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This is page iPrinter: Opaque thisABSTRACT The properties and structure of complete sets for exponential-time classes are surveyed.Strong reductions, those implying many-one completeness, are considered as strengthenings of theusual completeness notions. From the results on strong reductions, immunity properties of completesets are derived. Di�erences are shown between complete sets arising from the various polynomial-timereductions. These include most of the \weak" reduction between �pm and �pT . Finally we considercomplete sets for some other classes such as r.e. sets along with structural properties of these sets.1 IntroductionComplete problems play a central and de�ning role in complexity theory. They are the canonicalsets within a complexity class, are almost always the only sets which arise naturally within a classand as such are the most thoroughly studied. One would like to understand the inherent propertieswhich make a set complete and in particular capture the core of what makes them natural and yethard to compute. As they do occur naturally we would like to understand the di�culties involvedin e�ciently solving them, or at least solving as many instances as possible of the problem. In thispaper we survey the properties of the various types of complete sets which arise in deterministicand nondeterministic exponential time. In this setting natural problems are not as ubiquitous as insmaller classes such as P or NP. However we have the advantage that superpolynomial time a�ordsus, and we are able to perform constructions and analyses which are not possible with smaller timebounds. As such, complete problems in these classes are both interesting in their own right andprovide possible insights into the structure of complete sets for other, central complexity classes.In recent years there has been a great deal of activity and considerable success in studying thestructural properties of sets within E, the deterministic exponential time computable problems. Eis a simply de�ned subrecursive class which contains a number of interesting complete problems. Itprovides a useful platform for studying polynomial-time reductions, polynomial-time completenessnotions and the structure of intractable problems.Moreover, there are several advantages to studyingproblems in this class as opposed to some other more di�cult classes. Most importantly these includethe fact that E, being deterministic, is closed under complement and as well that there is a universalpredicate for polynomial-time functions within E. These facts allow for a good understanding of thestructure of polynomial time reductions on problems in E. This has resulted in progress on severalareas of study concerning the structure of exponential time sets, particularly complete sets.Studying nondeterministic time classes is more di�cult. In particular, proving almost anythingabsolute about NP is di�cult, at least in part because the two properties of E mentioned above donot seem valid here. In this paper we concentrate on the properties of nondeterministic exponentialtime, NE. While NE is large enough to allow for the enumeration of all polynomial-time computablefunctions, it is (probably) not closed under complement. For this reason, NE seems more similar toNP than does any deterministic class, and results concerning NE perhaps give a better indicationof structural properties of nondeterministic classes. In studying this class we have to come to gripswith some of the problems intrinsic to nondeterminism.There is no unique notion of a complete set in a complexity class as each di�erent reduction givesrise to a corresponding notion of completeness. For a complexity class C and a reducibility � wesay that A is �-complete for C if A 2 C and 8B 2 C(B � A): All of the reducibilities considered inthis paper are polynomial-time bounded. As is customary, we call A C-complete if A is �pm-completefor C. (Here �pm denotes polynomial-time many-one reducibility.) We call reductions which imply�pmstronger reductions, and reduction implied by �pmweaker reductions. So stronger reduction implyweaker reductions.We assume familiarity with the standard polynomial-time reductions and the standard poly-



This is page iiPrinter: Opaque thisnomial and exponential time (deterministic and nondeterministic) complexity classes. Let E =DTIME �2linear�, NE = NTIME �2linear�, EXP= DTIME �2poly�, and NEXP= NTIME �2poly�.All of the problems considered here will be thought of as coded by �nite strings over a �xed �nitealphabet �. We make use of a polynomial time computable and invertible pairing function ( . , .).In Section 2 we introduce the basic complete sets for E, NE, EXP and NEXP . We examine e�cientreductions to complete sets and show how to strengthen these reductions in certain respects. Oneapproach to the question of what makes a complete problem hard is to ask about the frequency ofthe hard instances. Conversely, one can ask what large subsets of these sets can be found which areeasier than the complete set to compute. These question have consequence for approximations tohard problems, as we would like to know if we can solve these problems e�ciently on large sets ofinstances. These considerations lead to the concept of immunity.De�nition 1.1 Let C be a collection of sets. A set A is C-immune if A is in�nite and does not havean in�nite subset in C.We would like to know if intractable sets, particularly many-one complete sets, can be P-immune.This would tell us that not only is membership in the sets themselves hard to decide, but theyhave no in�nite tractable subsets. All natural complete sets can easily be seen to have many easilycomputable subsets and so are not P-immune. What is more di�cult is determining if this propertyis a consequence of completeness.It has long been known that every set polynomial-time many-one-complete for E is not P-immune(L. Berman [Be76]). Recently, Nicholas Tran [Tran] has proved this same fact for NE-completeproblems (and their complements). These non-P-immunity results are witnessed by sparse sets, andit is not known if there are dense P subsets of these complete sets for E and NE. We do know thatNE-complete sets contain in�nite, dense subsets in the classes E and UP. Results such as these arediscussed in Section 3 of this paper.In Section 4 a comparison between complete sets for the most common polynomial-time reductionsis presented. With a few unexpected exceptions we show that these completeness concepts di�er onboth E and NE. More precisely we di�erentiate between completeness with respect to many-onereductions, bounded and unbounded truth-table reductions, and Turing reductions. The exceptionsare that many-one and 1-truth-table completeness turn out to coincide for the classes considered.In Section 5 we consider a few other properties of complete sets, particularly those which haveconsequences for the weaker truth-table and Turing complete problems. We also expand our discus-sion to include complexity classes larger than exponential time, particularly the class of r.e. sets. Weconclude with a list of open problems.Two earlier surveys on parts of this subject can be found in the proceedings of past Structure inComplexity Theory conferences. The starting point for this article is the paper I wrote for Structures'90 [H90]. A more recent survey with a somewhat di�erent focus was written by Burhman andTorenvliet [BT94] and can be found in Structures '94.All of these exponential time classes have easy-to-de�ne canonical complete problems. In fact,they have 1-1, length increasing, invertible and paddable complete sets.For E the canonical complete set is de�ned by:f(e; x; t)j the eth deterministic exponential time Turing machine accepts input x in � t stepsg.(Here t is a binary integer, and we are making use of a canonical and e�cient enumeration ofthe exponential time sets.) A similar set, based on an enumeration of NE machines, is 1-1, lengthincreasing, invertible complete for NE.Most of the results in this paper are stated for the \linear exponential" classes E and NE. However,they all hold for the larger classes EXPand NEXP (as well as for any reasonable, larger deterministicand nondeterministic time classes). That EXP and NEXP have these same properties follows from



This is page iiiPrinter: Opaque thisstraightforward padding arguments. One of the more fundamental padding arguments is the proofthat any E-complete (NE-complete) set is also EXP-complete (NEXP-complete). As we later referto padding arguments, we present a brief proof of this fact here.Theorem 1.1 Any E-complete set is also EXP-complete.Proof. Let C be E-complete and let A be a set in EXP, say A 2 DTIME�2nk�. De�ne B =f(x;Ojxjk) j x 2 Ag. So A�pmB via the functions f(x) = (x;Ojxjk). It is straightforward to checkthat B 2 E and so B�pmC implying A�pmC and proving C is EXP-complete. 2For the de�nitions and basic facts concerning the most common and important polynomial-timebounded reductions we refer the reader to Ladner, Lynch and Selman [LLS75] . A more recentexposition of e�cient reductions can be found in Buhrman [Bu93]. As usual we let �pT denotepolynomial Turing reductions. Being less widely used, the de�nitions for the truth-table reductionsare included here.De�nition 1.2 A reduction is an oracle Turing machine computation. A truth-table (or tt or non-adaptive) reduction is an oracle computation where all oracle queries are made before any of theanswers are read by the Turing machine computation. That is, the queries to the oracle depend onlyon the input and the Turing machine program and not on the answers to previous oracle queries. Areduction is k � tt of the number of oracle queries, on any input, is bounded by k. A reduction isb-tt if it is k-tt for some integer k > 0.We can now de�ne several polynomial time truth-table reductions.De�nition 1.3 A set A1 is polynomial time truth-table reducible to A2 (A1 �ptt A2) i� thereexists a polynomial-time-bounded tt-reduction MA2 , with queries to the oracle set A2, such thatx 2 A1 () MA2(x) accepts. Polynomial-time bounded k-truth-table reducibility (�pk�tt) andbounded-truth-table reducibility (�pbtt) are de�ned similarly using polynomial time k-tt and bttreductions.2 Strong Reductions to Complete SetsMany properties of complete problems follow from strengthening the reductions to the problem. Inparticular, the (many-one) complete sets for E and NE are actually complete for somewhat strongerreductions. We use these facts to prove several of the immunity properties which appear in the nextsection. Furthermore the existence of stong reductions to complete sets is of independent interest.They provide evidence for the validity of the isomorphism conjecture (see Berman and Hartmanis[BH77]) which in the exponential time setting says that all E-complete sets are polynomial-timeisomorphic. If we could strengthen the reductions to complete sets su�ciently then the polynomial-time isomorphism of these sets would follow.We present the proofs of two such strengthened reductions in this section. They are used in thenext section to derive some interesting immunity properties of complete sets. Every �pm-completeset for E is complete with respect to 1-1 length-increasing polynomial-time reductions. Every �pm-complete set for NE is complete with respect to 1-1 exponentially-honest polynomial-time reductions.The �rst theorem, concerning E-complete sets, is due to Len Berman and can be found in his thesis[Ber77]. The proof given here is from Ganesan and Homer [GH89].Theorem 2.1 [Ber77] All �pm-complete sets for E are 1-1 length-increasing equivalent.



This is page ivPrinter: Opaque thisProof.Let A be any arbitrary m-complete set in E and let K be any complete set in E. It is enough toshow that K �p1�liA.Let f1; f2; : : : be an enumeration of all polynomial time computable machines, such that fi(x)can be computed from i and x in time 2O(jij+jxj). (See [GH89] for a proof that such enumerationsexist.) We construct a set M in such that the reduction, say, fj from M to A is 1-1-li on fjg�N . Inaddition the set M is constructed so that the function, g(x) = (j; x) will be a reduction from K toM. The required 1-1-li reduction from K to A, then would be f(x) = fj(g(x)).The following program describes the set M.1. input (i; x)2. if jfi(i; x)j � j(i; x)j3. then accept (i; x) i� fi(i; x) 62 A.4. else if 9 y < x such that fi(i; x) = fi(i; y)5. then accept (i; x) i� y 62 K.6. else accept (i; x) i� x 2 K.Lemma 2.1 M is in E.Proof.Let us compute the time required for M on input (i; x). Note that computing fi(i; x) takestime 2O(jij+jxj). Since, there are only 2O(j(i;x)j) strings of the form (i; y) less than (i; x) all of themcan be computed in time 2O(j(i;x)j). Hence the condition on line 5 of the algorithm can be performedin time 2O(j(i;x)j). There are only three cases where the decision to accept (i; x) is made.Case 1 jfi(i; x)j � j(i; x)j. In this case we accept (i; x) i� fi(i; x) is not in A. This can obviously bedone in time 2O(j(i;x)j).Case 2 Condition on line 4 holds. Since jyj < j(i; x)j membership of y in K can be decided in time2O(j(i;x)j).Case 3 M accepts (i; x) i� x 2 K. This can be done directly in time 2O(j(i;x)j).It is clear from the above discussion that M is in E.Lemma 2.2 If fj is a reduction from M to A, then fj is 1-1-li on fjg�N . Moreover, g(x) = (j; x)is a reduction from K to M.Proof.If fj is not length increasing, it is not a reduction from M to A because of line 3 of theconstruction. So, fj has to be length increasing. Suppose, fj is not 1-1. Let x2 be the least elementsuch that for some x1 < x2; fj(j; x2) = fj(j; x1). By de�nition of M, (j; x1) 2M , x1 2 K and(j; x2) 2M , x1 62 K. So, fj can not be a reduction from M to A, contradiction. Hence fj is 1-1-lion fjg � N . Note that (j; x) 2 M i� x 2 K from the way M is de�ned. The elements of the form(j; x) will always fall in Case 3 of the algorithm. Hence, g(x) = (j; x) is a reduction from K to M.Lemma 2.3 K �p1�liA:Proof.De�ne f(x) = fj(g(x)). Clearly g is 1-1-li. Since fj is 1-1-li on the range of g, f is 1-1-li. f isalso computable in polynomial time. It is easy to check that f is a reduction from K to A.For the next corollary we need the following worst-case de�nition of a one-way function. It is quitedi�erent than the probabilistic notion of one-way function which is found in modern cryptography.



This is page vPrinter: Opaque thisDe�nition 2.1 A function f is polynomially honest if there is a polynomial p such that 8x(jxj �p(jf(x)j)).A one-way function is a one-to-one, polynomially honest polynomial time computable function whoseinverse in not polynomial time computable.Corollary 2.1 If there are no one-way functions then all E-complete sets are P-isomorphic.Proof.Let C be E-complete and K the canonical E-complete set. By the above theorem, K �p1�1;l:i:C. Furthermore the reduction is P-time invertible by the assumption of the nonexistence of one-wayfunctions. Similarly, the canonical properties of K yield the existence of a reduction from C to Kwhich is 1-1, length-increasing and P-invertible. Now the main theorem of Berman and Hartmanis[BH77] tells us that two sets which are interreducible by 1-1, length increasing and P-invertiblereductions are P-isomorphic.We now turn to the nondeterministic complexity class NE. We would like to prove the same resultsfor for NE as we have for E. But the nondeterminism presents added di�culty which we have notbeen able to completely overcome. We are able to prove the 1-1 completeness of NE-complete sets,but not the length increasing completeness. These results hold for other larger nondeterministicclasses as well. First a de�nition.De�nition 2.2 A function f is exponentially honest if 8x(2jf(x)j � jxj).Theorem 2.2 ([GH88]) All �pm-complete sets for NE are 1-1 exponentially honest equivalent.Proof.Let A be any arbitrary �pm-complete set in NE and let K be any 1-1, length-increasingcomplete set for NE. The canonical NE-complete set has this property. It is su�cient to show thatK is 1-1 exponentially honest reducible to A.Let f1; f2; : : : be an enumeration of all polynomial time computable functions such that fi(x) canbe computed from i and x in time 2O((jij+log(jxj))2). (See [GH88] for a proof of the existence of suchan enumeration.) Let M be the set of pairs accepted by the following algorithm.1. input (i; x)2. if 2jfi(i;x)j < j(i; x)j3. then accept (i; x) i� fi(i; x) 62 A.4. if 9y < x such that fi(i; y) = fi(i; x)5. then if 2jyj � jxj then accept (i; x) i� y 62 K,6. else reject (i; x).7. else accept (i; x) if either (1) or (2) holds.8. (1) 9 y > x such that jyj � 2jxjand fi(i; x) = fi(i; y).9. (2) x 2 K.Proposition 2.1 M is in NEXP .Proof. Let c and d be constants such that the running of time of K is bounded by 2c�jxj and therunning time of A is bounded by 2d�jxj. Let us compute the time required for M on input (i; x). Notethat computing fi(i; x) takes time at most 2O((jij+log(jxj))2). If 2jfi(i;x)j < j(i; x)j the membershipof fi(i; x) in A can be decided deterministically in time 2O(jij+jxj). Since, there are only 2O(j(i;x)j)strings of the form (i; y) less than (i; x), the condition on line 4 of the algorithm can be computedin time 2O(jij+jxj). If 2jyj � jxj, we can decide if y 2 K deterministically in time 22cjyj < 2jxjc . Thus



This is page viPrinter: Opaque thissteps 5 and 6 can be done in time 2O(jxjc). In step 8, we can guess a string y which is of length atmost 2jxj and compute fi(i; y) in time 2O((jij+jxj)2). Thus the set M is in NEXP . 2Any m-complete set for NE is also m-complete for NEXP . So there is a reduction fromM to A.Proposition 2.2 Let fj be any reduction from M to A. Then f(x) = (j; x) is a 1-1 exponentiallyhonest reduction from K to A.Proof. It is clear from the de�nition that the reduction has to be exponentially honest, otherwisefj can not be a reduction due to the diagonalization in steps 2 and 3. Assume f is not 1-1. Let x2be the least elements such that for some x1 < x2, fj(j; x1) = fj(j; x2): There are two cases.Case 1. 2jx1j � jx2j. In this case, (j; x1) 2 M i� x1 2 K. (j; x2) 2 M i� x1 62 K. Hence fj cannotbe a reduction. Contradiction.Case 2. 2jx1j > jx2j. In this case, (j; x1) 2M and (j; x2) 62M . So again fj cannot be a reduction.Contradiction.Hence, f is 1-1. Having proved f is 1-1, it is easy to verify that f is a reduction from K to A. 2A stubborn open question remains here. Namely, can we improve Theorem 2.2 to get the 1-1reductions to be length increasing, as we can for E-complete sets ? This technical question turns outto be both di�cult and most challenging.3 Immunity for Complete ProblemsIn this section the question of whether complete problems always have easy-to-compute subsets isinvestigated. Furthermore, we explore the density of such easy subsets. Motivating these questionsis the idea that as E- and NE-complete problems are intrinsically di�cult, it is desirable to �ndlarge subsets of these problems which are more tractable. We require that our subsets be in�nite,and if possible dense. The subsets should certainly be easier to compute than the original completeproblem. Ideally they would be polynomially time computable but, as we shall see, this goal is notalways attained.The �rst strong results in this direction were given by L. Berman [Be76, Be77]. He proved that ev-ery E-complete set has an in�nite polynomial time subset. The key element of this proof is Berman'stheorem of the last section that E-complete sets are actually one-one length increasing complete.Since the complement of an E-complete set is also E-complete, the complement cannot be P-immuneeither. Hence the situation here is as good as could be hoped.Let A�n denote the set of strings in A of length not greater than n. A is (polynomially) sparse ifthere is a polynomial p such that for all n, jjA�njj � p(n). A is dense if it is not sparse.Theorem 3.1 No E-complete set or complement of an E-complete set is P-immune.Proof. Let A be E-complete. So A is 1-1 length increasing complete. Let S = f0n : n > 0g. Thenthere is a total, 1-1, length increasing, and polynomial time computable function f such that S �pm Avia f . It is easy to see that f(S) is an in�nite polynomial-time subset of A. 2The same proof works for the complement of A by considering a reduction of �� � f0g� to A.It is an interesting open problem whether E-complete sets have dense P-subsets. This questionwas considered in Homer and Wang [HW] where several more small results are proved.The theory for NE is more di�cult and not as well-understood. Again the �rst results are Berman's[Be76]. In his 1976 FOCS paper he proved,Theorem 3.2 ([Be76]) Every NE-complete set has an in�nite E subset.



This is page viiPrinter: Opaque thisThe E subset constructed by Theorem 3.2 is sparse. Using the 1-1 completeness of NE-completesets this result can be improved in several ways. First, we can insist that the in�nite E subsets bedense and second, that it be in UPas well. The use of Theorem 2.2 in the next proof is not necessary,but does simplify the proof. In particular, the methods developed in the last part of Berman's thesis[Be77] are su�cient for this theorem, although the results stated there are weaker.Theorem 3.3 Let C be an NE-complete set. Then there is a dense set B � C with B 2 E \ UP .Proof. By Theorem 2.2 C is 1-1, exponentially honest complete. So there is a 1-1 function f whichreduces �� to C.De�ne B = ff(x) j 2jf(x)j � jxjg(1) B 2 UPz 2 B () 9x(z = f(x) ^ 2jf(x)j � jxj) (*)Hence B is in NP . Since f is 1-1 the x is unique, and so B is in UP .(2) B 2 EThis too follows from (*) above. Given z, a search for the corresponding x can be done by consideringthe exponentially many f(x)'s with jxj � 2jzj and testing for equality with z.(3) B is denseAssume f is computable in DTIME(nk). Since f is 1-1, f(�n) yields 2n elements in C of length� nk. Of these 2n elements, at most 2(n=2)+1 of them have length � n=2. Thus more than 2n�1 ofthe elements of f(�n) are in B. Hence jjB \��nkjj � 2n�1 and so B is not sparse. 2In the above proof we could have just as easily used a 1-1 reduction from ; to C. Doing thisenables us to obtain the same result for the complement of any NE-complete set. The argumentgiven here yields a small result for NP . Namely, any 1-1 complete for NP set has an in�nite denseUP subset.The question of the non-P-immunity of NE-complete sets seems more di�cult. Here our knowledgeof the structure of nondeterministic complete sets seems inadequate to obtain an answer. The methodwhich works successfully for E does not quite apply. As the following simple theorem shows, whatis missing is the su�cient honesty of reductions to NE-complete sets.Proposition 3.1 Any NE-complete set which is complete with respect to polynomial-honest func-tions has an in�nite P-subset.Proof. Let C be NE-complete and let f be a polynomial honest reduction from �� to C withjxj � p(jf(x)j) for some polynomial p and all x. De�ne B = ff(0n)jn 2 Ng. Then B � C andB 2 P since to check if z 2 B it is su�cient to check if f(0n) = z for n � p(jzj). 2Note that the P-subset B in the above proof is sparse. The hypothesis of Proposition 3.1 is strongerthan needed. It is su�cient that the reduction be polynomial-honest on some in�nite P-printableset. For some further structural conditions concerning the immunity of NE-complete sets see Wang[Wan90]. Some related results can be found in Hartmanis, Li and Yesha [HLY86] and in Buhrman[Bu93] where properties of tt-complete sets for NEXP are considered.Quite recently, Nicholas Tran [Tran] has shown that every NE-complete set and its complementdoes contain an in�nite P-subset. Tran's proof contains a clever use of the hierarchy theorem fornondeterministic time. It makes use of the general method of the proof of Theorem 2.1 in the lastsection. We still do not know if the of Proposition 3.1 is su�cient to obtain this result. That is, wedo not know if every NE-complete set is complete with respect to polynomially honest functions.Theorem 3.4 No NE-complete set or complement of an NE-complete set is P-immune.Proof. Let C be an NE-complete set, hfii be an e�cient enumeration of the polynomial timecomputable functions, and let T be a tally set which is in NTIME(2n2) - NTIME(2n). Such a T



This is page viiiPrinter: Opaque thisexists by the standard nondeterministic time hierarchy theorem. De�neA = f0(i;x)j jfi(0(i;x))j > (i; x)=i2 or 0x 2 Tg.A 2 NTIME(2n2) and hence, since NE-complete sets are also NEXP -complete, is �pm reducible toC via some polynomial time function fj .Now there are in�nitely many strings 0(j;x) such that jfj(0(j;x))j > (j; x)=j2. Otherwise, for largeenough x, we would have 0(j;x) 2 A i� 0x 2 T . In this case, for large enough x, 0x 2 T i� fj(0(j;x)) 2C, putting T in NTIME(2n) and contradicting its de�ning property.Now de�ne B = fy j y = fj(0(j;x)) and for some j; (j; x) < j2jyjg. Clearly B 2 P and by the aboveclaim B is in�nite. Finally,y 2 B ! for some (j; x), (fj(0(j;x)) = y and j0(j;x)j < j2jyj) ! 0(j;x) 2 A! y 2 C.And so B is the desired subset of C. A similar argument shows the existence of an in�nite P-subsetof the complement of C. 2Note that as every NE-complete set is also NEXP-complete, this same fact holds for NEXP-complete sets.Few absolute results are known concerning immunity for NP sets. The above proof for NE doeswork in a more restricted sense, namely for sets which are polynomially-honest complete for NP.The proof of Proposition 3.1 can be used to show that every such NP-complete set has an in�nite P-subset. Relative to an oracle it is known that one may have every NP-complete set having an in�nitepolynomial subset (Homer and Maass [HM83]). However no oracle is known relative to which thereis an NP-complete set which is P-immune.4 Di�erences Between Complete SetsCorresponding to the various e�cient reductions are di�erent complete sets. In this section wetake the same approach as in Section 2 and try to relate exponential time complete problems withrespect to the various reducibilities. In particular, we examine how to di�erentiate between completeproblems for the weaker reduction, those between �pm and �pT , on exponential time classes. The mainfocus is on NE, as a representative nondeterministic time complexity class, although our results applyto NEXPand to any larger nondeterministic time classes. As a guide we begin with the results forE and other deterministic classes. While the results for E and NE here coincide, the proof methodsdo not. In part the proofs for E depend upon closure under complement while the NE results mustavoid this dependence.The systematic study of the di�erent polynomial time reductions was begun by Ladner, Lynch andSelman in [LLS75]. In that paper they de�ned all of the various truth-table reductions and showedthat these reductions were all distinct, and distinct from �pm and �pT on sets in E. They mentionedbut did not approach the question of whether the complete sets with respect to these reductionswere di�erent. This question was taken up by Watanabe [Wat87b] who showed that most of thesereductions yield di�erent E-complete sets. Among the results proved there are,Theorem 4.1 ([Wat87b]) (i). There is a set which is �p2�tt-complete for E but not �pm-completefor E.(ii). For any integer k � 1, there exists a set which is �pk+1�tt for E but not �pk�tt-complete for E.(iii). There is a set which is �pT -complete for E but not �ptt-complete for E.The proof of Theorem 4.1 is omitted here. A proof can be given by directly using the ideas ofthe proof of Theorem 4.4 below. Theorem 4.1, together with other results in [Wat87b], answer mostof the questions concerning the strength of complete sets with respect to the di�erent reductions.



This is page ixPrinter: Opaque thisOne which is not answered is the comparison between many-one and 1-truth-table complete sets.Somewhat surprisingly, these two types of complete sets coincide. The proof �rst appears in [HKR-90].Theorem 4.2 ([HKR90]) Any set which is �p1�tt-complete for E is also �pm-complete for E.Proof.Let L be 1-tt complete for EXP , let E be m-complete for EXP , and let (ti)i2�� be an e�cientenumeration of the 1 � tt reductions. We show that E is m-reducible to L by constructing anintermediate set which does the untwisting of the 1� tt reductions for us.De�ne A by A((i; x)) = �E(x); if (i) ti((i; x)) = (yx 2 L); andE(x); if (ii) ti((i; x)) = (yx 62 L). (4.1)This A is easily seen to be computable in exponential-time. By the 1-tt completeness of L, there isa 1-tt reduction f of A to L. Let j be a t-index for f , i.e., f = tj.If (i) holds for (j; x), then x 2 E () (j; x) 2 A and (j; x) 2 A () yx 2 L; hence,x 2 E () yx 2 L. If (ii) holds for (j; x), then x 2 E () (j; x) 62 A and (j; x) 2 A () yx 62 L;hence, x 2 E () yx 2 L.Therefore, x 7! yx is an m-reduction for E to L as required. 2Combining Theorem 4.2 with Berman's [Ber77] theorem that the m-complete languages forEXP are 1-li complete yields:Corollary 4.1 The 1-tt complete for EXP languages are 1-li complete.The proof above depends on the fact the E is closed under complement, a fact not known to be truefor NE. Nonetheless, a slightly more complicated proof yields the same result for the nondeterministicclass. The result is due to Buhrman, Spaan and Torenvliet [BST]. Their proof is sketched here, notingthe di�erences with the proof of Theorem 4.2.Theorem 4.3 ([BST]) Any set which is �p1�tt-complete for NE is also �pm-complete for NE.Proof.First, the following weaker claim is made.Claim: If L is �p1�tt-complete for NE and B 2 NE \ co �NE, then B�pmL.This claim follows from the proof of Theorem 4.2 as an intermediate set can be constructedbetween B and L as above. We use the fact that B 2 NE \ co�NE to show that the intermediateset is in NE.Now let D be a set in NE, L a 1-truth-table complete set in NE and let Mj witness the 1 � ttreduction from D to L. On any input x, Mj(x) can end up in one of the following four situations:1. Mj(x) queries a string z and accepts i� z 2 L2. Mj(x) queries a string z and accepts i� z =2 L3. Mj(x) accepts4. Mj(x) rejectsWe now split set D in two subsets E and F .



This is page xPrinter: Opaque thisE = fx j x 2 D and machine Mj(x) is not in case 2gF = fx j x 2 D and machine Mj(x) is in case 2gClaim: F is in NE \ co�NE:Proof.We need to show that there is a NE predicate for F and for the complement of F .x 2 F i� the computation Mj(x) is in case 2 and x 2 Dx =2 F i� the computation Mj(x) is not in case 2 or z 2 LIt is clear that both predicates are NE.Now we can construct the many-one reduction from D to L: On input x simulate machineMj oninput x. If Mj is in case 1, then output z. If Mj in case 2, then x is in D i� x is in F . Since F is inNE \ co-NE there is, by the Claim, a many-one reduction from F to L, say g. Now output g(x). IfMj is in case 3, output a �xed element t0 2 L, and if Mj is in case 4, output a �xed element t1 =2 L.The entire construction can be carried out in polynomial time.For other weak reductions, truth-table and Turing, the NE-complete sets can be shown to di�er.These next results are presented in detail in Buhrman, Homer and Torenvliet [BHT89]. Some relatedresults can be found in Watanabe [Wat87a].Theorem 4.4 ([BHT89]) (i). There is a set which is �p2�tt-complete for NE but not �pm-completefor NE.(ii). For any integer k � 1, there exists a set which is �pk+1�tt for NE but not �pk�tt-complete forNE.(iii). There is a set which is �pT -complete for NE but not �ptt-complete for NE.We give the proof of part (i). Part (ii) is a generalization of the ideas there. The proof of part (iii)is somewhat more complicated and can be found in [BHT89].Proof. We �rst show this result for the class NEXP and then use a simple padding argument toobtain it for NE.Let K be a polynomial-time paddable �pm-complete set for NE. It is easy to see (for example seeBalc�azar, D��az, and Gabarr�o [BDG88]) that K is �pm-complete for NEXPas well. The set B willbe constructed so that its only elements are of the form (e; x; l; i), i = 0 or i = 1.B will be complete via the �p2�tt reduction:(e; x; l) 2 K $ [(e; x; l; 0) 2 B _ (e; x; l; 1) 2 B]To ensure that B is not �pm-complete we diagonalize against all possible �pm reductions from�� to B. Let fi be the ith polynomial-time computable function in some �xed enumeration of allsuch functions. We may assume that fi runs in DTIME �ni�. We need a set of elements on which todiagonalize. To this end we de�ne a sequence of integers fungn by u0 = u1 = 1, um = 2(um�1)m�1+1,for m > 1.Let H = f0ukgk2IN . It is easy to verify that H 2 P. We use the sequence H to diagonalize against�pm reductionsWe can now describe the construction of B. The set B is constructed in stages. At stage k = 1; 2; :::we determine all elements in B of length � (uk)k. At stage 1 we put all strings s, jsj � 1 into B.Now assume we have constructed B through stage n� 1 and describe stage n > 1.stage n:Compute fn(0un). Let s be any string of the form (e; x; l; i); (i 2 f0; 1g) with (un�1)n�1 <jsj � (un)n. Then we put s 2 B i� s 6= fn(0un) and (e; x; l) 2 K.



This is page xiPrinter: Opaque thisend of stage nFirst note that K�p2�ttB via the reduction de�ned above. Since for any (e; x; l) if (e; x; l) 2 K thenat least one of (e; x; l; 0); (e; x; l; 1) is put into B (without loss of generality j(e; x; l; 0)j= j(e; x; l; 1)j)and if (e; x; l) 62 K then neither of the two strings is in B.Claim 4.1 B 2 NEXPProof. Given a string s, s 2 B i�:1. s = (e; x; l; i) for some e; x; l 2 ��; i 2 f0; 1g,2. (e; x; l) 2 K, and3. s 6= fk(0uk) where uk is the least element in the sequence fungn with (uk)k � s.Condition 1 can be tested for in linear time. Consider condition 3. By de�nition of uk, jsj > (uk�1)k�1and hence (uk)k � 2kjsj. Now since fk 2 DTIME �nk� and H 2 P, the uk as in 3 can be found andthe condition in 3 checked in time (uk)k � 2kjsj � 2O(jsj2). As K 2 NTIME (2n) the claim followsand in fact B 2 NTIME �2n2�. 2Thus we have that B is �p2�tt-complete for NEXP .Claim 4.2 B is not �pm-complete for NEXP .Proof. Assume B is �pm-complete. Then by Theorem 1.1 there is a polynomial time computable fnwhich reduces �� to B and which is exponentially honest.At stage n of the construction of B we computed fn(0un). By the exponential honesty of fn,2jfn(0un )j � j0un j = un = 2(un�1)n�1 + 1, and so jfn(0un)j > (un�1)n�1. Hence at stage n we putfn(0un) into B. This contradicts the assumption that fn is a reduction of �� to B 2This completes the proof of Theorem 2.3(i) for the class NEXP . 2A standard padding argument now yields the desired result for NE.Claim 4.3 There is a C which is �p2�tt-complete for NE but not �pm-complete for NE.Proof. Let B be as in the previous theorem. Then, as noted above, B 2 NTIME �2n2�. De�neC = fx10jxj2jx 2 Bg. Then1. C 2 NE.2. B�pmC and hence C is �p2�tt complete.3. C is not �pm-complete for NE.Hence C has the desired properties. 2Almost nothing is known regarding these questions for NP-complete sets, even assuming that P6= NP .5 Other Properties and Open Problems5.1 Properties of \weak" complete setsIn the last section we considered reductions weaker than �pm and showed that such reductionsgenerally lead to di�erent notions of completeness. We have not mentioned any of the structural



This is page xiiPrinter: Opaque thisproperties which such \weakly-complete" sets possess. Here we discuss one recent development con-cerning autoreducibility for �pT sets in some detail and brie
y mention a few other properties ofinterest.Recently, there has been a new study of the autoreducibility of polynomial time Turing-completesets for exponential time (and larger) classes which has interesting consequences for the relationshipsbetween important complexity classes. An autoreduction is a Turing reduction from a set to itselfwhere the only restriction is that one cannot query the oracle on the input string itself. More formally,De�nition 5.1 A set A is (P-time) autoreducible if there is a polynomial-time oracle Turing ma-chine M such that A = MA and for all x, MA(x) does not query its oracle A about x.Buhrman, Fortnow and Torenvliet [BFT] proved the following results.Theorem 5.1 Every set which is �pT -complete for EXPor for EXPSPACE is autoreducible.Theorem 5.2 There is a set which is �pT -complete for EEXPSPACE (= DSPACE (22poly )) but notautoreducible.From these results they noted that it follows that settling the question of the autoreducibility ofEEXP -time ( = DTIME (22poly)) complete sets has important consequences. In particular, if everyset which is �pT -complete for EEXP -time is autoreducible then P is not equal to PSPACE . On theother hand if this is not the case then P is not LOGSPACE .There are a number of other relevant and interesting concepts and results which we have not hadtime to discuss here and now brie
y mention.The non-uniform complexity of exponential time sets, particularly complete sets, has been exten-sively studied. Generally these results address the question of whether circuits families of limited sizecan be used to solve (many or all) exponential time problems. One major open problem is whetherall of EXP can be solved with polynomial size circuits. There are numerous partial results in thisstudy, many of which follow from measure theoretic techniques and can be found in Lutz [L92] andLutz and Mayordomo [LM93]. Others, using more direct approaches, can be found in the Ph.D.theses of Mocas [M93] and Buhrman [Bu93] and the paper by Bin Fu [Fu93].Tang, Fu and Liu [FLT91] and Buhrman, Hoene and Torenvliet [BHT] study the rubustness ofEXP -hard sets by considering when and whether subsets of hard EXP -time sets remain hard. Fu,Li and Zhong [FLZ92] continue this study and also generalize exponential time problems to considerthe notion of EXP -low sets in this regard. These ideas are expanded in the work of Buhrman [Bu93]and Buhrman, Hoene and Torenvliet [BHT] where splittings of EXP - and NEXP -complete sets arede�ned and explored.5.2 Polynomial time complete recursively enumerable setsThe results presented here all hold for all reasonable (deterministic and nondeterministic) time com-plexity classes with time bounds larger than 2n. The recursively enumerable sets form an interestingand somewhat di�erent platform in which to study some of the problems discussed in this paper.The r.e. sets in many respects resemble a non-deterministic class where there are no time boundsto worry about. As with non-deterministic classes there is no closure under complement. And thevery powerful methods of recursion theory can be brought to bear. So it is a tempting setting withinwhich to try to �rst approach the problems discussed here. Yet even here much is not known aboutthe properties of complete sets. We do know that any problem which is �pm -complete for the r.e.sets is also 1-1 complete. (For a proof of this see Ganesan and Homer [GH89].) So here the situation



This is page xiiiPrinter: Opaque thisis the same as for NEXP -complete sets. However we do not know if complete sets are 1-1, length-increasing complete, nor do we know if every r.e.-complete set has an in�nite P-subset. It seemsreasonable to hope to settle one or both of these questions, but a new idea will be necessary.5.3 A short list of open problemsWe end with a short list of open problems raised in this paper. Some are easier than others.1. Is every 1-1-complete set for NE length-increasing complete ? (Note: In this case length-increasing completeness is equivalent to polynomial-honest completeness, so it is su�cientto prove the polynomial honesty of the reductions.)2. Does the proof of 1-1 completeness for NE-complete sets extend to nondeterministic completesets for classes with smaller, but still superpolynomial, time bounds? For example, can weshow that every NTIME(nlogn)-complete set is 1-1 complete ?3. Is every 1� tt-complete set for NP m-complete ?4. Is there a reasonable complexity-theoretic assumption which implies that the various polyno-mial time reducibilities di�er on NP sets ? [LLS75] For one answer to this question refer tothe paper by Jack Lutz in this volume.5. Does every E-complete set contain a dense in�nite P-subset ? Tran [Tran] has shown thisproperty to be oracle dependent.6. Does every �p2�tt-complete (or �pT -complete) set for E contain an in�nite NP (or UP ) subset?Note that a negative answer to this question would imply that NP 6= EXP . So one approachmight be to assume NP 6= EXP and try to prove the negation. It is straightforward to showthat such complete sets may be P-immune. (See Kurtz, Mahaney and Royer [KMR86].)7. Does every E-complete set contain an in�nite dense R subset ?8. Is there an oracle relative to which there is a P-immune NP complete set ?9. Is every problem which is �pT -complete set for EEXP autoreducible ? Is every �pT -complete setfor NE autoreducible ?10. Does every �pm -complete r.e. set contain an in�nite P-subset ? Can the complement of suchsets be P-immune ?11. Is every �pm -complete r.e. set also 1-1, length-increasing complete ?12. One can de�ne the non-adaptive tt-autoreducibility in a manner completely analogous to(Turing-)autoreducibility. Using this notion, one can prove that all tt-complete sets forPSPACEare tt-autoreducible and that there are sets tt-complete for EXPSPACE which are nottt-autoreducible. The question remains whether all sets which are tt-complete for for EXP arett-autoreducible. Settling this question would separate PSPACE either from P or from EXP .For precise de�nitions and more details see [BFT].Pointers to other papers in this volume:Several papers in this volume contain results relevant to this survey.



This is page xivPrinter: Opaque this1. The paper by Jack Lutz considers a notion of measure-theoretic completeness (weak complete-ness) for exponential time sets which relates to the completeness notions considered here andleads to additional structural properties.2. Jie Wang, in Average Case Computational ComplexityTheory, looks at concepts and propertiesof average-case completeness. While focusing on NP problems, some of this work is relevant toexponential time as well.3. This paper has focused on e�cient reductions to complete sets and the properties of completesets which follow from such reductions. A complementary and very active area of computationalcomplexity studies which types of problems complete sets can be reduced to (i.e. \ hard sets"),and what follows from the existence of such reductions. The paper of Cai and Ogihara in thisvolume discusses some aspects of this question.Acknowledgements:Thanks to Harry Buhrman, David Martin, Nick Tran and an anonymous referee who took thetime to read this paper and who sent me many comments and even more corrections. I appreciatethe invitation and opportunity provided by Lane Hemaspaandra and Alan Selman in inviting me towrite this article and in keeping me in line and on time.



This is page xvPrinter: Opaque this6 References[BDG88] J. L. Balc�azar, J. D��az and J. Gabarr�o. Structural Complexity I. W. Brauer, G. Rozenbergand A. Salomaa (eds.) EATCS Monographs on Theoretical Computer Science 11, SpringerVerlag, 1988.[Ber76] L. Berman. On the structure of complete sets: Almost everywhere complexity and in-�nitely often speedup. Proc. IEEE Foundations of Computer Science Conference, 76-80,1976.[Ber77] L. Berman. Polynomial reducibilities and complete sets. PhD thesis, Cornell University,1977.[BH77] L. Berman and J. Hartmanis. On isomorphism and density of NP and other completesets. SIAM J. Comp., 1:305{322, 1977.[Bu93] H. Buhrman. Resource bounded reductions. Ph.D. Thesis, University of Amsterdam,1993.[BFT] H. Buhrman, L. Fortnow and L. Torenvliet Using autoreducibility to separate complexityclasses. In Proc. IEEE Foundations of Computer Science Conference, pp. 520{528, 1995.[BHT] H. Buhrman, A. Hoene and L. Torenvliet. Splittings, robustness and structure of completesets. In Proc. Symposium on Theoretical Aspects of Computer Science, Springer LectureNotes in Computer Science 665, pp. 175{184, 1993.[BHT90] H. Buhrman, S. Homer and L. Torenvliet. On complete sets for nondeterministic classes.Math. Systems Theory, pages 179{200, 1991.[BST] H. Buhrman, E. Spaan, and L. Torenvliet. Bounded reductions. In Complexity Theory(K. Ambos-Spies, S. Homer, and U. Sch�oning, eds.), pp. 83{99, Cambridge UniversityPress, December 1993.[BT94] H. Buhrman and L. Torenvliet. On the structure of complete sets In Proc. IEEE Structurein Complexity Theory, pages 118{133, 1994.[Fu93] B. Fu. With quasi-linear queries, EXP is not polynomial time Turing reducible to sparsesets. In Proc. IEEE Structure in Complexity Theory, pages 185{191, 1993.[FLZ92] B. Fu, H-z. Li and Y. Zhong. Some properties of exponential time complexity classes. InProc. IEEE Structure in Complexity Theory, pages 50{57, 1992.[FLT91] B. Fu, T. Liu and S. Tang. Exponential time and sub-exponential time sets. In Proc.IEEE Structure in Complexity Theory, pages 230{237, 1991.[GH89] K. Ganesan and S. Homer. Complete problems and strong polynomial reducibilities.Proc. Symposium on Theoretical Aspects of Computer Science, Springer Lecture Notes inComputer Science 349, 240-250, 1989.[HLY86] J. Hartmanis, M. Li and Y. Yesha. Containment, separation, complete sets and immunityof complexity classes, Proc. 13th ICALP, Lecture Notes in Computer Science, 226, 136-145, 1986.



This is page xviPrinter: Opaque this[H90] S. Homer Structural properties of nondeterministic complete sets. In Proc. IEEE Struc-ture in Complexity Theory, pages 3{10, 1990.[HKR90] S. Homer, S. Kurtz and J. Royer. On 1-Truth-Table-Hard Languages. Theoretical Com-puter Science, 155, (1993), 383{389.[HM83] S. Homer and W. Maass. Oracle dependent properties of the lattice of NP sets. Theo-retical Computer Science, 24:279-289.[HW] S. Homer and J. Wang. Immunity of complete problems. Information and Computation110, (1994): 119{130.[KM81] K. Ko and D. Moore. Completeness, approximation and density. SIAM J. Comp., 10:787{796, 1981.[KMR86] S. Kurtz, R. Mahaney, and S. Royer. Collapsing degrees. J. of Computer and SystemSciences, pages 247{268, 1988.[L92] J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer andSystem Sciences, pages 220-258, 1992.[LM93] J. H. Lutz and E. Mayordomo. Measure, stochasticity, and the density of hard languages.SIAM Journal on Computing, pages 762{779, 1994.[M93] S. E. Mocas. Separating exponential time classes from polynomial time classes. Ph.D.Thesis, Northeastern University, 1993.[LLS75] R. Ladner, N. Lynch, and Alan Selman. Comparison of polynomial-time reducibilities.Theoretical Computer Science, 1:103-123, 1975.[Tran] N. Tran. On P-immunity of exponential time complete sets. To appear in JCSS. Alsosee, On P-immunity and nondeterministic complete sets. In Proc. IEEE Structure inComplexity Theory, pages 262{263, 1995.[Wan90] J. Wang. Polynomial time productivity, approximations, and levelability. SIAM Journalon Computing, 21(1992): 1100{1111.[Wat87a] O. Watanabe. On the structure of intractable complexity classes. Ph.D Dissertation,Tokyo Institute of Technology, 1987.[Wat87b] O. Watanabe. A comparison of polynomial time completeness notions. Theoretical Com-puter Science, 54:249-265, 1987.[Yo83] P. Young. Some structural properties of polynomial reducibilities and sets in NP . Proc.ACM Symposium on Theory of Computing, 15:392{401, 1983.


