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ABSTRACT 
The simulation of large systems of biochemical reactions is a key 
part of research into molecular signaling and information 
processing in biological cells.  However, it can be impractical 
because many relevant reactions are modeled as stochastic, 
discrete event processes, and the complexity of the computing 
task scales with the number of discrete events in a simulation.  
Traditionally, such simulations are computed on general purpose 
CPUs, and sometimes in networks of such processors.  We show 
that an alternative algorithm to the conventional approaches based 
on the Gillespie algorithm reveals a fine-grained parallel structure 
that is amenable to realization in FPGA hardware.   A method is 
shown for compiling biochemical reaction systems into 
corresponding Verilog descriptions of simulators that employ this 
alternative algorithm.  We describe a preliminary implementation 
of such a compiled accelerator that demonstrates the performance 
of this approach, achieving an initial performance that is 20 times 
faster than a competing general purpose CPU. 

Categories and Subject Descriptors 
C.3 [Special-purpose and Application-Based Systems], 
J.3.a [Life and Medical Sciences]: Biology and genetics 
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Algorithms, Design 
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1. INTRODUCTION 
The prevailing framework for quantitatively describing signaling 
processes in biological cells is the system of reaction equations.  
A typical reaction equation, as shown in (1), describes a reversible 
process in which reactant species 1S  and 2S react at rate fk  to 

form a product 3S , and 3S breaks down into 1S  and 2S at rate 

rk . 
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Many simulation platforms1 have been created for computing 
simulations of biochemical reaction models.  Elementary chemical 
kinetics modeled by the law of mass action, as in this example, are 
normally described with ordinary differential equations when the 
reactants are assumed to be highly concentrated and well mixed.  
For the example in (1), the forward reaction would be described 
by (2), where “ 1S ”,“ 2S ” and “ 3S ” refer to the concentrations of 
those species. 

3
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When mixing is insufficient to ignore the spatial structure, partial 
differential equations are used. 

1.1 Modeling with Stochastic Discrete Event 
Processes 
When chemical concentrations are low, the quantization of 
concentration due to the discrete nature of molecules and their 
discrete state changes is modeled with whole-number-valued state 
variables and memoryless stochastic state changes (i.e., reactions).  
The stochastic discrete event process corresponding to the 
example in (1) is described by (3), 

( )1 2 3 1 2
kS S S Poisson k S S+ → = ⋅ ⋅  (3) 

where “ 1S ”, “ 2S ” and “ 3S ” refer to the count of each species of 
molecule, and k  is scaled accordingly.  The Poisson rate 
parameter, 1 2k S S⋅ ⋅  in this example, is also called the propensity 
of the reaction [6].  Insufficient mixing requires the model to 
include stochastic diffusion (i.e., random walks). 

The complexity of computing simulations of these stochastic 
discrete event models is approximately proportional to the number 
of discrete events that are simulated.  Thus, while small models 
(e.g., the reaction in (1), with 100 molecules in the system, where 
                                                                 
1Examples include Virtual Cell, BioSpice, Gepasi, E-Cell, Mcell, 
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there may be less than 1000 discrete events over the course of a 
simulation) are trivial to compute, whole cell models are 
intractable since they are trillions of times larger.  For example, 
the number of discrete events that occur during the 30 minutes 
between cell divisions for E.coli may exceed 1014 [4].   A model 
like this would take 30 years to simulate on a single CPU (e.g., a 2 
GHz Pentium 4).  For models that include spatial extent, the 
computing task is substantially larger, since the diffusion 
processes dominate the model.  Furthermore, multiple simulation 
runs are needed to acquire statistics from stochastic models, 
making the computing job even larger. 

1.2 Existing Algorithms 
Simulating a stochastic discrete event reaction system consists of 
iterating the following process: 

• determine when the next reaction happens  

• determine which reaction happens next 

• update the quantities of the molecular species according 
to the reaction. 

Several algorithms have been proposed for accomplishing this for 
Markov processes like the reaction system.  In Gillespie’s direct 
method, the propensity of each reaction is calculated, and the sum 
of all propensities is normalized to one.  A random number is 
used to select from the reactions, where the probability of 
selecting a particular reaction is proportional to its propensity.  A 
second random number is used to determine the time of the next 
reaction.  Gillespie’s first reaction method draws a random 
number for each reaction based on its propensity, then chooses the 
one with the smallest time interval to the next reaction.  [6] 

Gibson’s next reaction method uses a similar strategy to the first 
reaction method, computing the time to each of the candidate 
next-reactions.  This method utilizes the property that the 
remaining random numbers are independent and uniformly 
distributed after removing the smallest one from each of them and 
normalizing  (i.e., ( ) ( )0 / 1i i iα α α α= − − , where 0α  is the 
smallest random number in the current iteration, iα  is the random 
number associated with the thi  reaction for the current iteration, 
and iα  is the random number associated with the thi  reaction for 
the next iteration).  By recycling random numbers from the 
previous iteration, this method uses only a single new random 
number for each iteration.  Employing a priority queue for the 
reactions minimizes the other overhead for each iteration.  [6] 

Gibson’s next reaction method reduces the amount of superfluous 
computation to a minimum and would appear to be a good 
starting point for a hardware implementation.  However, the 
algorithm is quite complex and requires a dynamically determined 
set of computations to be performed each simulation step.  The 
complexity of this control along with the heavy use of floating 
point arithmetic to compute the reaction probabilities has a heavy 
cost in terms of both compute time per reaction event and amount 
of hardware.  While optimized for execution on a general-purpose 

processor, it does not make use of the configurable, fine-grained 
computation available in FPGAs. 

2. HARDWARE-SUITABLE ALGORITHM 
Our objective was to accelerate simulations by using fine-grained 
parallelism.  By re-examining the problem and being mindful of 
the costs of implementing different processing elements in 
programmable hardware, we developed a strategy for compiling 
reaction system simulator models into programmable logic.  
Traditional algorithms use hardware intensive floating point 
multiplication and addition to calculate propensities, transform 
uniform random numbers into exponential ones, and sort and 
scale random numbers.   The net effect, however, is to choose the 
next reaction, decrement the whole-number-valued reactant 
counts, and increment the whole-number-valued product counts.  
This simpler description of the reaction process hints at how it 
may be amenable to relatively simple processing in programmable 
hardware. 

2.1 Algorithm 
The goal of our algorithm is to reduce the number of clock cycles 
per reaction event by reducing the complexity of the computation, 
thus allowing fine-grained parallelism to be applied.  This is 
performed by building separate, simple processors in hardware to 
handle each reaction, allowing all of the reactions to be simulated 
simultaneously.  The key to implementing a parallel system of 
processors in FPGAs is to realize the process with simple building 
blocks.  This is accomplished by performing stochastic arithmetic 
on bit streams rather than deterministic arithmetic on larger 
numbers.  Under this strategy, the computing elements consist 
primarily of random number generators, counters, and simple 
logic gates.  There is no need for traditional arithmetic logic units, 
and there are no floating point variables. 

The approach used in this solution begins with discretizing the 
reaction processes in time, so that discrete events can only happen 
at uniformly-spaced discrete instants in time (spaced by t∆ ).  The 
Poisson process  in (3) is closely approximated by a Bernoulli 
random process, (4), for each sufficiently-small discrete time step, 

t∆ .  The probability of an event at any given discrete time step, 
(5), is still governed by the propensity:  the product of the reactant 
variables and a rate constant.    

( )1 2 3 1 2
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We illustrate our method with a second order (2-reactant) system, 
however this approach generalizes to higher-order reactions by 
including additional reactants in the same manner. 

Another important part of our approach is eliminating the explicit 
floating-point multiplication of the factors that comprise the 
propensities (e.g., 1 2k S S⋅ ⋅ ), which must occur in the traditional 



methods each time an event changes a species count.  We also 
eliminate the need to sum the propensities after each event, a step 
that is necessary in other approaches.  We accomplish this by 
employing stochastic multiplication, as follows.   

A Bernoulli process with probability p  can be produced directly 
from a Bernoulli distributed random variable, or it can be 
generated from the combination (logical “AND”) of a set of 
independent Bernoulli processes with rates that multiply to form 
p  (e.g., 0 1 2p p p p⋅ ⋅ = ).  Therefore, 

1 2 3

k

t

P S S S
∆

 + →  
 (6) 

is equivalent to some [ ] [ ] [ ]0 1 2P P P⋅ ⋅ ⋅i i , where [ ]1P ⋅  is proportional 
to 1S , [ ]2P ⋅  is proportional to 2S , and [ ]0P ⋅  is proportional to 
k .  This allows us to rewrite (5) as (7), where iX  are discrete 
uniform random variables on { }0,1, , iM… , with i iS M≤  and 

0 0k M≤ .  { }0 0,k M are chosen after the other iM  are chosen to 
scale the product of probabilities and satisfy (7). 

[ ] [ ] [ ]0 0 1 1 2 2 1 2P X k P X S P X S kS S t< ⋅ < ⋅ < = ⋅ ∆  (7) 

The masks, iM , are chosen to be powers of 2 so that the required 
range of random numbers can be trivially generated by masking a 
much larger, fixed length random number.  The masks, iM , 
determine upper bounds on the species counts, iS , and on the 
(scaled) rate constant, 0k .  If any iS  becomes larger than its 
mask, iM , during a simulation run, the values of iM  (and 
possibly 0k ) must be modified to ensure that i iS M≤ . 

In hardware, this product of three probabilities simplifies to the 
logical AND of the three Bernoulli random variables, which are 
generated by comparators that perform the less-than operations 
(Figure 1).  Three independent random number generators are 
required, one for each species and one for the rate constant 0k ; 
however, all of the multiplications and additions are reduced to 3 
comparator operations and one 3-input AND operation.  As a 
result, random numbers are produced from the desired distribution 
without explicitly multiplying or adding any parameters. 

Note that a system of mass action reactions may be simulated in 
parallel, as long as no more than one dependent reaction occurs in 
each time step.  As many independent reactions may be performed 
in a single time step as exist in the system.   
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Figure 1.  Block diagram of simulation algorithm for 
the thj  reaction in the system.  In this reaction, 

1 2
k

NS S S+ → , where additional reactants can be 

inserted along the dashed line. 

The masks, ,j iM , where j  is an index into the set of reactions in 
the system, are initialized to the next power of 2 larger than the 
corresponding iS .  If iS becomes less than ,j iM /2, the mask can 
be reduced by a factor of 2, while if iS  becomes larger than ,j iM , 
the mask must be increased by a factor of 2.  The fastest reaction 
in the system then determines the value of ,0jM , corresponding to 
the rate constant k, according to the allowable approximation 
error. 

2.2 Adaptive Time Step 
The Bernoulli approximation converges to the appropriate (exact) 
Poisson density as the time step becomes arbitrarily small [1]. 
While a small time step lowers the approximation error, it also 
increases the simulation time.  The choice of time step determines 
a compromise between fidelity and speed.  Since the reaction 
propensities change according to changes in the species counts in 
the system, a time step that is optimal for one system state may no 
longer be optimal when the system state changes. That is, if the 
reaction rate of the system falls too low, the time step may be 
increased, while if it increases to the point that conflicting 
reactions occur during a time step, the time step must be 
decreased. Therefore, it may be necessary to dynamically update 
the time step while the simulation executes, to maintain a 
consistent level of performance. 



2.3 Discussion and Previous Work 
Previous attempts have been made at accelerating memoryless, 
stochastic discrete-event systems.  In particular, models of basic 
memoryless queuing processes have been accelerated in FPGAs 
[2, 3, 9, 10].  These queuing processes are either zeroth order 
(M/M/1, where the departure rate is independent of how many 
customers are in the (non-empty) queue, or first order 
(M/M/infinity, where the departure rate is proportional to the 
number of customers in the queue).  Previous approaches that 
accommodated zeroth and first order queuing system models are 
not suitable for extending to higher order  mass action processes.  
First order mass action systems obey the same dynamics as 
M/M/infinity queuing systems.  However, mass action systems are 
more general and may obey higher order behaviors, as shown in 
Table 1.  In principle, our approach can accommodate any of the 
systems shown in Table 1, however our present implementation 
was designed to handle 1st, 2nd, and 3rd order reaction systems, 
which are the only classes of mass action systems that have ever 
been observed [7]. 

Table 1.  Examples of Different System Orders.   For 
the queuing systems, µ is the (average) service rate per 
server, and N is the number of customers in the queue.  
For the reactions, A and B are the number of reactants 
in the system, k is the forward rate constant of the 
reaction, and a and b are number of A and B 
molecules, respectively, needed in the reaction. 

System Rate Order 
M/M/1 (queue) µ, (N>0) 0 
M/M/infinity (queue) µN 1 
A B (reaction) kA 1 
A+B C (reaction) kAB 2 
A+B+C D (reaction) kABC 3 
AA+bB C (reaction) kAaBb a+b 
 

3. HARDWARE IMPLEMENTATION 
Our algorithm is implemented directly in hardware as shown in 
Figure 2, using 3 clock cycles to execute each iteration (i.e., one 
time step, t∆ ). Although the structure is the same for all reaction 
systems, the number and parameters of each component and their 
interconnection are different.  That is, each reaction system must 
be compiled into the application-specific hardware that simulates 
it, as described in the Model Compilation subsection. 

The hardware is implemented using three basic components. The 
counts of each species in the system are maintained in a set of 
registers called the species counters. In the first clock cycle of 
each iteration, the reaction event generators decide which 
reactions happen during the current time step. In the second clock 
cycle, based on the set of reactions that occur, the event monitors 
produce a value to add to each species counter and a value to 
subtract from each species counter. In the third clock cycle, the 

species counters are updated using these increment/decrement 
values. 

This hardware relies on time step and rate constant dependent 
parameters calculated by the host machine. Whenever the time 
step needs to be changed, the hardware must halt and request new 
parameters from the host. 
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3.1.1 Reaction Event Generator 
Each forward and each reverse reaction in the model has a 
corresponding reaction module which determines whether that 
reaction occurs during a given time step. The reaction module is 
parameterized to handle reactions of up to 6 input reactants. 

For the reaction 1 2 1

k

N NS S S S ++ + → , the reaction module 
generates a Boolean output called “fires” that indicates whether 
the reaction happens according to (8).  In this equation, each iX  
is a 32-bit pseudorandom number, each iS  is the species count of 
the thi  input to the reaction, each iM  is a binary mask of the form 
2 1n − , and 0k is chosen based on the rate constant and the mask 
values. 

( ) ( )( )
( )( ) ( )( )

0 0 1 1 1

2 2 2

& & & & &

& & & & & &N N N

fires X k X M S

X M S X M S

= < <

< <

 

(8) 

Assuming that all counts are less than their corresponding masks 
(i.e., i iS M≤  for all species), the probability of the reaction 
module asserting its fires output is 

[ ] ( ) ( )( ) ( )( )32
0 1 1 2 22 1 1 .firesP k S M S M= ⋅ + ⋅ +  (9) 

The host software is responsible for calculating and initializing 
the values of 0k  and the masks so that for the chosen time step: 

[ ] [ ]
1

2

_

N

fires PP reaction

reaction rate timestep count

count count

= =
⋅ ⋅ ⋅

⋅ ⋅
 (10) 



The requirement that i iS M≤  must be checked continuously at 
runtime. If this is ever violated, the module asserts a “tooFast” 
output to indicate that it can not produce valid outputs with its 
current settings. This causes the hardware to halt and interrupt the 
host, asking for a smaller time step. 

All the random numbers, iX , are 32 bits wide. They are 
generated using 167-bit, 2 tap (at 167 and 161) maximal length 
linear feedback shift registers (LFSRs) which shift out 16 random 
bits per clock cycle, or 48 bits per iteration, only 32 of which are 
used. This implementation was chosen because it is both compact 
and generates good random numbers. By taking advantage of shift 
register look-up tables, Virtex SRL’s, for storage, each random 
number generator uses a total of just 33 LUTs and 16 registers. 

The quality of the random numbers was examined by testing with 
“DIEHARD” [5] and “ENT” [8], two general-purpose random 
number test suites. They were also tested indirectly by comparing 
the output of the reaction modules for convergence with the 
expected firing frequency.  The maximal length LFSR of 167 bits 
is being shifted by 48 bits per iteration, resulting in a sequence 
that is still maximal length ( 1672 1− ), however a minor 
consequence is that a shifted copy of the same bit pattern repeats 
every 1 48th of the sequence. 

3.1.2 Event Handler/Integrator: 
For each reaction that occurs, some reactant species are consumed 
and some product species are produced. For each species, an 
“event handler” module collects the relevant fires signals from the 
reaction modules that affect it and produces two binary values, 
one to add to the species counter, and one to subtract from it. 

“Collisions” occur when more than one reaction tries to consume 
the same molecule in the same time step. Collisions are 
consequences of how this approach discretizes the reactions (in 
time).  When two reactions consume the same species in the same 
time step, with some non-zero probability they (attempt to) 
consume the same copy of that species of molecule.  Depending 
on the quantity of the species present, this probability ranges from 
very small, with negligible effect, to very large, with dire 
consequences.  In the worst case, the reactions may consume more 
of one species than the system contains, leading to negative 
counter values.  When a collision occurs, the simulation pauses 
and waits for the host to decrease the time-step before continuing. 
Two rules are implemented to deal with this: 

1. If the species counter is less than the number of 
decrement signals (i.e., the number of times a species 
appears as a reactant in the system of reactions), 
collisions are disallowed. This prevents negative species 
counts. 

2. Where a species has a count of N , a collision is 
allowed if there have been no collisions on that species 
in the last (approximately) 128 N  iterations. This 
allows occasional collisions to happen without calling 

for a change to the time step. Collisions are permitted 
more frequently when the species counter is higher 
because the colliding reactions are less likely to be 
trying to consume the same instance of the species. 

When the module detects a collision that is disallowed, it asserts 
its “panic” output. The panic signals from all the event monitors 
are OR’ed and used halt execution before the third clock cycle of 
the iteration, when the species counters are updated, effectively 
aborting the current time step.  The host then reduces the time 
step, modifies the appropriate mask values and resumes execution. 

3.1.3 Species Counters: 
Each species count is maintained by a “counter” module. It 
comprises a register, two small adders for adding in the increment 
and decrement values from the event monitor, and some I/O and 
breakpointing logic. The breakpointing logic allows the host to set 
an upper or lower bound (but not both) for the counter. 

3.1.4 Host Interface 
The host interface allows the host to initialize a simulation, 
monitor the simulation state and handle requests for changes to 
the time step.  The interface is based on a simple memory-mapped 
access to all of the simulation state, which can be viewed while 
the simulation is running. 

The simulation contains registers that track the current time and 
number of clock cycles.  The user can specify breakpoints on 
these registers as well as each of the species counters, which 
allows the user interface to specify when the simulation should be 
halted.  Whenever the simulation halts, it raises an interrupt and 
sets bits in a status register to indicate the cause. The host can also 
halt the simulation arbitrarily by clearing the run bit in the control 
register. 

The simulation will also halt when exceptional conditions are 
encountered: 

Too Slow: The hardware will request a longer time step if 
reactions happen too infrequently. The host can set two values to 
control this, A  (average) and M  (maximum). At each iteration, a 
counter is incremented if no reaction happens. If a reaction does 
happen, A  is subtracted from the counter. If the result is negative, 
it is set to zero. If the counter ever exceeds M , the simulation 
halts and requests a longer time step. 

Too Fast and Panic: The system halts if any reaction module 
asserts a “tooFast” signal, or if any collision handler asserts a 
“panic” signal. Both situations call for a decreased time step. 

3.1.5 Model Compilation 
Reaction system models must be first compiled into the hardware 
implementation described in the preceding sections.  We have 
developed a compiler that reads the model description in SBML 
(Systems Biology Markup Language) and generates a Verilog file 
comprising the necessary reaction modules, collision modules, 
and counter modules, with their Verilog parameters, along with 



their interconnections.  In addition to the model-specific structure, 
the hardware contains the Host interface, generic I/O and 
monitoring modules, and the simulation sequencer. We use the 
Synplicity and Xilinx synthesis and physical design tools to 
compile this Verilog file into a configuration file for the FPGA. 

The model compilation takes a matter of seconds, but the 
remaining tool chain takes anywhere from a few minutes to over 
an hour for large models.  However, once a model is compiled, it 
can be used with a wide variety of initial conditions since it 
depends only on the structure of the model and not on the rate 
constants or the initial state. 

3.2 Implementation 
The algorithm is currently implemented using an Annapolis 
Wildcard II2, which is a CardBus3 device containing a Xilinx4 
XC2V3000-4 FPGA along with a large memory  which is not 
currently used. 

Host Input/Output (I/O) is carried out with the programmable I/O 
(PIO) type functions of the Wildcard. The Wildcard also supports 
direct memory access (DMA), but it was not used due to limited 
documentation. In the future, DMA can be used to improve 
performance. 

The host is able to read and/or write all of the important registers 
using a random-access memory-mapped addressing scheme. This 
is implemented with one bus for addresses and write data, and a 
tri-stated bus shared by all modules that respond to reads. 

The PIO API for the Wildcard does allow blocks of data to be 
read or written. Reading and writing in the largest blocks possible 
is currently how we achieve sufficient performance. To take 
advantage of these block reads and writes, we have implemented 
methods that allow lists of arbitrary addresses to be accessed as if 
they were a continuous block.. 

Registers for species counts are treated specially to allow 
concurrent simulation and data monitoring.  Each species counter 
has a shadow register that is used when reading back the species 
counts.  A special command causes all of the shadow registers to 
simultaneously latch the values of their associated counters. In 
this way, the simulation state can be sampled at frequent intervals 
and uploaded to the host without stopping the simulation.  As 
long as the time to upload this data is less than the sampling 
interval, data logging can be done without slowing down  the 
simulation. 

                                                                 
2 Annapolis Micro Systems, Inc., 190 Admiral Cochrane Drive, 

Suite 130, Annapolis, Maryland 21401 USA 
3 Registered trademark of PCMCIA/JEITA. 
4 Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124-3400, USA 

3.2.1 User Interface 
We have implemented a software interface to our simulator that 
allows systems biologists using BALSA5, a GUI developed to 
allow easy creation and simulation of reaction models, to use our 
hardware to accelerate their simulations.  Our interface provides 
the following functionality: 

• Load the hardware configuration file for a model. 

• Set the initial species counts. 

• Calculate the initial time step and the related reaction 
module mask values. 

• Start and stop a simulation. 

• Set breakpoints based on simulation time or species 
count values. 

• Set sampling intervals for specific species counts.  This 
uses the shadow registers to perform automatic logging 
of the desired system state. 

• Respond to interrupts from the hardware requesting new 
time step calculation. 

In addition to the model’s state, the hardware provides access to 
registers for: 

• System status (is the simulation running and what 
caused the last interrupt) 

• The number of iterations executed 

• The number of iterations when reactions took place 

• The number of clock cycles wasted while the simulation 
was halted waiting for the host (64 bits). 

4. RESULTS & COMPARISON 
To demonstrate the performance of our simulator, we used the 
family of signaling cascade models described in [6] and illustrated 
in Figure 3. 

1
S

*

2 2
S S→←

*

3 3
S S→←

*

N N
S S→←  

Figure 3.  Structure of models used for performance 
measurements 

The measured performance of the hardware simulator is shown in 
Table 2. These results are measured using a clock rate of 50MHz. 
The achievable clock rate decreases as the number of reactions in 
the system is increased: While small reaction models can run at 
100 MHz, a full chip with 40 reactions and 60 species can only 
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run at just over 50 MHz.  The additional delay is due to the many-
to-many communication between the species counts and the 
reaction modules, and the reaction modules and the event 
monitors.  The clock rate could be increased by pipelining this 
communication.  We estimate that by adding one more clock cycle 
to the iteration and retiming, we could increase the clock rate from 
50MHz to 80MHz for a performance increase of 20%.   

We quantify the performance of our FPGA based simulator using 
an estimate of the average number of reaction events computed 

per second.  The actual number of events is not captured in the 
simulator since multiple events can happen per time step, so the 
event rate is estimated based upon the instantaneous reaction 
propensities at each logged data point. 

The event rate shown in Table 2 represents the “target rate” that 
would be achieved if the two sources of overhead in this setup (re-
computing the time step off-chip and, and communication for data 
logging) were eliminated. 

Table 2.  Performance of FPGA-based simulator compared with a software 
simulator (SigTran) running the Gibson algorithm on a 2 GHz Pentium 4.    

 Model 

Species 2 8 16 32 64 

Reactions 1 4 8 16 32 
      
Time step changes 7 29 30 26 34 

Time steps 3,934 17,079 25,457 32,824 68,480 
Simulation time  
(microseconds) 236 1,025 1,527 1,969 4,109 

Steps/change 562 589 849 1,262 2,014 

Busy steps (%) 16 17 24 35 36 

Events/step 0.16 0.18 0.28 0.45 0.45 

Events/s 2,711,405 3,052,482 4,695,500 7,572,711 7,494,402 
      
Events/s 
(2 GHz Pentium 4)6 333,333 160,000 256,410 285,714 320,000 

Performance Gain 8.1 19.1 18.3 26.5 23.4 
 

                                                                 
6 Gibson algorithm as implemented in SigTran 

The simulator can be in one of three modes: executing the 
simulation, updating the time step (with cooperation from the 
host), or performing I/O to log the simulation state.  As described 
previously, the I/O overhead, which currently takes about 70% of 
the time, can be eliminated using the shadow registers and 
background uploading of data values via DMA.  We anticipate 
that, in our largest model, 32 model variables could be logged at 
least once per 100 reaction events, which seems sufficient for 
most usage cases.  Although the hardware supports this, the 
software interface has not been updated to use it.  Ignoring this 
I/O overhead leads to the performance reported in Table 2.  Of 
course, if the data sampling rate is too high, the data upload time 
will exceed the simulation time and cause the simulator to wait, 
reducing the effective simulation rate. 

Eliminating the time step recalculation overhead is more difficult. 
The adaptive time step is presently calculated off-chip by the host 
computer, which takes a relatively long time due to the 
communication latency between the host and the WildCard.  The 
number of time step changes that are necessary depends upon the 
particular model being simulated.  Models with large dynamic 

changes in reaction propensity (especially oscillatory changes) 
have the greatest need for time step changes.  For the cascade 
models, the average number of reaction events per time step 
change, over a simulation run, is included in Table 2.  This 
corresponds to a change every few hundred microseconds. 
Currently, the time step computation and communication takes a 
few milliseconds. There are several ways to greatly reduce this 
overhead. 

First, the computation, which is fairly simple, can be moved into 
the FPGA.  One option would be to use an embedded processor 
that would remove the communication overhead.  This would 
reduce the overhead from milliseconds to less than 100 
microseconds.  This can be reduced further by incorporating the 
time step calculation into the reaction modules.  While this would 
increase the cost of the reaction modules, it would reduce the 
overhead to a few cycles.  It turns out that most recalculations 
involve only simple shifts of the mask values and so the increased 
cost is modest.  More complex recalculations that happen 
infrequently can be sent to the host or embedded processor for 
handling. 



Perhaps the best solution is to cache the mask values for recent 
time steps on-chip.  Generally, the time step is either doubled or 
halved and thus the same time step may be used many times.  By 
caching values in BlockRAM on the FPGA, the overhead of 
recalculation can be avoided and the values simply reloaded from 
memory. Although the values must be transferred sequentially, the 
overhead can be reduced to a few microseconds.  Thus we believe 
that relatively straightforward improvements to the simulation will 
achieve the “target rate” performance. 

The simulation rate of course depends on the model and the 
simulation state.  The measurements in Table 2 show that for 
these models a reaction event occurs every 2-3 time steps, a result 
of setting the time step to keep the collision rate below 1%.  

Further analysis of how the approximation error depends on the 
time step may reveal ways to improve this selection.  If a rate of 
one reaction event per time step can be achieved for more 
complex models on a single FPGA, this would corresponding to a 
simulation rate of about 17x106 events per second.  In practice, 
we have observed peak simulation rates of over 10x106 events per 
second, ignoring overhead. 

The space requirements for implementing simulators in FPGAs 
depend upon the model being simulated.  Based upon images that 
we compiled for biochemical system models, including the ones 
described in Table 2, the estimated space requirements to 
implement a model is summarized in Figure 4.    
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Figure 4.  Estimated space requirements for a family of models.  Each stacked bar corresponds to one model and is composed 
of four components:  overhead, species counters, reaction modules, and event handlers.  For each model size (based on 
number of different species, along the horizontal axis), up to three variants are shown:  reaction-to-species ratios of 0.75:1, 
1:1, and 2:1.   Note that there are 28,000 LUTs in a Virtex2-3000 , and 90,000 LUTs in a Virtex2-8000. 

 

5. CONCLUSIONS AND FUTURE WORK 
By compiling a biochemical simulation into FPGA hardware, we 
have exceeded an order of magnitude improvement in the 
computation speed with our initial implementation.  Using a 
single FPGA keeps the cost and form factor within reach of an 
individual user, empowering the modeler to hypothesize models 
with much greater interactivity than with traditional approaches.   

This accelerator can be useful throughout the modeling cycle, 
which typically progresses from highly interactive to batch-
oriented over the course of a modeling project. It is most suitable 
for interactive simulation of individual runs (e.g., exploring a 

model’s parameter space), however this single-FPGA solution 
may also replace clusters of less than 20 PCs for batch operations.  
For batch operations, its incremental hardware costs are far less 
than for an equivalent PC cluster, and it requires much less space 
and power.  The number of usage cases that would benefit from 
the accelerator will increase as we find ways to reduce the 
compilation time and build libraries of models. 

Simulations of models of the size that fit on a single FPGA may 
run on the order of minutes on a PC, versus seconds using the 
accelerator.  However, when the same model is run 100 times (to 
acquire statistics, since the model is stochastic) and each of those 



ensembles is run over 100 sets of parameters (e.g., searching for 
optimal values, fitting data, etc.), the whole job may take days or 
weeks on a PC.  This accelerator reduces that to hours.  We are 
currently working on further optimizing the implementation to 
adapt the time step more quickly and effectively, to increase the 
clock rate, and to optimize the interaction with the host.  We 
estimate an additional factor of 2 to 4 improvement in 
performance over the current 20x speedup we are already 
observing. 

Aside from these optimizations of the basic implementation, the 
next step will be to scale-up our solution so that it can handle the 
enormous spatial models that are being proposed, which are more 
appropriate for describing actual cell signaling processes.  
Although we have pursued an alternative algorithm as described 
in this paper, we are also investigating how best to implement 
Gibson’s method in hardware.  That method has too high a cost 
for small to moderately-sized reaction systems, however it does 
scale better to large systems than the method described here and 
so it is likely that some combination of the two methods will 
provide the best overall solution. 
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