
A Compiled Accelerator for Biological Cell Signaling
Simulations

John F. Keane
Cell Systems Initiative

University of Washington
Seattle, WA USA

jfkeane@u.washington.edu

Christopher Bradley
Computer Science and Engineering

University of Washington
Seattle, WA USA

bradleyc@cs.washington.edu

Carl Ebeling
Computer Science and Engineering

University of Washington
Seattle, WA USA

ebeling@cs.washington.edu

ABSTRACT
The simulation of large systems of biochemical reactions is a key
part of research into molecular signaling and information
processing in biological cells. However, it can be impractical
because many relevant reactions are modeled as stochastic,
discrete event processes, and the complexity of the computing
task scales with the number of discrete events in a simulation.
Traditionally, such simulations are computed on general purpose
CPUs, and sometimes in networks of such processors. We show
that an alternative algorithm to the conventional approaches based
on the Gillespie algorithm reveals a fine-grained parallel structure
that is amenable to realization in FPGA hardware. A method is
shown for compiling biochemical reaction systems into
corresponding Verilog descriptions of simulators that employ this
alternative algorithm. We describe a preliminary implementation
of such a compiled accelerator that demonstrates the performance
of this approach, achieving an initial performance that is 20 times
faster than a competing general purpose CPU.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-Based Systems],
J.3.a [Life and Medical Sciences]: Biology and genetics

General Terms
Algorithms, Design

Keywords
Biology, cell, reactions, reconfigurable hardware, simulation

1. INTRODUCTION
The prevailing framework for quantitatively describing signaling
processes in biological cells is the system of reaction equations.
A typical reaction equation, as shown in (1), describes a reversible
process in which reactant species 1S and 2S react at rate fk to

form a product 3S , and 3S breaks down into 1S and 2S at rate

rk .

1 2 3

f

r

k
S S S

k
+ (1)

Many simulation platforms1 have been created for computing
simulations of biochemical reaction models. Elementary chemical
kinetics modeled by the law of mass action, as in this example, are
normally described with ordinary differential equations when the
reactants are assumed to be highly concentrated and well mixed.
For the example in (1), the forward reaction would be described
by (2), where “ 1S ”,“ 2S ” and “ 3S ” refer to the concentrations of
those species.

3
1 2f

dS
k S S

dt
= ⋅ ⋅ (2)

When mixing is insufficient to ignore the spatial structure, partial
differential equations are used.

1.1 Modeling with Stochastic Discrete Event
Processes
When chemical concentrations are low, the quantization of
concentration due to the discrete nature of molecules and their
discrete state changes is modeled with whole-number-valued state
variables and memoryless stochastic state changes (i.e., reactions).
The stochastic discrete event process corresponding to the
example in (1) is described by (3),

()1 2 3 1 2
kS S S Poisson k S S+ → = ⋅ ⋅ (3)

where “ 1S ”, “ 2S ” and “ 3S ” refer to the count of each species of
molecule, and k is scaled accordingly. The Poisson rate
parameter, 1 2k S S⋅ ⋅ in this example, is also called the propensity
of the reaction [6]. Insufficient mixing requires the model to
include stochastic diffusion (i.e., random walks).

The complexity of computing simulations of these stochastic
discrete event models is approximately proportional to the number
of discrete events that are simulated. Thus, while small models
(e.g., the reaction in (1), with 100 molecules in the system, where

1Examples include Virtual Cell, BioSpice, Gepasi, E-Cell, Mcell,

StochSim, Karyote, DBSolve, Jarnac, Dynafit, Ingeneue, JSIM,
Stochastica, Cellerator, BioDrive, STOCKS and SigTran

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

FPGA’04, February 22–24, 2004, Monterey, California, USA

Copyright 2004 ACM 1-58113-829-6/04/0002…$5.00.

there may be less than 1000 discrete events over the course of a
simulation) are trivial to compute, whole cell models are
intractable since they are trillions of times larger. For example,
the number of discrete events that occur during the 30 minutes
between cell divisions for E.coli may exceed 1014 [4]. A model
like this would take 30 years to simulate on a single CPU (e.g., a 2
GHz Pentium 4). For models that include spatial extent, the
computing task is substantially larger, since the diffusion
processes dominate the model. Furthermore, multiple simulation
runs are needed to acquire statistics from stochastic models,
making the computing job even larger.

1.2 Existing Algorithms
Simulating a stochastic discrete event reaction system consists of
iterating the following process:

• determine when the next reaction happens

• determine which reaction happens next

• update the quantities of the molecular species according
to the reaction.

Several algorithms have been proposed for accomplishing this for
Markov processes like the reaction system. In Gillespie’s direct
method, the propensity of each reaction is calculated, and the sum
of all propensities is normalized to one. A random number is
used to select from the reactions, where the probability of
selecting a particular reaction is proportional to its propensity. A
second random number is used to determine the time of the next
reaction. Gillespie’s first reaction method draws a random
number for each reaction based on its propensity, then chooses the
one with the smallest time interval to the next reaction. [6]

Gibson’s next reaction method uses a similar strategy to the first
reaction method, computing the time to each of the candidate
next-reactions. This method utilizes the property that the
remaining random numbers are independent and uniformly
distributed after removing the smallest one from each of them and
normalizing (i.e., () ()0 / 1i i iα α α α= − − , where 0α is the
smallest random number in the current iteration, iα is the random
number associated with the thi reaction for the current iteration,
and iα is the random number associated with the thi reaction for
the next iteration). By recycling random numbers from the
previous iteration, this method uses only a single new random
number for each iteration. Employing a priority queue for the
reactions minimizes the other overhead for each iteration. [6]

Gibson’s next reaction method reduces the amount of superfluous
computation to a minimum and would appear to be a good
starting point for a hardware implementation. However, the
algorithm is quite complex and requires a dynamically determined
set of computations to be performed each simulation step. The
complexity of this control along with the heavy use of floating
point arithmetic to compute the reaction probabilities has a heavy
cost in terms of both compute time per reaction event and amount
of hardware. While optimized for execution on a general-purpose

processor, it does not make use of the configurable, fine-grained
computation available in FPGAs.

2. HARDWARE-SUITABLE ALGORITHM
Our objective was to accelerate simulations by using fine-grained
parallelism. By re-examining the problem and being mindful of
the costs of implementing different processing elements in
programmable hardware, we developed a strategy for compiling
reaction system simulator models into programmable logic.
Traditional algorithms use hardware intensive floating point
multiplication and addition to calculate propensities, transform
uniform random numbers into exponential ones, and sort and
scale random numbers. The net effect, however, is to choose the
next reaction, decrement the whole-number-valued reactant
counts, and increment the whole-number-valued product counts.
This simpler description of the reaction process hints at how it
may be amenable to relatively simple processing in programmable
hardware.

2.1 Algorithm
The goal of our algorithm is to reduce the number of clock cycles
per reaction event by reducing the complexity of the computation,
thus allowing fine-grained parallelism to be applied. This is
performed by building separate, simple processors in hardware to
handle each reaction, allowing all of the reactions to be simulated
simultaneously. The key to implementing a parallel system of
processors in FPGAs is to realize the process with simple building
blocks. This is accomplished by performing stochastic arithmetic
on bit streams rather than deterministic arithmetic on larger
numbers. Under this strategy, the computing elements consist
primarily of random number generators, counters, and simple
logic gates. There is no need for traditional arithmetic logic units,
and there are no floating point variables.

The approach used in this solution begins with discretizing the
reaction processes in time, so that discrete events can only happen
at uniformly-spaced discrete instants in time (spaced by t∆). The
Poisson process in (3) is closely approximated by a Bernoulli
random process, (4), for each sufficiently-small discrete time step,

t∆ . The probability of an event at any given discrete time step,
(5), is still governed by the propensity: the product of the reactant
variables and a rate constant.

()1 2 3 1 2
t

kS S S Bernoulli k S S t
∆

+ → = ⋅ ⋅ ⋅ ∆ (4)

1 2 3 1 20 1
k

t

P S S S k S S t
∆

 < + → = ⋅ ⋅ ⋅ ∆
 (5)

We illustrate our method with a second order (2-reactant) system,
however this approach generalizes to higher-order reactions by
including additional reactants in the same manner.

Another important part of our approach is eliminating the explicit
floating-point multiplication of the factors that comprise the
propensities (e.g., 1 2k S S⋅ ⋅), which must occur in the traditional

methods each time an event changes a species count. We also
eliminate the need to sum the propensities after each event, a step
that is necessary in other approaches. We accomplish this by
employing stochastic multiplication, as follows.

A Bernoulli process with probability p can be produced directly
from a Bernoulli distributed random variable, or it can be
generated from the combination (logical “AND”) of a set of
independent Bernoulli processes with rates that multiply to form
p (e.g., 0 1 2p p p p⋅ ⋅ =). Therefore,

1 2 3

k

t

P S S S
∆

 + →
 (6)

is equivalent to some [] [] []0 1 2P P P⋅ ⋅ ⋅i i , where []1P ⋅ is proportional
to 1S , []2P ⋅ is proportional to 2S , and []0P ⋅ is proportional to
k . This allows us to rewrite (5) as (7), where iX are discrete
uniform random variables on { }0,1, , iM… , with i iS M≤ and

0 0k M≤ . { }0 0,k M are chosen after the other iM are chosen to
scale the product of probabilities and satisfy (7).

[] [] []0 0 1 1 2 2 1 2P X k P X S P X S kS S t< ⋅ < ⋅ < = ⋅ ∆ (7)

The masks, iM , are chosen to be powers of 2 so that the required
range of random numbers can be trivially generated by masking a
much larger, fixed length random number. The masks, iM ,
determine upper bounds on the species counts, iS , and on the
(scaled) rate constant, 0k . If any iS becomes larger than its
mask, iM , during a simulation run, the values of iM (and
possibly 0k) must be modified to ensure that i iS M≤ .

In hardware, this product of three probabilities simplifies to the
logical AND of the three Bernoulli random variables, which are
generated by comparators that perform the less-than operations
(Figure 1). Three independent random number generators are
required, one for each species and one for the rate constant 0k ;
however, all of the multiplications and additions are reduced to 3
comparator operations and one 3-input AND operation. As a
result, random numbers are produced from the desired distribution
without explicitly multiplying or adding any parameters.

Note that a system of mass action reactions may be simulated in
parallel, as long as no more than one dependent reaction occurs in
each time step. As many independent reactions may be performed
in a single time step as exist in the system.

,1jX

,1jM ,1j
X

1
S

fires

1SRNG

reg

+

-

,2jX

,2jM ,2j
X

2
S

reg

+

-

,0jX

,0j
X

0
k

+

-

counter

+

-

2Scounter

NScounter

-RNG

RNG

Figure 1. Block diagram of simulation algorithm for
the thj reaction in the system. In this reaction,

1 2
k

NS S S+ → , where additional reactants can be

inserted along the dashed line.

The masks, ,j iM , where j is an index into the set of reactions in
the system, are initialized to the next power of 2 larger than the
corresponding iS . If iS becomes less than ,j iM /2, the mask can
be reduced by a factor of 2, while if iS becomes larger than ,j iM ,
the mask must be increased by a factor of 2. The fastest reaction
in the system then determines the value of ,0jM , corresponding to
the rate constant k, according to the allowable approximation
error.

2.2 Adaptive Time Step
The Bernoulli approximation converges to the appropriate (exact)
Poisson density as the time step becomes arbitrarily small [1].
While a small time step lowers the approximation error, it also
increases the simulation time. The choice of time step determines
a compromise between fidelity and speed. Since the reaction
propensities change according to changes in the species counts in
the system, a time step that is optimal for one system state may no
longer be optimal when the system state changes. That is, if the
reaction rate of the system falls too low, the time step may be
increased, while if it increases to the point that conflicting
reactions occur during a time step, the time step must be
decreased. Therefore, it may be necessary to dynamically update
the time step while the simulation executes, to maintain a
consistent level of performance.

2.3 Discussion and Previous Work
Previous attempts have been made at accelerating memoryless,
stochastic discrete-event systems. In particular, models of basic
memoryless queuing processes have been accelerated in FPGAs
[2, 3, 9, 10]. These queuing processes are either zeroth order
(M/M/1, where the departure rate is independent of how many
customers are in the (non-empty) queue, or first order
(M/M/infinity, where the departure rate is proportional to the
number of customers in the queue). Previous approaches that
accommodated zeroth and first order queuing system models are
not suitable for extending to higher order mass action processes.
First order mass action systems obey the same dynamics as
M/M/infinity queuing systems. However, mass action systems are
more general and may obey higher order behaviors, as shown in
Table 1. In principle, our approach can accommodate any of the
systems shown in Table 1, however our present implementation
was designed to handle 1st, 2nd, and 3rd order reaction systems,
which are the only classes of mass action systems that have ever
been observed [7].

Table 1. Examples of Different System Orders. For
the queuing systems, µ is the (average) service rate per
server, and N is the number of customers in the queue.
For the reactions, A and B are the number of reactants
in the system, k is the forward rate constant of the
reaction, and a and b are number of A and B
molecules, respectively, needed in the reaction.

System Rate Order
M/M/1 (queue) µ, (N>0) 0
M/M/infinity (queue) µN 1
A B (reaction) kA 1
A+B C (reaction) kAB 2
A+B+C D (reaction) kABC 3
AA+bB C (reaction) kAaBb a+b

3. HARDWARE IMPLEMENTATION
Our algorithm is implemented directly in hardware as shown in
Figure 2, using 3 clock cycles to execute each iteration (i.e., one
time step, t∆). Although the structure is the same for all reaction
systems, the number and parameters of each component and their
interconnection are different. That is, each reaction system must
be compiled into the application-specific hardware that simulates
it, as described in the Model Compilation subsection.

The hardware is implemented using three basic components. The
counts of each species in the system are maintained in a set of
registers called the species counters. In the first clock cycle of
each iteration, the reaction event generators decide which
reactions happen during the current time step. In the second clock
cycle, based on the set of reactions that occur, the event monitors
produce a value to add to each species counter and a value to
subtract from each species counter. In the third clock cycle, the

species counters are updated using these increment/decrement
values.

This hardware relies on time step and rate constant dependent
parameters calculated by the host machine. Whenever the time
step needs to be changed, the hardware must halt and request new
parameters from the host.

2Φ

A

B

C

D

E

A+B C

A+B C

C D+E

C D+E

A

B

C

D

E

 Species
Counts

Reaction Event
Generator

Event Monitor/
Integrator

 Species
Counts

1Φ 3Φ3Φ
Figure 2. Block diagram of the simulation algorithm,

shown for the system f

r

k

k
A B C+ , f

r

k

k
C D E+ .

3.1.1 Reaction Event Generator
Each forward and each reverse reaction in the model has a
corresponding reaction module which determines whether that
reaction occurs during a given time step. The reaction module is
parameterized to handle reactions of up to 6 input reactants.

For the reaction 1 2 1

k

N NS S S S ++ + → , the reaction module
generates a Boolean output called “fires” that indicates whether
the reaction happens according to (8). In this equation, each iX
is a 32-bit pseudorandom number, each iS is the species count of
the thi input to the reaction, each iM is a binary mask of the form
2 1n − , and 0k is chosen based on the rate constant and the mask
values.

() ()()
()() ()()

0 0 1 1 1

2 2 2

& & & & &

& & & & & &N N N

fires X k X M S

X M S X M S

= < <

< <

(8)

Assuming that all counts are less than their corresponding masks
(i.e., i iS M≤ for all species), the probability of the reaction
module asserting its fires output is

[] () ()() ()()32
0 1 1 2 22 1 1 .firesP k S M S M= ⋅ + ⋅ + (9)

The host software is responsible for calculating and initializing
the values of 0k and the masks so that for the chosen time step:

[] []
1

2

_

N

fires PP reaction

reaction rate timestep count

count count

= =
⋅ ⋅ ⋅

⋅ ⋅
 (10)

The requirement that i iS M≤ must be checked continuously at
runtime. If this is ever violated, the module asserts a “tooFast”
output to indicate that it can not produce valid outputs with its
current settings. This causes the hardware to halt and interrupt the
host, asking for a smaller time step.

All the random numbers, iX , are 32 bits wide. They are
generated using 167-bit, 2 tap (at 167 and 161) maximal length
linear feedback shift registers (LFSRs) which shift out 16 random
bits per clock cycle, or 48 bits per iteration, only 32 of which are
used. This implementation was chosen because it is both compact
and generates good random numbers. By taking advantage of shift
register look-up tables, Virtex SRL’s, for storage, each random
number generator uses a total of just 33 LUTs and 16 registers.

The quality of the random numbers was examined by testing with
“DIEHARD” [5] and “ENT” [8], two general-purpose random
number test suites. They were also tested indirectly by comparing
the output of the reaction modules for convergence with the
expected firing frequency. The maximal length LFSR of 167 bits
is being shifted by 48 bits per iteration, resulting in a sequence
that is still maximal length (1672 1−), however a minor
consequence is that a shifted copy of the same bit pattern repeats
every 1 48th of the sequence.

3.1.2 Event Handler/Integrator:
For each reaction that occurs, some reactant species are consumed
and some product species are produced. For each species, an
“event handler” module collects the relevant fires signals from the
reaction modules that affect it and produces two binary values,
one to add to the species counter, and one to subtract from it.

“Collisions” occur when more than one reaction tries to consume
the same molecule in the same time step. Collisions are
consequences of how this approach discretizes the reactions (in
time). When two reactions consume the same species in the same
time step, with some non-zero probability they (attempt to)
consume the same copy of that species of molecule. Depending
on the quantity of the species present, this probability ranges from
very small, with negligible effect, to very large, with dire
consequences. In the worst case, the reactions may consume more
of one species than the system contains, leading to negative
counter values. When a collision occurs, the simulation pauses
and waits for the host to decrease the time-step before continuing.
Two rules are implemented to deal with this:

1. If the species counter is less than the number of
decrement signals (i.e., the number of times a species
appears as a reactant in the system of reactions),
collisions are disallowed. This prevents negative species
counts.

2. Where a species has a count of N , a collision is
allowed if there have been no collisions on that species
in the last (approximately) 128 N iterations. This
allows occasional collisions to happen without calling

for a change to the time step. Collisions are permitted
more frequently when the species counter is higher
because the colliding reactions are less likely to be
trying to consume the same instance of the species.

When the module detects a collision that is disallowed, it asserts
its “panic” output. The panic signals from all the event monitors
are OR’ed and used halt execution before the third clock cycle of
the iteration, when the species counters are updated, effectively
aborting the current time step. The host then reduces the time
step, modifies the appropriate mask values and resumes execution.

3.1.3 Species Counters:
Each species count is maintained by a “counter” module. It
comprises a register, two small adders for adding in the increment
and decrement values from the event monitor, and some I/O and
breakpointing logic. The breakpointing logic allows the host to set
an upper or lower bound (but not both) for the counter.

3.1.4 Host Interface
The host interface allows the host to initialize a simulation,
monitor the simulation state and handle requests for changes to
the time step. The interface is based on a simple memory-mapped
access to all of the simulation state, which can be viewed while
the simulation is running.

The simulation contains registers that track the current time and
number of clock cycles. The user can specify breakpoints on
these registers as well as each of the species counters, which
allows the user interface to specify when the simulation should be
halted. Whenever the simulation halts, it raises an interrupt and
sets bits in a status register to indicate the cause. The host can also
halt the simulation arbitrarily by clearing the run bit in the control
register.

The simulation will also halt when exceptional conditions are
encountered:

Too Slow: The hardware will request a longer time step if
reactions happen too infrequently. The host can set two values to
control this, A (average) and M (maximum). At each iteration, a
counter is incremented if no reaction happens. If a reaction does
happen, A is subtracted from the counter. If the result is negative,
it is set to zero. If the counter ever exceeds M , the simulation
halts and requests a longer time step.

Too Fast and Panic: The system halts if any reaction module
asserts a “tooFast” signal, or if any collision handler asserts a
“panic” signal. Both situations call for a decreased time step.

3.1.5 Model Compilation
Reaction system models must be first compiled into the hardware
implementation described in the preceding sections. We have
developed a compiler that reads the model description in SBML
(Systems Biology Markup Language) and generates a Verilog file
comprising the necessary reaction modules, collision modules,
and counter modules, with their Verilog parameters, along with

their interconnections. In addition to the model-specific structure,
the hardware contains the Host interface, generic I/O and
monitoring modules, and the simulation sequencer. We use the
Synplicity and Xilinx synthesis and physical design tools to
compile this Verilog file into a configuration file for the FPGA.

The model compilation takes a matter of seconds, but the
remaining tool chain takes anywhere from a few minutes to over
an hour for large models. However, once a model is compiled, it
can be used with a wide variety of initial conditions since it
depends only on the structure of the model and not on the rate
constants or the initial state.

3.2 Implementation
The algorithm is currently implemented using an Annapolis
Wildcard II2, which is a CardBus3 device containing a Xilinx4
XC2V3000-4 FPGA along with a large memory which is not
currently used.

Host Input/Output (I/O) is carried out with the programmable I/O
(PIO) type functions of the Wildcard. The Wildcard also supports
direct memory access (DMA), but it was not used due to limited
documentation. In the future, DMA can be used to improve
performance.

The host is able to read and/or write all of the important registers
using a random-access memory-mapped addressing scheme. This
is implemented with one bus for addresses and write data, and a
tri-stated bus shared by all modules that respond to reads.

The PIO API for the Wildcard does allow blocks of data to be
read or written. Reading and writing in the largest blocks possible
is currently how we achieve sufficient performance. To take
advantage of these block reads and writes, we have implemented
methods that allow lists of arbitrary addresses to be accessed as if
they were a continuous block..

Registers for species counts are treated specially to allow
concurrent simulation and data monitoring. Each species counter
has a shadow register that is used when reading back the species
counts. A special command causes all of the shadow registers to
simultaneously latch the values of their associated counters. In
this way, the simulation state can be sampled at frequent intervals
and uploaded to the host without stopping the simulation. As
long as the time to upload this data is less than the sampling
interval, data logging can be done without slowing down the
simulation.

2 Annapolis Micro Systems, Inc., 190 Admiral Cochrane Drive,

Suite 130, Annapolis, Maryland 21401 USA
3 Registered trademark of PCMCIA/JEITA.
4 Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124-3400, USA

3.2.1 User Interface
We have implemented a software interface to our simulator that
allows systems biologists using BALSA5, a GUI developed to
allow easy creation and simulation of reaction models, to use our
hardware to accelerate their simulations. Our interface provides
the following functionality:

• Load the hardware configuration file for a model.

• Set the initial species counts.

• Calculate the initial time step and the related reaction
module mask values.

• Start and stop a simulation.

• Set breakpoints based on simulation time or species
count values.

• Set sampling intervals for specific species counts. This
uses the shadow registers to perform automatic logging
of the desired system state.

• Respond to interrupts from the hardware requesting new
time step calculation.

In addition to the model’s state, the hardware provides access to
registers for:

• System status (is the simulation running and what
caused the last interrupt)

• The number of iterations executed

• The number of iterations when reactions took place

• The number of clock cycles wasted while the simulation
was halted waiting for the host (64 bits).

4. RESULTS & COMPARISON
To demonstrate the performance of our simulator, we used the
family of signaling cascade models described in [6] and illustrated
in Figure 3.

1
S

*

2 2
S S→←

*

3 3
S S→←

*

N N
S S→←

Figure 3. Structure of models used for performance
measurements

The measured performance of the hardware simulator is shown in
Table 2. These results are measured using a clock rate of 50MHz.
The achievable clock rate decreases as the number of reactions in
the system is increased: While small reaction models can run at
100 MHz, a full chip with 40 reactions and 60 species can only

5 Cell Systems Initiative at the University of Washington

run at just over 50 MHz. The additional delay is due to the many-
to-many communication between the species counts and the
reaction modules, and the reaction modules and the event
monitors. The clock rate could be increased by pipelining this
communication. We estimate that by adding one more clock cycle
to the iteration and retiming, we could increase the clock rate from
50MHz to 80MHz for a performance increase of 20%.

We quantify the performance of our FPGA based simulator using
an estimate of the average number of reaction events computed

per second. The actual number of events is not captured in the
simulator since multiple events can happen per time step, so the
event rate is estimated based upon the instantaneous reaction
propensities at each logged data point.

The event rate shown in Table 2 represents the “target rate” that
would be achieved if the two sources of overhead in this setup (re-
computing the time step off-chip and, and communication for data
logging) were eliminated.

Table 2. Performance of FPGA-based simulator compared with a software
simulator (SigTran) running the Gibson algorithm on a 2 GHz Pentium 4.

 Model

Species 2 8 16 32 64

Reactions 1 4 8 16 32

Time step changes 7 29 30 26 34

Time steps 3,934 17,079 25,457 32,824 68,480
Simulation time
(microseconds) 236 1,025 1,527 1,969 4,109

Steps/change 562 589 849 1,262 2,014

Busy steps (%) 16 17 24 35 36

Events/step 0.16 0.18 0.28 0.45 0.45

Events/s 2,711,405 3,052,482 4,695,500 7,572,711 7,494,402

Events/s
(2 GHz Pentium 4)6 333,333 160,000 256,410 285,714 320,000

Performance Gain 8.1 19.1 18.3 26.5 23.4

6 Gibson algorithm as implemented in SigTran

The simulator can be in one of three modes: executing the
simulation, updating the time step (with cooperation from the
host), or performing I/O to log the simulation state. As described
previously, the I/O overhead, which currently takes about 70% of
the time, can be eliminated using the shadow registers and
background uploading of data values via DMA. We anticipate
that, in our largest model, 32 model variables could be logged at
least once per 100 reaction events, which seems sufficient for
most usage cases. Although the hardware supports this, the
software interface has not been updated to use it. Ignoring this
I/O overhead leads to the performance reported in Table 2. Of
course, if the data sampling rate is too high, the data upload time
will exceed the simulation time and cause the simulator to wait,
reducing the effective simulation rate.

Eliminating the time step recalculation overhead is more difficult.
The adaptive time step is presently calculated off-chip by the host
computer, which takes a relatively long time due to the
communication latency between the host and the WildCard. The
number of time step changes that are necessary depends upon the
particular model being simulated. Models with large dynamic

changes in reaction propensity (especially oscillatory changes)
have the greatest need for time step changes. For the cascade
models, the average number of reaction events per time step
change, over a simulation run, is included in Table 2. This
corresponds to a change every few hundred microseconds.
Currently, the time step computation and communication takes a
few milliseconds. There are several ways to greatly reduce this
overhead.

First, the computation, which is fairly simple, can be moved into
the FPGA. One option would be to use an embedded processor
that would remove the communication overhead. This would
reduce the overhead from milliseconds to less than 100
microseconds. This can be reduced further by incorporating the
time step calculation into the reaction modules. While this would
increase the cost of the reaction modules, it would reduce the
overhead to a few cycles. It turns out that most recalculations
involve only simple shifts of the mask values and so the increased
cost is modest. More complex recalculations that happen
infrequently can be sent to the host or embedded processor for
handling.

Perhaps the best solution is to cache the mask values for recent
time steps on-chip. Generally, the time step is either doubled or
halved and thus the same time step may be used many times. By
caching values in BlockRAM on the FPGA, the overhead of
recalculation can be avoided and the values simply reloaded from
memory. Although the values must be transferred sequentially, the
overhead can be reduced to a few microseconds. Thus we believe
that relatively straightforward improvements to the simulation will
achieve the “target rate” performance.

The simulation rate of course depends on the model and the
simulation state. The measurements in Table 2 show that for
these models a reaction event occurs every 2-3 time steps, a result
of setting the time step to keep the collision rate below 1%.

Further analysis of how the approximation error depends on the
time step may reveal ways to improve this selection. If a rate of
one reaction event per time step can be achieved for more
complex models on a single FPGA, this would corresponding to a
simulation rate of about 17x106 events per second. In practice,
we have observed peak simulation rates of over 10x106 events per
second, ignoring overhead.

The space requirements for implementing simulators in FPGAs
depend upon the model being simulated. Based upon images that
we compiled for biochemical system models, including the ones
described in Table 2, the estimated space requirements to
implement a model is summarized in Figure 4.

0

20000

40000

60000

80000

100000

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

Species

L
U

T
s

Event Handlers (2:1)
Reaction M odules (2:1)
Species Counters (2:1)
Event Handlers (1:1)
Reaction M odules (1:1)
Species Counters (1:1)
Event Handlers (0.75:1)
Reaction M odules (0.75:1)
Species Counters (0.75:1)
Overhead

Figure 4. Estimated space requirements for a family of models. Each stacked bar corresponds to one model and is composed
of four components: overhead, species counters, reaction modules, and event handlers. For each model size (based on
number of different species, along the horizontal axis), up to three variants are shown: reaction-to-species ratios of 0.75:1,
1:1, and 2:1. Note that there are 28,000 LUTs in a Virtex2-3000 , and 90,000 LUTs in a Virtex2-8000.

5. CONCLUSIONS AND FUTURE WORK
By compiling a biochemical simulation into FPGA hardware, we
have exceeded an order of magnitude improvement in the
computation speed with our initial implementation. Using a
single FPGA keeps the cost and form factor within reach of an
individual user, empowering the modeler to hypothesize models
with much greater interactivity than with traditional approaches.

This accelerator can be useful throughout the modeling cycle,
which typically progresses from highly interactive to batch-
oriented over the course of a modeling project. It is most suitable
for interactive simulation of individual runs (e.g., exploring a

model’s parameter space), however this single-FPGA solution
may also replace clusters of less than 20 PCs for batch operations.
For batch operations, its incremental hardware costs are far less
than for an equivalent PC cluster, and it requires much less space
and power. The number of usage cases that would benefit from
the accelerator will increase as we find ways to reduce the
compilation time and build libraries of models.

Simulations of models of the size that fit on a single FPGA may
run on the order of minutes on a PC, versus seconds using the
accelerator. However, when the same model is run 100 times (to
acquire statistics, since the model is stochastic) and each of those

ensembles is run over 100 sets of parameters (e.g., searching for
optimal values, fitting data, etc.), the whole job may take days or
weeks on a PC. This accelerator reduces that to hours. We are
currently working on further optimizing the implementation to
adapt the time step more quickly and effectively, to increase the
clock rate, and to optimize the interaction with the host. We
estimate an additional factor of 2 to 4 improvement in
performance over the current 20x speedup we are already
observing.

Aside from these optimizations of the basic implementation, the
next step will be to scale-up our solution so that it can handle the
enormous spatial models that are being proposed, which are more
appropriate for describing actual cell signaling processes.
Although we have pursued an alternative algorithm as described
in this paper, we are also investigating how best to implement
Gibson’s method in hardware. That method has too high a cost
for small to moderately-sized reaction systems, however it does
scale better to large systems than the method described here and
so it is likely that some combination of the two methods will
provide the best overall solution.

6. ACKNOWLEDGEMENTS
The authors would like to thank Prof. B. Robert Franza of the
University of Washington Cell Systems Initiative and Prof. Les
Atlas of the UW Department of Electrical Engineering for their
support for this collaboration. We are also grateful to the
numerous other participants in this project: Nolan Clark, Cory
Crawford, Eugene Lam, Paul Loriaux, Angus MacDuffie, Dr.
Michel Pettigrew, Dr. Anamika Sarkar, Avram Wahba, and Kevin
West. This work was supported in part by the UW/CSI, PNNL
Joint Institute on Cell Signaling, the National Science Foundation
REU program, and by research grants and gifts to the UW Cell
Systems Initiative from numerous private individuals, from the

Washington Research Foundation and from the G. Harold & Leila
Y. Mathers Charitable Foundation.

7. REFERENCES
[1] Bertsekas, D. P. and Tsitsiklis, J. N., Introduction to

probability, Belmont, Mass., Athena Scientific, 2002.
[2] Bumble, M., A Parallel Architecture for Non-Deterministic

Discrete Event Simulation, Pennsylvania State University,
2001.

[3] Bumble, M. and Coraor, L., "Implementing parallelism in
random discrete event-driven simulation", in Lecture Notes
in Computer Science 1388, Parallel and Distributed
Processing, Springer, 1998, 418-427.

[4] Endy, D. and Brent, R., "Modelling cellular behaviour",
Nature, vol. 409 Suppl., Jan 18, 2001, 391-5.

[5] Marsaglia, G., "DIEHARD: A Battery of Tests of
Randomness", 1996.

[6] Schwehm, M., Brinkschulte, U., Grosspietsch, K. E.,
Hochberger, C., and Mayr, E. W., "Parallel Stochastic
Simulation of Whole-Cell Models", in Proceedings of
International Conference on Architecture of Computing
Systems. ARCS 2002. Trends in Network and Pervasive
Computing. Workshop Proceedings, 2002, 223-31.

[7] Steinfeld, J. I., Francisco, J. S., and Hase, W. L., Chemical
Kinetics and Dynamics, 2nd ed., Upper Saddle River, N.J.,
Prentice Hall, 1999.

[8] Walker, J., "ENT, A Pseudorandom Number Sequence Test
Program", 1998.

[9] Yamamoto, O., Shibata, K., Kurosawa, H., and Amano, H.,
"A reconfigurable Markov chain simulator for analysis of
parallel systems", in Proceedings of Second Annual IEEE
International Conference on Innovative Systems in Silicon,
1997, 107-116.

[10] Yamamoto, O., Shibata, Y., Kurosawa, H., and Amano, H.,
"A reconfigurable stochastic model simulator for analysis of
parallel systems", in Proceedings of IEEE Symposium on
Field-Programmable Custom Computing Machines, 2000,
Napa Valley, CA USA, 2000, 291-292.

