Coordinated Reinforcement L earning

CarlosGuestrin GUESTRIN@CS.STANFORD.EDU
Computer Science Department, Stanford University, StainfoA 94305

Michail Lagoudakis MGL @CS.DUKE.EDU
Ronald Parr PARR@CS.DUKE.EDU

Department of Computer Science, Duke University, Durham,2Y708

Abstract which the agents efficiently determine the jointly optimed a
We present several new algorithms for multiagent tion with respect to an approximate value function. Our ap-

reinforcement learning. A common feature of these ~ Proach is based on approximating the joint value function as
algorithms is a parameterized, structured represen- a linear combination of local value functions, each of which

tation of a policy or value function. This structure relates only to the parts of the system controlled by a small
is leveraged in an approach we cadlordinated re- number of agents. We show how such factored value func-
inforcement learningby which agents coordinate tions allow the agents to find a globally optimal joint action
both their action selection activities and their pa- ~ using a very natural message passing scheme. This scheme
rameter updates. Within the limits of our para- can be implemented as a negotiation procedure for selecting
metric representations, the agents will determine actions at run time. Alternatively, if the agents share a-com

a jointly optimal action without explicitly consid- mon observation vector, each agent can efficiently determin
ering every possible action in their exponentially the actions that will be taken by all of the collaboratingrige

large joint action space. Our methods differ from without any additional communication.
many previous reinforcement learning approaches
to multiagent coordination in that structured com-

munication and coordination between agents ap-
pears at the core of both the learning algorithm and
the execution architecture. Our experimental re-
sults, comparing our approach to other RL meth-
ods, illustrate both the quality of the policies ob-

tained and the additional benefits of coordination.

Given an action selection mechanism, the remaining task is t
develop a reinforcement learning algorithm that is capable
producing value functions of the appropriate form. An algo-
rithm for computing such value functions is presented in [8]
for the case where the model is known and represented as a
factored MDP. This is the first application of these techei&ju

in the context of reinforcement learning, where we no longer
require a factored model or even a discrete state space.

We begin by presenting two methods of computing an appro-
1. Introduction priate value function through reinforcement learning: a-va

ant of Q-learning and a variant of Least Squares Policy Iter-

g;ncf}'dﬁgg-gf;i?oﬂgfd@ lct)'plr? oat?sir;tsa,t%i(;h X'tgt'};gm&tion (LSPI) [11]. We also demonstrate how parameterized
poss! ’ IS oW vations, mu alue functions of the form acquired by our reinforcement

nate in order to achieve a common goal. We want to finci/ : : ; . .
g earning variants can be combined in a very natural way with

a mgchanism_ fqr_coorq_inating the agents’ actions so as t8irect policy search methods such as [12, 1, 14, 9]. The same
maximize their joint utility. One obvious approach to this SRR

problem is to represent the system as a Markov Decision Pr
cess (MDP), where the “action” is a joint action for all of the
agents and the reward is the total reward for all of the agent
The immediate difficulty with this approach is that the actio
space is quite large: If there ageagents, each of which can We call our approaciEoordinated Reinforcement Learning
takea actions, then the action spaceits because structured coordination between agents is useel in t
One natural approach to reducing the complexity of this 1or0bCOre of our_le_qrnmg algorlthms and in our execution archite
tures. Our initial experimental results with LSPI indicHiat

ltgrg;irtloareesrz?gtnt(;]?1(‘;’me‘cf[gn;g(:':r]:iozremﬁg%gltcvaetlggrgvg"aszllvghe message passing action selection mechanism and value
9 P 9 y function approximation can be combined to produce effectiv

Ing Iocal optimization probl_ems for each agent [13]' In Somepolicies and that additional benefits are obtained with aigen
cases, itis possible to manipulate the presentation offrimdie coordination

tion to the agents in a manner that forces local optimization

to imply global optimizations [16]. In general, howevergth 2 Cooperative Action Selection

prol:_)ler_n offmdl_ng aglobally optlm_al solution for agentshwit \ye begin by considering the simpler problem of having a
partial information is known to be intractable [2]. group of agents select a globally optimal joint action to fnax
Following [8], we present an approach that combines valuéniz€ the sum thhelrlnd|V|duaI utility functlo.ns. Suppase
function approximation with a message passing scheme bg}ave a collection of agents, where each agemust choose

communication and coordination structures used in theevalu
Yunction approximation phase are used in the policy search
hase to sample from and update a factored stochastic policy
unction.

an actiona; from a finite set of possible actiod3om(A;).

We useA to denote{A,, ..., A,}. The agents are acting in a Q Q,
space described by a set of state variat¥es; {X; ... X, }.

A statex defines a setting; for each variableX; and an ac- @ @
tion a defines an action; € Dom(A;) for each agent. The Q, Q,

agents must choose the joint actiwthat maximizes the total
utility.

(4)

Figure 1.Coordination graph for a 4-agent problem.
In general, the total utility) will depend on all state variables
X and on the actions of all agems However, in many prac-
tical problems, it is possible to approximate the totaltytid)
by the sum of local sub-utilitie§ ;, one for each agent. Now,
the total utility becomeg) = Zj Q;. For example, consider
the decision process of a section manager in a warehouse.
local utility Q; may depend on the state of the inventory of ;
her section, on her decision of which products to stock up angp

Observable[Q;], thereby decreasing considerably the amount
of information each agent needs to gather.

After conditioning on the current state, eagh will only de-
Hggnd on the agent's action choief. Our task is now to
lect a joint actiom that maximizes)_; Q;(a). The fact
at the@;’s depend on the actions of multiple agents forces
e agents to coordinate their action choices. We can rep-

n edge between two agents if they must directly coordinate
heir actions to optimize some particutgs. Fig. 1 shows the

coordination graph for an example where
Computing thelactlo.n that maX|m.|zévB: > Qj seemsin-) — Q (a1, as) + Qa(az, as) + Qs(a1, as) + Qu(as, as).
tractablea priori, as it would require the enumeration of the
joint action space of all agents. Fortunately, by explgitin A graph structure suggests the use ofast network[6],
the local structure in the);-functions through aoordina- ~ Which can be solved usingon-serial dynamic program-
tion graphwe can compute the optimal action very efficiently, Ming [3] or a variable elimination algorithm which is virtu-
with limited communication between agents and limited ob-ally |de.nt|cal to variable .ellmlnat|on ina Bayesian networ
servability, as proposed in [8]. We repeat the constructiorYVe review this construction here, as it is a key component.
here as it will be important throughout this paper. The idea is that, rather than summing all functions and then
In our framework, each agerithas a local utility function ~Maximizing, we maximize over variables one at a time. When

Q;. An agent's localQ-function might be influenced by a _maximizing overa, only summands involvi_ngl participate
subset of the state variables, the agent's action and actiof the maximization. In our example, we wish to compute:

of the customer support team will be indirectly relevant, as
they may affect the actions of the sales manager.

of some other agents; we defifieope[Q;] C X U A to be

max Qq(a1,a2)+Q2(az, as)+Qs(a1, a3)+Q4(as, as).

the set of state variables and action variables that infeienc®:-e2,23,a4

Q;. (We useQ;(x,a) to denote the value af); applied to
the instantiation of the variables Brope[@;] within x, a.)
The scope of)); can be further divided into two parts: the
observable state variables:

Observable[Q;] = {X; € X | X; € Scope[Q;]};
and the relevant agent decision variables:
Relevant|Q;] = {A; € A | A; € Scope[Q;]}.

This distinction will allow us to characterize the observas

Let us begin our optimization with agent 4. To optimize,
functions@); and@s are irrelevant. Hence, we obtain:

max Q1(a1, a2)+Qs(a1, as)+ max[Qz(az, as)+Q4(as, as)].
al,a2,a3 aq
We see that to chooséd, optimally, the agent must know
the values ofd; and As. In effect, it is computing a con-
ditional strategy, with a (possibly) different action cbeifor
each action choice of agents 2 and 3. Agent 4 can summarize
the value that it brings to the system in the different cireum
stances using a new functigia(A42, As) whose value at the

each agent needs to make and the type of Communicatid?pintag, as is the value of the internahax eXpreSSion. This

needed to obtain the jointly optimal action, i.e., the j@ot
tion choice that maximizes the total utility = >, Q;. We

note that eacty ; may be further decomposed as a linear com

bination of functions that involve fewer variables; in thése,
the complexity of the algorithm may be further reduced.

Recall that our task is to find a coordination strategy for the

agents to maximize _; Q; at statex. We assume that the
agents have full observability of the relevant state vaeisb
i.e., agentj can observébservable[Q;]. Given a particular
statex = {z1,...,2,}, agentj can instantiate the part of
Q; that depends on the state i.e., condition@; on state

new function is a new joint value function for agents 2 and
3 (indicated with a dashed line in Fig. 1), summarizing their

Jjoint contribution to the total reward under the assumption

that agent 4 will act optimally with respect to their choices
Our problem now reduces to computing
max Q1(a1,az) + Qs(ar,a3) + fa(az,as),

a1,a2,a3
having one fewer agent. Next, agent 3 makes its decision:

MaxXg, q, Q1(a1,a2) + fi(ai,a2),
where fg(al, ag) = maXg, [Qg(al, a3) + f4(a2, ag)].

x. Note that each agent only needs to observe the variables ixgent 2 now makes its decision, giving

fa(a1) = max Q1 (a1, a2) + fa(ai,az), 3. Markov Decision Processes
“@ The mechanism described above can be used to maximize

and agent 1 can now simply choose the actiprthat maxi- not just immediate value, but long term cumulative rewards

mizesf, = max,, f2(a1). The result at this point is a num- b_y using @-functions that are der!ved from the value fl_mc-
ber which is the ldesired maximum over, as, as, anday. tion of an MDP. The extent to which such a scheme will be

successful will be determined by our ability to represeast th
We can recover the maximizing set of actions by performingvalue function in a form that is usable by our action selectio
the entire process in reverse: the maximizing choiceffor mechanism. Before addressing this question, we first review
selects the actioa; for agent 1. To fulfill its commitmentto the MDP framework.

agent 1, agent 2 must choose the valgi@vhich maximizes _ . e
f2(a¥). This, inturn, forces agent 3 ang then agent 4 to selecfN MDP is defined as a 4-upl&, A, P, R) where:X is afi-
their actions appropriately. nite set of statesd is a finite set of actions? is aMarkowa_n_
transition modelvhereP(x, a, x’) represents the probability
In general, the algorithm maintains a sgtof functions, of going from statex to statex’ with actiona; and R is a
which initially contains{Q1,...,Q,}. The algorithm then reward function? : X x A x X — IR, such that?(x, a, x’)

repeats the following steps: represents the reward obtained when taking actiamstate
x and ending up in state’. For convenience, we will some-
1. Select an uneliminated agef; times useR(x,a) = >, P(x,a,x')R(x,a,x").
2. Take allfy,..., fr € F whose scope containg. We will be assuming that the MDP has an infinite horizon

3. Define a new functioff = max,, 3 f; and introduce and that future rewards are discounted exponentially with a
itinto . The scope of is UL, Scopel[f;] — { A:}. Q|scount factory €[0,1). A stationary policyr for an MDP
j=12C0PCLJ; ! is a mappingr : X — A, wherer(x) is the action the agent
— . _ takes at stat&. The optimal value functioiv* is defined so
As above, the maximizing action choices are recovered byt the value of a state must be the maximal value achievable
sending messages in the reverse direction. by any action at that state. More precisely, we define:

The computational cost of this algorithm is linear in the Aum

ber of new “function values” introduced in the elimination Qu(x,a) = R(x,a) +7Y_ P(x' | x,a)V(x');
process. More precisely, consider the computation of a new x/

function e whose scope iZ. To compute this function, we .)

need to computéDom|Z)]| different values. The cost of the and theBellman operato7™ to be:

algorithm is linear in the overall number of these values, in N

troduced throughout the algorithm. As shown in [6], thistcos T"V(x) = maxQy(x, a).

is exponential in the induced width of the coordination grap)) .))

for the problem. The algorithm gistributedin the sense that The optimal value functiow* is the fixed poind* = 7*V*.

t.h? only. communiqation re_ql_JiregI is betwegn agents that pag any value functio®V, we can define the policy obtained
ticipate in the interior maximizations described aboveerth 5 cting greedily relative t. In other words, at each state,
is no need for a direct exchange of information between othefo (ake the action that maximizes the one-step utility, as-
agents. Thus, the induced tree width has a natural interpretg ming thary represents our long-term utility achieved at
tion in this context; it is the maximum number of agents Whoy, o next state. More precisely, we defiGeeedy))(x) =

will need to directly collaborate on the action choice. arg max, Qy (x, a). The greedy policy relative to the optimal

The order in which the variables are eliminated will have anvalue functionV* is the optimal policyr* = GreedyV*). It
important impact on the efficiency of this algorithm. We as-follows immediately from the definition of* and is a ba-
sume that this is determinedpriori and known to all agents. Sic property of MDPs that an agent following maximizes
Itis also possible to devise a simple communication prdtocoits ong term return in an environment. Thus, an agent with
which relaxes the need for a fixed elimination order. In thisknowledge ofQ,- can maximize with respect Q- (as in
case, the maximization is performed asynchronously: whiléSection 2) and achieve optimal long-term return.

an agent is performing its local maximization, its neighbor gince.,. is (exponentially) difficult to compute exactly for
are “locked”; any agent which is “unlocked” and which has Qy- IS (exp) b y

i . e large MDPs, we use approximation to find local utiliti€s;,
“unlocked” neighbors can start its local maximization step g bb &

. : : . uch thatzj Q; is a good approximation of)y-. Recall
;Eﬁ]soﬁgohc?ﬁg It?egeu\?vrig?r:ecﬁ‘dtrt]% ?Zglﬁ;ﬁéhjiﬁ?&gﬂtggﬂg’:?sﬂﬁm we are mterested in computlnglloca_l utilitigs for each .
may be larger than that of an ordering which is carefully Cho_{;\gent that will represent an approximation to the gl_obal ut
sena priori ity Q. In [8]_, we presented an algorithm for computing such

' value functions for the case where the model is known and
At this point, we have shown that if the global utility furmti ~ represented as a factored MDP. In this paper, we consider the
Q is approximated by the sum of local utiliti€®;, then itis case of unknown reward and transition models, i.e., the rein
possible to use the coordination graph to compute the maxiorcement learning case. In the next three sections, we will
mizing joint action efficiently. In the remainder of this map present alternative, and complementary, approaches éor co

we will show how we can learn these local utilities efficigntl dinating agents in order to learn the lo€J-functions.

4. Coordination Structurein Q-learning the difference between the curre@-value and the dis-
Q-learning is a standard approach to solving an MDP througﬁOUﬂtEd value of the next state. We have just shown that it
reinforcement learning. IrQ-learning the agent directly is possible to apply the coordination graph from Sec. 2 to
learns the values of state-action pairs from observatidns ccomputel/'(x’). The other unknown terms in Eq. (3) are the
quadruples of the form (state, action, reward, next-stateyewardr and the previoug-valueQ(x, a, w). The reward is
which we will henceforth refer to agx,a,r,x’). For each observed and th@-value is computed by a simple message
such quadrupleQ-learning performs the following update: ~ passing scheme similar to the one in the coordination graph
by fixing the action of every agent to the one assigneal in
Q(Xa a) — Q(Xv CL) + Oé[’l’ + ’YV(X/) - Q(Xv CL)],

. u . , . Therefore, after the coordination step, each agent wilehav
whe/rea, is the Ielarnlng rate,” or step size parameter and,cess to the value ak(x,a,r,x',w). At this point, the
V(x') = maz,Q(x', a). With a suitable decay schedule for weight update equation is entirely local:
the learning rate, a policy that ensures that every stdterac
pair is experienced infinitely often and a representatian fo Wi <+ Q(x,a, w) +a A(x,a,7,x', W)V, Qi(x;, a;, wi),
Q(x,a) which can assign an independent value to every staterhe reason is simply that the gradient decomposes linearly:
action pair(Q-learning will converge to estimates fQX(x, @) once an action is selected, there are no cross-terms ingplvi
which reflect the expected, discounted value of taking actio gny w, andw,. The locality of the weight updates in this
a in statex and proceeding optimally thereafter. formulation of Q-learning make it very attractive for a dis-

In practice the formal convergence requirements € tributed imple_mentation. Each agent can maintgin an dntire
learning almost never hold because the state space is o larlocal Q-function and does need to know anything about the
to permit an independent representation of the value offeverstructure of the neighboring agent@-functions. Different
state. Typically, a parametric function approximator sash 29dents can even use different architectures, e.g., onetmigh
a neural network is used to represent€héunction for each ~ US€ @ neural network and another might use a CMAC. The
action. The following gradient-based update scheme is:use®Nly requirement s that the joirig-function be expressed as

a sum of the these individué}-functions.
W — Q(X,CL,W)-'—O[[T—F’YV(X/)—Q(X,CL,W)]VMQ(X,CL,W),
1 The o_nly negative aspect of th@—learmng formulauon is
wherew is a weight vector for our function approximation that, like almost all forms of)-learning with function ap-
architecture and, again, the valiéx’) of the next state is: ~ Proximation, itis difficult to provide any kind of formal cen

vergence guarantees.
V(x') = maz,Q(x',a, w). 2
5. Multiagent L SPI

TheQ-learning update mechanism is completely generic andl east Squares policy iteration (LSPI) [11] is a new reinéarc
requires only that the approximation architecture is déffe ment learning method that performs policy iteration by gsin
tiable. We are free to choose an architecture that is coblpati 3 stored corpus of samples instead of a model. LSPI repre-
with our action selection mechanism. Therefore, we can assents)-functions using as a linear combination of basis func-
sume that every agent maintains a lo@gHunction defined tjons. Given a policyr;, LSPI computes &-function, Q™

over some subsed; of the state variables (which can be the (in the space spanned by the basis functions) which is a fixed
entire statex) and a subsed; of the action variablea (its point for r; with respect to the samples. The n&¥: then

own actions and possibly actions of some other agents). Thenpjicitly defines policyr; , and the process is repeated un-

the joint action vectoa: .) .))
We briefly review the mathematical operations required for

- LSPI. We assume that o@}-functions will be approximated
Qlx,a,w) = Z; Q;(xj, a5, wj). by a linear combination of basis functions (features),
J:
k
The@;’s can be maintained locally by each agent as an arbi- ™ _ _ _ T
trary, differentiable function of a set of local weights. Q¢ a,w) ; di(x, a)wi = $(x, a)Tw,

There are some somewhat subtle consequences of this repfosr convenience we express our basis in matrix form:
sentation. The firstis that determinib@x’) in Eq. (2) seems T

intractable, because it requires a maximization over an-exp $(x1,01)

nentially large action space. Fortunately, tgeunction is

factored as a linear combination of lo€@}-functions, where ® = o(x,)T

each(); depends on a subsaj of a. Thus, we can apply T

the coordination graph procedure from Sec. 2 to obtain the $(x1x|,a)a))

maximum valué/ (x’) at any given state’. where® is (|X]|| 4] x k). If we knew the transition matrix,

Once we have defined the loag}-functions, we must com- ©. for the current policy and knew the reward function we
could, in principle, compute the fixed point by defining and

pute the weight update in Eq. (1). Each agent must know solving the systemw™ — b, whereA — ®T(® — P ®)
Ax,a,r,x' ,w)=[r+7V(x') - Q(x,a,w)], (3) andb=®TR.

In reinforcement learning, we sample experiences from thetatex’ under joint actiora the coordination graph is used to
environment in place ok andP™. Given a set of samples, determine the optimal joint actiail for x’. The transition is
D = {sa;,a4;,8y,,7a,)| i = 1,2,..., L}, we can construct added to theA matrix as a transition frorix, a) to (x’, a’).

approximate versions @b, P™®, andR as follows : .)
An advantage of the LSPI approach to collaborative action

D(5d,,aq,)T o(sly,,m (s,))T selection is that it computes a value function for each ssicce
. ... sive policy which has a coherent interpretation as a projec-
=1 ¢(sa,aq)7 Prd— o(s)y (S&‘))T tion into the linear space spanned by the individual agent’s
o R local Q-functions. Thus, there is reason to believe that if this
B(sa,,aq,)T o(s), | (S/))T space is expressive enough to approximate closely the true
Tdy dr? dz value function, coordinated action selection will makeact
~ ‘ choices similar to those of the greedy policy with respect to
R=1| ra the true value function.
TdL A disadvantage of LSPI is that it is not currently amenable to

e~ PO a distributed implementation during the learning phase1-Co
Then, we can construé&t = ® (® —yP7®)andb =® R. struction of theA matrix requires knowledge of the evalua-
Approximations derived from different sets of samples can b tion of each agent’s basis functions for every state in the co
combined additively and this leads to an incremental updatgus, not only for every action that is actually taken, but for
rule for A andb. Assume that initiallyA = 0 andb = 0. For ~ every action recommended by every policy considered.
a fixed policy, a new sampléx, a, r,x’) contributes to the S])
approximation according to the following update equations 6. Coordination in Direct Policy Search
Value function based reinforcement learning methods have

A — A+ ¢(x,a) (qb(x, a) —yo(x, W(X/)))T recently come under some criticism as being unstable and
PN difficult to use in practice. A function approximation archi
b—b+¢(x,a)r. tecture that is not well-suited to the problem can diverge or

R o~ -)) produce poor results with little meaningful feedback ttgat i
The solutionw™ = A~'b approximates the true solutiasT™. directly useful for modifying the function approximator to

We note that this approach is very similar to the LSTD aIgo-aChieVe better performance.

rithm [5]. Unlike LSTD, which defines a system of equations | SPI was designed to address some of the concerns@vith
relating state values to state values, LSPI is defined Qver |earning based value function approximation. It is more sta
values. Each iteration of LSPI yields tiig-values for the ble thanQ-learning and is more transparent, thus easier to
current policy. Thus, each solution implicitly defines thexth debug. However, LSP! is still an approximate policy itevati
policy for policy iteration. procedure and can be quite sensitive to small errors in the es
timated Q-values for policies [4]. In practice, LSPI can to

An important feature of LSPI is that it is able to reuse the ; .
gke large, coarse steps in policy space.

same set of samples even as the policy changes. For exampﬁ
suppose the corpus contains a transition from stattestate The shortcomings of value function based methods have
x’ under actior; andr;(x’) = aq. Thisis entered into thA led to a surge of interest in direct policy search methods
matrix as if a transition were made fram, a,) to (x/, az). If [12, 1, 14, 9]. These methods use gradient ascent to search
mi+1(x") changesthe action far fromas toas, thenthe next a space of parameterized stochastic policies. As with all gr
iteration of LSPI enters a transition frofw,a,) to (x’,a3) dient methods, local optima can be problematic. Defining

into the A matrix. The sample can be reused because th@ relatively smooth but expressive policy space and finding

dynamics for state under actioru; have not changed. reasonable starting points within this space are all ingpurt
o _ _) elements of any successful application of gradient ascent.
The application of collaborative action selection to thePLS

framework is surprisingly straightforward. We first notath Ve now show how to seed a gradient ascent procedure with
any set ofQ-functions produced by LSPI will, by construc- @ multiagent policy generated lgy-learning or LSPI as de-
tion, be of the right form for collaborative action selectio Scribed above. To guarantee that the gradient exists,ypolic
Each agent is assigned a local set of basis functions whicBearch methods require stochastic policies. Our first sk i
define its localp-function. These basis functions can be de-to convert the deterministic policy implied by our valge
fined over the agent’s own actions as well as the actions dtnctions into a stochastic, poligy(alx), i.e., a distribution

a small number of other agents. As with ordinary LSPI, theOVer actions given the state. A natural way to do this, which
current policyr; is defined implicitly by the current set of @lso turns out to be compatible with most policy search meth-
Q-functions,Q™ . However, in the multiagent case, we can- 0ds, is to create a softmax over tevalues:
not enumerate each possible action to determine the pdlicy a eT 25 Qi(x.2)
some given state because this set of actions is exponential i pla|x) = TS oneh) (4)

the number of agents. Fortunately, we can again exploit the D €T 2k GRS

structure of the coordination graph to determine the odtimawhereT’ is a temperature parameter indicating how stochastic
actions relative taQ™: for each transition from state to we want to make the initial policy. For simplicity of presen-

tation, we will usel’ = 1. To be able to apply policy search The general algorithm has the same message passing topol-
methods for such policy representation, we must present twogy as the original action selection mechanism. The only
additional steps. The first is a method of efficiently gener-difference is the content of the messages: the forward pass
ating samples from our stochastic policy and the second is messages are probability potentials and the backward pass
method of efficiently differentiating our stochastic pglior ~ messages are used to compute conditional distributions fro
gradient ascent purposes. which actions are sampled.

Sampling from our stochastic policy may appear problematiclhe next key operation is the computation of the gradient of
because of the size of the joint action space. For samplingur stochastic policy function, a key operation irrRain-
purposes, we can ignore the denominator, since it is the sanmRCE style [15] policy search algorithrh First, recall that

for all actions, and sample from the numerator directly aghe global@-function is the sum of the loc#);-functions:

an unnormalized potential function. To do this sampling we

again use variable elimination on a coordination graph with g

exactly the same structure as the one in Sec. 2. Condition- Qx,a,w) = Z Qj(x,a,wj).

ing on the current state is again easy: each agent needs to J=1

observe only the variables iflbservable[Q ;] and instantiate
(); appropriately. At this point, we need to generate a sampl
from @) ;-functions that depend only on the action choice. o2 Qi(x,a,w;)

(g)ur stochastic policy representation now becomes:

Following our earlier example, our task is now to sample from plalx) = 3 e2; Qi (x,b,w;)’

the potential corresponding to the numeratorugf | x). b

Suppose, for example, that the individual age@tfunctions We can now compute the gradient of the log policy:
have the following form:

Q = Q1(a1,a2) + Q2(az, as) + Q3(a1,a3) + Qu(asz, as). Vi, Inp(afx) =

and we wish to sample from the potential function for - V. In 25 @02 ws))

eQ1(a1,a2) ,Q2(a2,a4) ,Q3(a1,a3) ,Qa(az,as) Wi Zb e Qixbwy) |7
To sample actions one at a time, we will follow a strategy — Vw, In e2j Qi(xa,w;) _ Ve, mZer Q;(xb,w;).
of marginalizing out actions until we are left with a poteti 5

over a single action. We then sample from this potential and

- >V 2 Qj(x.b,w;)
propagate the results backwards to sample actions forthere — v _ Z FURPRID »8
J

Zb’ eE]‘ Qj(x,b',w;)

maining agents. Suppose we begin by eliminatingAgent ’
4 can summarize it's impact on the rest of the distribution S0, (xbow))
by combining its potential function with that of agent 2 and _ _ _ Dop €5 TPV Q4 (x, b, wy)
o L = Vu,Qj(x,a,w;)— ——
defining a new potential: i S e Qi (x,b",w;)

fa(Az, A3) = Z e@2(02,04) (Qua(as,04)

We note that both the numerator and the denominator in
the summation can be determined by a variable elimina-

A
The problem now reduces to sampling from , i ; . N
tion procedure similar to the stochastic action selectimi p

eQ1(01:02)¢@3(01,99) (a5), cedure. Specifically, the denominator can be written as
having one fewer agent. Next, agent 3 communicates its cons™, 11, Qi w;) The variable elimination procedure for
tribution giving: computing this sum of products is exactly the same as the for-
fa(ar,az) = Z eQ3(“1’a3)f4(a2, as). ward pass used for sampling from the policy. We can write the
as numerator a$_,, (Hj e@ibebwi)) U Q;(x,b,w;). The
Agent 2 now communicates its contribution, giving procedure for computing this value is exactly the same as the
folar) = Zte(al,ag)fg(al’a2)7 denominator, except that one extra potential is introduced

namelyVy, Q;(x, b, w;).

as
and agent 1 can now sample actions from the potential hese action selection and gradient computation mechanism
P(a1) ~ fa(ay). _prowde the basic funct!ons required for e_ssentlally anly po

) o icy search method. As in the case@flearning, a global er-
We can now sample actions for the remaining agents by reqy signal must be shared by the entire set of agents. Apart
versing the direction of the messages and sampling from thgom this, the gradient computations and stochastic policy
distribution for each agent, conditioned on the choicefef t sampling procedure involve a message passing scheme with
previous agents. For example, when agent 2 is informed ofe same topology as the action selection mechanism. We
the action selected by agent 1, agent 2 can sample actiopgjieve that these methods can be incorporated into any of a
from the distribution: number of policy search methods to fine tune a policy derived
P P(ag,a1) eR1(@1:92) fo(a) ay) by Q-learning with lineaQ-functions or by LSPI.
(az]a1) = P(ay) fa(ay) ' *Most policy search algorithms are of this style.

7. Experimental Results a problem with15 agents has ove205 trillion states and32
We validated our coordinated RL approach on two domainsthousand possible actions, but required aitlg0 samples.
the multiagent SysAdmin [8] and the power grid [13]. In the
SysAdmin problem, there is a network of computers; each i
associated with an administrator agent. Each machine ru
processes and receives a reward if a process terminates. P
cesses take longer to terminate on faulty machines and de
machines can send bad packets to neighbors, causing them&
become faulty and eventually die. Each machine is assoc
ated with an agend;, Wh'ch' at each step, deC|des_ whether 5yached to them to meet the demand of the customers. If
or not to reboot the machine. Rebooting a machine makeg,e yemand of a particular customer is not met, then the grid
its status good with probability 1, but running processes ar,q -5 3 cost equal to the demand minus the supply. The to-
lost. These agents have to coordinate their actions so as {9 .ost is the sum of all costs for all customers. At every
maximize the total reward for the system, or in other wordSyime step, each distributor decides whethedéaible halve
maximize the total number of successfully completed jobs in, - aintain (3 possible actions) the value of the resistance
the system. Thl_ls’ agents must (_:oordm_ate to satisfy tWo, PGy each of jts links (6 possible resistance levels). If twe di
tentially conflicting, goals: running their own processes t iy 1ors are linked, they share the same resistance aird the

termination and not sending bad packets to neighboring mas o choices may conflict. In such case, a simple conflict
chines, as they can eventually cause the failure of theeentir

; resolution schema is applied (see [13] for details).
network. For a network ofi machines, the number of states
in this MDP is9™ (3 status levels< 3 load levels per com- Schneider et al. [13] applied a set of algorithms, includdiy)
puter) and the joint action space contatfisactions. and DFV, to this problem. In their set up, each distributor is
an agent that observes a set of state variables directhedela
%o itself and all its neighbors, and makes a local decisiaon fo
its links. Therefore, the complexity of each agent depemds o
the number of its neighbors. We applied our multiagent LSPI
%\Igorithm to the same problem with one agent for each end-
oint of a link on a distributor node. Thus, we end up with
ore, but simpler and identical, agents. Two simple types

We also tested our multiagent LSPI approach on the power
rid domain of Schneider et al. [13]. Here, the grid is com-
sed of a set of nodes. Each node is eithoaider(a fixed
Itage source), austomer(with a desired voltage) or @is-
butor (where control takes place). Links between nodes are
sociated with resistances and no customer is conneeted di
Fectly to a provider. The distributors must set the resistan

We implemented our multiagent LSPI algorithm and tested i
on a variety of network topologies, as defined in [7]. Fig. 2

also plot the results reported by Guestrin et al. [8] for ¢hre
other methods: their LP-based (LP) approach; and Schneid

et al’s [13] Distributed Reward (DR) and Distributed Value of state-action basis functions were used>@bdMM, which

Function (DVF) algorithms. We also plot the “utopic max- ¢ indicators for each assignment of the state of the resis-

imum value”, a loose upper bound on the value of the optiyy 4 the action choice, giving a total @findicator bases
mal policy [8]. Note, the LP-based approach is a plannin

; ! Yor each agent; and Al CoMmMm, which has indicator bases
algorithm, i.e., uses full knowledge of the (factored) MDP ¢, oach assignment of the resistance level, action of agent
model. On the other hand, coordinated RL, DR and DVF arg,n action of agentfor each paifi, j) of directly connected
all model-free reinforcement learning approaches. agents, giving a total 027 indicator bases for each pair of
In our experiments, we created two sets of multiagent LSPagents. Thus, our agents observe a much smaller part of the
basis functions corresponding to the backprojections ef thstate space than those of Schneider et al. [13]. The average
“single” or “pair” indicator functions from [8]. Fom ma- COsts incured by the resulting policies, along with resfats
chines, we found that abod0n samples are sufficient for @ uniformly random policy, are shown in Table 1. Multia-
multiagent LSPI to learn a good policy. Samples were col-gent LSPI used only0, 000 training samples for each run
lected by starting at the initial state (with all working ma- (&s opposed t60, 000 used in [13]) and the resulting poli-
chines) and following a purely random policy. To avoid bi- cies were tested fo60, 000 steps (same as in [13]). The
asing our samples too heavily by the stationary distriutio multiagent LSPI results with thedComMMm basis set are sub-
of the random policy, each episode was truncatedateps. optimal. With some exceptions, most policies were close to
Thus, samples were collected frotfin episodes each one random and the resulting average cost was high (with large
15 steps long. The resulting policies were evaluated by avconfidence intervals). However, the very simple pairwise co
eraging performance ovén 100-step long runs. The entire ordination strategy obtained from theIRComMM basis set
experiment was repeatdd times with different sample sets Yielded near-optimal policies. These agents incur a lower a
and the results were averaged. erage cost than the DR and DVF agents for all grids using less

) o) training data and observing a smaller part of the state space
The results in all cases clearly indicate that multiager®ILS

learns very good policies comparable to the LP approach :

using the same basis functions, ithout any use of the - Conclusionsand Future Work

model. Note that these policies are near-optimal, as ttadir v We proposed a new approach to reinforcement learr@ug:
ues are very close to the upper bound on the value of the optrdinated RL In this approach, agents make coordinated de-
mal policy. Itis worth noting that the number of samples useccisions and share information to achieve a principled liearn

in each case grows linearly in the number of agents, whereairategy. Our method successfully incorporates the caeper
the joint state-action space grows exponentially. For getam tive action selection mechanism derived in [8] into the tein

>

PO S

Estimated Average Reward per Agent (20x10 runs)

L

Distr VF

L
‘\:H vé
7

H/“ y r

Estimated Average Reward per Agent (20x10 runs)

Estimated Average Reward per Agent (20x10 runs)
T S S Y

>

3

Distr VE

Figure 2.SysAdmin problem, discounted reward per agent, for topefga) star with “single” basis; (b star with “pair” bas(s) ring of
rings with “single” basis. LP, DR and DRF results as repoitej@].

Multiagent LSPI

Grid (see [13]) Random DR DVF NOCOMM PAIR COMM
A 29.70+0.13 | 41.00£0.30 | 17.17+5.87 28.19+ 8.30 0.08+ 0.01
B 52.00+ 0.24 0.65+ 0.57 0.32+ 0.07 37.08+ 21.85 0.130.02
C 96.80+ 0.31 | 90.00+1.78 | 44.00£8.75 | 83.32% 16.57 40.86+ 1.14
D 4414+ 0.37 0.32+ 0.19 0.17+ 0.02 28.45+ 17.83 0.11+ 0.02

Table 1.Power grid problem: average cost over 10 runs of 60000 step@5o confidence intervals. DR and DVF results as reported in [13].

forcement learning framework to allow for structured com- Acknowledgments We are grateful to D. Koller and C. Shel-

munication between agents, each of which has only partigbn for useful discussions and W. Wong and J. Schneider far th

access to the state description. We believe the coordmatigPower grid simulator. This work was supported by the DoD MURI

mechanism can be applied to almost any reinforcement lear@dministered by the ONR, Grant N00014-00-1-0637, and Aic&o

ing method. In this paper we applied the Coordinated RL\fv%nstrglcsto':;?gggft%%-%Siggie%glﬁgﬁr?o-lr:\rgﬁpf)rol\g/lralr_na{ggﬁc?;kﬁtwa

apprqach tOQ"ee.‘m'”g' LSPI, and pol_lcy search. .Wm' partially supported by the Lilian Boudouri Foundation.

learning and policy search, the learning mechanism can be

distributed. Agents communicate reinforcement signals, u References

ity values, and conditional policies. In LSPI some central- [1] J. Baxter and P.Bartlett. Reinforcement learning in FIOMVS

ized coordination is required to compute the projectiornef t via direct gradient ascent. ICML, 2000.

value function. The resulting policies can always be exegtut [2] D. Bernstein, S. Zilberstein, and N. Immerman. The cerpl

in a distributed manner. A feature of our method is that the ity of decentralized control of Markov decision processks.

structure of the communication between agents is not fixed ~ UAI-00, 2000.

a priori, but derived directly from the value function or pol [3] U. Bertele and F. BrioschiNonserial Dynamic Programming

icy architecture. In our view, an algorithm such as LSPI can ~ Academic Press, New York, 1972.

provide an offline estimate of th@-functions. Subsequently, [4] D. Bertsekas and J. Tsitsiklideuro-Dynamic Programming

Q-learning or direct policy search can be applied onlinetore ~ Athena Scientific, Belmont, Massachusetts, 1996.

fine this estimate. By using our Coordinated RL method, we [5] S. Bradtke and A. Barto. Linear least-squares algorittior

can smoothly shift between these two phases. temporal difference learningdach. Learn, 2(1):33-58, 1996.

[6] R. Dechter. Bucket elimination: A unifying framework rfo
reasoningArtificial Intelligence 113(1-2):41-85, 1999.

[7] C. Guestrin, D. Koller, and R. Parr. Max-norm projecsdior
factored MDPs. INJCAI-01, 2001.

[8] C. Guestrin, D. Koller, and R. Parr. Multiagent planniwgh
factored MDPs. IlNIPS-14 2001.

9] V. Konda and J. Tsitsiklis. Actor-critic algorithms. MIPS-12

2000.
] M. G. Lagoudakis and R. Parr. Model-Free Least-Squpoés
icy iteration. Tech. Rep. CS-2001-05, Duke University, 200

Our method can be applied to maximize long term return for
any MDP. As with all value function approximation meth-
ods, there is a tradeoff between accuracy and complexity.
Our approach will be most advantageous when the €ue
function can be approximated reasonably by a linear combi-
nation of local@-functions defined over subsets of the ac-
tions. In our experiments with this type of value function,
we reliably learned policies that were comparable to thé besq
policies achieved by other methods and close to the theoret-
ical optimal achievable in our test domains. The amount 0f11) M. Lagoudakis and R. Parr. Model free least squarescpoli
data required scaled linearly with the number of state and ac ~ jteration. InNIPS-14 2001.

tion variables even though the state and action spaces We{fQ] A. Ng and M. Jordan. PEGASUS: A policy search method for
growing exponentially. Furthermore, we demonstrated tha large MDPs and POMDPs. IdAI-00, 2000.

coordination can significantly improve the quality of theipo 13} 3. Schneider, w. Wong, A. Moore, and M. Riedmiller. Dis-
cies obtained. tributed value functions. IfCML, 1999.

Our experiments involved discrete state spaces and were chid4] R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Byli
sen primarily to compare learning performance with previ- 9radient methods for reinforcement learning with funciagn
ous closed-form approximation methods. Our basis funstion proxm.anon. In_NIPS-lz 2_0(_)0') _ _
match closely the basis functions used in previous work. 12l R Wiliams. Simple statistical gradient-followindgarithms
future work, we plan to use continuous variables and basis gczg)f:;;;_ceztzggnis;g;anforcement learning. Mach. Learn,
functions. While our methods require discrete actionsy the ' ’ :

P - . . [16] D. Wolpert, K. Wheller, and K. Tumer. General principlef
generalize immediately to continuous state variables. learning-based multi-agent systems Agents'99 1999.

