., EDF, LLF), can be used 
to obtain a feasible schedule. 

instance given analogous constraints. 0 

The above theorem and corollary guide us in the de- 
velopment of a solution for problem POW-OPT. Before 
we present the solution, we note that  once we commit 
to  identical Si values a t  the task-level, we obtain the 
following optimization problem: 

n 

i = l  
minimize g E ; ( S i )  (8) 

subject to  2 < P 
p, st - (9) 

Smin 5 Si 5 S,,, i = 1 , . . . , n  (10) 

Replacing Si above by 2, we transform the func- 
tion E.  Since Ci is a characteristic of task i, &(Si)  = 

E;( 2) = E,'(ti) allowing us t o  re-write the optimization 
problem as: 

where l i  = s,,, and ui = (i = 1. .  .n) are the 
lower and upper bounds, respectively. Finally, substi- 
tuting 2; + li for ti we get the optimization problem: 

i=l 
n 

i=l 
subject t o z  g(ti + l i )  5 P (15) 

O < t : < ~ i - l i  i x l , . . . , ~ ~  (16) 

which is in fact an instance of the concave maximization 
(convex minimization) problem OPT-LU, for which an 
optimal O(n2  alogn) algorithm has been provided in [l]. 

Summary of algorithm, derived from [l] .41go- 
rithm OPT-LU first notes that  the optimal results are 
when relation (15) is an equality, since the other cases 
can be either dismissed or improved to comply with the 
equality constraint. Second, with inequality constraints, 
we solve this optimization problem using Lagrangian 
and auxiliary techniques complying with [3, 41. 

Then, we address the problem that  considers only the 
equality constraints without the inequality constraints 
(this problem is denoted by OPT). I t  is possible to  find 
the solution of O P T ,  by using the solutions from La- 
grangian. For many simple power functions, closed for- 
mulas can be obtained; in general, the solution can be 
obtained in time O ( n )  [l]. 

The  solution proceeds by considering only the equal- 
ity and lower bound constraints (call this the OPT-L 
problem). It invokes the solution t o  OPT, checks the in- 
equalities (constraints), sets t,he times assigned to  tasks 
that  violate the constraints t o  zero, and re-invoke OPT 
for the remaining tasks. Although the number of in- 
vocations is bounded by n,  we use a binary-search like 
technique that  makes the complexity of the procedure 
O ( n  Slogn). 

If no solution is found that  complies with lower 
bounds, then there is no solution for our problem. On 
the other hand, if a solution is found for OPT-L and 
the upper-bounds are not violated, we are done. If the 
upper-bounds are violated, partial adjustments are done 
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in the solution (a t  least one variable is adjusted) and 
the problem OPT-L is invoked again. Since there is a t  
least one adjustment per iteration, at the end of O ( n )  
iterations the procedure is done. Since the complexity 
of OPT-L is O ( n .  l o g n ) ,  the complexity of OPT-LU is 
O(n” . logn) .  

Returning to the example given above, our procedure 
will set SI = 0.538 aiid S, = 0.776, which are optimal 
speed assignments. This will yield a total energy con- 
sumption of 93 units for the exainple task set. Clearly, 
this is only an example, showing some of the savings 
that could be achieved by our optimal algorithm. Be- 
low we present preliminary simulation results to indicate 
the type of savings we can obtain with our algorithm. 

4 Experiment Results 
We implemented a simulator to  assess the performance 
of the algorithm developed here. The metric used 
was power savings over the static power management 
scheme, which slows down the processor proportionally 
to  the load imposed on the system. This conservative 
and fast scheme only uses the WCET and deadline infor- 
mation and distributes the slack proport,ionally among 
all the t,asks in t,he syst.eni, prior to run time. In  other 
words, each task is executed with speed Si = load, 
where load = %. For example, if the load on the sys- 
tem is 80%, the speed of t.he processor is set to  0.8 uni- 
formly for all tasks. This conservative scheme is based 
on the principle t.hat in the convex optimization problem 
given by (8), (9) aiid (IO), the optimal solution consists 
in assigning equal speed values for each task, in the case 
that all objective functions are identical. That approach 
guarantees also that  all tasks finish before their dead- 
lines, but is suboptimal in our settings where we provi- 
sion for nowidentical power consumption functions. 

We created a synthetic task set with 30 tasks, and as- 
sociated power functions with each of these tasks. The 
power functions are of the form kS3, where k is a pa- 
rameter of the siniulat,or. To cover a spectrum of the 
power function, we looked a t  the following two cases: 

0 Uniform Distribution, where the coefficient of 
the power funct,ions of the tasks are distributed 
uniformly bebween 1 and k .  In the experiments 
k E [1,8]; in other words, the power functions are 
of the form kS3,  where k varies uniformly between 
1 and 8. 

0 Bimodal distribution, represents the case in 
which there are two types of tasks in the system: 

those that consume little power and those that con- 
sume much power. More specifically, in our graphs, 
the bimodal distribution is created such that 60% 
of the tasks have a power function coefficient value 
of 1, while the remaining 40% have a value of k .  In 
other words, if k = 4, 60% of the power functions 
are S3 and 40% are of the form 4S3. 

The use of the bimodal distribution for power func- 
tions comes from applications in the embedded device 
arena. For example, consider a satellite participating as 
a multicast router for multimedia sessions: some chan- 
nels have more stringent timing constraints while others 
have less compute-intensive traffic. For example, video 
channels may have to send much more da ta  in the same 
amount of time than the audio channels, therefore re- 
quiring special hardware to compress the da ta  captured. 
This would increase the power consumption of the video 
applications considerably. Another application is when 
the underlying transport technology is an ad  hoc net- 
work, in which location of satellites may change with 
time. In this case, if multicast groups follow a bimodal 
distrihution [?I, some groups are localized (requiring 
small amounts of energy) while other groups have to  in- 
crease the power of the transmitter to reach satellites a t  
farther locations. In general purpose computingsystems 
implemented in small devices, this bimodal distribution 
can be seen when some tasks are small enough to  fit on 
the L1 cache and do not need any external devices; in 
this case, their coefficient is 1. But if they d o  not follow 
this type of restriction, their coefficient is k .  

For the first experiment, we set the worst-case utiliza- 
tion of the t a s k  set to 70%, under maximum speed (i.e., 
S,,, = 1 ) .  The period and specific computation times 
were chosen randomly such that the task set utilization 
is under 70%; the periods were chosen to  be always un- 
der 32,000 time units (assumed to be microseconds). 

Figure 1 results on the perforinance improvement of 
our optimal static assignment of speeds, compared with 
that of the static load-based approach. We can see that, 
in general, when the power coefficient increases, the gain 
is larger, Note that  a savings of approximately 4 times 
can be obtained in case of k > 4 for the bimodal dis- 
tribution over the uniform distribution, and around 25 
% over the static scheme. Realistically, in the examples 
of applications we have studied, the average of k is 4, 
and therefore a gain of up to  approximately 13% can 
be obtained for the bimodal distribution. This means 
that, in a satellite that is scheduled to be in space for 1 
year, by using our solution, the satellite would be able 
to orbit for approximately an  extra 7 weeks. 

The gains for the uniform distribution of power were 
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Figure 1: Energy saviiigs compared with statically set- 
ting processor speed according to system load, load = 
70% 

less inipressive; t.Iiis is because when the consumptioi~ 
of energy by the tasks is e\.enIy-distributed, the opti- 
mal speed set.tings i s  close t,he load-dependent scheoies. 
However. there is still a 5 - i % ,  gaio that, can conie from 
our algorithm. 

energy savings compared With Uniform speed selling 

. .... ~ .... -... 
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Figure 2 :  Energy savings compared with setting proces- 
sor.speed according to syst.em load 

The  results shown above are  for 70% load; we carried 
out  simulations changing the load and observed the fol- 

lowing behavior: load changes do  not affect the results 
significantly, for loads less than 80%. This is because 
the static optimal solution uses the timeline fully and 
this is a schedule produced with infor~nation about  the 
W C E T  of the applications. In Figure 2 ,  we plotted the 
energy savings as a function of the load in the sysleni, 
for t = ? , 4 , 6 .  As we can see, the gains drop signifi- 
cantly for high loads, as described above, but are very 
consiscent for lower values of load. Further, it is clear 
tha t  regardless of the distribution of the power coeffi- 
cients, there is always a gain by our  optimal algorithm. 
T h e  graph shows the trends for energy savings for the 
optimal algorithm. 

5 Conclusion 
We presented an algorithm for power-aware schedul- 
ing with variable voltage scheduling for periodic real- 
time tssks. Our O(nzlogn) algorithm considers different 
power consumption characteristics and shows that  the 
gain over more simplistic power management algorithms 
is significant. Our solution is to  formalize the scheduling 
ptobleni as a nonlinear optimization problem and show 
tha t  a t.ask T, can run a t  a constant speed Si a t  every 
inst,ance without hurting optimality. Our preliminary 
simolat,ion results show that the more difference there 
is ii i  power consumption among t,asks in a system, the 
1110re the syst,em can profit from optimal power manage- 
ment. Our iirotivatiiig examples come primarily from 
sat,ellite and other communication devices that  'require 
batteries with long lives, impacting not only the lifetime 
of t,he device, but also the quality of results generated 
by these devices. We also proved that  the EDF (Ear- 
liest Deadline First) scheduling policy can be used: t o  
obtain a feasible schedule with the optimal speed values 
computed by our algorithm. 

Fhture work Although t,echnological advances are  
rapidly making the adjustment. of CPU speed in, a 
continuous spect,rum a reality 16, 151, some systems 
are still designed with a finite (2 to 4)  voltage/speed 
levels'. These values are chosen as specific points on 
the powerlspeed curve. Hence, although in principle we 
may again apply our continuous solution to find optimal 
Si values, t,hese may not correspond to any of the speed 
levels available on the system. However, i t  is easy to  
prove tha t  we can achieve Si (in fact, any desired Si)  
with at most one voltage/speed switch during the exe- 

'The Crusoe processor from Transmeta has the ability to set 
the CPU speed from 2OOMHz to 666MHz, which falls between 
these two ends of the wxctrum. 
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cution of any given instance. This issue is subject of an [ I l l  Intel, Microsoft, and Toshiba. Advanced Config- 
upcoming paper. uration and Power 

hfanagenient Interface (ACPI) Specificat.ion, 1999. 
www.intel.com/ial/Wfhl/design/pmdt/acpi~lesc.htm. 
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