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1 Introduction

Classifier ensembles have been one of the main topics of interest in the neural net-
works, machine learning and pattern recognition communities during the past fifteen
years [21,28,16,17,26,36,27,23,11]. They are currently one of the state of the art tech-
niques available for the design of classification systems and an effective option to the
traditional approach based on the design of a single, monolithic classifier in many ap-
plications. Broadly speaking, two main choices have to be made in the design of a clas-
sifier ensemble: how to generate individual classifiers and how to combine them. Two
main approaches have emerged to deal with these design steps: coverage optimisation,
focused on generating an ensemble of classifiers as much complementary as possible,
which are then fused with simple combining rules, and decision optimisation, focused
on finding the most effective combining rule to exploit at best a given classifier ensem-
ble [21]. One of the most studied and widely used combining rules, especially in the
former approach, is the linear combination of classifier outputs. Linear combiners are
often used for neural network ensembles, given that neural networks provide continu-
ous outputs. The simplicity of linear combiners and their continuous nature favoured the
development of analytical models for the analysis of the performance of ensembles of
predictors, both for the case of regression problems and for the relatively more complex
case of classification problems.

In this chapter, we give an overview on ensembles of linearly combined neural net-
works. Our survey is focused on a Bayesian analytical model introduced about ten years
ago in works by K. Tumer and J. Ghosh [31,32] and recently extended by the authors
[8,4]. Basically, this model allows to quantify the advantage attainable by linearly com-
bining an ensemble of classifiers, in terms of the reduction in misclassification proba-
bility. Although based on strict assumptions to make it analytically tractable, this model
allows to point out the main factors which affect the performance of linearly combined
classifier ensembles and suggests simple guidelines for their design. It was also recently
exploited to develop a novel method for training ensembles of linearly combined neural
networks [37] and to analyse the behaviour of bagging (a well known technique for
constructing classifier ensembles) as a function of the ensemble size [9].

This chapter starts with an overview of past works on ensembles of linearly com-
bined neural networks, both for regression and classification problems (section 2). The
analytical model by Tumer and Ghosh is then presented, followed by the extension
given by the authors, and its main results and implications are discussed in section 3.
Finally, some experimental results are reported in section 4 to illustrate the main results
of this model.
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1.1 Notation

In the rest of this work we will use the following notation for network outputs. Given a
feature vector x, the output of the i-th output unit of a neural network (corresponding to
the i-class of the problem) will be denoted as fi(x). In the case of two-class problems,
in which a network with only one output unit is usually used, the output will be sim-
ply denoted as f(x). When an ensemble of neural networks is considered, the outputs
of the m-th individual networks will be denoted with the superscript m (for instance,
fm

i (x) denotes the i-th output of the m-th network). The outputs obtained by the linear
combination will instead be denoted with the superscript ‘sa’ (standing for ‘simple av-
erage’), if the weights are identical, and with ‘wa’ (standing for ‘weighted average’), if
the weights can be different (for instance, f sa

i (x) denotes the i-th output resulting from
the simple average rule).

2 Overview of Past Works on Ensembles of Neural Networks

The aim of this section is to give an overview of the literature on ensembles of neural
networks, focusing on fusion strategies based on the linear combination of network
outputs. We point out that, although in this chapter we focus on classification problems,
we will also review some relevant works on linearly combined neural networks for
regression problems, since results obtained for the latter kind of problems often apply
to the former as well.

Let us start by listing the different schemes for the linear combination of network
outputs proposed in the literature. Given a C-class problem (or a regression problem
involving a vector function with C values) and an ensemble of N neural networks, each
one with C output units, the simplest and most used kind of linear combiner consists
in separately averaging each of the C outputs over the N networks, for a given input
sample x, using one constant weight for each network, identical for all outputs:

fwa
i (x) =

N∑
m=1

wmfm
i (x), i = 1, . . . , C. (1)

A more complex scheme consists in using weights that depend on the class [33]:

fwa
i (x) =

N∑
m=1

wm
i fm

i (x), i = 1, . . . , C. (2)

The most general scheme involving constant weights consists in linearly combining
all the outputs of all the networks to compute each of the ysa

i (x) [3,33]:

fwa
i (x) =

N∑
m=1

C∑
j=1

wm
ij fm

j (x), i = 1, . . . , C. (3)

Finally, the case of weights dependent on the input sample has been considered by
Tresp and Taniguchi [29]:

fwa
i (x) =

N∑
m=1

wm(x)fm
i (x), i = 1, . . . , C. (4)
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The only comment we make here, on the different weighting schemes, is that a higher
complexity leads to a higher flexibility and, thus, to a better capability to fit the unknown
function to approximate (either the discriminant function in a classification problem, or
a continuous-valued function in a regression problem). However, reliably estimating a
larger number of weights usually requires a larger training set. Therefore, in practice,
the theoretical superiority of a more complex weighting scheme over a simpler can be
cancelled out by a too small training set. We point out that this is just a specific case of
a more general and well known issue in the field of multiple classifier systems, namely
the trade-off between the complexity of a combining rule and the amount of training
data required to exploit its potential effectiveness.

Works on linearly combined neural networks can be broadly subdivided into two
groups. One of the groups includes works whose aim is to devise methods to esti-
mate the optimal weights for one of the linear combination schemes mentioned above
(namely the weights that minimise either the minimum squared error, MSE, or the mis-
classification probability of the ensemble) and, for a given ensemble of individual net-
works, sometimes exploiting analytical results derived under some assumptions about
the output distribution of individual networks. The other group includes works that
provide some theoretical investigation on the performance of linearly combined neural
network ensembles, resulting in guidelines on their design and sometimes in suggesting
a weight estimation method.

Among works in the first group, the ones by Perrone and Cooper [24], Hashem and
Schmeiser [14] and Hashem [13] provide similar results. They focused on the simplest
linear combination scheme (1) and derived the analytical expressions of the optimal
weights which minimise the expected value (over the input variables) of the MSE of
a neural network ensemble as a function of the covariances between the outputs of
the individual networks. Perrone and Cooper [24] considered only the case of positive
weights that sum up to 1, while Hashem and Schmeiser [14] and Hashem [13] consid-
ered also the more general cases of unconstrained weights (as well as the case of an
additional term in the linear combination, w0, which makes sense only for regression
problems). In particular, all these works show that when the estimation errors (with re-
spect to the target function) of the individual networks are unbiased and uncorrelated,
then the optimal weights are inversely proportional to the variance of the output of the
corresponding network. In this case, Perrone and Cooper [24] showed that simply av-
eraging the individual networks (using identical weights) leads to an MSE lower or at
worst identical to the average MSE of the individual networks. The expressions of the
optimal weights derived in these works require the inversion of the matrix containing
the covariances between the outputs of individual networks. The authors pointed out
that collinearity in these matrices (due for instance to different networks with highly
correlated outputs) makes the weights computation unreliable. Some robust weights es-
timation methods were discussed by Hashem [13], including the selection of a subset
of the available individual networks.

Benediktsson et al. [3] used the more complex weighting scheme 3 and derived the
weights that minimise the squared error with respect to target values, computed on
a given data set. As in the works mentioned above, even in this case computing the
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weights requires matrix inversion: robust estimation methods are discussed to avoid
computational problems.

Tresp and Taniguchi [29] investigated scenarios in which it can be useful to use
combination weights that depend on the feature vector of the input sample, as in 4.
This can happen when individual networks are trained to solve the same problem but
exhibit different statistical characteristics (like a different output variance) in different
areas of the feature space, or when they are trained to solve subproblems of the original
problem and thus exhibit different strengths or “expertise” in different subsets of the
feature space. Methods for computing the optimal weights in both cases are discussed.
In particular, if in the former case the goal is to minimise the variance of the combined
estimate of the target function, it is shown that the solution is analogous to the one
derived by Perrone and Cooper [24], namely the weights must be inversely proportional
to the variance of the output of the corresponding networks (on a given point of the
feature space).

The works mentioned so far focus on minimising the MSE of a neural network en-
semble. Although this approach can be used also in classification problems, it can lead
to suboptimal solutions: it is indeed known that minimising the MSE is not equivalent to
minimising misclassification probability. Ueda [33] deals with this issue and proposes a
weight estimation method tailored to classification problems, based on an optimisation
algorithm aimed at minimising the misclassification probability of a neural network
ensemble.

Among works in the second group we mention first the one by Krogh and Vedelsby
[19], in which a particular expression for the expected MSE of an ensemble of lin-
early combined neural networks is derived, given by the sum of the weighted average
of individual networks MSE and of a term (named “ambiguity”) depending only on the
correlation between their outputs. This is a kind of bias-variance decomposition, but is
different than the one commonly used (derived originally by [10]). The decomposition
derived by Krogh and Vedelsby shows that, to obtain an ensemble with a small MSE,
it is necessary that the individual networks exhibit a small average MSE and that their
outputs are as low correlated as possible. However, these are known to be almost oppo-
site goals (as for the bias and variance components of the MSE), so a trade-off has to
be achieved between them. Differently from works in the other group mentioned above,
the results by Krogh and Vedelsby do not provide an analytical expression for the op-
timal weights. However, they clearly show that, to obtain an effective neural network
ensemble, the correlation between individual networks has to be taken into account, as
well as their individual performances, and this can be attained during ensemble con-
struction. Furthermore, these results also suggest that also unlabelled samples may be
useful for estimating the optimal weights by minimising an estimate of the MSE, since
the ambiguity term does not depend on target values.

The results by Krogh and Vedelsby were exploited by Brown et al. [6] to provide a
theoretical support to negative correlation learning, a method originally proposed by
Liu [22]. Such method consists in training in parallel the individual members of a lin-
early combined neural network ensemble by a backpropagation-like learning algorithm,
in which the error function of each network is given by its individual error measure (as
in standard backpropagation) minus a term depending on the correlation between the
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outputs of the individual network. As shown by Brown et al. [6], it turns out that (for
a proper choice of its parameters), the negative correlation learning algorithm seeks to
minimise the overall ensemble error, as given by the ambiguity decomposition.

One of the main theoretical contributions to the field of classifier ensembles was
given by Kittler et al. [15], who developed a common theoretical framework for several
classifier combination strategies for the case when individual classifiers use distinct
feature subsets that are conditionally independent given the class. In particular, this
work showed that several combining strategies, including the sum rule (a variant of the
simple average rule), can be derived under some approximations from the product rule.
A further analysis of the simple average rule and a comparison with other combining
strategies was also reported by Kittler and Alkoot [18] and by Kuncheva [20].

Another relevant contribution, related to linear combiners, was given in works by
Tumer and Ghosh [31,32], that were further extended by the authors in [8]. Basically,
these works provided an analytical framework for quantifying the reduction of the mis-
classification probability which can be attained by linearly combining an ensemble of
classifiers which provide estimates of the a posteriori probabilities, as a function of
mean, variance and correlation of estimation errors. Although the framework by Tumer
and Ghosh is based on rather strict assumptions, it was shown, by Fumera and Roli
[8], that it allows to accurately predict some qualitative aspects of the behaviour of lin-
ear combiners and, thus, to provide some useful practical guidelines for their design.
These works will be described in more detail in the next section, where we also present
an extension of the framework by Tumer and Ghosh based on less strict assumptions,
proposed in [4].

A relevant application of the results derived in the mentioned works by Tumer and
Ghosh and by Fumera and Roli was recently proposed by Zanda et al. [37]. This work
generalised the concept of the ambiguity decomposition, previously defined only for
regression problems, to classification problems, and proposed an algorithm based on
the negative correlation learning framework, which applies to ensembles of linearly
combined classifiers. The results derived by Tumer and Ghosh and by Fumera and Roli
were also exploited by the authors in [9] to analyse the behaviour of the misclassifica-
tion probability of linearly combined classifiers constructed with the bagging method,
as a function of the ensemble size.

For the sake of completeness, we conclude this section mentioning some of the most
relevant works on neural network ensembles based on fusion strategies different from
the linear combination. The most interesting strategies are perhaps voting-based ones
like majority and plurality. Two relevant works on this kind of fusion strategies are the
ones by Hansen and Salamon [12] and by Battiti and Colla [2]. Hansen and Salamon
considered both the case of neural networks that make independent classification errors
on a given sample and the case of dependent errors. In the latter case, to model the
effect of correlated errors, they extended the model proposed by Eckhardt and Lee[7]
to classification problems, to study software reliability through the use of multiple ver-
sions of the same program. Battiti and Colla [2] considered instead a more general
kind of classification problems, namely classification problems with the reject option,
in which a classifier may decide to withhold assigning an input pattern to one of the pre-
defined classes, if it is not sufficiently confident in the correctness of its classification.
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Besides experimental results, both works provided some analytical result to quantify
the reduction of the classification error attainable by classifier ensembles, mainly un-
der the assumption of independence among the errors of individual classifiers. It is also
worth mentioning the work by Rogova [25], who proposed a combination method based
on the Dempster-Shafer theory of evidence, tailored to the continuous-valued outputs
provided by neural network classifiers.

3 An Analytical Model for Linear Combiners

In this section, we focus on a theoretical analysis of linearly combined classifiers and of
neural networks in particular, based on an analytical model derived in works by Tumer
and Ghosh and further extended by the authors. The relevance of this model is due to the
fact that it is one of the few theoretical models developed so far in the field of classifier
ensembles and that it proved to be useful both to improve the understanding of a widely
used combining strategy as the linear combination, and to derive practical guidelines
for the design of linearly combined classifier ensembles.

In regression problems, it is relatively easy to analytically derive the optimal weights
of the linear combination of an ensemble of regressors and compare the performance of
individual regressors and of their combination. This is due to the fact that the loss func-
tion (typically, the MSE) is usually continuous. Obtaining analogous analytical results
for classification problems is known to be much more difficult, since the loss func-
tion is discrete. For instance, if the misclassification probability is used as performance
measure, the loss function is 0 for correct classifications and 1 for misclassifications.
Tumer and Ghosh [30,31,32] developed a model that partially overcomes this prob-
lem, allowing to analytically compute and compare the misclassification probability
of individual classifiers and of a linear combination of classifiers, under some rather
strict assumptions which make analytical derivations possible (it is worth noting that
the model was applied also to order statistics combiner in [32]). Their model applies to
classifiers which provide estimates of the class posterior probabilities and, thus, also to
neural networks. Tumer and Ghosh limited their analysis to the simple average combin-
ing rule, providing interesting insights about the factors that affect the performance of
this rule. Their model and the main results of their analysis are described in section 3.1.
The authors [8] exploited this model to analyse the more general case of the weighted
average rule, deriving general guidelines for the design of linear combiners. This work
is summarised in section 3.2. As mentioned above, the model by Tumer and Ghosh
is based on rather strict assumptions that may not hold in real classification problems.
This motivated the authors to investigate whether a model for linear combiners could
be derived under less strict assumptions. Another motivation was given by the obser-
vation that (qualitative) predictions derived from the model by Tumer and Ghosh were
shown to hold with good accuracy on some real data sets [8]: this raised the issue of
better understanding the conditions under which such predictions can be expected to
hold. A partial answer to these questions was given in [4], where the authors derived an
extension of the model by Tumer and Ghosh by relaxing one of its assumptions. This
extension is described in section 3.4.
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3.1 The Analytical Model by Tumer and Ghosh

The goal of the model by Tumer and Ghosh is to provide an analytical expression of the
misclassification probability of individual and linearly combined classifiers, allowing to
compare them. The model is focused on classifiers which provide estimates of the class
posterior probabilities, like neural networks. The above goal is difficult due to the non-
continuous loss function used in classification problems, as mentioned before. Indeed,
many works limited their analysis on a single point in the feature space [15,20,18].
Since analytically computing the overall misclassification probability (over the whole
feature space) seems not possible in general, the idea of Tumer and Ghosh was to con-
sider at least a relevant subset of the feature space, namely the neighbourhood of a given
class boundary, and to investigate the case in which the individual classifiers produce
a boundary between the same two classes in that neighbourhood. This is a reasonable
assumption, if a classifier provides accurate estimates of the a posteriori probabilities.
To further simplify the computations, the analysis was limited to a one-dimensional
feature space. In this case, the difference between the estimated and the ideal boundary
(denoted in the following respectively as xb and x∗) can be simply represented as a
shift of the former from the latter, by an amount b given by b = xb − x∗. An example
is depicted in Fig. 1, involving a boundary between any two classes ωi and ωj . When
the estimated class boundaries are used, the contribution of the considered subset of the
feature space to the overall misclassification probability can be subdivided into a Bayes
error, due to the overlap of the class posterior probabilities (corresponding to the light
grey area of Fig. 1), and an added error, due to the mismatch between the ideal and
estimated boundaries (corresponding to the dark grey area of Fig. 1). The added error is
due to the fact that, if b > 0 as in Fig. 1, samples in the interval [x∗, xb] are assigned by
the estimated boundaries to class ωi instead of class ωj . The added error with respect
to Bayes error is given by the following expression (note that it holds both when b > 0
and when b < 0):

Eadd =
∫ x∗+b

x∗

[
P (ωj |x) − P (ωi|x)

]
· p(x)dx.

Fig. 1. True posteriors (solid lines) between classes ωi and ωj around the optimal boundary x∗.
Estimated posteriors (dotted lines) lead to a different boundary, shifted from x∗ to xb by an
amount b, and to an added error (dark grey area) over the Bayes error (light grey area)
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Now the idea of Tumer and Ghosh is to compute the above added error as a function
of the estimation errors made by a classifier on the a posteriori probabilities. To this
aim, without loosing generality, they write the classifier’s output (namely, the estimated
posterior probability) for a generic class ωk and for a point x in the feature space as:

fk(x) = P (ωk|x) + εk(x), (5)

where εk(x) denotes the estimation error. To compute the added error, Tumer and
Ghosh make a first-order approximation of the true posteriors and a zero-order approx-
imation of p(x) around x∗ (note that this approximation is reasonable, if the classifier
provides accurate estimates of the a posteriori probabilities as assumed above and, thus,
the estimated boundary is close to ideal one):

P (ωk|x) � P (ωk|x∗) + (x − x∗) · P ′(ωk|x), (6)

where P ′(ωk|x) is the first derivative of P (ωk|x) with respect to x. Note that under
this approximation, the corresponding added error region (the dark grey area in fig. 1)
becomes a triangle. The added error can thus be approximated as

eadd =
∫ x∗+b

x∗

[
P (ωj |x) − P (ωi|x)

]
· p(x)dx

�
∫ x∗+b

x∗

[
P (ωj |x∗) − P (ωi|x∗)

+ (x − x∗) · [P ′(ωj |x) − P ′(ωi|x)]
]
p(x∗)dx

=
p(x∗)t

2
b2 (7)

where t = P ′(ωj |xb) − P ′(ωi|xb). Finally, b can be expressed as a function of the
estimation errors, by noting first that fi(xb) = fj(xb) (since the estimated posteriors
of classes ωi and ωj are by definition identical on xb) and then rewriting this equality,
using the above approximation for the posteriors (note also that P (ωj |x∗) = P (ωi|x∗)):

P (ωi|x∗) + b · P ′(ωi|xb) + εi(xb) = P (ωj |x∗) + b · P ′(ωj |xb) + εj(xb),

b =
εj(xb) − εi(xb)

t
. (8)

Up to now, classifier outputs fk(x) have been considered as fixed. In practice, they
are random variables, since they depend on a random training set used for classifier
training and, possibly, on random parameters of the learning algorithm (for instance,
the initial values of the connection weights in a neural network). According to eq. 5,
this means that the estimation errors εk(x) are random variables, which implies that
the shift b between the ideal and the estimated boundary, and the added error 7, are
random variables as well. For this reason, the performance measure usually considered
in classification problems is the expected misclassification probability over training sets.
Assuming that each realisation of the classifier outputs provides an estimated boundary
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between classes ωi and ωj in a neighbourhood of x∗, it makes sense to compute the
expected value of the added error 7, which is given by:

Eadd =
p(x∗)t

2
(β2

b + σ2
b ), (9)

where βb and σ2
b denote respectively the mean and variance of b. From 8, assuming that

estimation errors on different classes (εi(x) and εj(x), i �= j) are uncorrelated, it easily
follows that

βb =
βi − βj

t
, σ2

b =
σ2

i + σ2
j

t2
, (10)

where βk and σ2
k are respectively the mean and variance of the estimation error εk(xb).

Consider now an ensemble of N classifiers which are combined by averaging their
outputs. The corresponding estimated posterior for class ωk is given by

f sa
k (x) =

1
N

N∑
m=1

fm
k (x) = P (ωk|x) + εsa

k (x), (11)

where

εsa
k (x) =

1
N

N∑
m=1

εm
k (x). (12)

Note that eq. 12 simply states that the estimation error of the linear combination is the
average of the estimation errors made by the individual classifiers. Assuming that, for
each realisation of the N classifiers, also their linear combination provides an estimated
boundary xbsa between classes ωi and ωj in a neighbourhood of x∗, repeating the same
computations above one easily finds that the added error of the ensemble is

esa
add =

p(x∗)t
2

(bsa)2, (13)

and its expected value is given by

Esa
add =

p(x∗)t
2

(β2
bsa + σ2

bsa), (14)

where bsa denotes the shift xbsa − x∗, which is given by

bsa =
εsa

i (xbsa) − εsa
j (xbsa)

t
, (15)

while βbsa and σ2
bsa are the mean and variance of bsa. The mean βbsa can be written as

βbsa =
βsa

i − βsa
j

t
=

1
N

N∑
m=1

βm
i − βm

j

t
=

1
N

N∑
m=1

βbm , (16)

where βbm is given by 10 (now we use the superscripts to denote the different individual
classifiers). The expression of the variance σ2

bsa , can be obtained by noting that eq. 12
implies that the variance (σsa

k )2 of the estimation error εsa
k (xbsa) is given by

(σsa
k )2 =

1
N2

N∑
m=1

(σm
k )2 +

1
N2

N∑
m=1

∑
n�=m

ρmn
k σm

k σn
k , (17)
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where ρmn
k is the correlation coefficient between εm

k (xbsa) and εn
k (xbsa), and σm

k is the
standard deviation of εm

k (xbsa). Assuming that estimation errors on different classes,
εm

i (x) and εn
j (x) i �= j, are uncorrelated also for the classifier ensemble, from eq. 15 it

turns out that σ2
bsa = 1

t2 [(σsa
i )2 + (σsa

j )2]. Therefore, using eq. 17 one finally obtains:

σ2
bsa =

1
N2

N∑
m=1

σ2
bm +

1
t2

1
N2

N∑
m=1

∑
n�=m

(ρmn
i σm

i σn
i + ρmn

j σm
j σn

j ), (18)

where σ2
bm is given by eq. 10.

Let us now summarise the main results above. First, under the assumption and the
approximations mentioned above (which will be further discussed in section 3.3), the
added error is proportional to the squared distance (the shift) between the ideal and the
estimated boundary (see eqs. 7 and 13). It follows that its expected value is proportional
to the sum of two terms: one depending on the bias of the boundary shift, the other on
its variance (eqs. 9 and 14). In particular, the bias of the boundary shift depends only
on the bias of the estimation errors, according to eqs. 10 and 16, while its variance
depends on the variance of the estimation errors, according to eqs. 10 and 18 and, for
the linear combiner, also on the correlation between the estimation errors of different
classifiers on the same class (18). It is worth noting that this can be considered as a
bias-variance decomposition of the misclassification probability, related to a subset of
the feature space.

Given that the expected added error both of individual classifiers and of their linear
combination is given in terms of the bias and variance of estimation errors of individual
classifiers, it becomes possible to compare the two expressions to quantify the reduction
attainable by the linear combination. The comparison can be made separately for the
bias and variance components. In the following, we summarise the main results of this
comparison reported by Tumer and Ghosh [31,32] and by Fumera and Roli [8].

First, eq. 16 shows that the bias of the boundary shift of the linear combiner βbsa is
the average of the individual boundary shift biases, βb1 , . . . , βbN . This means that the
bias component of the expected added error of the linear combination 14 is between the
minimum and the maximum of the bias terms of individual networks:

min
m

βm
b ≤ βbsa ≤ max

m
βm

b . (19)

With regard to the variance components 10 and 18, an analytical comparison is pos-
sible only under some simplifying assumptions. If the variances of the estimation errors
are all identical (namely, (σm

k )2 = σ2 for each k and m), as well as the correlations on
different classes (namely, ρmn

i = ρmn
j for each m, n), then eq. 18 becomes

σ2
bsa =

1 + (N − 1)δij

N
σ2

b , (20)

where σ2
b = 2σ2

t2 (from 10), δij = δj+δj

2 , and δk = 1
N(N−1)

∑N
m=1

∑
n�=m ρmn

k . Not-

ing that δk ≥ − 1
N−1 , one gets 0 ≤ 1+(N−1)δij

N ≤ 1. In particular, this term equals 1,
if the estimation errors exhibit the maximum positive correlation, ρmn

k = 1, for each
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m, n. In this case, the variance component of the linear combination is identical to the
one of each individual classifier: no reduction is attained by combining classifiers. In-
stead, if the estimation errors are uncorrelated (ρmn

k = 0), then the term 1+(N−1)δij

N
becomes zero, and we have σ2

bsa = σ2
b/N : this means that combining networks with

uncorrelated estimation errors (equivalently, uncorrelated outputs), the variance com-
ponent of the expected added error is reduced by a factor equal to the ensemble size,
N . Finally, if the correlation between estimation errors is negative and attains the min-
imum possible value, then 1+(N−1)δij

N = 0, which implies σ2
bsa = 0: in other words,

combining negatively correlated networks can allow to reduce to zero the variance com-
ponent of the expected added error. In the most general case of different variances and
correlations, it is not possible to analytically compute the reduction of the variance
component with respect to individual classifiers, but it is easy to show from 18 that the
variance component of the linear combination can not be greater than the maximum
variance component among individual classifiers: 0 ≤ σ2

bsa ≤ maxm σ2
bm . In particular,

the lower the correlations, the lower σ2
bsa . This clearly shows that linearly combining as

low correlated networks as possible is always beneficial in classification problems, as
well as in regression problems.

Putting together the conclusions drawn above about the bias and variance compo-
nents, it follows that by simple averaging an ensemble of networks one is guaranteed
to obtain bias and variance components of the expected added error not higher than the
maximum corresponding components of individual classifiers. However, while there is
no direct way to control the bias component of the ensemble, the variance component
can be reduced by combining as low correlated networks as possible. Therefore this
suggests the following strategy to face the well known bias-variance dilemma: to con-
struct an effective ensemble one should use individual classifiers with as low bias as
possible (since it is not necessarily reduced by averaging networks), while the result-
ing high variance will be reduced by averaging them, provided that they exhibit low
correlated outputs [32]. With regard to this issue, it is commonly believed that it is dif-
ficult to obtain a large number of classifiers that exhibit uncorrelated or even negatively
correlated estimation errors, as claimed also by Tumer and Ghosh [32]. However, we
point out that actually it is rather easy to obtain classifiers which make estimation er-
rors εm

k (x), εn
k (x) that are uncorrelated on each given point x in feature space, as shown

in [9].

3.2 Application of the Model to the Weighted Average Rule

Simple averaging the outputs of a network ensemble is a widely used and very simple
combination strategy, which does not require to set the value of any parameter. Weighted
averaging is a more general and more flexible strategy, which however requires to es-
timate the best combination weights, usually from a labelled data set. The model by
Tumer and Ghosh was applied to the analysis of the weighted average combining rule
by the authors [8], with the main aim to investigating the reduction of the expected
added error attainable both with respect to individual classifiers and to the simple av-
erage rule, provided that the optimal combination weights are used. In this section we
summarise the main results of our analysis. We point out that the problem of weights
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estimation was previously investigated by several authors (see section 2), and was not
considered in [8].

Let us start by the expression of the estimated posterior probabilities using the
weighted average rule:

fwa
k (x) =

N∑
m=1

wmfm
k (x) = P (ωk|x) + εwa

k (x), (21)

where

εwa
k (x) =

N∑
m=1

wmεm
k (x). (22)

The analysis in [8] was focused on the case of non-negative weights, which is usu-
ally considered in works on linear combiners. Without loosing generality, to simplify
computations it is useful to add the constraint the weights sum up to 1:

wm ≥ 0 m = 1, ..., N,

N∑
m=1

wm = 1. (23)

Under the same assumptions and approximations made by Tumer and Ghosh, re-
ported in section 3.1, denoting with bsa the shift between the ideal boundary and the
one estimated by the weighted average combiner, one obtains:

bwa =
εwa

i (xbwa) − εwa
j (xbwa)

t
, (24)

while the expected added error is given by

Ewa
add =

p(x∗)t
2

(β2
bwa + σ2

bwa). (25)

It is easy to see that we have again a bias component given by

β2
bwa =

1
t2

N∑
m=1

w2
m(βm

i − βm
j )2

+
1
t2

N∑
m=1

∑
n�=m

wmwn(βm
i − βm

j )(βn
i − βn

j ), (26)

and a variance component given by

σ2
bwa =

1
t2

N∑
m=1

w2
m[(σm

i )2 + (σm
j )2]

+
1
t2

N∑
m=1

∑
n�=m

wmwn(ρmn
i σm

i σn
i + ρmn

j σm
j σn

j ). (27)



Bayesian Linear Combination of Neural Networks 213

To compare the expected added error above with the one of individual classifiers and
of their simple averaging, it is first necessary to compute the optimal weights, defined
the ones which minimise the expected added error 25 under constraints 23. From the
expressions above, it is easy to see that this is a quadratic optimisation problem, but it
turns out that it can be analytically solved only for particular values of the parameters
(namely, of the biases, variances and correlations of the estimation errors of individual
classifiers). A case of particular interest is when the estimation errors are unbiased and
uncorrelated. In this case, the expected added error of the m-th individual classifier and
of the weighted average are respectively:

Em
add =

p(x∗)
2t

[(σm
i )2 + (σm

j )2], (28)

Ewa
add =

p(x∗)
2t

N∑
m=1

w2
m[(σm

i )2 + (σm
j )2] =

N∑
m=1

w2
mEm

add. (29)

In other words, by weighted averaging an ensemble of networks with unbiased and
uncorrelated estimation errors, the corresponding expected added error is equal to the
linear combination of the ones of individual classifiers, with squared weights. The op-
timal weights can be found by using the technique of Lagrange multipliers, and turn
out to be inversely proportional to to expected added error of the corresponding net-
work (note that this result is analogous to the one obtained for regression problems by
Perrone and Cooper [24] and by Hashem [13]):

wm =
( N∑

n=1

1
En

add

)−1 1
Em

add

. (30)

Finally, substituting 30 into 29 one obtains:

Ewa
add =

1
1

E1
add

+ ... + 1
EN

add

. (31)

Clearly, if one uses instead the simple average rule, the corresponding expected added
error is:

Esa
add =

1
N2

N∑
m=1

Em
add. (32)

To sum up, in the case of uncorrelated and unbiased estimation errors, the expected
added error of the simple and weighted average are, respectively, 1

N times the arithmetic
mean and 1

N times the harmonic mean of the added error of the individual classifiers.
Note that, as one can expect, the optimal weights are 1/N (namely, simple averaging is
the best linear combination strategy), if and only if all individual classifiers exhibit the
same performance (namely, if their expected added errors are all identical).

The above expressions of the expected added error allow to compare the perfor-
mance of the simple and the weighted average rules by taking into account only the
expected added errors of the individual classifiers, sine they do not depend explicitly
on the means, variances and correlations of their estimation errors. The comparison can
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Fig. 2. For fixed N and error range width EN
add−E1

add, the patterns of the expected added error of
the individual classifiers corresponding the maximum (a) and minimum performance imbalance
(b) conditions is shown

be made, conveniently, in terms of the difference between the expected added errors
of the simple and the weighted average, Esa

add − Ewa
add, as a function of the lowest and

the highest expected added error of individual networks (note that the above difference
is always non negative, since when the optimal weights are used, the simple average
can not outperform the weighted average). Without loosing generality, classifiers can
be ordered for increasing values of their expected added error, so that classifier 1 is the
best and classifier N is the worst: E1

add ≤ E2
add ≤ ... ≤ EN

add. Now, for given values of
E1

add and EN
add, what is the behaviour of Esa

add − Ewa
add with respect to the performance

of the other classifiers, E2
add, . . . , EN−1

add ? It turns out that Esa
add −Ewa

add, namely the ad-
vantage of the weighted average over the simple average, is minimum when classifiers
2, . . . , N exhibit the same expected added error, equal to

Em
add = 2

E1
add · EN

add

E1
add + EN

add

. (33)

This condition, depicted in Fig. 2(a), was named in [8] minimum performance imbal-
ance condition, where the term performance imbalance was used to denote the fact that
the individual networks exhibit different performances. Instead, Esa

add − Ewa
add is maxi-

mum when a subset of N − k − 1 classifiers exhibit the same performance as the best
one (Em

add = E1
add, m = 2, ..., N − k), while the remaining ones exhibit the same

performance of the worst one (Em
add = EN

add, m = N − k + 1, ..., N − 1), where k
is either given by �k∗� or �k∗	, k∗ being defined as:

k∗ = N

√
E1

add · EN
add − E1

add

EN
add − E1

add

. (34)

In particular, if N = 3, k always equals 2. This condition, named maximum perfor-
mance imbalance condition, is depicted in Fig. 2(b).

Besides this qualitative analysis, a quantitative analysis was also given in [8]. As
an example, Fig. 3 reports the values of Esa

add − Ewa
add under both the minimum and

maximum performance imbalance condition, as a function of the difference between
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Fig. 3. Behaviour of ΔE = Esa
add −Ewa

add under the maximum (black curves) and minimum (red
curves) performance imbalance conditions, as a function of the error range width EN

add − E1
add.

Each plot refers to a different ensemble size N . In each plot, three different values of E1
add have

been considered (0.01, 0.05, 0.10).

the expected added errors of the worst and the best individual classifiers, EN
add −E1

add.
Each of the three plots refers to a different value of the ensemble size N . In each plot,
three different values of E1

add have been considered. A clear pattern of behaviour can
be deduced from these plots: being equal the other conditions, the advantage of the
weighted average over the simple average increases as the ensemble error range EN

add−
E1

add increases, as the performance of the best classifier increases and as the ensemble
size decreases. However, the advantage predicted by the model by Tumer and Ghosh is
quantitatively rather low, perhaps lower than one can expect: indeed the plots suggest
that for Esa

add − Ewa
add to be higher than 0.01, one should combine a small ensemble of

networks (say, no more than 5) exhibiting a high performance imbalance (in the sense
defined above) and a high error range, namely, the ensemble should include at least one
very accurate classifier (the expected added error E1

add should be lower than 0.05) and
a very poor one (the error range should be almost 0.10). In particular, it should be noted
that, being equal the other conditions, the advantage of the weighted average strongly
depends on the kind of performance imbalance, namely on the particular distribution of
the performances of classifiers 2, . . . , N − 1 with respect to the best and worst ones.
In other words, a high error range EN

add − E1
add is not a sufficient condition for the

weighted average to be much more advantageous (provided that the optimal weights
can be accurately estimated) than the simple average.

This analysis was extended to the case of unbiased and correlated classifiers in [8],
but in this case it was not possible to derive analytically the optimal weights and the cor-
responding expected added error. Only a numerical analysis was therefore carried out.
To simplify the analysis, only the case of variances and correlations identical for all
network outputs was considered, which leads to an expression of Ewa

add involving only
the expected added errors of individual classifiers and the correlations between their
outputs. Furthermore, only the ensemble sizes of 3 and 5 were considered. Here we
omit the details, and report just the results. First, for any values of the correlations, the
same maximum performance imbalance condition as in the case of uncorrelated errors
holds (the value of k can not be determined analytically), while the minimum perfor-
mance imbalance condition above does not hold. Second, for any values of the expected
added error of individual networks and for any given range of correlation values, the



216 B. Biggio, G. Fumera, and F. Roli

patterns of correlation values that lead to the maximum and minimum Esa
add − Ewa

add

are analogous to the maximum and minimum performance imbalance conditions. This
implies that, being equal the other conditions, the advantage of the weighted average
over the simple average increases as the correlation range increases, and as the corre-
lation assume either of the two extreme values of such range. In particular, the higher
the correlation, the higher such advantage. The numerical analysis also showed that the
advantage of the weighted average rule over the simple average decreases (being equal
the other conditions) as the ensemble size increases, and that its amount is higher than
in the case of uncorrelated classifiers, but only when the correlation is positive.

The above results can be summarised in terms of the following practical guidelines
for the design of linear combiners: the weighted average rule can provide a significantly
better performance than the simple average, especially in small ensembles including in-
dividual networks that exhibit high error and correlation ranges, and are positively cor-
related. Otherwise, the attainable improvement in misclassification probability is likely
to be small, and to be even cancelled out if the quality or the size of the data set at
hand does not allow a reliable weight estimation. These results represented an inter-
esting novelty in the classifier ensemble literature, since no work up to then (not even
experimental works) provided a so detailed analysis on the behaviour of linear combin-
ers. However, it should be taken into account that these results have been derived from
an analytical model based on several assumptions and approximations, and exhibiting
some limitations. These were discussed by the authors in [8], and are reported in de-
tail in section 3.3. Nevertheless, an experimental investigation on some real data sets
carried out in [8], and further experiments made by the authors, reported in section 4,
showed that experimental results agreed with good accuracy with the above theoreti-
cal predictions. All these facts immediately raised two questions. First, to what extent
can the predictions drawn from Tumer and Ghosh model be expected to hold? In other
words, are there conditions under which they cease to hold? Second, is it possible to
derive an analytical model for linear combiners under less strict assumptions than the
ones by Tumer and Ghosh? A further investigation on this issues lead the authors to a
generalisation of Tumer and Ghosh model. This work will be described in section 3.4.

3.3 Limitations of the Model by Tumer and Ghosh

We described in the previous section the model by Tumer and Ghosh and its application
to the analysis of the simple and weighted average combining rules. Here we point out
the assumptions on which it is based and the corresponding limitations, and summarise
the approximations used in developing the model. This discussion will help in under-
standing the scope of this model, and the extension developed by the authors, which is
described in section 3.4.

Limitations

– The model focus on a neighbourhood of a class boundary and considers one of the
possible effects of estimation errors on class posteriors. Namely, it assumes that the
estimated posteriors lead to a boundary between the same two classes, which is just
shifted with respect to the ideal one. We already pointed out that this assumption
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is reasonable, if a neural network provides good approximations of the posteriors.
However this does not allow to analyse other possible effects of estimation errors
pointed out in [21], like introducing a boundary in a region where there is none, or
missing a boundary. This is perhaps the strongest limitation of the model.

– A more subtle assumption is that each realisation of all the classifiers of the en-
semble leads to a boundary between the two given classes in the neighbourhood
of a given ideal boundary. This is necessary for the computation of the expected
added error to make sense. Moreover, for the same reason the same assumption is
made for the linear combination of an ensemble of classifiers. We point out that
this assumption was not explicitly stated in works by Tumer and Ghosh, although
it is not implied by the one discussed in the previous point. Indeed, it can be easily
shown that linearly combining (even by simple average) classifiers which provide
a boundary between two classes in a given region of the feature space can lead to
obtain completely different decision regions (for instance, more than one boundary
can be obtained, or even none).

– The model applies to one-dimensional feature spaces only. The obvious question is:
does the results apply also to multi-dimensional feature spaces? An extension of the
model to this case was discussed in [30], but it is much more complicated to deal
with and requires some additional simplifying assumptions to make it analytically
tractable.

– Last but not least, the model does not take into account the overall added error over
Bayes error, but only the contribution to the added error due to a subset of the fea-
ture space. One could argue that the model can be applied separately to each region
around an ideal class boundary (in a one-dimensional feature space). However this
requires the underlying assumption that the classifier provides accurate estimates
of all class boundaries, so that the estimation errors cause just a shift of all the ideal
boundaries.

Clearly, the limitations discussed above seem rather strong, although it should be
pointed out that they do not imply that the model can not provide accurate predictions
when the above assumptions are violated, as suggested by the experiments reported in
[8] and in section 4. Let us now summarise, for the sake of completeness, the approxi-
mations made in developing the model.

Approximations used in the model

– First order approximation of the posterior probabilities around the ideal bound-
ary x∗, and zero-order approximation of p(x). This approximation is necessary to
obtain an expression of the added error which is a second-order polynomial with
respect to both the boundary shift b and the estimation errors εk(xb). This way,
the expected added error is a function only of the first and second-order moments
(namely, mean and variance) of the distribution of the estimation errors. This is a
reasonable approximation, if the boundary shift b is relatively small (namely when
the individual classifiers provide good estimates of the class posteriors).

– The estimation errors on different classes, made either by the same classifier or by
different classifiers, are uncorrelated (namely, εm

i (x) and εn
j (x), for any m, n and
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for any i �= j). This assumption was made just for simplifying computations, but
can be considered reasonable to some extent. It should however be noted that it
does not hold when the estimated posterior probabilities are constrained to sum up
to 1, given that

∑
k fk(x) = 1 implies, from eq. 5, that

∑
k εk(x) = 0. Usually this

constrain is not enforced in neural networks, but in other kind of classifiers (like
parametric classifiers) the posteriors estimates always sum up to 1.

3.4 A Generalisation of the Model by Tumer and Ghosh

As explained in section 3.1, the model by Tumer and Ghosh is based on analysing the
added error over Bayes error in a neighbourhood of a given ideal class boundary, as-
suming that the effect of estimation errors is a shift of such boundary. As pointed out in
[31,32] and in section 3.3, this assumption is reasonable if the individual classifiers pro-
vide good approximations of the ideal boundary, but in general the estimation errors can
cause other effects. The authors developed in [4] a generalisation of this model based
on the idea of focusing not on an ideal class boundary, but on a estimated class bound-
ary. More precisely, our aim was to analyse the contribution to the added error over
the Bayes error in a subset of the feature space around any given estimated boundary,
relaxing the assumption of the presence of an ideal boundary between the same classes
in that neighbourhood. This implies that our analysis applies also to the case in which
the estimation errors do not provide accurate approximations of the ideal boundaries.

Except from the assumption mentioned above, we used all the other assumptions
and approximations in the model by Tumer and Ghosh. To describe our model, let
us consider two possible realisations of an estimated boundary xb between any two
classes ωi and ωj , as in the example of Fig. 4. Note that in this example there is no ideal
boundary between these classes, since their true posteriors do not intersect. Denoting
with ω(x) the class exhibiting the highest true a posteriori probability for the sample
x, namely ω(x) = arg maxωk

P (ωk|x), and assuming without loss of generality that
fi(xb) > fj(xb) for x < xb, so that x is assigned to ωi, if x < xb, the added error in
any interval [x1, x2] containing the estimated boundary xb can be written as a function
of xb, as:

eadd(xb) =
∫ xb

x1

(P (ω(x)|x) − P (ωi|x))p(x)dx

+
∫ x2

xb

(P (ω(x)|x) − P (ωj |x))p(x)dx. (35)

It is now convenient to remove the dependence on P (ω(x)|x). This can be attained
by considering any fixed reference point xref ∈ [x1, x2], and by rewriting eadd(xb)
as eadd(xref) + [eadd(xb) − eadd(xref)], where eadd(xref) is the added error that one
would get if the estimated boundary coincided with the chosen reference point, namely
if xb = xref . The difference [eadd(xb) − eadd(xref)], denoted in the following as
Δeadd(xref , xb), can be written as:

Δeadd(xref , xb) =
∫ xb

xref

(P (ωj |x) − P (ωi|x)) p(x)dx. (36)
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Fig. 4. Two possible realisations of the estimates of the posteriors of classes ωi and ωj (dashed
lines), leading to an estimated class boundary xb. The true posteriors are shown as solid lines.
The difference Δe(xref , xb) (xref is the same in both plots) corresponds to the grey areas: it is
positive in the left and negative in the right.

In the example of Fig. 4, the shaded area corresponds to Δeadd(xref , xb). Note now that
Δeadd(xref , xb) depends on the posteriors of ωi or ωj only, contrary to both eadd(xref)
and eadd(xb). Now, if we use the same reference point for each individual classifier and
for their linear combination, their added error can be written as the sum of eadd(xref),
which is a constant term identical for all classifiers and for the ensemble, and the term
Δeadd(xref , xb), which depends on the position of the estimated boundary. This al-
lows to evaluate the reduction of the added error which can be attained by the linear
combination by comparing only the added error difference Δeadd(xref , xb).

We can now carry out the same computations of Tumer and Ghosh model to derive
an expression of the expected added error difference as a function of the estimation
errors. We denote with b the offset xb − xref , and make a first-order approximation of
the posteriors and a zero-order approximation of p(x) around the reference point xref :

P (ωk|x) = P (ωk|xref) + b · P ′(ωk|xref),
p(x) = p(xref).

Note that the above approximation is reasonable, if the offset xb−xref is small, which is
an analogous assumption as in Tumer and Ghosh model (in that case the ideal boundary
x∗ has the role played here by xref ). Using this approximation, the added error 36 can
be written as:

Δeadd(xref , xb) =
∫ xref+b

xref

[
P (ωj |x) − P (ωi|x)

]
· p(x)dx

� p(xref)(u · b +
t

2
b2), (37)

where t = P ′(ωj |xb) − P ′(ωi|xb) and u = P (ωj |xref) − P (ωi|xref). The expected
value of the added error difference, with respect to b, is:

ΔEadd = p(xref)
[
uβb +

t

2
β2

b +
t

2
σ2

b

]
. (38)
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Let us now derive an expression of b as a function of the estimation errors. The esti-
mated boundary xb is characterised by fi(xb) = fj(xb) > fk(xb), k �= i, j, where the
equality can be written as P (ωi|xb)+εi(xb) = P (ωj |xb)+εj(xb). Using the first order
approximation for the posteriors, such equality becomes:

P (ωi|xref) + b · P ′(ωi|xb) + εi(xb) = P (ωj |xref) + b · P ′(ωj |xb) + εj(xb),

from which it easily follows that:

b = −u

t
+

εj(xb) − εi(xb)
t

. (39)

The mean and variance of b which appear in 38 are thus given by:

βb =
βi − βj

t
− u

t
, σ2

b =
σ2

i + σ2
j

t2
. (40)

After substituting eq. 40 into eq. 38, one finally obtains the following expression for the
expected added error difference of an individual network:

ΔEadd =
p[xref ]t

2

[
−u2

t2
+

1
t2

(βi − βj)2 +
1
t2

(σ2
i + σ2

j )
]

. (41)

Note that u2/t2 is a constant term which depends only on the choice of the reference
point xref .

The expected added error difference for the linear combiner (considering non-
negative weights which sum up to 1 as in section 3.2) can be derived similarly. Omitting
the derivation, one obtains:

ΔEave
add =

p[xref ]t
2

{
−u2

t2
+

1
t2

(βave
i − βave

j )2 +
1
t2

[
(σave

i )2 + (σave
j )2

]}
, (42)

where

βave
k =

N∑
n=1

wnβn
k , (43)

and

(σave
k )2 =

N∑
n=1

w2
n(σn

k )2 +
N∑

n=1

w2
n

∑
m �=n

ρmn
k σm

k σn
k , k = i, j , (44)

where the symbols in the above expressions have the same meaning as in section 3.1.
Before proceeding in the analysis of the above results, we point out that the model

by Tumer and Ghosh can be obtained as a particular case of the one described above.
It is sufficient to note that, if in a neighbourhood of the estimated boundary xb there is
an ideal boundary x∗ between the same two classes, then by taking x∗ as the reference
point one obtains exactly the same expressions for the expected added error as in Tumer
and Ghosh model. In particular note that, if xref = x∗, then eadd(xref) = 0, and thus
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the added error difference Δeadd(xref , xb) equals the added error eadd of Tumer and
Ghosh model.

The overall expected added error in our model is thus given by eadd(xref)+ ΔEadd,
for an individual network, and by eadd(xref) + ΔEave

add, for the linear combiner. These
expressions can be subdivided into the sum of three terms: the first one is a constant

term eadd(xref) − P (xref )u
2

2t , whose value depends only on the choice of the reference
point xref and is identical for all individual networks and for their linear combination;
the second term depends on the biases of estimation errors (40 and 43), and the third
one on their variances, as well as the correlations for the linear combiner (40 and 44). It
follows that the comparison between the performance of the individual networks and of
their linear combination can be carried out taking into account only the bias and vari-
ance components of the corresponding expected added errors. Consider now that the
expressions of the bias and variance components of the expected added error are iden-
tical to the ones derived from Tumer and Ghosh model (see eqs. 9 and 25, respectively
for an individual network and for the weighted average), except for the fact that they
are computed with respect to the reference point xref instead of the ideal boundary x∗.
Therefore, all the conclusions derived in sections 3.1 and 3.2 from the analysis of Tumer
and Ghosh model about the reduction of the bias and variance components attainable
by simple averaging a neural network ensemble, and about the comparison between the
bias and variance components of the weighted and simple average rules, are valid also
for the model described in this section. We summarise here these conclusions:

– The bias component of the expected added error of the simple average rule is be-
tween the minimum and the maximum of the bias terms of individual networks:
minm βm

b ≤ βbsa ≤ maxm βm
b .

– The variance component of the expected added error of the simple average rule is
between 0 and the highest variance component among individual networks: 0 ≤
(σsa)2 ≤ maxm(σsa)2. In particular, the variance component attains the maximum
value above when all individual networks exhibit identical variances and all their
correlations are equal to 1, while it vanishes when the individual networks exhibit
the lowest possible (negative) correlation.

– Simple averaging is the best linear combination strategy, if and only if all the in-
dividual networks exhibit identical bias and variance components of their expected
added error, and identical correlations.

– If the estimation errors of individual networks are unbiased and uncorrelated, then
the advantage of the weighted average over the simple average rule (in terms of
the difference between the corresponding bias and variance components of the ex-
pected added error) depends on the degree of performance imbalance, as explained
in section 3.2. In particular, being equal all the other factors, the difference in-
creases as the error range of the ensemble increases, as the performance of the best
individual network improves, and as the ensemble size decreases.

– If the estimation errors of individual networks are unbiased but correlated, then the
advantage of the weighted average over the simple average rule depends on both
the degree of performance and of correlation imbalance, as explained in section 3.2.
Being equal all the other factors, the difference increases under the same conditions
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of the uncorrelated case, and also as the range of correlation values of the ensemble
increases, and as the higher value in such range increases.

In the above discussion we took into account the bias and variance components of
the expected added error, which individually take on positive values both in Tumer and
Ghosh and in our model. There is however a subtle difference between the two models.
Note indeed that in Tumer and Ghosh model the multiplicative factor of the bias and
variance components which lead to the overall expected added error is p(x∗)t

2 , which is
always positive. The reason is that the term t is defined as the difference between the
first derivative of the posteriors of ωi and ωj in xb, P ′(ωj |xb) − P ′(ωi|xb), which is
positive by construction under the assumptions of Tumer and Ghosh model (this can be
easily be understood by reasoning on Fig. 1). Instead, in our model the multiplicative
factor p(xref )t

2 can also be negative, since t = P ′(ωj |xb) − P ′(ωi|xb) can be either
positive or negative, depending on the behaviour of the two posteriors around xref (for
instance, in the example of Fig. 4 t is positive, but it would be negative, if the first
derivative of P (ωi|x) on xb were higher than the one of P (ωj |xb) on the same point).
The implication of the above fact is the following. If the estimated boundary xb lies in
a region in which the term t is positive, then the behaviour of the linearly combined
ensemble with respect to the individual classifiers, and of the weighted vs. the simple
average rule, summarised above, is the same as predicted by Tumer and Ghosh model.
Instead, if t is negative, then it is easy to see that some of the conclusions summarised
above do not hold anymore. In particular, in this case the reduction of the variance com-
ponent of the expected added error of individual classifier attained by simple averaging
results in an increase of the expected added error: the lower the correlation between
individual networks, the worse the performance of the simple average rule. Moreover,
the optimal weights considered in section 3.2 become the worst possible weights, and
so the advantage of the weighted average over the simple average rule does not follow
the pattern summarised above.

To sum up, on the one hand the model described in this section shows that the be-
haviour of the linear combining rule predicted by Tumer and Ghosh model can hold also
under less strict assumptions. In particular, it can hold even when the main assumption
of Tumer and Ghosh model is relaxed, namely when an estimated boundary does not lie
in a neighbourhood of an ideal boundary between the same classes. This gives a partial
explanation of the experimental results observed in [8] and [4], mentioned in section 3.2
and described in the next section. From a practical viewpoint, this means that the guide-
lines derived from Tumer and Ghosh could hold even when the underlying assumptions
are violated. On the other hand, this model also points out some conditions under which
the conclusions drawn from Tumer and Ghosh model are no more valid.

4 Some Experimental Results

In this section we report the results of some experiments carried out with the aim of
investigating the behaviour of linear combiners on real data set, in light of the results
provided by the analysis of Tumer and Ghosh model and of our model, described in the
previous sections. The experimental setting is the same considered in [8]. In particular,
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the aim of our experiments was to check whether and to what extent the behaviour of
linear combiners on real data set agrees with the predictions derived from these two
models. To this aim, it is necessary to take into account that such predictions have been
derived under several assumptions (discussed in section 3.3) which do not necessarily
hold in real data sets, like a one-dimensional feature space, and involve quantities that
are unknown in experiments made on real data sets, like the added error over Bayes
error, the contribution of the misclassification probability around a given ideal class
boundary, or the bias of estimation errors. For this reason, in the experiments we fo-
cused only on quantities that can be estimated, which are the overall misclassification
error of a neural network and the correlation between the outputs of different networks
(which coincides with the correlation between the estimation errors). More precisely,
we checked whether and to what extent the behaviour of the overall misclassification
probability of the simple and weighted average rule with respect to the overall misclas-
sification probability of individual networks and on the average correlation between
their outputs (which was measured as described below) agrees with the predictions of
the models involving the contribution of the expected added error around an ideal or es-
timated boundary, and the correlation between estimation errors around such boundary.
For the reader’s ease, we summarise here such predictions in terms of the quantities that
can be estimated from real data sets:

– The simple average combiner should perform not worse than the worst individual
network.

– Being equal all the other conditions, the advantage of the weighted average over
the simple average rule, when the optimal weights are used, increases as the range
of misclassification errors of the individual network increases, as the performance
of the best individual network improves.

– Similarly, the advantage of the weighted average over the simple average rule, in-
creases as the range of correlation values exhibited by the individual networks in-
creases, and as the maximum value of this range increases.

These predictions involve the use of the optimal weights in the weighted average rule
(as explained at the beginning of section 3.2, we are interested in the ideal performance
of the weighted average and do not consider the problem of weights estimation), which
on real data sets can be found only by some sub-optimal search algorithm. To this aim,
we chose a simple exhaustive search over discretised weights values, with a discretisa-
tion step of 0.01. To keep the computational complexity acceptable, we considered only
an ensemble size of N = 3.

Given that the only parameter which can be controlled with some precision on
real data set is the overall misclassification probability of individual classifiers, we
constructed several ensembles of three classifiers characterised by different ranges of
misclassification probabilities and different degrees of performance imbalance. In the
following we will denote with Ei the misclassification rate of the i-th individual classi-
fiers, and will order the classifiers of each ensemble such that E1 ≤ E2 ≤ E3. We will
refer to the interval [E1, E3] as the error range. The misclassification rate of the simple
and weighted average combiners will be denoted respectively as Esa and Ewa, and the
difference Esa − Ewa as ΔE. We considered 16 ensembles characterised by different
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Table 1. Example of misclassification probabilities of the individual classifiers in the twelve
unbalanced ensembles considered in the experiments.

Ensemble ID E1 E2 E3

1 0.05 0.05 0.05
2 0.10 0.10 0.10
3 0.15 0.15 0.15
4 0.20 0.20 0.20
5 0.05 0.10 0.10
6 0.05 0.05 0.10
7 0.10 0.15 0.15
8 0.10 0.10 0.15
9 0.15 0.20 0.20

10 0.15 0.15 0.20

11 0.05 0.15 0.15
12 0.05 0.10 0.15
13 0.05 0.05 0.15
14 0.10 0.20 0.20
15 0.10 0.15 0.20
16 0.10 0.10 0.20

combinations of their performances and different degrees of performance imbalance.
Among them, we considered four balanced ensembles (namely, made up of classifiers
with identical performances), denoted in the following with numbers 1 to 4. We chose
misclassification probabilities with values increasing of 0.05 across these ensembles
(for instance, if the misclassification probability of classifiers in ensemble 1 is 0.05,
then it is 0.10 in ensemble 2, 0.15 in ensemble 3 and 0.20 in ensemble 4). We consid-
ered then 12 unbalanced ensembles characterised by five different error ranges. For a
fixed error range, two or three different degrees of performance imbalance were con-
sidered by choosing different values of E2. A possible set of values of E1, E2, E3 for
these 12 ensembles is shown in table 1, where each group of rows corresponds to a dif-
ferent error range. Note that unbalanced ensembles 5, 7, 9, 11 and 14 are characterised
by E2 = E3, which corresponds to the condition of maximum performance imbalance
(for N = 3) according to theoretical results derived in section 3.2, for fixed values of
E1 and E3. Similarly, ensembles 12 and 15 are characterised by values of E2 between
E1 and E3, and should be close to the condition of minimum performance imbalance.
In practice, this means that according to the results of section 3.2 we should expect that
the improvement ΔE attained by the weighted average rule over the simple average,
among ensembles with the same values of E1 and E3, is maximum when E2 = E1 and
is minimum when E2 is between E1 and E3.

The experiments have been carried out using multi-layer feed-forward neural net-
works, with one hidden layer, a number of input units equal to the number of features
and a number of output units equal to the number of classes (except for two-class data
sets, in which case only one output unit was used). The networks were trained using the
standard back-propagation algorithm with fixed learning rate of 0.05, a one-shot coding
for the target values (1 for the output unit corresponding to the correct class of a training
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Table 2. Data sets used in the experiments, with the size of the training and testing set, the number
of features and the number of classes.

Data set Training set Test Set Features Classes

Optdigits 3823 1797 8 9
Satimage 4435 2000 36 6
Pendigits 7494 3498 16 10

Letter 16000 4000 16 26
Segmentation 210 2100 19 7

Satellite 7939 7848 8 2
DNA 2000 1186 180 3

Feltwell 5124 5829 15 5
Ionosphere 176 175 34 2

sample, 0 for all the other units) and the sum of squared distances to the targets as error
measure. The outputs of each network were not constrained to sum up to 1.

We point out that the error rates mentioned above are “desired” error rates. To obtain
neural networks with error rates close to the desired ones, we trained a large number
of networks with a different number of hidden units, different training set sizes and
different training sets of the same size (obtained by randomly drawing subsets of the
original training set). Moreover, we constructed ten different ensembles for each of
the 16 combinations of the desired error rates described above: all the results reported
below refer to the average error rates over the ten ensembles.

Besides the error rates, we also computed an estimate of the average correla-
tion between network outputs, over the ten different ensembles with fixed values of
E1, E2, E3. The average correlation ρmn between the outputs of the m-th and the n-th
neural network (m, n = 1, 2, 3, m �= n) was computed as follows. We first computed
the correlation coefficient ρmn(x) between the outputs fm

k (x) and fn
k (x) on each test

sample x, for each class k. Then we averaged the ρmn(x) values over all classes and all
test samples.

The experiments were carried out on nine publicly available real data sets. Except
for Feltwell, eight of them have been taken from the well known UCI repository [1].
The data sets and their main characteristics are listed in table 2.

In tables 3, 4 and 5 we report the results on three out of the nine data sets, namely
Letter, Pendigits and Ionosphere, which are representative of the behaviour observed in
the other six data sets.

Considering first the qualitative behaviour of the simple and weighted average rule,
the following observations can be made:

– As expected, the weighted average rule always outperformed the simple average,
given that the optimal weights were used. Nevertheless, it is worth noting that the
SA rule always outperformed the worst classifier of the ensemble.

– With few exceptions, among ensembles with the same error range (namely ensem-
bles (5,6), (7,8), (9,10), (11,12,13) and (14,15,16)), the error rate of the simple and
weighted average increases for increasing values of E2, in agreement with the the-
oretical predictions.
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Table 3. Results on the Letter data set.

# E1 E2 E3 ρ12 ρ13 ρ23 Esa Ewa ΔE

1 0.205 0.208 0.205 0.01 0 -0.01 0.185 0.183 0.003
2 0.261 0.26 0.259 0.01 0.01 0 0.231 0.229 0.002
3 0.298 0.301 0.299 0.01 0 0.05 0.271 0.268 0.003
4 0.352 0.345 0.35 -0.01 0.01 0.01 0.307 0.305 0.002

5 0.202 0.261 0.257 0 0 0.01 0.203 0.194 0.008
6 0.206 0.208 0.259 0 -0.01 0.01 0.194 0.189 0.005
7 0.259 0.302 0.297 0.02 0 0 0.25 0.244 0.006
8 0.256 0.259 0.295 0.01 -0.01 -0.01 0.239 0.234 0.004
9 0.3 0.351 0.352 0.01 -0.01 0 0.289 0.282 0.007

10 0.298 0.301 0.355 -0.02 -0.02 -0.04 0.276 0.271 0.005

11 0.201 0.3 0.289 0 0 0.03 0.212 0.197 0.016
12 0.208 0.261 0.292 -0.01 -0.01 -0.01 0.217 0.206 0.01
13 0.207 0.208 0.295 -0.02 -0.01 0.01 0.196 0.189 0.007
14 0.258 0.346 0.348 0 0.01 0 0.263 0.251 0.011
15 0.26 0.304 0.354 0.02 0.01 -0.03 0.261 0.254 0.007
16 0.258 0.26 0.357 0 -0.02 0.01 0.24 0.234 0.006

Table 4. Results on the Pendigits data set.

# E1 E2 E3 ρ12 ρ13 ρ23 Esa Ewa ΔE

1 0.091 0.087 0.088 0.01 0.03 0.01 0.082 0.08 0.002
2 0.123 0.121 0.118 -0.03 -0.02 0.02 0.115 0.111 0.004
3 0.174 0.174 0.178 0.14 -0.03 0.02 0.151 0.145 0.006
4 0.217 0.218 0.224 0 0.14 0.04 0.189 0.183 0.005

5 0.086 0.118 0.116 0 -0.02 -0.04 0.095 0.086 0.009
6 0.091 0.089 0.119 -0.01 0 0.04 0.089 0.085 0.005
7 0.115 0.176 0.176 0 0.03 0.01 0.138 0.113 0.025
8 0.118 0.117 0.173 0 0.02 0.01 0.124 0.111 0.013
9 0.177 0.219 0.22 -0.03 0.06 -0.06 0.159 0.156 0.004

10 0.176 0.177 0.219 0.03 0.05 0.02 0.162 0.157 0.005

11 0.088 0.172 0.179 0 0 -0.03 0.115 0.087 0.028
12 0.09 0.117 0.177 0.03 0 0.01 0.106 0.093 0.013
13 0.091 0.088 0.179 -0.02 0.02 0.02 0.092 0.083 0.009
14 0.118 0.218 0.222 0 0.02 0.23 0.142 0.117 0.025
15 0.118 0.178 0.22 0.01 0.03 0.02 0.137 0.116 0.02
16 0.12 0.117 0.222 0.01 0 -0.03 0.12 0.111 0.01

– In the balanced ensembles 1 to 4, the improvement of the weighted average over the
simple average (the value ΔE) is often smaller than in the imbalanced ensembles
5 to 16, for the Letter and Pendigits data sets, while there are several exceptions on
Ionosphere (as well as in Segmentation, among the other six data sets).

– Inside each of the five groups of ensembles with the same error range, with some
exceptions the maximum of ΔE is obtained when E2 = E3 , which corresponds
to the condition of maximum performance imbalance.
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Table 5. Results on the Ionosphere data set.

# E1 E2 E3 ρ12 ρ13 ρ23 Esa Ewa ΔE

1 0.153 0.155 0.155 0.06 0.00 0.00 0.151 0.133 0.018
2 0.193 0.191 0.196 -0.02 0.14 0.10 0.183 0.166 0.017
3 0.253 0.248 0.250 -0.01 0.09 -0.01 0.246 0.223 0.024
4 0.299 0.299 0.300 -0.04 0.01 0.05 0.298 0.273 0.025

5 0.155 0.191 0.196 -0.05 0.00 -0.01 0.171 0.145 0.026
6 0.155 0.155 0.196 0.00 0.09 -0.01 0.160 0.139 0.021
7 0.193 0.250 0.251 0.02 0.02 0.03 0.217 0.176 0.041
8 0.194 0.191 0.253 -0.05 0.03 -0.02 0.193 0.167 0.025
9 0.254 0.301 0.301 0.03 -0.01 -0.14 0.284 0.245 0.040

10 0.249 0.248 0.300 0.07 0.07 0.06 0.256 0.225 0.031

11 0.155 0.251 0.249 -0.01 0.05 -0.04 0.205 0.153 0.051
12 0.155 0.191 0.251 -0.03 -0.07 0.01 0.178 0.148 0.030
13 0.154 0.155 0.251 0.05 0.01 -0.01 0.163 0.141 0.022
14 0.193 0.300 0.300 -0.04 0.18 0.06 0.245 0.187 0.059
15 0.192 0.249 0.300 0.01 0.00 0.05 0.223 0.179 0.044
16 0.194 0.192 0.300 -0.01 0.01 0.06 0.197 0.170 0.028

– Finally, among ensembles exhibiting the same value of E1 and E2, |DeltaE
increases as E3 increases, which is again in agreement with the theoretical
predictions.

Consider now the quantitative behaviour of the two combining rules:

– As already pointed out, the lower values of ΔE were almost always obtained for
the balanced ensembles 1 to 4. These values are almost always below 0.01. The
exceptions are the Ionosphere and Segmentation data sets, were values up to 0.025
were observed. Higher values of were obtained for the imbalanced ensembles 5 to
16. In particular, the maximum values of ΔE were obtained for ensembles with
the greatest error range width (0.10). However, for all imbalanced ensembles with
identical error range, the value of ΔE depends strongly on the value of E2 , namely
on the kind of performance imbalance. This means that the improvement achievable
using the weighted average may be small even for ensembles with a large error
range width. All these results agree with the theoretical predictions.

– Consider finally the correlation between classier outputs. The ones observed in
the experiments are close to 0, due to the fact that the classifiers were trained on
randomly drawn training sets. According to the theoretical predictions, for uncor-
related outputs the simple average should reduce the variance component of the
expected added error by a factor of N (N = 3 in our experiments). The reduction
of the overall expected added error could however be lower, given that the bias
term is not necessarily reduced. The experimental results show that in fact the per-
formance of the simple average is almost always close to that of the best classifier of
the ensemble (sometimes it is even better), even for highly imbalanced ensembles.

To sum up, we can say that these experiments provided evidence that the qualita-
tive behaviour of the two combining rules on real data sets agrees with rather good
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accuracy with the predictions of the model by Tumer and Ghosh, despite it is based
on strict assumptions as discussed in section 3.3. The most evident violations of the
theoretical predictions were observed on the Ionosphere and Segmentation data sets. In
particular, even in the balanced ensembles 1 to 4 the advantage of the weighted average
rule over the simple average was substantially large. However these results can partly
be explained by the fact that, due to the small training set size (one order of magnitude
smaller than in the other data sets), the ten different ensembles constructed for each of
the 16 combinations of the desired error rates exhibited an average error rate close to
the desired one, but with a high variance. This means that each of the ten ensembles
was often imbalanced.

5 Discussion and Conclusions

The linear combination is one of the simplest and most used combining strategies in the
multiple classifier systems field for classifiers that provide soft outputs, and in particular
estimates of the class posterior probabilities, like neural networks.

So far the literature on linear combiners mainly considered two topics related to
general issues in the multiple classifier systems field: methods for weight estimation,
and the theoretical analysis of the behaviour of linear combiners. In this chapter we
provided an overview of the state of the art on linear combiners, focusing on works
dealing with the second of the above topics, and in particular on an analytical model
originally developed in works by K. Tumer and J. Ghosh and subsequently extended by
the authors.

According to the model by Tumer and Ghosh and to the results derived in subse-
quent works by the authors, the following practical guidelines for the design of linearly
combined classifier ensembles can be given:

– Looking at the ensemble performance in terms of the bias-variance trade-off, if the
simple average rule is used an effective ensemble design strategy consists in con-
structing individual classifier with low bias and low (possibly negative) correlation
among their outputs. The variance will be reduced by combining.

– With regard to the choice between the simple and the weighted average rules, which
mirrors the problem well known in the multiple classifier systems field of the choice
between fixed and trained fusion rules, it can be said that the weighted average
can be advantageous (provided that a large data set is available for reliable weight
estimation), if the individual classifier exhibit significantly different performance
and high correlation between their outputs (it should however be pointed out that
this applies only to the case of non-negative weights).

The linear combination strategy is perhaps the less difficult to deal with from a theo-
retical viewpoint, and the one for which the most relevant results have been obtained so
far. However, as acknowledged by the MCS research community, developing general
theoretical models to study the behaviour of combining strategies and to develop guide-
lines for their design is still an open issue [21]. We believe indeed that an interesting
research direction for future works is the development of a more general framework
for the analysis and comparison of different classifier combination strategies, possibly



Bayesian Linear Combination of Neural Networks 229

trying to unify theoretical results like the ones reported in works by Tumer and Ghosh
and by the authors, by Kittler et al. [15,18] and by Kuncheva [20].
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