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ABSTRACT The properties and structure of complete sets for exponential-time classes are surveyed.
Strong reductions, those implying many-one completeness, are considered as strengthenings of the
usual completeness notions. From the results on strong reductions, immunity properties of complete
sets are derived. Differences are shown between complete sets arising from the various polynomial-time
reductions. These include most of the “weak” reduction between <%, and <7. Finally we consider
complete sets for some other classes such as r.e. sets along with structural properties of these sets.

1 Introduction

Complete problems play a central and defining role in complexity theory. They are the canonical
sets within a complexity class, are almost always the only sets which arise naturally within a class
and as such are the most thoroughly studied. One would like to understand the inherent properties
which make a set complete and in particular capture the core of what makes them natural and yet
hard to compute. As they do occur naturally we would like to understand the difficulties involved
in efficiently solving them, or at least solving as many instances as possible of the problem. In this
paper we survey the properties of the various types of complete sets which arise in deterministic
and nondeterministic exponential time. In this setting natural problems are not as ubiquitous as in
smaller classes such as P or NP. However we have the advantage that superpolynomial time affords
us, and we are able to perform constructions and analyses which are not possible with smaller time
bounds. As such, complete problems in these classes are both interesting in their own right and
provide possible insights into the structure of complete sets for other, central complexity classes.

In recent years there has been a great deal of activity and considerable success in studying the
structural properties of sets within E, the deterministic exponential time computable problems. E
is a simply defined subrecursive class which contains a number of interesting complete problems. It
provides a useful platform for studying polynomial-time reductions, polynomial-time completeness
notions and the structure of intractable problems. Moreover, there are several advantages to studying
problems in this class as opposed to some other more difficult classes. Most importantly these include
the fact that E, being deterministic, is closed under complement and as well that there 1s a universal
predicate for polynomial-time functions within E. These facts allow for a good understanding of the
structure of polynomial time reductions on problems in E. This has resulted in progress on several
areas of study concerning the structure of exponential time sets, particularly complete sets.

Studying nondeterministic time classes is more difficult. In particular, proving almost anything
absolute about NP is difficult, at least in part because the two properties of E mentioned above do
not seem valid here. In this paper we concentrate on the properties of nondeterministic exponential
time, NE. While NE 1s large enough to allow for the enumeration of all polynomial-time computable
functions, it is (probably) not closed under complement. For this reason, NE seems more similar to
NP than does any deterministic class, and results concerning NE perhaps give a better indication
of structural properties of nondeterministic classes. In studying this class we have to come to grips
with some of the problems intrinsic to nondeterminism.

There is no unique notion of a complete set in a complexity class as each different reduction gives
rise to a corresponding notion of completeness. For a complexity class C and a reducibility < we
say that A is <-complete for C if A € C and VB € C(B < A). All of the reducibilities considered in
this paper are polynomial-time bounded. As is customary, we call A C-complete if A is <P -complete
for C. (Here <, denotes polynomial-time many-one reducibility.) We call reductions which imply
<P stronger reductions, and reduction implied by <P weaker reductions. So stronger reduction imply
weaker reductions.

We assume familiarity with the standard polynomial-time reductions and the standard poly-
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nomial and exponential time (deterministic and nondeterministic) complexity classes. Let E =
DTIME (2'inear)  NE = NTIME (2%7¢a") EXP = DTIME (2¢°"%), and NEXP = NTIME (2P°%).
All of the problems considered here will be thought of as coded by finite strings over a fixed finite
alphabet . We make use of a polynomial time computable and invertible pairing function ( ., .).

In Section 2 we introduce the basic complete sets for E; NE, EXP and NEXP . We examine efficient
reductions to complete sets and show how to strengthen these reductions in certain respects. One
approach to the question of what makes a complete problem hard is to ask about the frequency of
the hard instances. Conversely, one can ask what large subsets of these sets can be found which are
easier than the complete set to compute. These question have consequence for approximations to
hard problems, as we would like to know if we can solve these problems efficiently on large sets of
instances. These considerations lead to the concept of immunity.

Definition 1.1 Let C be a collection of sets. A set A 1s C-immune if 4 is infinite and does not have
an infinite subset in C.

We would like to know if intractable sets, particularly many-one complete sets, can be P-immune.
This would tell us that not only is membership in the sets themselves hard to decide, but they
have no infinite tractable subsets. All natural complete sets can easily be seen to have many easily
computable subsets and so are not P-immune. What is more difficult is determining if this property
1s a consequence of completeness.

It has long been known that every set polynomial-time many-one-complete for E is not P-immune
(L. Berman [Be76]). Recently, Nicholas Tran [Tran] has proved this same fact for NE-complete
problems (and their complements). These non-P-immunity results are witnessed by sparse sets, and
it 1s not known if there are dense P subsets of these complete sets for E and NE. We do know that
NE-complete sets contain infinite, dense subsets in the classes E and UP. Results such as these are
discussed in Section 3 of this paper.

In Section 4 a comparison between complete sets for the most common polynomial-time reductions
is presented. With a few unexpected exceptions we show that these completeness concepts differ on
both E and NE. More precisely we differentiate between completeness with respect to many-one
reductions, bounded and unbounded truth-table reductions, and Turing reductions. The exceptions
are that many-one and 1-truth-table completeness turn out to coincide for the classes considered.

In Section 5 we consider a few other properties of complete sets, particularly those which have
consequences for the weaker truth-table and Turing complete problems. We also expand our discus-
sion to include complexity classes larger than exponential time, particularly the class of r.e. sets. We
conclude with a list of open problems.

Two earlier surveys on parts of this subject can be found in the proceedings of past Structure in
Complexity Theory conferences. The starting point for this article is the paper I wrote for Structures
’90 [H90]. A more recent survey with a somewhat different focus was written by Burhman and
Torenvliet [BT94] and can be found in Structures '94.

All of these exponential time classes have easy-to-define canonical complete problems. In fact,
they have 1-1, length increasing, invertible and paddable complete sets.

For E the canonical complete set is defined by:

{(e,=,t)| the e deterministic exponential time Turing machine accepts input = in < t steps}.
(Here t is a binary integer, and we are making use of a canonical and efficient enumeration of
the exponential time sets.) A similar set, based on an enumeration of NE machines, is 1-1, length
increasing, invertible complete for NE.

Most of the results in this paper are stated for the “linear exponential” classes E and NE. However,
they all hold for the larger classes EXP and NEXP (as well as for any reasonable, larger deterministic
and nondeterministic time classes). That EXP and NEXP have these same properties follows from

This is page 11
Printer: Opaque this



straightforward padding arguments. One of the more fundamental padding arguments is the proof
that any E-complete (NE-complete) set is also EXP-complete (NEXP-complete). As we later refer
to padding arguments, we present a brief proof of this fact here.

Theorem 1.1 Any FE-complete set is also EXP-complete.

Proof. Let C' be E-complete and let A be a set in EXP, say A € DTIME (Q”k) Define B =

{(x,lelk) | © € A}. So A<P B via the functions f(x) = (x,Omk). Tt is straightforward to check
that B € F and so B2 C' implying A<P (' and proving C'is EXP-complete. O

For the definitions and basic facts concerning the most common and important polynomial-time
bounded reductions we refer the reader to Ladner, Lynch and Selman [LLS75] . A more recent
exposition of efficient reductions can be found in Buhrman [Bu93]. As usual we let <} denote
polynomial Turing reductions. Being less widely used, the definitions for the truth-table reductions
are included here.

Definition 1.2 A reduction is an oracle Turing machine computation. A truth-table (or ¢t or non-
adaptive) reduction is an oracle computation where all oracle queries are made before any of the
answers are read by the Turing machine computation. That is, the queries to the oracle depend only
on the input and the Turing machine program and not on the answers to previous oracle queries. A
reduction 1s k — tt of the number of oracle queries, on any input, is bounded by k. A reduction is
b-tt if it is k-tt for some integer k > 0.

We can now define several polynomial time truth-table reductions.

Definition 1.3 A set A; is polynomial time truth-table reducible to As (A <l Az) iff there
exists a polynomial-time-bounded ¢t-reduction M42, with queries to the oracle set As, such that
r € Ay < M*"2(x) accepts. Polynomial-time bounded k-truth-table reducibility (<?_,,) and
bounded-truth-table reducibility (<%,,) are defined similarly using polynomial time k-¢t and btt
reductions.

2 Strong Reductions to Complete Sets

Many properties of complete problems follow from strengthening the reductions to the problem. In
particular, the (many-one) complete sets for E and NE are actually complete for somewhat stronger
reductions. We use these facts to prove several of the immunity properties which appear in the next
section. Furthermore the existence of stong reductions to complete sets is of independent interest.
They provide evidence for the validity of the isomorphism conjecture (see Berman and Hartmanis
[BHT77]) which in the exponential time setting says that all E-complete sets are polynomial-time
isomorphic. If we could strengthen the reductions to complete sets sufficiently then the polynomial-
time isomorphism of these sets would follow.

We present the proofs of two such strengthened reductions in this section. They are used in the
next section to derive some interesting immunity properties of complete sets. Every <P -complete
set for E is complete with respect to 1-1 length-increasing polynomial-time reductions. Every <P -
complete set for NE is complete with respect to 1-1 exponentially-honest polynomial-time reductions.
The first theorem, concerning E-complete sets; is due to Len Berman and can be found in his thesis
[Ber77]. The proof given here is from Ganesan and Homer [GH89].

Theorem 2.1 [Ber77] All <P -complele sels for E are 1-1 lenglh-increasing equivalent.
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Proof.

Let A be any arbitrary m-complete set in E and let K be any complete set in E. It is enough to
show that K <[ . A.

Let fi, fa,... be an enumeration of all polynomial time computable machines, such that f;(z)
can be computed from i and z in time 2°U1+1zD) (See [GH8Y] for a proof that such enumerations
exist.) We construct a set M in such that the reduction, say, f; from M to Ais 1-1-lion {j} x N.In
addition the set M is constructed so that the function, g(x) = (j, ) will be a reduction from K to
M. The required 1-1-li reduction from K to A, then would be f(z) = f;(g(z)).

The following program describes the set M.

. input (i, )

. then accept (¢, ) iff f;(é,2) & A.

.else if Jy < @ such that f;(i,2) = fi(i,y)
then accept (¢,2) iff y ¢ K.

else accept (i, ) iff z € K.

OO W N

Lemma 2.1 M is in F.

Proof.Let us compute the time required for M on input (¢, 2). Note that computing f;(¢, ) takes
time 20U+l Since, there are only 290020 strings of the form (4,y) less than (i,z) all of them
can be computed in time 2°U#)D  Hence the condition on line 5 of the algorithm can be performed
in time 2°UG2D There are only three cases where the decision to accept (¢, 2) is made.

Case 1 |fi(7,2)| < |(4, z)|. In this case we accept (7, 2) iff f;(¢, ) is not in A. This can obviously be
done in time 2°UG®)D),

Case 2 Condition on line 4 holds. Since |y| < |(, 2)| membership of y in K can be decided in time

90(1G,=)l)
Case 3 M accepts (¢, 2) iff # € K. This can be done directly in time 2012l

It is clear from the above discussion that M 1s in E.

Lemma 2.2 If f; is a reduction from M to A, then f; is 1-1-li on {j} X N. Moreover, g(x) = (j, z)
15 a reduction from K to M.

Proof.lf f; is not length increasing, it is not a reduction from M to A because of line 3 of the
construction. So, f; has to be length increasing. Suppose, f; is not 1-1. Let x5 be the least element
such that for some #1 < 22, f;(j, z2) = f;(j, #1). By definition of M, (j, 1) € M & z; € K and
(j,22) € M & 1 ¢ K. So, f; can not be a reduction from M to A, contradiction. Hence f; is 1-1-1i
on {j} x N. Note that (j,z) € M iff x € K from the way M is defined. The elements of the form
(j, ®) will always fall in Case 3 of the algorithm. Hence, g(x) = (j, %) is a reduction from K to M.

Lemma 2.3 K <! A

Proof.Define f(x) = f;j(g(x)). Clearly g is 1-1-1i. Since f; is 1-1-li on the range of ¢, f is 1-1-1i. f is
also computable in polynomial time. It is easy to check that f is a reduction from K to A.

For the next corollary we need the following worst-case definition of a one-way function. It is quite
different than the probabilistic notion of one-way function which is found in modern cryptography.
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Definition 2.1 A function f is polynomially honest if there is a polynomial p such that Va(|z| <
P 7)),

A one-way function is a one-to-one, polynomially honest polynomial time computable function whose
inverse in not polynomial time computable.

Corollary 2.1 If there are no one-way functions then all E-complete sets are P-isomorphic.

Proof.Let C be E-complete and K the canonical E-complete set. By the above theorem, K’ <! .
C'. Furthermore the reduction is P-time invertible by the assumption of the nonexistence of one—vx}ay
functions. Similarly, the canonical properties of K yield the existence of a reduction from C to K
which is 1-1, length-increasing and P-invertible. Now the main theorem of Berman and Hartmanis
[BHTT] tells us that two sets which are interreducible by 1-1, length increasing and P-invertible
reductions are P-isomorphic.

We now turn to the nondeterministic complexity class NE. We would like to prove the same results
for for NE as we have for E. But the nondeterminism presents added difficulty which we have not
been able to completely overcome. We are able to prove the 1-1 completeness of NE-complete sets,
but not the length increasing completeness. These results hold for other larger nondeterministic
classes as well. First a definition.

Definition 2.2 A function f is exponentially honest if Ya (217 > |z|).
Theorem 2.2 ([GH88]) All <P -complete sets for NE are 1-1 exponentially honest equivalent.

Proof.Let A be any arbitrary <P -complete set in NE and let K be any 1-1, length-increasing
complete set for NE. The canonical NE-complete set has this property. It is sufficient to show that
K 1s 1-1 exponentially honest reducible to A.

Let f1, fa, ... be an enumeration of all polynomial time computable functions such that f;(x) can
be computed from 7 and « in time 20((il+og(l=D)) (See [GHB88] for a proof of the existence of such
an enumeration.) Let M be the set of pairs accepted by the following algorithm.

1. input (i, )

2. if 250D < (i) x)]

3. then accept (¢, ) iff f;(i,2) € A.

4.if Jy < x such that f;(é,y) = fi(i,»)

5. then if 219! < |z| then accept (i,z) iff y & K,
6. else reject (4, z).

7. else accept (¢, ) if either (1) or (2) holds.
8 (1) 3y > x such that |y| < 21°

and fz(la l‘) = fz(la y)'

(2) x e K.

©

Proposition 2.1 M is in NEXP.

Proof. Let ¢ and d be constants such that the running of time of K is bounded by 2¢1#l and the
running time of A is bounded by 2%17!. Let us compute the time required for M on input (¢,2). Note
that computing f;(é, #) takes time at most 20lil+log(l=1)®) | 1t 9lfitio)l |(é,2)] the membership
of fi(i,) in A can be decided deterministically in time 20Uil+1=D) " Since, there are only 20U
strings of the form (¢, y) less than (4, z), the condition on line 4 of the algorithm can be computed
in time 20Ui+1=D £ 9lvl < |z|, we can decide if y € K deterministically in time 92271 < 91#1° Thus

This is page v
Printer: Opaque this



steps 5 and 6 can be done in time 29019 In step 8, we can guess a string y which is of length at
most 217l and compute f;(,y) in time 20WH+12D7) Thus the set M is in NEXP . O
Any m-complete set for NE is also m-complete for NEXP . So there is a reduction from M to A.

Proposition 2.2 Let f; be any reduction from M to A. Then f(x) = (j, ) is a 1-1 exponentially
honest reduction from K to A.

Proof. It is clear from the definition that the reduction has to be exponentially honest, otherwise
f; can not be a reduction due to the diagonalization in steps 2 and 3. Assume f is not 1-1. Let z»
be the least elements such that for some &1 < 2, f;(j,21) = f;(j, #2). There are two cases.
Case 1. 2171l < |zy|. In this case, (j, 1) € M iff z1 € K. (j,22) € M iff ; ¢ K. Hence f; cannot
be a reduction. Contradiction.
Case 2. 2171l > |z5|. In this case, (j,#1) € M and (j, x2) € M. So again f; cannot be a reduction.
Contradiction.
Hence, f is 1-1. Having proved f is 1-1, it is easy to verify that f i1s a reduction from K to A. O
A stubborn open question remains here. Namely, can we improve Theorem 2.2 to get the 1-1
reductions to be length increasing, as we can for E-complete sets 7 This technical question turns out
to be both difficult and most challenging.

3 Immunity for Complete Problems

In this section the question of whether complete problems always have easy-to-compute subsets 1s
investigated. Furthermore, we explore the density of such easy subsets. Motivating these questions
is the idea that as E- and NE-complete problems are intrinsically difficult, it is desirable to find
large subsets of these problems which are more tractable. We require that our subsets be infinite,
and 1f possible dense. The subsets should certainly be easier to compute than the original complete
problem. Ideally they would be polynomially time computable but, as we shall see, this goal is not
always attained.

The first strong results in this direction were given by L. Berman [Be76, Be77]. He proved that ev-
ery E-complete set has an infinite polynomial time subset. The key element of this proof is Berman’s
theorem of the last section that E-complete sets are actually one-one length increasing complete.
Since the complement of an E-complete set is also E-complete, the complement cannot be P-immune
either. Hence the situation here is as good as could be hoped.

Let AS™ denote the set of strings in A of length not greater than n. A4 is (polynomially) sparse if
there is a polynomial p such that for all n, ||AS"|| < p(n). A is dense if it is not sparse.

Theorem 3.1 No E-complete set or complement of an E-complete set is P-immune.

Proof. Let A be E-complete. So A is 1-1 length increasing complete. Let S = {0" : n > 0}. Then
there is a total, 1-1, length increasing, and polynomial time computable function f such that S <P, A
via f. It is easy to see that f(.S) is an infinite polynomial-time subset of 4. O

The same proof works for the complement of A by considering a reduction of ¥* — {0}* to A.

It is an interesting open problem whether E-complete sets have dense P-subsets. This question
was considered in Homer and Wang [HW] where several more small results are proved.

The theory for NE is more difficult and not as well-understood. Again the first results are Berman’s

[Be76]. In his 1976 FOCS paper he proved,
Theorem 3.2 ([Be76]) FEvery NE-complete sel has an infinite E subsel.
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The E subset constructed by Theorem 3.2 is sparse. Using the 1-1 completeness of NE-complete
sets this result can be improved in several ways. First, we can insist that the infinite E subsets be
dense and second, that it be in UP as well. The use of Theorem 2.2 in the next proof is not necessary,
but does simplify the proof. In particular, the methods developed in the last part of Berman’s thesis
[Be77] are sufficient for this theorem, although the results stated there are weaker.

Theorem 3.3 Let C be an NE-complete set. Then there is a dense set BC C with B€ ENUP.

Proof. By Theorem 2.2 C 1s 1-1, exponentially honest complete. So there is a 1-1 function f which
reduces X* to C'.

Define B = {(z) | 21/()| > |ol}

() BeUP

e B = Ja(z = [(z) A20(@)] > Jal) ()

Hence B is in NP . Since fis 1-1 the « is unique, and so B isin UP.

(2) BeE

This too follows from (*) above. Given z, a search for the corresponding # can be done by considering
the exponentially many f(x)’s with |z| < 2|z] and testing for equality with z.

(3) B is dense

Assume f is computable in DTIME(n*). Since f is 1-1, f(X") yields 2" elements in C of length
< nF. Of these 2 elements, at most 2(*/2*1 of them have length < n/2. Thus more than 271 of
the elements of f(X") are in B. Hence ||BN ES”kH > 2"~! and so B is not sparse. O

In the above proof we could have just as easily used a 1-1 reduction from § to C'. Doing this
enables us to obtain the same result for the complement of any NE-complete set. The argument
given here yields a small result for NP . Namely, any 1-1 complete for NP set has an infinite dense
UP subset.

The question of the non-P-immunity of NE-complete sets seems more difficult. Here our knowledge
of the structure of nondeterministic complete sets seems inadequate to obtain an answer. The method
which works successfully for E does not quite apply. As the following simple theorem shows, what
1s missing 1s the sufficient honesty of reductions to NE-complete sets.

Proposition 3.1 Any NE-complete set which is complete with respect to polynomial-honest func-
tions has an infinite P-subset.

Proof. Let C' be NE-complete and let f be a polynomial honest reduction from X* to C with
|z| < p(]f(z)]) for some polynomial p and all z. Define B = {f(0")|n € A'}. Then B C C and
B € P since to check if z € B it is sufficient to check if f(0") = z for n < p(]z]). D

Note that the P-subset B in the above proofis sparse. The hypothesis of Proposition 3.1 is stronger
than needed. It is sufficient that the reduction be polynomial-honest on some infinite P-printable
set. For some further structural conditions concerning the immunity of NE-complete sets see Wang
[Wan90]. Some related results can be found in Hartmanis, Li and Yesha [HLY86] and in Buhrman
[Bu93] where properties of tt-complete sets for NEXP are considered.

Quite recently, Nicholas Tran [Tran] has shown that every NE-complete set and its complement
does contain an infinite P-subset. Tran’s proof contains a clever use of the hierarchy theorem for
nondeterministic time. It makes use of the general method of the proof of Theorem 2.1 in the last
section. We still do not know if the of Proposition 3.1 1s sufficient to obtain this result. That is, we
do not know if every NE-complete set is complete with respect to polynomially honest functions.

Theorem 3.4 No NE-complete set or complement of an NFE-complete set is P-immune.

Proof. Let C' be an NE-complete set, (f;) be an efficient enumeration of the polynomial time
computable functions, and let 7' be a tally set which is in NTIME(2”2) - NTIME(2"). Such a T
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exists by the standard nondeterministic time hierarchy theorem. Define

A={0G2)] |£062))] > (i,2)/i% or 07 € T}.

A€ NTIME(2”2) and hence, since NE-complete sets are also NEXP -complete, is <P reducible to
C' via some polynomial time function f;.

Now there are infinitely many strings 0U:%) such that |fj(0(j’x))| > (j,2)/j?. Otherwise, for large
enough z, we would have 0U:%) € A iff 0° € T'. In this case, for large enough z, 0% € 7" iff fj(O(j’x)) €
C', putting 7' in NTIME(2") and contradicting its defining property.

Now define B = {y | y = f;(09*)) and for some j, (j, ) < j>|y|}. Clearly B € P and by the above
claim B is infinite. Finally,

y € B — for some (j,z), (f;(09)) = y and [0U:")] < j2|y|) — 00" € 4 — y € C.
And so B is the desired subset of C'. A similar argument shows the existence of an infinite P-subset
of the complement of C. O

Note that as every NE-complete set 1s also NEXP-complete, this same fact holds for NEXP-
complete sets.

Few absolute results are known concerning immunity for NP sets. The above proof for NE does
work in a more restricted sense, namely for sets which are polynomially-honest complete for NP.
The proof of Proposition 3.1 can be used to show that every such NP-complete set has an infinite P-
subset. Relative to an oracle it 1s known that one may have every NP-complete set having an infinite
polynomial subset (Homer and Maass [HM83]). However no oracle is known relative to which there
is an NP-complete set which is P-immune.

4 Differences Between Complete Sets

Corresponding to the various efficient reductions are different complete sets. In this section we
take the same approach as in Section 2 and try to relate exponential time complete problems with
respect to the various reducibilities. In particular, we examine how to differentiate between complete
problems for the weaker reduction, those between <2 and <!, on exponential time classes. The main
focus is on NE, as a representative nondeterministic time complexity class, although our results apply
to NEXP and to any larger nondeterministic time classes. As a guide we begin with the results for
E and other deterministic classes. While the results for E and NE here coincide, the proof methods
do not. In part the proofs for E depend upon closure under complement while the NE results must
avolid this dependence.

The systematic study of the different polynomial time reductions was begun by Ladner, Lynch and
Selman in [LLS75]. In that paper they defined all of the various truth-table reductions and showed
that these reductions were all distinct, and distinct from <P and <} on sets in E. They mentioned
but did not approach the question of whether the complete sets with respect to these reductions
were different. This question was taken up by Watanabe [Wat87b] who showed that most of these
reductions yield different E-complete sets. Among the results proved there are,

Theorem 4.1 ([Wat87b]) (i). There is a set which is <5_,,-complete for E but not <P, -complete
for E.

(ii). For any integer k > 1, there exists a set which is §z+1_” for E but not <8, -complete for E.
(i11). There is a set which is <l.-complete for E but not <V,-complete for E.

The proof of Theorem 4.1 is omitted here. A proof can be given by directly using the ideas of
the proof of Theorem 4.4 below. Theorem 4.1, together with other results in [Wat87b], answer most
of the questions concerning the strength of complete sets with respect to the different reductions.
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One which is not answered is the comparison between many-one and 1-truth-table complete sets.
Somewhat surprisingly, these two types of complete sets coincide. The proof first appears in [HKR-
90].

Theorem 4.2 ([HKR90]) Any set which is <{_,,-complete for E is also <P -complete for E.

Proof.

Let L be 1-tt complete for EXP |, let E be m-complete for EXP | and let (¢;);es+ be an efficient
enumeration of the 1 — #¢ reductions. We show that E is m-reducible to L by constructing an
intermediate set which does the untwisting of the 1 — ¢ reductions for us.

Define A by

oy = [E) ) () = (€ L and
acay = {50 Tt (1.1

This A is easily seen to be computable in exponential-time. By the 1-tt completeness of L, there 1s
a 1-tt reduction f of A to L. Let j be a t-index for f, ie., f =1¢;.

If (i) holds for (j,z), then # € F <= (j,z) € A and (j,z) € A <= y, € L; hence,
r€F < y, € L.If (ii) holds for (j,z), then x € F <= (j,z)¢ Aand (j,z) € A <= y, & L;
hence, r € £ <— y, € L.

Therefore, z +— y, is an m-reduction for E to L as required. O

Combining Theorem 4.2 with Berman’s [Ber77] theorem that the m-complete languages for
EXP are 1-1i complete yields:

Corollary 4.1 The I-tt complete for EXP languages are 1-li complete.

The proof above depends on the fact the E is closed under complement, a fact not known to be true
for NE. Nonetheless, a slightly more complicated proof yields the same result for the nondeterministic
class. The result is due to Buhrman, Spaan and Torenvliet [BST]. Their proof is sketched here, noting
the differences with the proof of Theorem 4.2.

Theorem 4.3 ([BST]) Any set which is <{_,,-complete for NE is also <P -complete for NE.

Proof.First, the following weaker claim is made.
Claim: If L is <!_,,-complete for NE and B € NENco— NE, then B<P L.

This claim follows from the proof of Theorem 4.2 as an intermediate set can be constructed
between B and L as above. We use the fact that B € NE Nco— NE to show that the intermediate
set 1s in NE.

Now let D be a set in NE, L a 1-truth-table complete set in NE and let M; witness the 1 — ¢
reduction from D to L. On any input , M;(z) can end up in one of the following four situations:

1.

M;(x) queries a string z and accepts iff z € L

)
2. M;(x) queries a string z and accepts iff z ¢ L
)

(
(
3. M;(
(

M;(x) accepts
4.

M; (z) rejects

We now split set D in two subsets £ and F.
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E = {x | € D and machine M;(z) is not in case 2}
F ={z | € D and machine M;(z) is in case 2}

Claim: Flisin NENco— NE.
Proof.We need to show that there is a NE predicate for F' and for the complement of F'.

x € F iff the computation M;(z) is in case 2 and ¢ € D
x ¢ F iff the computation M;(z) is not in case 2 or z € L

It is clear that both predicates are NE.

Now we can construct the many-one reduction from D to L: On input = simulate machine M; on
input x. If M; is in case 1, then output z. If M; in case 2, then z is in D iff z is in F'. Since F is in
NE N co-NE there is, by the Claim, a many-one reduction from F' to L, say g. Now output g(z). If
M; isin case 3, output a fixed element ¢y € L, and if M; is in case 4, output a fixed element ¢; ¢ L.
The entire construction can be carried out in polynomial time.

For other weak reductions, truth-table and Turing, the NE-complete sets can be shown to differ.
These next results are presented in detail in Buhrman, Homer and Torenvliet [BHT89]. Some related
results can be found in Watanabe [Wat87a).

Theorem 4.4 ([BHT89]) (i). There is a set which is <5_,,-complete for NE but not <P, -complete
for NE.

(ii). For any integer k > 1, there exists a set which is §£+1_” for NE but not < _,,-complete for
NE.

(i11). There is a set which is <l,-complete for NE but not <%,-complete for NE.

We give the proof of part (i). Part (ii) is a generalization of the ideas there. The proof of part (iii)
is somewhat more complicated and can be found in [BHT89].

Proof. We first show this result for the class NEXP and then use a simple padding argument to
obtain 1t for NE.

Let K be a polynomial-time paddable <? -complete set for NE. Tt is easy to see (for example see
Balcazar, Diaz, and Gabarré [BDG88]) that K is <P -complete for NEXP as well. The set B will
be constructed so that its only elements are of the form (e, #,,4), i =0 or i = 1.

B will be complete via the <}_,, reduction:

(e,z,l) e K — [(e,x,1,0)€ BV (e,z,l,1) € B]

To ensure that B is not <P -complete we diagonalize against all possible <P reductions from
T* to B. Let f; be the i*” polynomial-time computable function in some fixed enumeration of all
such functions. We may assume that f; runs in DTIME (nl) We need a set of elements on which to
diagonalize. To this end we define a sequence of integers {uy, }, by up = w1 = 1, u,, = 2(tm—1)" " +1,
for m > 1.

Let H = {0%* }, . v- It is easy to verify that H € P. We use the sequence H to diagonalize against
<P, reductions

We can now describe the construction of B. The set B is constructed in stages. At stage k =1,2, ...
we determine all elements in B of length < (uy)*. At stage 1 we put all strings s, |s| < 1 into B.
Now assume we have constructed B through stage n — 1 and describe stage n > 1.
stage n:

Compute f,(0%"). Let s be any string of the form (e, x,l,4), (i € {0,1}) with (u,—1)""t <
|s| < (un)™. Then we put s € B iff s # f,(0%) and (e, ,!) € K.
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end of stage n

First note that K'<_,, B via the reduction defined above. Since for any (e, z, 1) if (¢, z,{) € K then
at least one of (e, x,1,0), (e, z,{, 1) is put into B (without loss of generality |(e, z,,0)| = |(e, z,{, 1)])
and if (e, 2,) ¢ K then neither of the two strings is in B.

Claim 4.1 B € NEXP
Proof. Given a string s, s € B iff:
1. s=(e,z, !l i) for some e, z,l € X* i€ {0,1},
2. (e,x,l) € K, and
3. 5 # £.(0%*) where uy is the least element in the sequence {u, }, with (uz)* > s.

Condition 1 can be tested for in linear time. Consider condition 3. By definition of ug, |s| > (uk_l)k_l

and hence (uk)k < 2FIsI Now since f;, € DTIME (nk) and H € P, the uj as in 3 can be found and
the condition in 3 checked in time (uk)k < 2klsl < 20(51°) . As K € NTIME (27) the claim follows
and in fact B € NTIME (2°). 0

Thus we have that B is <}_,,-complete for NEXP .

Claim 4.2 B is not <P -complete for NEXP.

Proof. Assume B is <P -complete. Then by Theorem 1.1 there is a polynomial time computable f,
which reduces X* to B and which is exponentially honest.

At stage n of the construction of B we computed f,(0%~). By the exponential honesty of f,,
IO > |gun| = u,, = 205=""" 41 and so |f,(0%")] > (un—1)"~ L. Hence at stage n we put
fn(0%) into B. This contradicts the assumption that f, is a reduction of £* to B O
This completes the proof of Theorem 2.3(i) for the class NEXP . O

A standard padding argument now yields the desired result for NE.

Claim 4.3 There is a C' which is <b_,,-complete for NE but not <P -complete for NE.

Proof. Let B be as in the previous theorem. Then, as noted above, B € NTIME (2”2). Define
C = {#101"*|z € B}. Then

1. ¢ e NE.

2. B<P C and hence C'is <f_,, complete.

3. C'is not < -complete for NE.

Hence C' has the desired properties. O
Almost nothing is known regarding these questions for NP-complete sets, even assuming that P

£ NP .

5 Other Properties and Open Problems

5.1 Properties of “weak” complete sets

In the last section we considered reductions weaker than <P —and showed that such reductions
generally lead to different notions of completeness. We have not mentioned any of the structural



properties which such “weakly-complete” sets possess. Here we discuss one recent development con-
cerning autoreducibility for <} sets in some detail and briefly mention a few other properties of
interest.

Recently, there has been a new study of the autoreducibility of polynomial time Turing-complete
sets for exponential time (and larger) classes which has interesting consequences for the relationships
between important complexity classes. An autoreduction is a Turing reduction from a set to itself
where the only restriction is that one cannot query the oracle on the input string itself. More formally,

Definition 5.1 A set A is (P-time) autoreducible if there is a polynomial-time oracle Turing ma-
chine M such that A = M4 and for all z, M4 (z) does not query its oracle A about =.

Buhrman, Fortnow and Torenvliet [BFT] proved the following results.

Theorem 5.1 Every set which is <l.-complete for EXP or for EXPSPACE is autoreducible.

Theorem 5.2 There is a set which is <l.-complete for EEXPSPACE (= DSPACE (22p01y)) but not
autoreducible.

From these results they noted that it follows that settling the question of the autoreducibility of
EEXP -time ( = DTIME (22p01y)) complete sets has important consequences. In particular, if every
set which is <l.-complete for EEXP -time is autoreducible then P is not equal to PSPACE. On the
other hand if this is not the case then P is not LOGSPACE.

There are a number of other relevant and interesting concepts and results which we have not had
time to discuss here and now briefly mention.

The non-uniform complexity of exponential time sets, particularly complete sets, has been exten-
sively studied. Generally these results address the question of whether circuits families of limited size
can be used to solve (many or all) exponential time problems. One major open problem is whether
all of EXP can be solved with polynomial size circuits. There are numerous partial results in this
study, many of which follow from measure theoretic techniques and can be found in Lutz [L92] and
Lutz and Mayordomo [LM93]. Others; using more direct approaches, can be found in the Ph.D.
theses of Mocas [M93] and Buhrman [Bu93] and the paper by Bin Fu [Fu93].

Tang, Fu and Liu [FLT91] and Buhrman, Hoene and Torenvliet [BHT] study the rubustness of
EXP -hard sets by considering when and whether subsets of hard EXP -time sets remain hard. Fu,
Li and Zhong [FLZ92] continue this study and also generalize exponential time problems to consider
the notion of EXP -low sets in this regard. These ideas are expanded in the work of Buhrman [Bu93]
and Buhrman, Hoene and Torenvliet [BHT] where splittings of EXP - and NEXP -complete sets are
defined and explored.

5.2 Polynomial time complete recursively enumerable sets

The results presented here all hold for all reasonable (deterministic and nondeterministic) time com-
plexity classes with time bounds larger than 27. The recursively enumerable sets form an interesting
and somewhat different platform in which to study some of the problems discussed in this paper.
The r.e. sets in many respects resemble a non-deterministic class where there are no time bounds
to worry about. As with non-deterministic classes there is no closure under complement. And the
very powerful methods of recursion theory can be brought to bear. So it 1s a tempting setting within
which to try to first approach the problems discussed here. Yet even here much is not known about
the properties of complete sets. We do know that any problem which 1s <F -complete for the r.e.
sets is also 1-1 complete. (For a proof of this see Ganesan and Homer [GH89].) So here the situation
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is the same as for NEXP -complete sets. However we do not know if complete sets are 1-1, length-
increasing complete, nor do we know if every r.e.-complete set has an infinite P-subset. It seems
reasonable to hope to settle one or both of these questions, but a new idea will be necessary.

5.3 A short list of open problems

We end with a short list of open problems raised in this paper. Some are easier than others.

1. Is every 1-l-complete set for NE length-increasing complete 7 (Note: In this case length-
increasing completeness is equivalent to polynomial-honest completeness; so it is sufficient
to prove the polynomial honesty of the reductions.)

2. Does the proof of 1-1 completeness for NE-complete sets extend to nondeterministic complete
sets for classes with smaller, but still superpolynomial, time bounds? For example, can we
show that every NTIME(n'*¢")-complete set is 1-1 complete ?

3. Is every 1 — tt-complete set for NP m-complete 7

4. Is there a reasonable complexity-theoretic assumption which implies that the various polyno-
mial time reducibilities differ on NP sets 7 [LLS75] For one answer to this question refer to
the paper by Jack Lutz in this volume.

5. Does every E-complete set contain a dense infinite P-subset 7 Tran [Tran] has shown this
property to be oracle dependent.

6. Does every <b_,,-complete (or <!,-complete) set for E contain an infinite NP (or UP ) subset?
Note that a negative answer to this question would imply that NP # EXP . So one approach
might be to assume NP # EXP and try to prove the negation. It is straightforward to show
that such complete sets may be P-immune. (See Kurtz, Mahaney and Royer [KMRB6].)

7. Does every E-complete set contain an infinite dense R subset 7
8. Is there an oracle relative to which there is a P-immune NP complete set 7

9. Is every problem which is <}.-complete set for EEXP autoreducible ? Is every <}.-complete set
for NE autoreducible 7

10. Does every <P -complete r.e. set contain an infinite P-subset 7 Can the complement of such
sets be P-immune 7

11. Is every <P -complete r.e. set also 1-1, length-increasing complete 7

12. One can define the non-adaptive tt-autoreducibility in a manner completely analogous to
(Turing-)autoreducibility. Using this notion, one can prove that all ##-complete sets for
PSPACE are tt-autoreducible and that there are sets tt-complete for EXPSPACE which are not
tt-autoreducible. The question remains whether all sets which are tt-complete for for EXP are
tt-autoreducible. Settling this question would separate PSPACE either from P or from EXP .
For precise definitions and more details see [BFT].

Pointers to other papers in this volume:
Several papers in this volume contain results relevant to this survey.
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1. The paper by Jack Lutz considers a notion of measure-theoretic completeness (weak complete-
ness) for exponential time sets which relates to the completeness notions considered here and
leads to additional structural properties.

2. Jie Wang, in Average Case Computational Complexity Theory, looks at concepts and properties
of average-case completeness. While focusing on NP problems; some of this work is relevant to
exponential time as well.

3. This paper has focused on efficient reductions to complete sets and the properties of complete
sets which follow from such reductions. A complementary and very active area of computational
complexity studies which types of problems complete sets can be reduced to (i.e. “ hard sets”),
and what follows from the existence of such reductions. The paper of Cai and Ogihara in this
volume discusses some aspects of this question.

Acknowledgements:

Thanks to Harry Buhrman, David Martin, Nick Tran and an anonymous referee who took the
time to read this paper and who sent me many comments and even more corrections. I appreciate
the invitation and opportunity provided by Lane Hemaspaandra and Alan Selman in inviting me to
write this article and in keeping me in line and on time.

This is page xiv
Printer: Opaque this



6 References
[BDGS88] J. L. Balcdzar, J. Diaz and J. Gabarrd. Structural Complexity I. W. Brauer, G. Rozenberg

[Ber76]

[Ber77]

[BHT7]

[Bu93]

[BFT]

[BHT]

[BHT0]

[BST]

[BT94]

[Fu93]

[FLZ92]

[FLT91]

[GH89]

[HLYS6]

and A. Salomaa (eds.) EATCS Monographs on Theoretical Computer Science 11, Springer
Verlag, 1988.

L. Berman. On the structure of complete sets: Almost everywhere complexity and in-
finitely often speedup. Proc. IEEE Foundations of Computer Science Conference, 76-80,
1976.

L. Berman. Polynomial reducibilities and complete sets. PhD thesis, Cornell University,

1977.

L. Berman and J. Hartmanis. On isomorphism and density of NP and other complete

sets. SIAM J. Comp., 1:305-322, 1977.

H. Buhrman. Resource bounded reductions. Ph.D. Thesis, University of Amsterdam,

1993.

H. Buhrman, L. Fortnow and L. Torenvliet Using autoreducibility to separate complexity
classes. In Proc. IEEE Foundations of Computer Science Conference, pp. 520-528, 1995.

H. Buhrman, A. Hoene and L. Torenvliet. Splittings, robustness and structure of complete
sets. In Proc. Symposium on Theoretical Aspects of Computer Science, Springer Lecture
Notes in Computer Science 665, pp. 175-184, 1993.

H. Buhrman, S. Homer and L. Torenvliet. On complete sets for nondeterministic classes.
Math. Systems Theory, pages 179-200, 1991.

H. Buhrman, E. Spaan, and L. Torenvliet. Bounded reductions. In Complexity Theory
(K. Ambos-Spies, S. Homer, and U. Schoning, eds.), pp. 83-99, Cambridge University
Press, December 1993.

H. Buhrman and L. Torenvliet. On the structure of complete sets In Proc. IEEE Structure
wm Complexity Theory, pages 118-133, 1994.

B. Fu. With quasi-linear queries, EXP is not polynomial time Turing reducible to sparse
sets. In Proc. IEEFE Structure in Complexity Theory, pages 185-191, 1993.

B. Fu, H-z. Li and Y. Zhong. Some properties of exponential time complexity classes. In
Proc. IEEE Structure in Complexity Theory, pages 50-57, 1992.

B. Fu, T. Liu and S. Tang. Exponential time and sub-exponential time sets. In Proc.
IEFEE Structure in Complexity Theory, pages 230-237, 1991.

K. Ganesan and S. Homer. Complete problems and strong polynomial reducibilities.
Proc. Symposium on Theoretical Aspects of Computer Science, Springer Lecture Notes in

Computer Science 349, 240-250, 1989.

J. Hartmanis, M. Li and Y. Yesha. Containment, separation, complete sets and immunity
of complexity classes, Proc. 13th ICALP, Lecture Notes in Computer Science, 226, 136-
145, 1986.

This i1s page xv
Printer: Opaque this



[L92]

[LM93]

[M93]

[LLS75]

[Tran]

[Wan90)]

[Wat87a]

[Wat87b]

[Yo83]

S. Homer Structural properties of nondeterministic complete sets. In Proc. IEEE Struc-
ture in Complexity Theory, pages 3—10, 1990.

S. Homer, S. Kurtz and J. Royer. On 1-Truth-Table-Hard Languages. Theoretical Com-
puter Science, 155, (1993), 383-389.

S. Homer and W. Maass. Oracle dependent properties of the lattice of NP sets. Theo-
retical Computer Science, 24:279-289.

S. Homer and J. Wang. Immunity of complete problems. Information and Computation

110, (1994): 119-130.

K. Ko and D. Moore. Completeness, approximation and density. STAM J. Comp., 10:787—
796, 1981.

S. Kurtz, R. Mahaney, and S. Royer. Collapsing degrees. J. of Computer and System
Sciences, pages 247-268, 1988.

J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and
System Sciences, pages 220-258, 1992.

J. H. Lutz and E. Mayordomo. Measure, stochasticity, and the density of hard languages.
SIAM Journal on Computing, pages 762-779, 1994.

S. E. Mocas. Separating exponential time classes from polynomial time classes. Ph.D.
Thesis, Northeastern University, 1993.

R. Ladner, N. Lynch, and Alan Selman. Comparison of polynomial-time reducibilities.
Theoretical Computer Science, 1:103-123, 1975.

N. Tran. On P-immunity of exponential time complete sets. To appear in JCSS. Also
see, On P-immunity and nondeterministic complete sets. In Proc. IEEE Structure in
Complexity Theory, pages 262-263, 1995.

J. Wang. Polynomial time productivity, approximations, and levelability. STAM Journal
on Computing, 21(1992): 1100-1111.

O. Watanabe. On the structure of intractable complezity classes. Ph.D Dissertation,
Tokyo Institute of Technology, 1987.

O. Watanabe. A comparison of polynomial time completeness notions. Theoretical Com-
puter Science, 54:249-265, 1987.

P. Young. Some structural properties of polynomial reducibilities and sets in NP . Proc.
ACM Symposium on Theory of Computing, 15:392-401, 1983.

This is page xvi
Printer: Opaque this



