

Introduction
 Motivation for the work Create a general purpose tool for: "Fast reconfiguration" "Bitstream manipulation" "An infrastructure to make on-chip reconfiguration easier to use" "Intelligent control of reconfiguration via an embedded processor" "C based API to update FPGA resources" Who could benefit Any application that could benefit from SR (self-reconfiguration) (using the Virtex II/II Pro) MGRs, high density crossbars (Young et al.), embedded operating systems for FPGAs
CS6814: Fall 2003

Frame Sizes

Q. How much configuration data needs to be sent to the device to make the smallest possible change?

A. This varies with the frame size, it requires 384 bits + 1 frame + 1 dummy frame for a write operation. For a XCV300 this would be 1784 bits for a single frame write.

Q. What is the fastest time in which a change can be performed?

A. Using the previous example and the SelectMAP port at 50MHz it would require 1784/8*20ns =4.32uS.

Device	Frame Size	Time (50 MHz)*
XC2V40	104 bytes	6us
XC2V500	344 bytes	16us
XC2V2000	584 bytes	26us
XC2V6000	984 bytes	41us
XC2VP7	424 bytes	20us
XC2VP70	1064 bytes	45us
(table from FPL slide)		*includes header + data frame + pad frame
CS6814: Fall 2003 🐺 Washington University in		Washington University in St.Lou

Additional References:		
Xilinx Partial Reconfiguration FAC http://www.xilinx.com/xilinxonline/pa	Q: artreconfaq.htm	
CS6814: Fall 2003	Washington University in St.Louis	