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SUMMARY. The aqueous solubility of drugs/drug candidates (Sw) is one of the crucial physicochemical pa-
rameters in drug discovery studies and any computational method to predict the solubility is highly in de-
mand in the pharmaceutical industry. This work is aimed to compare the accuracy of a recently proposed
model (logSw=-1.120E-0.599ClogP) composed of two computational descriptors; excess molar refraction
(E) and calculated partition coefficient of octanol to water (ClogP) with the accuracies of the Hansch mod-
el, general solubility equation and linear solvation energy relationship model. These results showed that
the prediction capability of the proposed model is better than those of three famous models and the E is a
crucial descriptor for aqueous solubility prediction of drugs and drug-like molecules.

INTRODUCTION
Aqueous solubility of drugs and drug-like

molecules is one of the important and crucial
parameters in drug discovery investigations.
Measurement of drugs solubility is a time-con-
suming process and an in silico method for pre-
dicting the aqueous solubility of drugs and drug
like molecules could be an appropriate alterna-
tive method providing a valuable tool to speed
up the process of drug discovery and develop-
ment 1.

The partition coefficient of octanol to water
(logP) is an important descriptor for solubility
prediction where some models are based on
logP. For the first time, Hansch et al. proposed a
linear relationship between aqueous solubility
and logP 2 (Eq. [1]):

log Sw = Alog P + B [1]

where Sw is the molar aqueous solubility of a
drug, A and B are the model constants. 

The logP can be measured using experimen-
tal methods such as HPLC. However, it is be-
lieved that measuring the aqueous solubility is
easier than logP, and therefore we prefer to use
the calculated logP values which could be calcu-
lated by some computational methods 3.

The general solubility equation (GSE) of
Yalkowsky consisting of two descriptors; i.e.
melting point (mp expressed in °C) and logP.
GSE is the most common method in the phar-
maceutical industry 4 (Eq. [2]):

log Sw = 0.5 – 0.01 (mp – 25) [2]

in which the term (mp – 25) is set to zero, if the
drug’s mp is less than 25 °C.

The linear solvation energy relationship
model (LSER) is another model developed by
Abraham based on solvation properties and
composed of five solute properties and its
lastest version is 5 (Eq. [3]):
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in which E is excess molar refraction of the
compound which models dispersion force inter-
action due to the polarizability of pi- and n-elec-
trons, S is dipolarity/polarizability representing
solute-solvent interactions between bond
dipoles induced dipoles, A and B are hydrogen
bond acidity and basicity, respectively, which
these later three descriptors (S, A and B) deter-
mined from solubility data of a compound in
water and different organic solvents, V is one
percent of the McGowan volume and simply
can be calculated using a group contribution
method  6-9. It should be noted that these de-
scriptors could also be calculated using Pharma-
Algorithms software.

There are many mathematical methods and
commercial software for aqueous solubility pre-
diction of drugs in the literature 1,3,10-12. The
Hansch model as the first and simplest one, the
GSE and LSER approaches as the golden models
which were used more frequently for predicting
aqueous solubility of drugs, however, the pre-
diction error of these models are relatively high
1. To provide a simple in silico prediction
method, different combinations of the computed
parameters were evaluated and the best devel-
oped model was (Eq. [4]):

log Sw = – 1.120E – 0.599C logP [4]

which is cross-validated using various combina-
tions of train/test data sets 13. A prediction data
set composed of aqueous solubility of 75 phar-
maceutically interested compounds was also
proposed for evaluating the prediction capabili-
ty of the computational methods 13. 

Intrinsic solubility is the solubility of neutral
form of ionizable compounds. Intrinsic solubility
for drug and drug-like molecules were deter-
mined in high throughput solubility measure-
ment in drug discovery and development pro-
cesses 14.

An experimental data set composed of 86 in-
trinsic aqueous solubility of drugs was reported
by Box and Comer and data fitted to the Hansch
equation 15 (Eq. [5]):

log Sw = –1.03 log P– 0.54 [5] 

In another article, Chu & Yalkowsky used
this data set to compare the accuracy of the
Hansch and GSE models after excluding five da-
ta points 16 and concluded that logP with mp

log Sw = 0.395 – 0.955E + 0.320 S + 1.155A + 3.255B – 0.785AB – 3.330V [3]

(that shows the role of the crystalinity of drugs),
are necessary for predicting the solubility of
drugs in water.

In this study, the role of the excess molar re-
fraction in predicting the intrinsic aqueous solu-
bility of a wide variety of organic compounds is
revisited and the accuracy of the proposed mod-
el was compared with those of Hansch,
Yalkowsky and Abraham models.

EXPERIMENTAL
Experimental intrinsic aqueous solubility,

logP and mp data for 81 drugs were extracted
from the study of Box & Comer 15. Abraham sol-
vation descriptors and calculated logP were
computed by Pharma-Algorithm software 17.
Correlations between logarithm of the aqueous
solubility with logP, mp and E were investigated
and also correlation between experimental and
calculated logP was done. Solubilities were cal-
culated by Hansch, GSE, Abraham and the pro-
posed model. Accuracies of the models were
calculated by three different criteria including
the average absolute error (AAE), root mean
square error (RMSE) criteria and mean percent-
age deviation (MPD) which are defined as Eqs.
[6], [7], and [8], respectively:

[6]

[7]

[8]

RESULTS AND DISCUSSION
Table 1 lists the name of drugs, the experi-

mental and predicted aqueous solubilities of
drugs using four mentioned models and the cor-
responding descriptors for each compound.
Table 2 shows the overall deviations of different
models expressed as three error criteria. Similar
patterns were observed for the accuracy criteria
using the prediction data set of this work and
another prediction data set used in a previous
work 13 revealing the robustness of the models.
The AAE and RMSE criteria are in logarithmic
scale and therefore the resulting numbers are
small. These terms were frequently used in the
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1-naphthol 95 2.85 2.65 2.84 0.50 0.45 1.23 1.50 1.14 -1.98 -3.48 -2.85 -2.59 -3.38
2-naphthoic acid 186 3.28 3.06 3.29 0.57 0.50 1.40 1.47 1.30 -3.78 -3.92 -4.17 -2.83 -3.62
4-hydroxybenzoic acid 215 1.58 1.56 1.40 1.00 0.72 1.29 0.98 0.99 -1.45 -2.17 -2.96 -0.49 -1.94
4-iodophenol 94 2.91 2.89 2.92 0.67 0.40 1.16 1.42 1.03 -1.72 -3.54 -3.08 -2.17 -3.34
alprenolol 58 3.10 2.65 2.94 0.29 1.36 1.12 1.18 2.16 -2.63 -3.73 -2.48 -3.11 -3.08
amantadine 180 2.41 2.00 2.21 0.21 0.64 0.68 0.84 1.29 -1.86 -3.02 -3.05 -2.27 -2.26
amitriptyline 25 5.04 4.85 5.40 0.21 0.64 0.68 0.84 1.29 -4.39 -5.73 -4.35 -2.27 -4.18
amodiaquin 208 4.20 4.51 3.65 0.63 1.52 2.32 2.70 2.74 -5.94 -4.87 -5.84 -5.63 -5.21
astemizole 149 5.70 6.09 6.25 0.13 1.64 2.70 3.10 3.56 -5.93 -6.41 -6.83 -8.22 -7.22
atenolol 147 0.22 -0.11 1.81 0.78 1.85 1.97 1.48 2.18 -1.29 -0.77 -0.61 -1.85 -2.74
bendroflumethiazide 222 1.95 1.69 1.96 1.01 1.84 2.89 2.28 2.55 -4.33 -2.55 -3.16 -3.66 -3.73
benzocaine 92 1.89 1.92 2.04 0.23 0.76 1.43 0.94 1.31 -2.23 -2.49 -2.09 -1.82 -2.27
benzoic acid 122 1.87 1.88 2.04 0.66 0.38 0.83 0.86 0.93 -1.61 -2.47 -2.35 -1.46 -2.19
benzthiazide 232 1.73 2.13 2.35 0.81 1.84 3.00 3.04 2.74 -4.83 -2.32 -3.70 -4.93 -4.81
carprofen 198 4.29 3.98 3.83 0.88 0.74 1.88 2.29 1.93 -4.71 -4.96 -5.21 -4.72 -4.86
chloroquine <25 4.99 5.05 5.19 0.13 1.29 1.63 1.85 2.63 -3.89 -5.68 -4.55 -5.41 -5.18
chlorpheniramine <25 3.39 3.15 2.55 0.00 1.02 1.49 1.52 2.21 -2.66 -4.03 -2.65 -4.62 -3.23
chlorpromazine <25 5.40 5.80 5.32 0.00 0.99 1.83 2.26 2.41 -5.08 -6.1 -5.30 -5.97 -5.72
chlorprothixene 98 5.48 5.48 5.30 0.00 0.88 1.57 2.21 2.40 -6.30 -6.18 -5.71 -6.35 -5.65
chlorzoxazone 192 2.11 1.87 2.55 0.50 0.72 1.45 1.55 1.05 -2.61 -2.71 -3.04 -1.46 -3.26
ciprofloxacin 256 -1.08 -1.17 -0.70 0.73 1.85 2.50 2.20 2.30 -3.60 0.57 -0.64 -2.78 -2.04
deprenyl <25 2.90 2.52 2.75 0.09 0.71 1.00 1.00 1.72 -2.52 -3.53 -2.02 -3.59 -2.77
desipramine <25 4.21 4.47 4.19 0.13 0.90 1.58 1.80 2.26 -3.44 -4.88 -3.97 -5.36 -4.53
diclofenac 284 4.51 4.32 4.29 0.70 0.67 1.95 1.81 2.03 -5.45 -5.19 -6.41 -4.83 -4.60
diphenhydramine <25 3.44 3.54 3.23 0.00 0.95 1.43 1.36 2.19 -2.93 -4.08 -3.04 -4.64 -3.46
famotidine 164 -0.81 0.26 -0.80 1.21 2.78 2.24 2.69 2.26 -2.66 0.29 -1.15 -1.18 -2.53
flufenamic 134 5.56 4.88 4.48 0.72 0.59 1.36 1.26 1.83 -5.35 -6.27 -5.47 -4.06 -4.09
flumequine 255 1.72 2.73 1.31 0.57 1.16 1.95 1.70 1.79 -3.88 -2.31 -4.53 -2.65 -2.69
fluoxetine <25 4.61 4.57 4.65 0.13 0.78 1.19 1.01 2.24 -3.92 -5.29 -4.07 -5.04 -3.92
flurbiprofen 111 4.16 3.75 3.54 0.57 0.58 1.51 1.50 1.84 -4.11 -4.82 -4.11 -4.39 -3.80
folic acid 250 0.20 -2.17 -0.36 1.95 3.14 3.74 3.24 3.04 -5.31 -0.75 0.42 -3.95 -3.41
furosemide 295 2.56 1.87 2.27 1.25 1.50 2.37 2.07 2.10 -4.23 -3.18 -4.07 -2.97 -3.68
glipizide 209 2.58 2.53 2.63 0.85 2.19 3.71 2.52 3.30 -5.49 -3.2 -3.87 -5.15 -4.40
haloperidol 152 4.30 3.85 3.31 0.31 1.45 2.08 2.00 2.80 -5.47 -4.97 -4.62 -5.44 -4.22
hydrochlorothiazide 274 -0.07 -0.4 -0.38 1.01 1.76 2.77 2.15 1.73 -2.68 -0.47 -1.59 -1.04 -2.18
ibuprofen 76 3.97 3.68 3.44 0.57 0.51 1.01 0.78 1.78 -3.61 -4.63 -3.69 -3.85 -2.93
imipramine <25 4.42 5.04 4.58 0.00 0.95 1.59 1.81 2.40 -4.21 -5.09 -4.54 -5.73 -4.77
lidocaine 69 2.44 1.95 1.66 0.26 1.17 1.50 1.10 2.06 -1.85 -3.05 -1.89 -3.16 -2.23
loperamide 228 4.87 4.68 3.86 0.31 1.88 2.90 2.76 3.77 -7.13 -5.56 -6.21 -7.85 -5.40
maprotiline 93 4.85 4.52 5.10 0.13 0.68 2.67 1.76 2.33 -4.69 -5.54 -4.70 -5.91 -5.03
meclofenamic acid 257 5.90 5.92 5.58 0.65 0.62 1.68 1.87 2.03 -6.86 -6.62 -7.74 -5.14 -5.44
mefenamic acid 231 5.33 4.94 4.35 0.65 0.70 1.47 1.65 1.92 -6.34 -6.03 -6.50 -4.44 -4.45
metoclopramide 147 2.74 2.21 2.27 0.50 1.63 2.31 1.50 2.34 -3.59 -3.36 -2.93 -2.85 -3.04
metoprolol 120 1.95 1.35 1.72 0.29 1.52 1.22 1.10 2.26 -1.21 -2.55 -1.80 -2.86 -2.26
nadolol 130 0.71 0.38 0.54 0.83 1.90 1.56 1.68 2.49 -1.57 -1.27 -0.93 -3.10 -2.21
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naproxen 153 3.24 2.82 3.01 0.57 0.75 1.49 1.54 1.78 -4.14 -3.88 -3.60 -3.77 -3.53
niflumic acid 203 3.88 3.79 3.92 0.72 0.77 1.42 1.33 1.79 -4.47 -4.54 -5.07 -3.49 -3.84
nitrofurantoin 263 -0.54 -0.47 0.31 0.24 1.34 2.03 1.65 1.45 -3.33 0.02 -1.41 -0.98 -2.03
norfloxacin 228 -1.03 -0.99 0.88 0.73 1.84 2.43 1.98 2.27 -2.75 0.52 -0.54 -2.51 -2.74
nortriptyline 58 4.39 4.31 5.02 0.13 0.72 1.30 1.69 2.26 -3.99 -5.06 -4.14 -5.90 -4.90
orphenadrine <25 3.84 3.99 3.64 0.00 0.95 1.38 1.39 2.33 -3.17 -4.5 -3.49 -5.15 -3.74
papaverine 148 2.95 3.77 3.70 0.00 1.47 2.76 2.19 2.59 -4.30 -3.58 -4.50 -4.66 -4.67
paracetamol 170 0.46 0.49 0.23 0.91 0.93 1.66 1.12 1.17 -1.00 -1.01 -1.44 -0.63 -1.39
phenobarbital 174 1.47 1.37 1.40 0.52 1.29 1.81 1.56 1.70 -2.28 -2.05 -2.36 -1.90 -2.59
phenylbutazone 105 3.25 3.38 3.21 0.00 1.63 2.45 2.15 2.43 -4.39 -3.89 -3.68 -3.67 -4.33
phthalic acid 230 0.85 0.73 1.32 1.14 0.77 1.46 0.94 1.15 -1.49 -1.42 -2.28 -0.72 -1.84
pindolol 169 1.83 1.49 2.15 0.60 1.51 1.53 1.70 2.01 -3.79 -2.42 -2.43 -2.53 -3.19
piroxicam 199 1.98 1.89 2.39 0.72 2.12 3.12 2.56 2.25 -4.75 -2.58 -3.13 -2.01 -4.30
pramoxine <25 3.56 4.17 4.39 0.00 1.24 1.38 1.09 2.43 -3.02 -4.21 -3.67 -4.27 -3.85
probenecid 195 3.70 3.37 3.40 0.57 1.29 1.92 1.25 2.16 -4.86 -4.35 -4.57 -3.09 -3.44
procaine 61 2.14 2.54 2.19 0.23 1.27 1.62 1.11 1.98 -1.72 -2.74 -2.40 -2.56 -2.56
prochlorperazine <25 4.88 4.90 4.93 0.00 1.47 2.11 2.63 2.82 -4.87 -5.57 -4.40 -6.05 -5.90
promethazine 60 4.56 4.90 4.23 0.00 1.09 1.72 2.14 2.28 -4.19 -5.24 -4.75 -5.15 -4.93
propranolol 96 3.48 2.75 3.04 0.29 1.36 1.44 1.76 2.15 -3.50 -4.12 -2.96 -3.53 -3.79
pyrimethamine 234 2.69 2.91 2.51 0.45 0.99 2.01 2.26 1.85 -4.10 -3.31 -4.50 -3.87 -4.03
quinacrine 87 5.44 6.71 6.40 0.13 1.56 2.05 2.63 3.20 -4.35 -6.15 -6.83 -7.06 -6.78
quinine 57 3.50 2.79 2.29 0.23 1.81 1.71 2.40 2.55 -2.81 -4.15 -2.61 -4.01 -4.06
sertraline <25 4.30 5.35 4.90 0.13 0.67 1.44 1.83 2.26 -4.84 -4.97 -4.85 -6.17 -4.98
sulfamerazine 236 0.15 0.57 0.33 0.59 1.41 2.52 2.10 1.86 -3.10 -0.69 -2.18 -2.39 -2.55
sulfasalazine 220 3.61 3.83 3.74 1.07 1.57 2.76 2.92 2.70 -6.28 -4.26 -5.28 -5.48 -5.51
sulfathiazole 189 0.07 0.72 0.87 0.59 1.21 2.60 2.06 1.69 -2.70 -0.61 -1.86 -2.30 -2.83
sulindac 183 3.42 3.16 3.67 0.57 1.39 2.72 2.26 2.57 -4.52 -4.06 -4.24 -4.89 -4.73
terfenadine 147 5.42 6.09 5.90 0.63 1.80 2.04 2.55 4.01 -7.74 -6.12 -6.81 -9.05 -6.39
tetracycline 173 -1.40 -0.91 -0.34 1.73 3.27 3.59 3.36 3.10 -3.09 0.90 -0.07 -3.78 -3.56
thymol 52 3.30 3.20 3.15 0.50 0.42 0.78 0.84 1.34 -2.19 -3.94 -2.97 -2.84 -2.83
thyroxine 236 3.21 3.49 2.39 1.03 1.31 2.83 4.14 3.07 -4.26 -3.85 -5.10 -8.49 -6.07
tolmetin 156 2.79 2.21 2.92 0.57 0.97 1.93 1.54 1.98 -4.13 -3.41 -3.02 -3.67 -3.47
tramadol 80 2.65 3.10 2.24 0.31 1.30 1.15 1.23 2.23 -2.24 -3.27 -3.15 -3.58 -2.72
trichlormethiazide 270 0.97 0.85 0.53 1.09 1.78 2.95 2.38 2.12 -3.41 -1.54 -2.80 -2.46 -2.98
verapamil <25 3.98 4.47 4.86 0.00 1.89 3.00 1.76 3.79 -3.97 -4.64 -3.97 -6.78 -4.88
warfarin 161 3.54 0.31 2.33 0.31 1.23 2.28 1.98 2.31 -4.77 -3.75 -4.39 -3.61 -3.61

Table 1. Experimental and predicted solubility of drugs with four different models and the corresponding de-
scriptors for each compound. * mp data were taken from references 15,16.

literature, however, by concerning them as ac-
curacy criteria it is hard to judge on the practical
applicability of a predictive model. The MPD is
an adapted term from relative standard devia-
tion (RSD) which is commonly used to report
the reproducibility and repeatability of of an ex-
perimental procedure. We prefer this criterion
since it could be directly compared with the
RSD values of a repeated experiment by various
research groups and/or by a given research
group in different days. As an example, the
overall mean of the RSD values for a solubility
experiment within a given laboratory is around
4 % and it could be increased between different

Model AAE RMSE MPD (%)

Results of this work

Hansch 1.200 1.533 83358.2
GSE 0.785 1.147 666081.9
Abraham 1.121 1.305 1702.6
The proposed  model 0.743 0.906 605.0

Results of a previous work 13

GSE 0.822 - 6234.9
Abraham 1.179 - 6813.2
The proposed  model 0.670 - 758.4

Table 2. Deviations of four investigated models in this
study.
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Figure 2. Correlation between aqueous intrinsic solubility (logSw) with (A) experimental logP(Elog P) (B) melt-
ing point (mp, °C) and (C) excess molar refraction (E).

Figure 1. Correlation between ElogP and ClogP calcu-
lated by two different software.

laboratories (ranging from 17 % to 988 % (for
details see Table 7 of reference 20). A number of
reasons could be considered for these variations
including: solute purity, insufficient equilibration
time, temperature variations, analytical methods
used for quantification of the dissolved drug,
laboratory techniques, typographical errors,
polymorphism and enantiomeric forms of the
drug 21. If any computational method could pre-
dict the solubility with the MPD of less than 4
%, it means that the method is able to predict
the data perfectly and no further experiments
are required. It should be added that there is no
such a model to predict an important property
of drugs, i.e. aqueous solubility, within an ac-
ceptable error levels and the efforts should be
continued to develop more accurate models.
The results show that AAE, RMSE and MPD of
the proposed model are lower than Hansch,
GSE and Abraham models. There are good cor-
relations between MPD and AAE or RMSE val-
ues of the solubility models as have been
shown in a previous work 22 (see Fig. 5 of refer-
ence 22). 

The numerical values of the descriptors
could affect the prediction capability of a model
and there are possibilities of using experimental
or calculated logP values for the drugs. The re-
sults of numerical analysis showed that there are
good correlations between experimental and
computational logP values. Figure 1 shows the

correlation between experimental logP (ElogP)
with calculated logP (ClogP) computed by
Biobyte Corp 16 and Pharma-Algorithms 17 soft-
ware that were used in GSE and the proposed
model, respectively, in which ClogP calculated
by Biobyte Corp and Pharma-Algorithms show
good correlation with ElogP (R > 0.95). There is
no significant difference between calculated
logSw of the proposed model using ElogP and
ClogP calculated by Biobyte Corp and Pharma-
Algorithms (AAE of 0.762, 0.760 and 0.743, re-
spectively). Computation of ClogP is straightfor-
ward and no experimental efforts are required,
therefore we recommend to use ClogP instead
of ElogP in the predictions. 

Figure 2 represents correlation between
logSw with ClogP (calculated by Pharma-Algo-
rithm software), E and mp. Correlation coeffi-
cient (R) between logSw with ElogP, mp and E
are 0.57, 0.21, and 0.54, respectively. So these
results prove that logP is very critical descriptor
in predicting the aqueous solubility of drugs.
Another useful descriptor is E that is correlated
with logP better than mp. Furthermore, experi-
mental determination of mp with high or low
values is questionable 18 and there is no avail-
able computational method to predict mp with
reasonable prediction error. The E is composed
of two descriptors: the V and molar refraction
(MRx) that are indicators of aqueous solubility
of a compound because these descriptors can
be calculated by atomic fragmental and the
number of bonds in the molecule 13.

Eric et al. showed that uniform experimental
data improve the accuracy of models and updat-
ing existing data sets leads to change accuracy
of the solubility prediction model in the litera-
ture 19. But the AAE of calculated solubility us-
ing trained model by intrinsic solubility data in
this study is 0.727 and calculated solubility using
trained model by apparent solubility in previous
work is 0.743 13. Careful review of the results re-
vealed that the proposed model could be em-
ployed to predict the apparent and/or intrinsic
solubility of drugs.
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CONCLUSION
E is a crucial descriptor for aqueous solubili-

ty prediction, logP is a well-established descrip-
tor employed in most of aqueous solubility pre-
diction methods and their combination as a
multiple linear regression model works perfect-
ly. The accuracy of the proposed QSPR model is
better than three mentioned famous models.

The proposed model could be applied for aque-
ous intrinsic solubility estimation of drugs and
drug-like molecules and provides a useful com-
putational tool for drug discovery and develop-
ment investigations. Its prediction capability is
the most accurate among other models, but it is
not a perfect method and further investigations
are required to provide better prediction tools.
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