
 Recovery for Failures in Rolling Upgrade on Clouds

Min Fu, Liming Zhu, Len Bass, Anna Liu

Software Systems Research Group, NICTA, Sydney, Australia

School of Computer Science and Engineering, University of New South Wales, Sydney, Australia

{Min.Fu, Liming.Zhu, Len.Bass, Anna.Liu}@nicta.com.au

Abstract—When cloud consumers are performing rolling

upgrade operations on cloud applications, they may encounter

failures due to cloud uncertainty. For example, unreliable cloud

API calls can make the rolling upgrade operation fail in

unpredictable and subtle ways. This paper proposes two recovery

strategies for recovering from rolling upgrade failures. The

strategies are Compensated Undo & Redo and Reparation. We

evaluated our recovery strategies on Asgard-based rolling

upgrade operation on Amazon Cloud based on two evaluation

metrics: MTTR and Service Performance. The experiment

results show that our strategies perform better than the recovery

mechanisms provided by Asgard itself. We also conduct a

comparison between the two recovery strategies based on the

metrics.

Keywords—cloud consumer; cloud API; rolling upgrade;

recovery strategy

I. INTRODUCTION

One cloud consumer initiated operation on cloud
applications is rolling upgrade[1]. In a rolling upgrade, a subset
of instances currently running an old version of a software
System are taken out of service and replaced with the same
number of instances running a new version of the software
system[1]. Rolling upgrade is the industry standard technique
for moving to a new version of the software[1]. It can be done
manually or with the assistance of automation such as cloud
APIs[2] and OpsWorks scripts[4][10][11]. Several existing
tools can be utilized to do rolling upgrade on cloud applications.
One of them is Asgard [13], an open source cloud management
tool provided by Netflix[5].

When Asgard is performing a rolling upgrade, it calls
relevant cloud API functions. For instance, it will explicitly call
cloud API functions such as “UpdateAutoScalingGroup”[13].
However, due to the uncertainty of cloud APIs[6], the rolling
upgrade operation is error-prone[26]. For instance, if the API
function of “TerminateInstanceInAutoScalingGroup” fails, the
rolling upgrade itself will fail. One way to deal with those
failures is to recover from them. From cloud consumer’s
perspective, doing such recovery is a challenge because cloud
platform only provides cloud consumers with very limited
visibility and control[2].

There are several existing recovery mechanisms which can
be used to recover from the errors during rolling upgrade on
cloud applications[13][8][22][24]. For example, test-driven
chef infrastructure[22] uses exception handlers to deal with the
failures during rolling upgrades. And cloud management
software (such as Asgard[13] or OpenStack[23]) is using built-

in exception handlers[24] to take recovery actions. One of the
challenges of recovery through exceptions handling is that it
has to cater for cross-platform and cross-language
exceptions[26]. Instead, our research proposes a recovery
method in a non-intrusive manner. Our recovery method does
not require any modification to the source code of rolling
upgrade, and does not need to change any configuration
settings on rolling upgrade as well.

The recovery method we propose currently contains two
recovery strategies: Compensated Undo & Redo and
Reparation. Compensated Undo & Redo returns the system to
the previous expected state and redo the relevant steps;
Reparation forcefully makes the current erroneous state into the
expected state. Our experiment results on our test case show
that our recovery method takes on the order of seconds as
opposed to Asgard’s reliance on manual recovery. Our
experiment results also show that our recovery is able to
recover from more types of failures in rolling upgrade than
Asgard itself. Hence, we demonstrate that our recovery method
is better than the existing recovery mechanisms provided by
Asgard. We also evaluate and compare the two recovery
strategies based on a set of metrics: 1) MTTR; and 2) Service
Performance (CPU and memory overhead)[3][7]. For each
particular step of rolling upgrade, we compare the two different
recovery strategies, and select the better one.

Our research has two main contributions: 1) we propose
two recovery strategies for failures during operations such as
rolling upgrade on cloud applications; 2) we evaluate the
recovery strategies and demonstrate how to select the recovery
action by using a set of evaluation metrics.

II. ROLLING UPGRADE ON CLOUD APPLICATIONS

This section describes rolling upgrade on cloud and the
failures that might happen during the rolling upgrade.

A. Consumer-initiated Rolling Upgrade

A rolling upgrade operation is one example of consumer-
initiated sporadic operations on cloud applications[9]. Rolling
upgrade operations normally occur less frequently than normal
system operations. For example, system upgrade might happen
once every week, while system normal operations such as
system execution workflow can happen every day. Fig. 1
describes the seven-step procedure of rolling upgrade operation
used by Asgard. This rolling upgrade operation procedure is
derived from the process mining[12] of operation logs and the
analysis of the source code of Asgard[13].

Fig. 1. Asgard Rolling Upgrade Operation. This operation consists of 7 steps,

where step 1 to step 3 are sequential, and step 4 to step 7 are iterative. In
step 1, new LC pointing to new AMI is created; in step 2, the existing

ASG is reattached to the new LC; in step 3, the rolling policy (including

instance killing order and killing number) specified by user is set; from
step 4 to step 7, the system removes old instance from ELB and

terminates it, then it relies on ASG to launch new instance and register

new instance in ELB. Steps 4 to 7 are iteratively executed until all the
old instances are upgraded.

B. Failures during Rolling Upgrade

Due to the uncertainty and instability of cloud APIs[6],
failures could happen during the rolling upgrade operation.
Table I enumerates some possible failures that could happen
during rolling upgrade operation. We encapsulate the recovery
strategies in a recovery service module that is external to
Asgard. Although it is feasible to implement the recovery
mechanisms in the exception handlers of Asgard source code
since Asgard is open source, we choose a non-obtrusive
technique to all for future generalization.

TABLE I. SOME FAILURES DURING ASGARD ROLLING UPGRADE

Error Step

1. LC created with wrong parameter value Step 1

2. ASG attached to another wrong LC Step 2

3. Rolling policy not set as expected Step 3

4. Instance termination taking long time Step 4

5. Instance unable to deregister from ELB Step 5

6. Instance unable to launch Step 6

7. Instance unable to register with ELB Step 7

C. Rolling Upgrade Operation as a Process

Our approach of analyzing the operation in a recoverability-
oriented fashion is to analyze the operation as a process
consisted of several recoverable steps[14][21]. This approach is
inspired by the recoverability of BPEL processes[15][16]. If
failures occur inside an operation process, one recovery
technique is to roll back the process to the starting point of the
process, as with a database transaction rollback[18]. In our
research, we make assertion evaluation at the end of each
operation process step and then recover from the failures
detected. The details of our recovery mechanism will be
provided in subsequent sections.

III. OUR RECOVERY APPROACH

System context knowledge is significant for recovery, for
example, in message-passing distributed systems, checkpoints
are utilized for a backward recovery[20]. In our research, the
context knowledge of the system is comprised of two parts: 1)
the rolling upgrade operation execution workflow which is
modeled based on the operational process and 2) the system’s
expected global states which are manually predefined based on
the rolling upgrade model. The recovery actions rely on context
knowledge. Basically, we have two recovery mechanisms: 1)
Compensated Undo & Redo; 2) Reparation. Our Compensated
Undo & Redo algorithm is implemented by leveraging the
system’s global expected states during the operation, so is our
reparation algorithm. For either of these two mechanisms, there
could be more than one recovery actions. For example, there
can be multiple ways to undo the current state. We utilize a set
of recovery evaluation metrics to evaluate and compare these
recovery actions. The metrics contain two aspects: MTTR
(Mean Time to Recovery), Service Performance (CPU and
memory overhead of the recovery service itself). Then, we
select the better recovery action based on these metrics. The
overview of our approach is illustrated in Fig. 2.

Fig. 2. Overview of Our Apporach. The system context knowledge is first

generated, and then generate the recovery actions, and then evaluate each

recovery action based on the evaluation metrics and make a comparison
between them, and finally select the optimal action.

Fig. 3. Operation Execution Workflow for Asgard rolling upgrade. This

workflow contains 11 sequencial steps, and they represent the exection pattern

of Asgard rolling upgrade. Since there are totally 4 instances and each time 2

instances are killed, steps 4 to 7 are repeated twice, hence making the whole
execution contain 11 steps.

Fig. 4. Expected System Global States for Asgard rolling upgrade.

A. Rolling Upgrade Operation Execution workflow

Rolling upgrade operation execution workflow serves as
the first type of contextual knowledge used for recovery. It
represents the execution logic and execution flow of a rolling
upgrade operation process. For example, in the Asgard rolling

upgrade, if we put 4 instances in the auto scaling group (ASG)
and we set the rolling depth to be 2 (that means 2 instances will
be killed each time), the whole rolling upgrade process will
contain two rolling waves: first, 2 old version instances will be
deregistered from the elastic load balancer (ELB) and then
terminated, then 2 new version instances will be launched and
registered with ELB; second, another 2 old version instances
will be deregistered from the ELB and then terminated, then
another 2 new version instances will be launched and registered
with ELB. In this case, the whole rolling upgrade process will
contain 11 steps in total, and Fig. 3 shows its detailed execution
workflow.

B. Expected System Global States during Operations

The expected system global states serve as the second type
of contextual knowledge used for recovery. This contextual
knowledge integrates all the expected global states of the
system after each step during the rolling upgrade operation.
The expected system global states during Asgard rolling
upgrade operation are shown in Fig. 4. This time, we still have
4 instances in the ASG and the rolling depth is still 2. Hence,
there are totally 11 steps, and after each step there is an
expected global state. In our current research, we only care
about the cloud infrastructure level of the states, such as how
many virtual machines are there, or the launch configuration
version attached to auto scaling group, etc. Take step 1 as the
example, as denoted in Fig. 4, the expected global state after
step 1 is that “New LC has been created and ASG is using old
LC and 4 running version 1 instances are in ASG and they are
in ELB”.

IV. OUR RECOVERY ACTIONS

Our recovery actions contain two types of mechanisms:
Compensated Undo & Redo and Reparation. Compensated
Undo & Redo mechanism is to undo the system to the previous
expected state and redo the relevant steps; Reparation
mechanism is to forcefully make the current erroneous state
into the expected state. The expected states will be notified to
recovery service by our POD error detection and diagnosis
service[26]. Fig. 5 illustrates how these two recovery
mechanisms work. There is one step x and there are three
global states: S_0, S_1 and S_Err. S_0 is the expected system
global state before step x, and S_1 is the expected system
global state after step x. S_Err is the erroneous global state
after step x execution. The blue dashed arrows represent the
mechanism of Compensated Undo & Redo, and the green
dashed arrow represents the reparation mechanism. For the
blue dashed arrows, the recovery mechanism is to first rollback
system to the previous consistent state S_0 from the erroneous
state S_Err, and then replay step x to make it to S_1. For the
green dashed arrow, the recovery mechanism is to make the
erroneous state S_Err into the expected global state S_1 for
step x. However, for a general operation, the transition from
S_Err to S_0 or from S_Err to S_1 is not always guaranteed to
be feasible, depending on what steps are involved in the
operation. For example, deleted resources are difficult to
reverse. Several existing techniques[27] can be utilized to
check the state reachability. After applying an existing
undoability checking tool[27] on the rolling upgrade, we

fortunately found that our rolling upgrade is not bothered by
such issue.

Fig. 5. Recovery Mechanisms. Two recovery mechanisms are provided:

Compensated Undo & Redo, and Reparation.

A. Compensated Undo & Redo

The mechanism of Compensated Undo & Redo is described
in Fig. 6. One example of Compensated Undo & Redo strategy
for step 2 is shown in Fig. 7. It firstly undoes to the expected
global state before step 2 from the erroneous state and then re-
executes step 2. Fig. 6 is an abstract description of the
mechanism and Figure 7 is the mechanism instantiated by the
global state knowledge of Figure 4.

Fig. 6. Recovery Algorithm of Compensated Undo & Redo.

Fig. 7. Recovery Algorithm of Compensated Undo & Redo for Rolling

Upgrade Step 2.

B. Reparation

The mechanism for Reparation is described in Fig. 8. We
present one example of the reparation strategy for step 2, as
shown in Fig. 9. It directly repairs the current erroneous state
into the expected global state after step 2. Again, Figure 8 is an
abstract specification and Figure 9 utilizes the global state
knowledge of Figure 4.

Fig. 8. Recovery Algorithm of Reparation.

Fig. 9. Recovery Algorithm of Reparation for Rolling Upgrade Step 2.

V. RECOVERY ACTION EVALUATION METRICS

In order to evaluate the performance of our recovery actions,
we utilize a set of recovery action evaluation metrics to achieve
this goal. The evaluation metrics are determined by analyzing
the different aspects of recovery objectives[3][7]. The recovery
evaluation metrics currently contain two aspects: 1) MTTR
(Mean Time to Recover) and 2) Service Performance which
means the CPU and memory overhead of the recovery service
itself. The mean time required for recovery is usually defined
by cloud operators as a bounded time value. The recovery
action which takes longer than this time constraint will be
invalid. Moreover, when recovery service is running on cloud,
for example, in one of the VMs, the recovery service should
not introduce too much overhead to the VM itself. Otherwise
the original cloud system might be impacted. There is no
ordering priority for these two metrics, and cloud users may
determine the priority based on their own requirements and
scopes. The detailed explanation of these metrics is described
below.

A. Mean Time to Recover

MTTR (Mean Time to Recover) is the first metric for
evaluating our recovery actions. It means the time required for
a recovery action to make the current erroneous state after a
step into the expected state after the step. We calculate MTTR
by computing the recovery algorithm running time when it is
doing recovery on our system.

B. Service Performance

We intend to use CPU consumption rate and memory usage
volume to evaluate the recovery service’s performance. When
the recovery service is running in the cloud, e.g. in one of the
VMs, the overhead introduced by the recovery service itself
should be evaluated.

VI. EXPERIMENTS & EVALUATION

Our experiment is conducted on Asgard rolling upgrade
with AWS EC2 platform. Our recovery service prototype is
implemented in C# language and running in Windows 7 64 bit
operating system. We have 10 instances in the ASG, and
rolling depth is 2.

A. Errors Injected

In our experiment, the errors injected are illustrated in
below table II. Those errors injected here are a subset of the
errors injected in our POD error detection and diagnosis
service[26].

TABLE II. ERRORS INJECTED IN ASGARD ROLLING UPGRADE

Step Error Injected

New LC creation
New LC missing after

creation

ASG update ASG uses unknown LC

Instance termination Instance not terminated

Instance deregistering

from ELB

Instance still registered

with ELB

Instance launching Instance launching fails

Instance registering with
ELB

Instance not registered
with ELB

B. Evaluation of Recovery Actions

According to our evaluation, our recovery service is better
than the existing recovery mechanisms[13] provided by Asgard
itself. Below table III provides the comparison between our
recovery service and Asgard recovery mechanism.

TABLE III. OUR RECOVERY SERVICE VS ASGARD RECOVERY

Step Error Injected Asgard Recovery Our Recovery

New LC

creation

New LC
missing after

creation

Log error and

graceful exist

Error fixed by

either of two

recovery
strategies

ASG update
ASG still uses
old LC

No Action

Error fixed by

either of two
recovery

strategies

Instance

termination

Instance not

terminated

Log error and

wait for instance
to terminate

Error fixed by
either of two

recovery

strategies

Instance
deregistering

from ELB

Instance still
registered

with ELB

No Action

Error fixed by

either of two

recovery
strategies

Instance
launching

Instance

launching

fails

Log error and

wait for instance

to start

Error fixed by

either of two
recovery

strategies

Instance

registering
with ELB

Instance not

registered
with ELB

No Action

Error fixed by

either of two
recovery

strategies

Now we compare our two recovery strategies by using the

metrics based on the results obtained from running the two
recovery strategies for each step for 10 times. Due to the page
number limitation, we only provide the recovery details for
step “ASG update” and step “Instance registering with ELB”.

The experimental results for step “ASG update” recovery
are shown in Fig. 10 and Fig. 11. We can see that Reparation is
selected as the better recovery strategy.

Fig. 10. Experiment Results from Running Recvoery Actions for 10 times.

Metrics
Compensated

Undo & Redo

Standard

Deviation
Reparation

Standard

Deviation

MTTR 3499ms 0.049 1610ms 0.067

Service

Performance

CPU: 0.8%

Mem: 14920K

0.680

0.096

CPU: 0.5%

Mem: 14900K

0.490

0.089

Fig. 11. Comparison between 2 Recovery Strategies based on metrics .

The experimental results for step “Instance registering with
ELB” are shown in Fig. 12 and Fig. 13. We can see that
Reparation is selected as the better recovery strategy.

Fig. 12. Experiment Results from Running Recvoery Actions for 10 times.

Metrics
Compensated

Undo & Redo

Standard

Deviation
Reparation

Standard

Deviation

MTTR 6245ms 0.083 4490ms 0.081

Service

Performance

CPU: 2.5%

Mem: 14940K

0.607

0.063

CPU: 1.5%

Mem: 14885K

0.693

0.051

Fig. 13. Comparison between 2 Recovery Strategies based on metrics .

Nevertheless, our experiment results do not necessarily
mean that Reparation mechanism is always better than
Compensated Undo & Redo. It really depends on the specific
operation steps and recovery actions.

VII. THREATS TO VALIDITY

There are some threats to validity in our research. First, we
don’t test the scalability of our methods. Our experiments are
only conducted by using a rolling upgrade operation which
contains 10 VMs in the ASG. Hence, one of our future work
items is to evaluate our methods’ scalability.

Second, our methods are based on an assumption that error
diagnosis is not known. However, sometimes recovery
methods require diagnosis information of errors, e.g. the error
occurs due to environment issues. Moreover, our recovery does
not consider error mitigation actions. Hence, our future work
also includes research on error diagnosis assisted recovery
which also takes mitigation actions into account.

Third, our current recovery evaluation and comparison
metrics only contain two aspects, while in fact they can include
more aspects (such as consequence on cloud system[3] and
monetary cost[2]) . In our future work, we will also evaluate
and compare recovery strategies based on finer-grained set of
metrics.

VIII. RELATED WORK

A. DDG for System Recovery

The key system context that supports our recovery
strategies is the usage of the expected system global states.
This takes similarity with DDG (Data Derivation Graph)
work[19][25] from UMass. DDG records how data is produced

by a running process by documenting such information as
which inputs, passed to which steps, executed by which agents,
resulted in the creation of which outputs[19]. One difference is
that DDG is automatically generated during the process
execution[19], while in our research the expected system global
states are defined according to operation requirements. DDG is
serving as the main system contextual knowledge which is used
by process recovery actions such as undo and redo[17][25], and
our expected system global states are the main contextual
knowledge that is used by the two recovery strategies proposed
by us for the recovery of cloud rolling upgrade operation.

B. Recovery within Long-Running Transactions

For long running transactions, recovery strategies usually
involve backward recovery and forward recovery[17].
Backward recovery refers to the strategy which first reverts
the current erroneous state to a previous correct state before
attempting to continue execution. Forward recovery attempts
to correct the current erroneous state and then continues
normal execution. Our recovery strategy of Compensated
Undo & Redo takes similarity to backward recovery and our
recovery strategy of Reparation takes similarity to forward
recovery. Another form of forward recovery in long running
transactions is called compensation[17], which means to
attempt to correct the state of a system given some knowledge
of the previous actions of the system[17]. Generally, our
recovery strategies take similarity to the recovery mechanisms
for long running transactions but there are some challenges
introduced such as state reachability check.

IX. CONCLUSION & FUTURE WORK

During cloud consumer initiated rolling upgrade operation
on cloud applications, errors are prone to happen due to several
reasons such as cloud uncertainty. To recover from errors in
rolling upgrade operation, we propose a non-intrusive recovery
method which contains two recovery strategies to recover from
the errors happen during cloud rolling upgrade: 1)
Compensated Undo & Redo and 2) Reparation. Our recovery
method does not require the modification to rolling upgrade
source code, nor does it require any configuration changes on
rolling upgrade. We evaluate our recovery strategies by using
Asgard and EC2 platform, and our experiments show that our
recovery method is better than the existing recovery
mechanisms provided by Asgard. We also evaluate those two
recovery strategies and make a comparison between them.

In our future work, we will evaluate the scalability of our
recovery strategies. And we will also evaluate the recovery
strategies based on a finer-grained set of metrics which
includes other aspects such as consequence on cloud system
and monetary cost. Moreover, we will also figure out and
implement more recovery strategies which take error diagnosis
and error mitigation into account. And we also would like to
make our recovery method cater for other sporadic operations
on cloud such as deployment or reconfiguration on cloud.

ACKNOWLEDGMENT

NICTA is funded by the Australian Government through
the Department of Communications and the Australian

Research Council through the ICT Centre of Excellence
Program.

REFERENCES

[1] T. Dumitras and P. Narasimhan, "Why Do Upgrades Fail andWhat
CanWe Do about It? , Middleware 2009, pp. 349-372, 2009 .

[2] AWS official Website: http://aws.amazon.com/cn/ (last access time: 4th
Mar 2014, 12:09).

[3] T. Wood, E. Cecchet, et al., ”Disaster Recovery as a Cloud Service:
Economic Benefits & Deployment Challenges”, HotCloud, 2010.

[4] OpsCode official Website: http://www.opscode.com/ (last access time:
4th Mar 2014, 20:06)

[5] Netflix official website: https://www.netflix.com/global (last access
time: 2nd Mar 2014, 12:30).

[6] Q. Lu, L. Zhu, et al., “Cloud API Issues: an Empirical Study and
Impact”, Proc. 9th ACM SIGSOFT conference, 2013.

[7] J. Zhu, et al., “System Recovery Benchmarking”, DSN Workshop on
Dependability Benchmarking, June 25 2002.

[8] J. Behl, et al., “Providing Fault-tolerant Execution of Web-service–based
Workflows within Clouds”, 2nd International Workshop on Cloud
Computing Platforms, 2012.

[9] M. Fu, L. Zhu and L. Bass; “A Recoverability-Oriented Analysis for
Operations on Cloud Applications”, WICSA 2014.

[10] AWS OpsWorks official website: http://aws.amazon.com/cn/opsworks/
(last access time: 15th Feb 2014, 15:17).

[11] Chef official website: http://www.opscode.com/chef/ (last access time:
2nd Mar 2014, 12:40).

[12] X. Xu, I. Weber, et al.; “Detecting Cloud Provisioning Errors Using an
Annotated Process Model”; proc. MW4NextGen'13, no. 5, 2013.

[13] Asgard official website: https://github.com/Netflix/asgard (last access
time: 2nd Mar 2014, 12:30).

[14] M. Fu, L. Zhu, A. Liu, L. Bass and X. Xu; “Process-Oriented Recovery
for Operations on Cloud Applications”, proc. SOCC, no. 50, 2013.

[15] L. Baresi and S. Guinea, “Towards Dynamic Monitoring of WS-BPEL
processes”, ICSOC 2005, Springer, 2005.

[16] J. Simmonds, et al.; “Guided Recovery for Web Service Applications”;
proc. 18th ACM SIGSOFT, pp. 247-256, 2010.

[17] C. Colombo and G. J. Pace, “Recovery within Long Running
Transactions”, ACM Transactions on Computational Logic, pp. 1-40,
August 2011.

[18] T. Haerder, and A. Reuter; “Principles of transaction-oriented database
recovery”; ACM CSUR, December 1983.

[19] X. Zhao, et al.; “Supporting Process Undo and Redo in Software
Engineering Decision Making”; proc. ICSSP, 2013.

[20] E. N. M. Elnozahy, et al., “A Survey of Rollback-Recovery Protocols in
Message-Passing Systems”, (CSUR), vol. 34, no. 6, pp. 375-408,
September 2002.

[21] X. Xu, L. Zhu, J. Li, L. Bass, Q. Lu and M. Fu, “Modelling and
Analysing Operation Processes for Dependability”, DSN 43rd Annual
IEEE/IFIP International Conference, 2013.

[22] S. Nelson-Smith, “Test-Driven Infrastructure with Chef”, published by
O’Reilly Media, Inc., Copyright©2011 Atalanta Systems LTD, First
Edition, June 2011.

[23] OpenStack official website: http://www.openstack.org/ (last access time:
4th Mar 2014, 15:17).

[24] H. Chang, et al.; “Exception Handlers for Healing Component-Based
Systems”; ACM Transaction on Software Engineering and
Methodology, vol. 22, no. 4, October 2013.

[25] X. Zhao, E. R. Boose, et al.; “Supporting Undo and Redo in Scientific
Data Analysis”; Evaluation, 2013.

[26] X. Xu, I. Weber, et. Al.; “POD-Diagnosis: Error Diagnosis of Sporadic
Operation on Cloud Applications”; Submitted to DSN 2014.

[27] I. Weber, H. Wada, et al.; “Supporting Undoability in Systems
Operations”; USENIX 2013.

http://aws.amazon.com/cn/
http://aws.amazon.com/cn/opsworks/
http://www.opscode.com/chef/
http://
https://github.com/Netflix/asgard
http://www.openstack.org/

