
Determining Optimal Processor Speeds for Periodic
Real-Time Tasks with Different Power Characteristics*

Hakan Aydin, Rami Melhem, Daniel Moss6
Computer Science Department

University of Pittsburgh
Pittsburgh, PA 15260

aydin, melhem, mosse@cs.pitt.edu

Abstract
In this paper, we provide an efficient solution for peri-
odic real-time tasks with (potentially) different power
consumption characteristics. We show that, a task T,
can run a t a constant speed 5';. at every instance without
hurting optimality. We sketch an O(n2 log n) algorithm
to compute the optimal S;. values. We also prove that
the EDF (Earliest Deadline First) scheduling policy can
be used to obtain a feasible schedule with these optimal
speed values.

1 Introduction
With the advent of portable and hand-held coinput-
ing/communicat ion systems, power consumption has re-
cently become a critical issue in system design. Es-
tended battery life requirements in devices such as lap-
top computers, PCS telephones and other mobile em-
bedded systems illustrate the need for efficient power-
aware design and dynamic power monitoring techniques.
Solar- and nuclear-powered systems, such as satellites
and the MARS rover, also require serious power man-
agement considerat ions.

Nonetheless, in the last decade, the research coni-
niunity has addressed the low power system design
problems with a multi-dimensional effort by introduc-
ing techniques involving VLSI/IC design, algorithm and
compiler transformations, use of hierarchical memory
systems and application specific modules, among others.
For a detailed survey, the reader is referred to [16] and

'This work has been supported by the Defense Advanced Re-
search Projects Agency through the PARTS (Power-Aware Real-
Time Systems) project under Contract F33615-00-C-1736

t\Vork done while this author was visiting the Informa-
tion Sciences and Telecommunications Department, University of
Pittsburgh

225
0-7695-1221-6/01 $10.00 0 2001 IEEE

Pedro Mejia-Alvarezt
CINVESTAV-IPN. Seccih de Computacibn

AV. I.P.N. 2508, Zacatenco.
MGxico, DF. 07300

pmej ia@ cs. cinves t av.mx

[7]. Such on-going research has important implications
for real-time systems design, simply because most of the
applications running on power-limited systems impose
inherently temporal constraints on the response time
(such as real-time communication and control tasks).

Hardware and software manufacturers have agreed to
introduce standards such as the ACPI (Advanced COP
figuration and Power Interface) [I11 for power manage-
ment of laptop computers that allows several modes of
operation, turning off some parts of the computer (e.g.,
t,he disk) after it preset period of inactivity. This sim-
ple predictive system shutdown technique [18] is usually
used to turn off the power supply when the device is (and
likely to stay) in idle mode for a considerable amount,
of time. However, due to the convex dependence be-
tween the supply voltcage and the power consumption,
t,his technique remains sub-optima.1, even for a system
with perfect, knowledge of idle intervals. In other words,
since a reduction in the supply voltage corresponds to
a quadrat,ic or cubic savings in energy [2O, IO], the 0-1
voltage supply t,echnique is clearly sub-optimal.

On the other hand, the variable voltage scheduling
framework, which involves dynamically adjusting the
voltage and frequency (hence the CPU speed), has re-
cently become a major research area. This is perhaps
the scheme used by Transmeta, in their new proprietary
Crusoe processor: as far as we can gather, t,heir ap-
proach takes advantage of past history on the rate of
CPU activity to predict the future setting of the CPU
speeds, for general purpose computing.

Processors operating a t a range of voltages and fre-
quencies are already available [IO]. They are able to
adjust their supply voltage, using a fine step, accord-
ing to the required frequency. For such processors, the
various voltages yield different execution delays, speeds,
and hence different energy consumptions. The ability
tBo decrease the speed of the processor allows the system

mailto:mosse@cs.pitt.edu

t o reduce its power consumption.
In the realm of real-time systems, variable voltage

scheduling focuses on minimizing energy Consumption
of the system, while still meeting the deadlines. The
seminal work by Yao et. a1 [20] provided a static
off-line scheduling algorithm, assuming aperiodic tasks
and worst-case execution times. Heuristics for on-line
scheduling of aperiodic tasks while not hurting the fea-
sibility of off-line periodic requests are proposed in [9].
Non-preemptive power aware scheduling is investigated
in [$I. Concentrating on a periodic task set with identi-
cal periods, the effects of having a n upper bound on the
voltage change rate are examined in [lo], along with a
heuristic to solve the problem.

Recent work in variable voltage scheduling includes
the exploitation of idle intervals by slowing down the
processor whenever there is a single task eligible for exe-
cution and its worst-case completion t ime is earlier than
the first future arrival [17]. Although this One Task Ex-
tension technique was originally proposed in the context
of Rate Monotonic Scheduling, i t is easy t o see that the
idea can be applied to any periodic scheduling discipline.
Cyclic and EDF scheduling of periodic hard real-time
tasks on systems with two (discrete) voltage levels, in-
cluding dynamic energy reclaiming heuristics have been
investigated in [12].

1.1 Variable Voltage Scheduling F'rame-
work

An important component of power-aware real-time sys-
tems is t o develop an efficient solution to the variable
voltage scheduling. This is because, as mentioned above,
simply committing to the maximum CPU speed and
(predictively) shutting down the processor during idle
intervals, despite its simplicity, yields sub-optimal re-
sults with respect to power consumption, in view of the
convex power/speed relation. Since real-time systems
are predictable (for example, advance knowledge of the
worst case execution time of tasks is a necessary condi-
tion to guarantee feasibility), we can use such knowledge
to produce a static (off-line) solution to conipute the op-
timal speed for each task, assuming worst-case workload
for each arrival.

Our target system is one in which the actual run-time
of applications, under a given CPU speed, exhibits small
t o no variations and is most often equal t o the worst-case
execution time (WCET) of the task. Examples of these
applications are often encountered in embedded satellite
systems, such as image acquisition and image process-
ing, in which the size of images is the determining factor
of the WCET. Low-orbit satellites processing temporal

da ta (e.g., audio packets) in multicast schemes are also
excellent candidates for power-minimization while guar-
anteeing deadlines. Thus, with the help of a static as-
signment of the time/speed of each application, one can
adjust (reduce) the speed of other tasks to take benefit
of battery power. Clearly, care must be taken not to
cause any deadlines to be missed.

1.2 Task-level Energy Minimization
The power consumption of an on-chip system is a
strictly increasing convex function of the supply voltage
Vdd, but its exact form depends on the technology[l0].
For example, the dominant component of energy con-
sumption in widely popular CMOS technology is the
dynamic power dissipation Pd, which is given by:

where Cej is the effective switched capacitance and f
is the frequency of the clock. The value of Cej de-
pends on two factors; namely, the capacitance C being
chargedldischarged and the activity weight C Y , a mea-
sure (or probability) of the actual switching activity:

Cef = a . C (2)

Changing supply voltage results in increased circuit
delay, which is computed by,

(3)

where k is a constant, and & is the threshold volt-
age (i.e., the minimum voltage that can be supplied
to the processor allowing full and correct functional-
ity). According to [lo] the time overhead associated
with voltage switching significant in the order of 100s
to 10000s of instructions in modern microprocessors.
Fortunately, the computation itself can continue dur-
ing the voltage change period. Froin Equations (1) and
(3) , i t is easy to see that one can reduce the power
(and energy) consumed a t the expense of increased de-
lay (reduced speed). However, Equation (3) indicates
a roughly linear reduction in speed while Equation (1)
hints to quadratic gains in power savings with the de-
crease of V d d . While exploiting this power/speed rela-
tion by dynamically adjusting the voltage and frequency,
variable voltage scheduling research so far has almost
invariably disregarded possible variations in the effec-
tive switched capacitance C,f by assuming it t o be uni-
form throughout the operation, and especially, indepen-
dent of the running task. The immediate iniplication of
this assumption is to have identical power consumption

226

functions for all the tasks, which largely simplifies the
mathematical formulation, while impeding higher power
savings, as we argue below.

In fact, as Equation (2) indicates, Cef is proportional
t o the actual switching weight a, which represents the
type of activities of the running task. Low-energy soft-
ware, microarchitecture and compiler optimization re-
search communities have already identified the largely
variable relation between the characteristics of the code
and the power dissipation. The power dissipation is de-
pendent on the nature of the running software: the local-
ity of reference exhibited, the frequency of bus/memory
requests, the chip units on active use such as floating
point unit(FPU) or digital signal processor(DSP), even
the da ta structure choices affect the switching frequency
in integrated circuits, hence the parameter Q [14].

Finally, it is highly likely and desirable that aggressive
low power techniques a t the circuit, microarchitecture,
compiler and OS/scheduler levels are to be integrated
in a common framework, which points to the necessity
of considering (potentially) different power dissipation
functions for the active tasks. For instance, dynamically
stopping the clock fed into modules such as FPU, DSP
or application specific co-processor which are not used
by the running task, is a powerful system-level energy
management technique [19], resulting naturally in dif-
ferent switching activities for different tasks. Recently,
tasks with different power functions have been explored
in [13]; that work proposes an empirical way to carry
out scheduling which takes into consideration the power
and criticality of ready tasks. The authors base their ex-
perimental results on the measurements obtained from
[5], which measures the different power consumptions of
tasks in a Palm Pilot Professional.

1.3 Contribution
In this paper, we address variable voltage scheduling
of periodic real-time tasks. Our contribution is to pro-
vide an efficient solution for tasks with (potentially) dif-
ferent power consumption characteristics. Examples of
systems that justify the use of different power consump-
tion characteristics are those in which: a) some tasks
will be larger than others and therefore use more of the
memory system in addition to the cache; b) some tasks
will use the floating point unit more than others; c) some
will ship the task to specialized, low-power DSPs.

We note that accounting for different power dissi-
pation functions a t the task level is an important yet
largely ignored issue. Therefore, our solution includes
different power functions for each task. We formalize the
scheduling problem as a nonlinear optimization problem

and show that a task T, can run at a constant speed Si
a t every instance without hurting optimality. We sketch
an O (n 2 logn) algorithm to compute the optimal Si val-
ues. We also prove that the EDF (Earliest Deadline
First) scheduling policy can be used to obtain a feasible
schedule with these optimal speed values.

2 System Model
We consider a set T = {TI,. . . , T,} of n periodic real-
time tasks. The period of T, is denoted by Pi, which is
also equal to the deadline of the current invocation. We
refer to the j t h invocation of task 7;: as T , j . All tasks
are assumed to be independent and ready a t t = 0.

Given a CPU speed determined by a volt-
age/frequency pair, the worst-case workload is rep-
resented by the traditional worst-case execution t,ime
(WCET) value. Note that, however, for variable voltage
scheduling framework where the actual execution time
is dependent on the CPU speed, the worst-case num-
ber of required CPU cycles of the workload is a more
appropriate measure.

We denote the number of processor cycles required by
7;: in the worst-case by Ci. Note that , under a constant
speed Si (given in cycles per second), the execution time
of t.he task is t ; = 5. A schedule of periodic tasks is
feasible if each task T, is assigned a t least C; CPU cy-
cles before its deadline a t every invocation. We assume
that the CPU speed can be changed between a minimum
speed ,",in (corresponding to a minimum supply volt-
age level necessary to keep the system functional) and
a maximum speed S,,,, . Without loss of generality, we
assume 0 5 Smin 5 S,,, = 1; that is, we normalize the
speed values with respect to S,,,,.

The speed S(t) of the processor a t time 2 , can be dy-
namically varied by adjusting the supply voltage and
the clock frequency. In case that there is an imposing
bound on the rate of voltage change, the voltage change
overhead can be incorporated in the worst-case work-
load of each task. The power consumption of the task
T, is given by gi (S) , assumed to be a strictly increas-
ing convex function, specifically a polynomial of a t least
second degree.

If the task Ti occupies the processor during the time
interval [t l , t g] , then the energy consumed during this
interval is E(t1,tZ) = J t y g ; (S (t)) d t . The total energy
consumed in the system up t o t = t 2 is therefore E(0, t 2) .

Finally, a schedule is power-optimal if it is feasible and
the total energy consumption E(0, P) is minimal, where
P is the Least Common Multiple of PI . . . P,. Note
that it is necessary and sufficient t o minimize the energy

I 227

consumption during P , since the schedule repeats itself
after each P time units.

3 Optimal Static Solution

In this section, we investigate the static optimal solution
to the variable voltage scheduling problem, assuming
that each task presents its worst-case workload to the
processor a t every instance. Slowing down the CPU to
match the exact workload of the system is an attractive
solution. For example, if loud = c (C i / P i) = 0.6 (under
S,,,), the speed of the processor will be set to 0.6 for
all tasks. This achieves a uniform speed, and allows for
a very good result with respect to energy savings. The
following example shows this approach in more detail.

Consider a set with two tasks, TI has PI = 100, C1 =
40, and gl(S) = 3S3, while T2 has P2 = 200, C2 = 40
and gZ(S) = S3. (Note that , although in this example
we consider the function g to be a polynomial of degree
3, other examples can be easily constructed with lower-
degree power functions, to demonstrate the same point.)
Note that , under S,,,, the utilization of the set is 0.6.
Since the energy consumed by task i executing continu-
ously in interval of time I is I .si($), the total energy
consumed during the least common multiple of the task
periods is P.(g1&+92&) = P-(3S: g + S : 2) =
35'; 2C1 + Sg C'z. This is because E is the number of
instances of task i within the least common multiple
(LCM) of all task periods, and 2 is the length of each
instance.

The trivial approach would be to use always the maxi-
inum speed s,,, = 1 and shutdown the processor when-
ever idle (favoring this scheme, assume that idle proces-
sors consume no energy). This would give a total energy
consumption of 280. .4lternatively, using the "uniform
slow-down" method to fully utilize the CPU time avail-
able, we would set S1 = S2 = 0.6, yielding total energy
consumption of 101. These are significant savings, which
can be improved upon, as shown below.

An optimal algorithm may have more complex deci-
sions to make. To start with, we observe that given a
task worst case CPU requirement Ci and the time t i j as-
signed by the scheduler (we make no assumption about
the scheduling discipline) for executing T, for the j t h
invocation, the optimal speed assignment for this invo-
cation is Sij = 5. When one considers preemptions,
the nature of this formula does not change: let instance
Tij run (with possible preemptions) during time inter-
vals [t l , t 2] , [t 3 , t 4] , . . . , [tm--l, t , , ,]; we can safely commit

to a constant speed S;j given by:

J;; S(t)dt + s,; S(t)dt + * . . + S(t)dt s.. -
(t 2 - t l) + (t 4 - t 3) + * - + (tm - L - 1)

' 3 -

during the entire lifetime of Sij. By doing so, we achieve
a minimal amount of energy consumption: this follows
from the convex nature of power (energy) / speed re-
lation. However, the (potentially) non-identical power
consumption functions and the feasibility requirement
prevent us from reaching further conclusions a t this mo-
ment (e.g., the speed settings for each invocation could
be different or the speed of processor for all tasks could
be the same).

Since the speed Sij of an instance is constant through-
out its execution, the energy consumed by xj (under the
worst-case workload Ci), or Eij is simply g i (S i j) . t i j =
gi(Sij)-$$ = Ei(Sij) . We note that Ei(Sij) is astrictly
increasing convex function, since g i (S i j) is assumed to
be a polynomial of a t least second degree. At this point,
we are ready to state the nonlinear optimization formu-
lation of the variable voltage scheduling problem, which
we denote by POW-OPT:

i=l j = 1
(4)

'(5)

S,,,, LS,, 5 S,,,, i E. [I, n]., j E [I, E] 6
A feasible schedule exists with { S I 3 } [i']

Above, the expression (4) indicates our aim to min-
imize the sum of energy consumptions over all the in-
stances of all the tasks, during the LCM P . Recall that ,
given a number of cycles C, to execute under speed S,, ,
the execution time of a task z3 is t,, = 5. Thus,
the constraint (5) merely states that the total proces-
sor demand during the LCM P should not exceed the
available computing capacity, which is a necessary (but
not sufficient) condition for schedulability. Further, the
constraint set (6) encodes the fact that it is only natu-
ral to have lower and upper bounds on the CPU speed,
imposed by the technology in use. Finally, we have to
make sure that there exists a t least one feasible sched-
ule with S,, values, as required by constraint (7). Note
that we have deliberately omitted the scheduling policy
above: it need not and cannot be specified a t this point.

> P , or equivalently, if
:la, > 1, there is no solution to POW-OPT. In

other words, we should have a t least one feasible sched-
ule by running all the task instances a t S,,,. Hence,

Note that , if Erxl

228

hereafter, we assume that Cy=l p,,z;az 5 1 and there
exists at least one feasible schedule.

Theorem 1 (Equal speeds for all instances)
Given an instance of Problem P O W-OPT, there exists
an optimal solution where the speed of a task Ti is con-
stant at every instance, that is,

Sij = Sik = Si 1 5 j 5 k 5 E.
Proof: Informally, the theorem can be justified by

observing that committing to a constant Si value for all
instances of Ti hurts neither feasibility nor optimality. A
set of periodic tasks with constant worst-case execution
times, can be scheduled as long as the total utilization
is less than 1, that is as long as the constraint (5) is
satisfied. On the other hand the objective function (4) is
also minimized by this choice, since the convexity favors
identical execution times in the optimal solution.

To obtain a formal proof, one should observe that
after replacing Sij by and making an initial alloca-
tion of 2i,min = e (lower bound on execution time)
t o each task T,, &!I!: can easily obtain another convex
minimization (concave maximization) problem, which
is analogous t o the one occurring in the Reward-Based
Scheduling Problem [l]. Tha t work formally proves the
optimality of identical service times/identical speed per

The result of the previous theorem says that, for a
particular task, all instances will execute for the same
amount of time. This transforms the problem into a
periodic real-time model, where the utilization of a task
is defined by the ratio g. In this case, it is clear that
the following corollary holds.

Corollary 1 When used along with the optimal Si as-
signments, any periodic hard real-time policy which can
fully utilize the processor (e.g., EDF, LLF), can be used
to obtain a feasible schedule.

instance given analogous constraints. 0

The above theorem and corollary guide us in the de-
velopment of a solution for problem POW-OPT. Before
we present the solution, we note that once we commit
to identical Si values a t the task-level, we obtain the
following optimization problem:

n

i = l
minimize g E ; (S i) (8)

subject to 2 < P
p, st - (9)

Smin 5 Si 5 S,,, i = 1 , . . . , n (10)

Replacing Si above by 2, we transform the func-
tion E. Since Ci is a characteristic of task i, &(Si) =

E;(2) = E,'(ti) allowing us t o re-write the optimization
problem as:

where l i = s,,, and ui = (i = 1. . .n) are the
lower and upper bounds, respectively. Finally, substi-
tuting 2; + li for ti we get the optimization problem:

i=l
n

i=l
subject t o z g(ti + l i) 5 P (15)

O < t : < ~ i - l i i x l , . . . , ~ ~ (16)

which is in fact an instance of the concave maximization
(convex minimization) problem OPT-LU, for which an
optimal O(n2 alogn) algorithm has been provided in [l].

Summary of algorithm, derived from [l] .41go-
rithm OPT-LU first notes that the optimal results are
when relation (15) is an equality, since the other cases
can be either dismissed or improved to comply with the
equality constraint. Second, with inequality constraints,
we solve this optimization problem using Lagrangian
and auxiliary techniques complying with [3, 41.

Then, we address the problem that considers only the
equality constraints without the inequality constraints
(this problem is denoted by OPT). I t is possible to find
the solution of O P T , by using the solutions from La-
grangian. For many simple power functions, closed for-
mulas can be obtained; in general, the solution can be
obtained in time O (n) [l].

The solution proceeds by considering only the equal-
ity and lower bound constraints (call this the OPT-L
problem). It invokes the solution t o OPT, checks the in-
equalities (constraints), sets t,he times assigned to tasks
that violate the constraints t o zero, and re-invoke OPT
for the remaining tasks. Although the number of in-
vocations is bounded by n, we use a binary-search like
technique that makes the complexity of the procedure
O (n Slogn).

If no solution is found that complies with lower
bounds, then there is no solution for our problem. On
the other hand, if a solution is found for OPT-L and
the upper-bounds are not violated, we are done. If the
upper-bounds are violated, partial adjustments are done

229

in the solution (a t least one variable is adjusted) and
the problem OPT-L is invoked again. Since there is a t
least one adjustment per iteration, at the end of O (n)
iterations the procedure is done. Since the complexity
of OPT-L is O (n . l o g n) , the complexity of OPT-LU is
O(n” . logn) .

Returning to the example given above, our procedure
will set SI = 0.538 aiid S, = 0.776, which are optimal
speed assignments. This will yield a total energy con-
sumption of 93 units for the exainple task set. Clearly,
this is only an example, showing some of the savings
that could be achieved by our optimal algorithm. Be-
low we present preliminary simulation results to indicate
the type of savings we can obtain with our algorithm.

4 Experiment Results
We implemented a simulator to assess the performance
of the algorithm developed here. The metric used
was power savings over the static power management
scheme, which slows down the processor proportionally
to the load imposed on the system. This conservative
and fast scheme only uses the WCET and deadline infor-
mation and distributes the slack proport,ionally among
all the t,asks in t,he syst.eni, prior to run time. In other
words, each task is executed with speed Si = load,
where load = %. For example, if the load on the sys-
tem is 80%, the speed of t.he processor is set to 0.8 uni-
formly for all tasks. This conservative scheme is based
on the principle t.hat in the convex optimization problem
given by (8), (9) aiid (IO), the optimal solution consists
in assigning equal speed values for each task, in the case
that all objective functions are identical. That approach
guarantees also that all tasks finish before their dead-
lines, but is suboptimal in our settings where we provi-
sion for nowidentical power consumption functions.

We created a synthetic task set with 30 tasks, and as-
sociated power functions with each of these tasks. The
power functions are of the form kS3, where k is a pa-
rameter of the siniulat,or. To cover a spectrum of the
power function, we looked a t the following two cases:

0 Uniform Distribution, where the coefficient of
the power funct,ions of the tasks are distributed
uniformly bebween 1 and k . In the experiments
k E [1,8]; in other words, the power functions are
of the form kS3, where k varies uniformly between
1 and 8.

0 Bimodal distribution, represents the case in
which there are two types of tasks in the system:

those that consume little power and those that con-
sume much power. More specifically, in our graphs,
the bimodal distribution is created such that 60%
of the tasks have a power function coefficient value
of 1, while the remaining 40% have a value of k . In
other words, if k = 4, 60% of the power functions
are S3 and 40% are of the form 4S3.

The use of the bimodal distribution for power func-
tions comes from applications in the embedded device
arena. For example, consider a satellite participating as
a multicast router for multimedia sessions: some chan-
nels have more stringent timing constraints while others
have less compute-intensive traffic. For example, video
channels may have to send much more da ta in the same
amount of time than the audio channels, therefore re-
quiring special hardware to compress the da ta captured.
This would increase the power consumption of the video
applications considerably. Another application is when
the underlying transport technology is an ad hoc net-
work, in which location of satellites may change with
time. In this case, if multicast groups follow a bimodal
distrihution [?I, some groups are localized (requiring
small amounts of energy) while other groups have to in-
crease the power of the transmitter to reach satellites a t
farther locations. In general purpose computingsystems
implemented in small devices, this bimodal distribution
can be seen when some tasks are small enough to fit on
the L1 cache and do not need any external devices; in
this case, their coefficient is 1. But if they d o not follow
this type of restriction, their coefficient is k .

For the first experiment, we set the worst-case utiliza-
tion of the t a s k set to 70%, under maximum speed (i.e.,
S,,, = 1) . The period and specific computation times
were chosen randomly such that the task set utilization
is under 70%; the periods were chosen to be always un-
der 32,000 time units (assumed to be microseconds).

Figure 1 results on the perforinance improvement of
our optimal static assignment of speeds, compared with
that of the static load-based approach. We can see that,
in general, when the power coefficient increases, the gain
is larger, Note that a savings of approximately 4 times
can be obtained in case of k > 4 for the bimodal dis-
tribution over the uniform distribution, and around 25
% over the static scheme. Realistically, in the examples
of applications we have studied, the average of k is 4,
and therefore a gain of up to approximately 13% can
be obtained for the bimodal distribution. This means
that, in a satellite that is scheduled to be in space for 1
year, by using our solution, the satellite would be able
to orbit for approximately an extra 7 weeks.

The gains for the uniform distribution of power were

230

Figure 1: Energy saviiigs compared with statically set-
ting processor speed according to system load, load =
70%

less inipressive; t.Iiis is because when the consumptioi~
of energy by the tasks is e\.enIy-distributed, the opti-
mal speed set.tings i s close t,he load-dependent scheoies.
However. there is still a 5 - i % , gaio that, can conie from
our algorithm.

energy savings compared With Uniform speed selling

. ~ -...

. . . .

20 30 40 SO 60 70 SO 90 100
bad (% 01 CPU utilizatin)

Figure 2 : Energy savings compared with setting proces-
sor.speed according to syst.em load

The results shown above are for 70% load; we carried
out simulations changing the load and observed the fol-

lowing behavior: load changes do not affect the results
significantly, for loads less than 80%. This is because
the static optimal solution uses the timeline fully and
this is a schedule produced with infor~nation about the
W C E T of the applications. In Figure 2 , we plotted the
energy savings as a function of the load in the sysleni,
for t = ? , 4 , 6 . As we can see, the gains drop signifi-
cantly for high loads, as described above, but are very
consiscent for lower values of load. Further, it is clear
tha t regardless of the distribution of the power coeffi-
cients, there is always a gain by our optimal algorithm.
T h e graph shows the trends for energy savings for the
optimal algorithm.

5 Conclusion
We presented an algorithm for power-aware schedul-
ing with variable voltage scheduling for periodic real-
time tssks. Our O(nzlogn) algorithm considers different
power consumption characteristics and shows that the
gain over more simplistic power management algorithms
is significant. Our solution is to formalize the scheduling
ptobleni as a nonlinear optimization problem and show
tha t a t.ask T, can run a t a constant speed Si a t every
inst,ance without hurting optimality. Our preliminary
simolat,ion results show that the more difference there
is ii i power consumption among t,asks in a system, the
1110re the syst,em can profit from optimal power manage-
ment. Our iirotivatiiig examples come primarily from
sat,ellite and other communication devices that 'require
batteries with long lives, impacting not only the lifetime
of t,he device, but also the quality of results generated
by these devices. We also proved that the EDF (Ear-
liest Deadline First) scheduling policy can be used: t o
obtain a feasible schedule with the optimal speed values
computed by our algorithm.

Fhture work Although t,echnological advances are
rapidly making the adjustment. of CPU speed in, a
continuous spect,rum a reality 16, 151, some systems
are still designed with a finite (2 to 4) voltage/speed
levels'. These values are chosen as specific points on
the powerlspeed curve. Hence, although in principle we
may again apply our continuous solution to find optimal
Si values, t,hese may not correspond to any of the speed
levels available on the system. However, i t is easy to
prove tha t we can achieve Si (in fact, any desired Si)
with at most one voltage/speed switch during the exe-

'The Crusoe processor from Transmeta has the ability to set
the CPU speed from 2OOMHz to 666MHz, which falls between
these two ends of the wxctrum.

231

cution of any given instance. This issue is subject of an [I l l Intel, Microsoft, and Toshiba. Advanced Config-
upcoming paper. uration and Power

hfanagenient Interface (ACPI) Specificat.ion, 1999.
www.intel.com/ial/Wfhl/design/pmdt/acpi~lesc.htm.

1121 C. hl. Iirishna and Y. H. Lee. Voltace Clock Scal- References
H. .4ydin, R. Melliein, D. Moss6 and P.M. Al-
varez. Optimal Reward-Based Scheduling of Pe-
riodic Real-Time Tasks. In Proceedings of 20th
IEEE Real-Time Systems Symposium (RTSS’99),
Phoenix, Deceniber’l999.

Kenneth Birman, Mark Hayden, Oznur Ozkasap.
Zhen Xiao, Mihai Budiu and Yaron Minsky. Bi-
modal Multicast. ACM Transactions on Computer
Systems, 17(2), pp 41-88, May 1999.

J. I<. Dey, J . Kurose, D. Towsley, C.M. Iirishna and
M. Girkar. Efficient On-Line Processor Scheduling
for a Class of IRIS (Increasing Reward with In-
creasing Service) Real-Time Tasks. Proceedings of
ACM SIGMETRICS Conference on A4easurement
and Modeling of Computer Systems. May 1993.

J. K. Dey, J. Kurose and D. Towsley. On-Line
Scheduling Policies for a class of IRIS (Increasing
Reward with Increasing Service) Real-Time Tasks.
IEEE Transactions on Computers 45(7):80?-813,
July 1996.

C. Ellis. The case for higher-level power manage-
ment. In IEEE 7th Workshop on Hot Topics in Op-
erating Systems (HotOS- VIII. pp. 162-167, 1999.

V. Gutnik and A. Chandrakasan. An Efficient Con-
troller for Variable Supply Voltage Low Power Pro-
cessing. Symposium on VLSI Circuits, pp.158-159,
1996.

P. J . M. Havingaand G. J. M. Smith. Design Tech-
niques for Low power systems. Journal of Systems
Architecture. Vol. 46:1, 2000

1. Hong, D. Kirovski, G. Q u , M. Potkonjak and M.
Srivastava. Power optimization of variable voltage
core-based systems. In Design Automation Confer-
ence, 1998.

. . -
ing Adaptive Sclieduling Techniques for Low Power
i n Hard Real-Time Systems. In Proceedings oJ the
Gth IEEE Real-Time Techtlology arid .4pplicalions
Symposium (HTMS’OO), Washington D.C., May
2000.

[I31 T. M a and I<. Sliirr. A User-Custoniizable Energy-
Adaptive Combined Static/Dynaniic Scheduler for
Mobile Applicatioiis. In Proceedings of 51th IEEE
Real-Time Systems Symposium (RTSS’OO), pp 227-
236, 2000.

[I41 H. Meht,a, R. M. Owens, M:J. Irwin, R. Chen and
D. Ghosh. Techniques for low Energy Software. In
Proceedings of the 1997 International Symposinm
on Low Power Electronics. August, 1997. Monterey.
CA.

(151 W. Nanigoang, M. Yu and T . Meg. A High
Efficiency Variable-Voltage CMOS Dynamic DC-
DC Switching regulator. IEEE International Solid-
State Circuits Conference. pp.380-391

[I61 M. Pedrani. Power Minimization i n IC Design:
Principles and Applicat,ions. .4 Cdf Tronsactions on
Design Automation of Electronics Systems. 1:l -
pp. 3-56, January 1996.

1171 Y. Shin and I<. Choi. Power Conscious Fixed Pri-
ority Scheduling for Hard Real-Time Systems. I n
Proceedings of the 36th Design Automation C’on-
ference, DAC’99, pp. 134-139.

[18] M. Srivastava, A. P. Chandrakasan and R. W.
Arodersen. Predictive System Shut,down and other
Architectural Techniques for Energy Effcient Pro-
grammable Computation. IEEE Transactions on
VLSI Systems, 4(1): 42-55, 1996.

[I91 G. E. Tellez, A . Farrahi and M. Sarrafzadeh.
Activity-driven clock design for low power circuits.
In Proceedinqs of the IEEE International Confer- - .
ence on Computer Aided Design, 199.5.

[?O] F. Yao, A. Demers and S. Shankar. A Schedul-
ing Model for Reduced CPU Energy. IEEE Annual
Foundations of Computer Science, pp. 374 - 382,
1995.

[9] 1. Hong, M. Potkonjak and M. B. Srivastava. On-
line Scheduling of Hard Real-Time Tasks on Vari-
able Voltage Processor. In Computer-Aided Design
(ICCADJ’96. pp. 653-656.

[lo] I. Hong, G. Qu, M. Potkonjak and M. Srivastava.
Synthesis Techniques for Low-Power Hard Real-
Time Systems on Variable Voltage Processors. In
Proceedings of 19th IEEE Real-Time Systems Sym-
posium (RTSS’SB), Madrid, December 1998.

232

