

New Algorithms for Nonlinear Generalized Disjunctive

Programming

Sangbum Lee and Ignacio E. Grossmann*

Department of Chemical Engineering, Carnegie Mellon University

Pittsburgh, PA 15213

U.S.A.

October 1999 / March 2000

* To whom all correspondence should be addressed: Phone: 412-268-2230, Fax: 412-268-7139, e-mail: grossmann
@cmu.edu

1

ABSTRACT

Generalized Disjunctive Programming (GDP) has been introduced recently as an alternative

model to MINLP for representing discrete/continuous optimization problems. The basic idea of

GDP consists of representing discrete decisions in the continuous space with disjunctions, and

constraints in the discrete space with logic propositions. In this paper, we describe a new convex

nonlinear relaxation of the nonlinear GDP problem that relies on the use of the convex hull of

each of the disjunctions involving nonlinear inequalities. The proposed nonlinear relaxation is

used to reformulate the GDP problem as a tight MINLP problem, and for deriving a branch and

bound method. Properties of these methods are given, and the relation of this method with the

Logic Based Outer-Approximation method is established. Numerical results are presented for

problems in jobshop scheduling, synthesis of process networks, optimal positioning of new

products and batch process design.

Keywords: Generalized disjunctive programming, branch and bound, mixed-integer nonlinear

programming, nonlinear convex hull.

INTRODUCTION

Mixed Integer Non-Linear Programming (MINLP) models are widely used in

discrete/continuous optimization (Grossmann and Kravanja, 1997). MINLP problems arise, for

instance, in process synthesis (heat exchanger networks and reactor networks), in process design

(optimal positioning of product and feed location in distillation column), in the synthesis of

process networks, and in the design and scheduling of batch and continuous multiproduct plants.

Algorithms for solving MINLP problems include Branch and Bound (BB) (Gupta and

Ravindran, 1985; Borchers and Mitchell, 1994; Stubbs and Mehrotra, 1999; Leyffer, 1999),

Outer-Approximation (OA) (Duran and Grossmann, 1986; Yuan et al., 1988; Fletcher and

Leyffer, 1994), Generalized Benders Decomposition (GBD) (Geoffrion, 1972), Extended Cutting

Plane (ECP) (Westerlund and Pettersson, 1995), LP/NLP based branch and bound (Quesada and

Grossmann, 1992), and branch-and-cut (Stubbs and Mehrotra, 1999). For a detailed review, see

Grossmann and Kravanja (1997).

Generalized Disjunctive Programming (GDP), which can be regarded as a generalization of

disjunctive programming (Balas, 1985), has been introduced as an alternative model to the

MINLP problem that uses disjunctions and logic propositions (Raman and Grossmann, 1994).

2

While the MINLP model is based entirely on algebraic equations and inequalities for

discrete/continuous optimization problem, the GDP model allows a combination of algebraic and

logical equations, which facilitates the representation of discrete decisions. Türkay and

Grossmann (1996) have proposed a logic -based Outer-Approximation algorithm for solving

nonlinear GDP problems for process networks involving two terms in each disjunction. Th is

algorithm is based on the idea of extending the Outer -Approximation algorithm by solving NLP

subproblems in reduced space, and MILP master problems corresponding to the convex hull of

the linearization of the nonlinear inequalities. In addition, several NLP subproblems must be

solved to initialize the master problem in order to cover all the terms in the disjunctions. This

algorithm has been implemented in LOGMIP, a computer code developed by Vecchietti and

Grossmann (1999).

In this paper, we address the solution of GDP problems that involve disjunctions with

multiple terms. We first describe the convex hull of a disjunction involving convex nonlinear

inequalities, which provide the tightest relaxation of the disjunction. The equations describing

the convex hull are used as a basis to develop a convex nonlinear relaxation of the GDP problem.

This NLP relaxation can be used for reformulating it as an MINLP problem, or for developing a

special purpose branch and bound method which will be described in detai l. We examine the

relation of the proposed method with the one Türkay and Grossmann (1996) which can handle

only disjunctions with two terms and is restricted to process networks. We describe in this paper

the basic ideas of the proposed method, and emphas ize its geometrical interpretation. Detailed

proofs can be found in Lee and Grossmann (1999). The proposed methods are applied to small

analytical examples, and to problems dealing with jobshop scheduling, process networks,

optimal positioning of new produ cts, and design of a batch process.

GENERALIZED DISJUNCTIVE PROGRAMMING

Consider the Generalized Disjunctive Programming problem (Raman and Grossmann, 1994),

which is an extension of the work of Balas (1985). In general, the GDP model includes Boolean

variables, disjunctions and logic propositions as shown in problem (P),

3

},{ ,0 ,0
)(

(P) , 0)(

 0)(..

)(min

falsetrueYcx
TrueY

K k

c

xg

Y

Jj

xrts

xfcZ

jkk

jkk

jk

jk

k

Kk
k

∈≥≥
=Ω

∈

=
≤

∈

≤

+=

∨

∑
∈

γ

Here x ∈ Rn is the vector of continuous variables and Yjk are Boolean variables. ck ∈ R1 are

continuous variables and γjk are fixed charges; f: Rn → R1 is the term for continuous variables x in

the objective function and r: Rn → Rq are common constraint sets that hold regardless of the

discrete decisions. f(x) and r(x) are convex functions. A disjunction is composed of an OR

operator (∨) and a number of terms. In e ach term, there are the Boolean variables Yjk, a set of

convex nonlinear inequalities gjk(x), gi
jk: Rn → R1, i∈ Ijk, k ∈ K, where Ijk is an index set of

inequalities, and a cost variable ck. If Yjk is true, then gjk(x) ≤ 0 and ck = γjk are enforced.

Otherwise, the corresponding constraints are ignored. We assume here that each term in the

disjunctions gives rise to a non -empty feasible region. In process synthesis problems, gjk(x) are

heat or mass balance equations, or specifications of the process, and γjk are fixed charges for each

process. Jk is an index set of the terms for each disjunction k, Jk = { j | j = 1,2,...,mk }, k ∈ K.

Finally, Ω (Y) = True correspond to logic propositions in terms of the Boolean variables. The

logic propositions Ω (Y) are expressed in Conjunctive Normal Form (CNF):

(1))()()(
),(),(,...,2,1

 ¬∨∨=Ω

∈∈=
∧ jkQkjjkPkjSs

YYY
ss

where Ps is the set of Boolean variables Yjk which are true, and Qs is the set of Boolean variables

Yjk which are false in clause s, s = 1,2,… ,S. In CNF, every clause that is expressed in terms of the

‘OR’ operator must be true.

In problem (P), the functions f(x), r(x), and gjk(x) are assumed to be convex and bounded.

Also, it is assumed that problem (P) has a non -empty compact feasible region. The GDP problem

(P) can be reformulated as the following MINLP problem (BM) by replacing the Boolean

variables Yjk by binary variables yjk, and using big -M constraints. The logic constraints Ω (Y) are

converted into linear inequalities (Williams, 1985) which leads to the following big -M MINLP;

4

KkJjyx
a Ay

Kky

K kJjyMxg
xrts

xfyZ

kjk

Jj
jk

kjkjkjk

Kk Jj
jkjk

k

k

∈∈∈≥
≤

∈=
∈∈−≤

≤

+=

∑

∑ ∑

∈

∈ ∈

,, }1,0{ ,0

 ,1

(BM) ,,)1()(
 0)(..

)(min γ

In this model, Mjk are the “big-M” parameters that render the inequalities gjk(x) redundant

when yjk = 0. The inequalities Ay ≤ a can be systematically derived from the CNF form of Ω (Y)

as discussed in Raman and Grossmann (1991). Note also that the relaxation of (BM) is obtained

by treating the binary variables as continuous in the range 0 ≤ Yjk ≤ 1.

ILLUSTRATIVE EXAMPLE 1

Consider the following GDP problem with one disjunction,

.3,2,1},,{ ,0,8,0

(2)
3

01)4()2(
1

01)1()4(
2

01)()(

 ..
)2()3(min

21

2
2

2
1

3

2
2

2
1

2

2
2

2
1

1

2
2

2
1

=∈≥≤≤

=
≤−−+−∨

=
≤−−+−∨

=
≤−+

+−+−=

jfalsetrueYcxx

c
xx

Y

c
xx

Y

c
xx

Y

ts
cxxZ

j

There are three terms in the disjunction, and exactly one of them must be true. The feasible

region of (2) is given by three disconnected circles as seen in Figure 1. The global optimal

solution of (2) is Z* = 1.172, Y* = (false,true,false) and x* = (3.293,1.707).

By using 0-1 variables yj, (2) can be reformulated as an MINLP problem (BM) with big -M

constraints:

30 },1,0{,, ,8, 0
1

)1(1)4()2(

(3))1(1)1()4(

)1(1)()(..

32)2()3(min

32121

321

3
2

2
2

1

2
2

2
2

1

1
2

2
2

1

321
2

2
2

1

=∈≤≤
=++

−≤−−+−
−≤−−+−
−≤−+

+++−+−=

Myyyxx
yyy

yMxx

yMxx

yMxxts

yyyxxZ

5

If y1 = 1, then the first inequality constraint is enforced and if y1 = 0, it becomes redundant

assuming that M is a sufficiently large number. If the binary variab les yj are treated as continuous

variables in the MINLP problem (3), then for M = 30 the relaxed MINLP problem of (3) has the

optimal solution Z* = 1.031 and y* = (0.029,0.971,0).

GDP PROBLEM WITH ONE DISJUNCTION

For simplicity, we will first assume that in problem (P) we have only one disjunction, i.e., | K| =1.

Hence, each term j in the disjunction has only one Boolean variable Yj, and the index k can be

removed from (P) leading to (P1),

JjfalsetrueYcx
TrueY

c

xg

Y

xrts
xfcZ

j

j

j

j

Jj

∈∈≥
=Ω

=
≤

≤
+=

∈
∨

},,{,0,
)(

(P1) 0)(

 0)(..
)(min

γ

Each term in the disjunction defines a fea sible region Sj, j ∈ J, where Sj = {(x,c) | c = γj, r(x)

≤ 0, gj(x) ≤ 0}. Note that problem (2) is a particular instance of problem (P1).

In the following sections, we derive a nonlinear relaxation of problem (P1) which is tighter

than the relaxation of t he big-M MINLP problem (BM). We use the proposed NLP relaxation as

a basis for deriving an MINLP reformulation and propose a special purpose branch and bound

method. We then generalize this method to problem (P) which involves multiple disjunctions (| K|

>1).

CONVEX HULL OF NONLINEAR DISJUNCTION

Consider the following disjunction that arises in problem (P1):

0

(4) 0)(

≥

=
≤

∈
∨

x,c

c

xg

Y

j

j

j

Jj
γ

where the functions gj(x) are assumed to be bounded convex functions over x. In addition, x is

6

assumed to be bounded, i.e., 0 ≤ x ≤ U. The disjunction means that exactly one of the Boolean

variables Yj must be true, which in turn means that gj(x) ≤ 0 and c = γj. These constraints are

redundant when Yj is false.

The convex hull of the disjunction in (4) is given by all points th at can be generated from

taking the linear combination of points in the feasible regions Sj, j∈J. Figure 2 illustrates

geometrically the convex hull of the disjunction (x∈S1)∨(x∈S2)∨(x∈S3).

As is shown in Appendix A, the convex hull of (4) is given by the following set of equations:

Jjcx

Jjg

Jj

JjU

cx

j

j
j

jj

j
Jj

j

jj
j

Jj
jj

Jj

j

∈≥
∈≤

∈≤≤=

∈≤≤

==

∑

∑∑

∈

∈∈

 , 0?,,

 , 0)/?(

(5) , 1 0 ,1

 ,?0

 ,?

λλ

λλ

λ

γλ

The equations in (5) define a convex set in the space (x, c, ν, λ). This property follows from

the fact that all equations in (5) are linear, and the last inequality is convex. As proven by Hiriart-

Urruty and Lemaréchal (1993), if g(x) is convex and bounded over the feasible region and λ ≥ 0,

then the function h(ν,λ) = λg(ν/λ) is a bounded convex function when h(0,0) is defined as its

limiting value, 0. Hence the inequalities λg(ν/λ) ≤ 0 are convex (see also Stubbs and Mehrotra,

1999).

The equations in (5) describe the convex relaxation of the disjunction in (4). Note in (5) that x

is expressed as the sum of disaggregated variables νj, and c is expressed as a convex combination

of γj with weight factors λj. The relaxation in (5) provides the tightest relaxation of the

disjunctive feasible region of (4) as it corresponds to its convex hull. Also, if λj → 1, then x → νj

and c → γj. λj = 1 implies that Yj is true and the j-th constraint λjgj(νj/λj) ≤ 0 in (5) i s the same as

the constraint of the j-th term in (4). Hence, the j-th term in the disjunction of (4) is satisfied

when λj equals one in (5) (Yj is true). Finally, notice that if gj(x) is a linear function, (5) reduces

to the equations proposed by Balas (1985).

7

NONLINEAR CONVEX RELAXATION PROBLEM

We define a continuous relaxation of (P1) using as a basis the equations of the convex hull (5).

Since this relaxation problem has no Boolean variables, the continuous variables λj are used

instead, and the logic propositions are represented with the inequalities Aλ ≤ a. The Convex

Relaxation Programming (CRP) problem for one disjunction (| K| = 1) is then given as follows:

Jjx

aA

Jjg

JjU

x

xrts

xfZ

j
j

j
j

jj

Jj
j

jj
j

Jj

j

Jj
jj

L

∈≤≤≥
≤

∈≤

=∑

∈≤≤

∑=

≤

+∑=

∈

∈

∈

 ,10 ,0?,

 ,0)/?(

 1

 ,?0

(CRP) ?

 0)(..

)(min

λ
λ
λλ

λ

λ

λγ

where for implementation the inequality 0)/(≤j
j

jj g λνλ must be reformulated as

0))/(()(≤++ ελνελ j
j

jj g where ε is a small tolerance (typical value 0.0001). Note that in

(CRP), the number of constraints increases by (n+n×m+1), where n is the dimension of vector x.

This is due to the constraints x = Σνj, 0 ≤ νj ≤ λjUj and Σλj = 1. The number of variables

increases by m×(n+1), where m is the number of terms in the disjunction (m = |J|). Problem

(CRP), which can be regarded as an extension from the work of Ceria and Soares (1999) for

disjunctive programming, corresponds to a convex nonlinear programming problem . This

follows from the fact that the logic inequalities are linear and the feasible region of problem

(CRP) is convex. Since the objective function contains the linear summation term and f(x) is

convex, the objective function is convex. Therefore, problem (CRP) is a convex NLP problem.

It also follows that if the problem (GDP) has a bounded optimal solution, then the optimum of

(CRP) is unique and corresponds to its global minimum. Furthermore, the feasible region of

(CRP), FC, is a relaxation of the feasible region of problem (P1), FP. Therefore, since FP ⊆ FC,

and the objective function of (CRP) is also a relaxation of the objective function of (P1), the

solution of (CRP), (ZL)*, yields a lower bound of the optimal solution of problem (P1), Z*, i.e.,

8

(ZL)* ≤ Z*.

The above properties of (CRP) can be exploited to reformulate problem (P1) as an MINLP.

Alternatively we can develop a special branch and bound search procedure as will be shown later

in the paper. It shou ld be noted that in problem (CRP), νj
 are the disaggregated variables of the

vector of continuous variables x, while λj are weights that measure the “closeness” by which

each term of the disjunction is satisfied (x → νj as λj → 1). Generally, solving an op timization

problem with problem (CRP) yields a solution λj with fractional values . However, when one of

the λj becomes 1 and the other weights are zero, problem (CRP) becomes problem (P1) with

fixed Yj = true and all the other Yj′, j′≠ j = false in the di sjunction.

EXAMPLE 1 CONTINUED

If we apply the (CRP) model to the GDP problem (2), the convex NLP relaxation problem is as

follows:

.3,2,1;2,1 ,0

0.0001 ,1,,0 ,8, 0

0]1)4) /(?()2) /(?([) (

0]1)1) /(?()4) /(?([) (

(6) 0]1)) /(?()) /(?)[((

1

.3,2,1;2,1,80

???

??? ..

32)2()3(min

32121

2
3

3
2

2
3

3
13

2
2

2
2

2
2

2
12

2
1

1
2

2
1

1
11

321

3
2

2
2

1
22

3
1

2
1

1
11

321
2

2
2

1

==≥
=≤≤≤≤

≤−−++−++
≤−−++−++

≤−++++
=++

==≤≤
++=
++=

+++−+−=

ji?

xx

ji?

x

xts

xxZ

j
i

j
j

i

L

ελλλ
ελελελ
ελελελ

ελελελ
λλλ

λ

λλλ

To avoid division by zero in the nonlinear constraints, ε is introduced as a small tolerance (ε =

0.0001). The optimal solution of (6) is ZL = 1.154 and xL = (3.195,1.797). Notice that the lower

bound (1.154) is rather tight compared to the optimal solution (1.172). Also, the lower bound of

the relaxed big-M MINLP problem (3) is lower than the lower bound of CRP problem (1.031 vs.

1.154). In fact, the relaxation gap of the CRP problem (6) is 1.54%, while the relaxation gap of

relaxed MINLP problem (3) is 12.0%.

By letting zj = νj/λj from the solution in (6), xL can be expressed as a convex combination of zj

9

with weight λj as shown in Figure 1 (∑=
j

jj zx λ). Two important points are noted. (i) Each zj

lies at the boundary of each feasible region Sj when λj is nonzero. This means that all the relaxed

nonlinear constraints in (6) are active. The objective function value at each zj, f(νj/λj) + γ j, yields

an upper bound to the local solution of that feasible region (see Table 1). (ii) Each λj shows how

close the optimal point xL is to each feasible region Sj (the larger λj is, the closer xL is to Sj). From

this information, a good guess is that the global optimal solution of GDP problem is in Sj which

has the largest λj (see z2 in Figure 1). Therefore, when we apply a branch and bound method to

GDP problem, λj can be used as an indicator showing wh ich Boolean variable should be selected

as a branching variable at the next node in the search tree.

SOLUTION METHODS

Having derived the nonlinear convex relaxation problem (CRP), there are two major solution

approaches one can take. The simplest and mos t direct one is to reformulate (CRP) as the

following MINLP problem (|K| = 1).

Jjx

aA

JjU

Jjg

x

xrts

xfZ

j
j

jj
j

j
j

jj

Jj
j

Jj

j

Jj
jj

∈∈≥
≤

∈≤≤
∈≤++

=∑

∑=

≤

+=

∈

∈

∈
∑

 },1,0{ ,0 ,

 ,0

 ,0))(/()(

 1

(P2)

 0)(..

)(min

λν
λ
λν

ελνελ

λ

ν

λγ

Again, the tolerance ε (e.g. 0.0001) is introduced in the constraints to avoid division by zero,

and an additional inequality in terms of a valid upper bound Uj has been introduced to ensure that

νj = 0 when λj = 0. Lee and Grossmann (1999) proved that the lower bound predicted by the

relaxation of problem (P2) is greater than or equal to the lower bound predicted by the relaxation

of the MINLP counterpart as given by problem (BM).

Problem (P2) can be solved with any standard method for MINLP problem discussed in the

10

introduction section (e.g., Branch and Bound, Outer -Approximation, Generalized Benders

Decomposition, and Extended Cutting Plane). The other alternative is to develop a specific

branch and bound method that exploits more directly the property of the convex hull as will be

discussed in the next section.

A BRANCH AND BOUND ALGORITHM WITH CONVEX RELAXATION

A branch and bound algorithm with the proposed nonlinear convex relaxation in (CRP) is

outlined in this section for the case of only one disjunction (| K| = 1).

First, the CRP problem of the given GDP problem is solved. The branching rule that can be

used is to select the variable λj closest to 1 because this corresponds to the disjunctive term that

is closest to being feasible. By solving the corresponding NLP subproblem, this generally yields

a good upper bound as was shown in the illustrative example 1.

After branching on one term of disjunc tion, we propose to select the convex hull of the

remaining terms of the disjunction j′∈J, j′≠ j, which have not been examined yet. For the case of

one disjunction (|K| =1), this corresponds to the dichotomy:

)(conv j
jj
Jjj SfixorSfixeither ′

≠′
∈′
∪•

This means that either the solution is in the subregion Sj, or else somewhere in the convex hull

of the remaining set of subregions Sj′, j′ ∈ J, j′≠ j. As will be shown later with the results, this

branching rule is generally very effective.

Based on the above idea, the main steps of the proposed branch and bound algorithm for | K| =

1 are as follows (see Figure 3):

Branch and bound algorithm for Generalized Disjunctive Programming, |K| = 1.

Step 0. Initialization

(a) Set Z* = ∞ .

(b) Select ε.

(c) Set T = J.

Step 1. CRP problem

(a) Solve the CRP problem with the convex hull of Sj, j ∈ T.

(b) Obtain the optimal objective value ZL and the optimal point xL.

11

(c) If all λj are 0 or 1, then xL is a feasible solution to the GDP problem (P1). The global optimal

solution is ZL and xL. Set Z* = ZL and x* = xL. Exit.

(d) Otherwise, xL lies outside all Sj (j=1,2,… ,m). Go to step 2.

Step 2. Branch on one term

(a) Select Yj with the largest λj (≠ 0, 1) in the solution of CRP problem.

(b) Set Yj = true and Yj′ = false, j′ ≠ j (Fix λj as 1).

(c) Solve GDP problem (P1) with fixed Yj.

(d) Obtain the optimal objective value ZU and optimal point xU.

(e) Set T = T \ j.

(f) If ZU ≤ Z*, then set Z* = ZU and x* = xU.

Step 3. Check the remaining terms

(a) If T is empty, then exit.

(b) Else if T is not empty, then go to step 4.

Step 4. Branch on the remaining terms

(a) Fix λj as 0 (remove Sj from convex hull).

(b) Solve the CRP problem with the convex hull of remaining feasible regions (Sj′, j′≠ j, j′∈ T).

(c) Obtain the optimal objective value ZL and the optimal point xL.

(d) If ZL ≥ ZU, then exit. The glo bal optimal solution is ZU, xU.

(e) Else if ZL < ZU, then go to step 2.

REMARKS

The above algorithm has obviously finite convergence since the number of terms in the

disjunction is finite. Also, since the nonlinear functions are convex, the subproblems have a

unique optimal solution. Hence, the rigorous validity of the bounds can be guaranteed, with

which the branch and bound method is in turn guaranteed to obtain the global optimum.

Furthermore, given the strength of the relaxation one can also in general exp ect the enumeration

of fewer nodes.

An important point that is worth noting in the proposed branch and bound enumeration is the

case when the proposed branching rule does not yield a true partition. This may arise as follows.

After searching one particular feasible subregion j, the convex hull of the remaining feasible

subregions (Sj′, j′ ≠ j) generally yields an increase to the lower bound. However, if this lower

12

bound is the same as before, there is the need to verify whether partitioning has in fact take n

place. This can be done by the following test. If xL ∉ conv(∪ Sj′, j′≠ j), where xL is the optimal

solution of the parent node, then this is a ‘partitionable set’ (see Figure 4(a)). If xL ∈ conv(∪ Sj′,

j′≠ j), then the set of subregions is a ‘non -partitionable set’ (see Figure 4(b)) because the point xL

remains feasible in the convex hull of the subregion j′ and hence the lower bound remains the

same after branching. This test step can be used in the proposed algorithm to accelerate the

search by avoiding repeated identical lower bounds.

EXAMPLE 1 CONTINUED

Figure 5 shows the corresponding search tree when we apply the proposed branch and bound

algorithm to Example 1. At the root node, the search set is T = {1, 2, 3} and CRP problem (6)

yields a lower bound ZL = 1.154. This optimal point xL lies outside the feasible region of GDP

problem (2) since xL does not satisfy any term in the disjunction (see Figure 1). Hence, this

solution is infeasible for problem (2). Among the weights, λ2 has the largest value a s seen in

Table 1, so we select Y2 and set Y2 as true. At the first node, the GDP problem is solved with

fixed Y = (false,true,false). Only Y2 is set as true and the other Yj′ are set as false. It means that

we fix λ2 as 1 and other λj as 0 in problem (6). Therefore, the feasible region is restricted to S2

only. Solving problem (2) with Y2 = true yields an upper bound ZU = 1.172. Since S2 has been

examined, it is removed from the search set, T = {1,2,3}\{2} = {1,3}. At the second node, we

consider the convex hull of S1 and S3. The CRP problem is then problem (6) without the

constraints and variables for S2. By solving this CRP problem, a lower bound ZL = 3.327 is

obtained. Since this lower bound 3.327 is greater than the upper bound ZU = 1.172, the feasible

solution of S1 and S3 will be greater than ZL = 3.327 > ZU = 1.172. Hence, the global optimal

solution is ZU = 1.172 and the search ends after 3 nodes.

Table 2 shows the comparison among the standard BB, OA, GBD, and ECP algorithms

applied to the big-M MINLP formulation (3), and the reformulated MINLP (PR) in (6). The

standard BB finds the optimal solution in 5 nodes (see Figure 6), and other algorithms show

almost the same number of major iterations in solving both the big -M and the CRP formulations.

However, the convex hull predicts tighter lower bound than the relaxation of the big -M

formulation. Note that OA requires 2 MILP and 2 NLP subproblems to solve (PR) compared

with 3MILP and 3NLP subproblems to solve (BM). GBD solves 3 MILP and 3 NLP

13

subproblems for both formulations. ECP solves 19 and 20 MILPs, respectively.

GENERALIZATION TO MULTIPLE DISJUNCTIONS

For the case of multiple disjunctions (| K| > 1) as in problem (P), the MINLP reformulation of

(P2) can be readily generalized as follows:

Kk Jjx

aA

Kk JjU

Kk Jjg

Kk

Kk x

xrts

xfZ

kjk
jk

kjkjk
jk

kjk
jk

jkjk

Jj
jk

Jj

jk

Kk Jj
jkjk

k

k

k

∈∈∈≥
≤

∈∈≤≤
∈∈≤++

∈=∑

∈∑=

≤

+=

∈

∈

∈ ∈
∑ ∑

 , ,}1,0{ ,0? ,

 , ,?0

 , ,0))/(?()(

 , 1

(PR) , ?

 0)(..

)(min

λ
λ

λ
ελελ

λ

λγ

where the tolerance ε is also introduced in the nonlinear inequalities as in (6). The dimension of

the variables in (PR) increases due to the double indices in νjk and λjk. Similarly, as in the case of

(P2), MINLP methods such as Branch and Bo und, Outer-Approximation, Generalized Benders

Decomposition, and Extended Cutting Plane can be applied to solve problem (PR). Also, the

relaxation of this problem yields stronger lower bounds than the relaxation of problem (BM).

As for the proposed branch and bound, the solution procedure of the GDP problem with a

number of disjunctions, | K| ≥ 1, can be easily generalized (see Lee and Grossmann, 1999). In this

algorithm, we solve the relaxation of problem (PR), which allows λjk to be continuous between 0

and 1. This relaxed problem of (PR) corresponds to the CRP problem of GDP problem (P). The

global optimal solution is the best upper bound after termination of the branch and bound

enumeration.

Relation to logic-based Outer-Approximation Method

Türkay and Grossmann (1996) proposed a Logic-Based Outer-Approximation algorithm when

the GDP problem (P) is applied to process networks. In this case the GDP has the following

form,

14

Kkcx
TrueY

Kk
c

xB

Y

c
xg
Y

xrts

xfcZ

k

k

k

k

kk

k

k

Kk
k

∈≥
=Ω

∈

=
=

¬
∨

=
≤

≤

+= ∑
∈

 ,0 ,
)(

(DP) ,
0
00)(

 0)(..

)(min

γ

which in contrast to (P), has only two terms in each disjunc tion to denote the existence (Yk) or

non-existence (¬ Yk) of units. In problem (DP) Bk is a matrix which forces the subset of variables

xZ to zero when Yk is false. As shown in Appendix B, an interesting point is that applying the

outer-approximation method to the MINLP reformulation (PR) reduces to the logic -based outer-

approximation method by Türkay and Grossmann (1996). The reason is that the master problem

for both methods becomes identical.

NUMERICAL RESULTS

In this section, we present the comparison o f the proposed branch and bound algorithm with

standard branch and bound algorithm. Both algorithms use a depth -first search rule. All the

example problems were solved with GAMS (Brooke et al., 1997) on a 300MHz Pentium II PC.

The GAMS/CONOPT NLP solver was used in both algorithms and comparisons were also

performed with GAMS/DICOPT++.

EXAMPLE 2

The corresponding GDP problem taken from Grossmann and Kravanja (1997) is given by (7).

The global optimal solution is Y* = (false,true,false), x* = (1,1), and Z* = 3.5.

15

.3,2,1},,{
0 ,4040

(7)

5.0
01
3
4

5.1
01
01
0

1
4
02

02)(

min

21

1

21

21

3

2

1

21

2

21

1

1

2
2

1

2
2

2
1

=∈
≥≤≤≤≤

=
≥−
≥+
≤−

∨

=
≥−
≥−
≤−

∨

=
≤−
≥−

≤−−
++=

jfalsetrueY
cx, x

c
x

xx
xx
Y

c
x
x

xx
Y

c
xx

x
Y

xxs.t.

xxcZ

j

As seen in Table 3, the solution of problem (7) with a standard branch and bound algorithm

applied to the big-M MINLP formulation (Grossmann and Kravanja, 1997) predicts a lower

bound of 2.532 and requires 5 nodes for the t ermination. In contrast, by applying the proposed

specialized branch and bound method to the GDP in (7) only 3 nodes are required, which is

largely due to the improved lower bound of 3.468 that is predicted.

EXAMPLE 3: JOBSHOP SCHEDULING PROBLEM

The next example is scheduling problem with 3 jobs and 3 stages (Raman and Grossmann,

1994). The objective of the following GDP model is to minimize the makespan:

 .321 , },{
 0 , ,,

 0

05

06

01

(8)
02

05

6 T
5 T
8 T ..

min

321

12

3

21

3

23

2

32

2

13

1

31

1

3

2

1

,,kfalsetrueY
xxxT

xx
Y

xx
Y

xx
Y

xx
Y

xx
Y

xx
Y

x
x
xts

TZ

k =∈
≥

≤−
¬

∨

≤+−

≤+−
¬

∨

≤+−

≤+−
¬

∨

≤+−

+≥
+≥
+≥
=

The optimal solution has a makespan of Z* = 11 hours, Y* = (false,true,false), and x* =

(3,0,1). This optimal schedule is shown in Figure 7. When the model in (8) is converted into a

16

big-M MILP (BM), a standard BB solves this problem in 13 nodes. In contrast, the proposed BB

solves the GDP in (8) in only 5 nodes. In this case the lower bound from the linear convex hull

(8.162) is not much tighter than that of big -M relaxation (8.000). However, the proposed

algorithm reduces the number of nodes significantly.

EXAMPLE 4: PROCESS NETWORK SUPERSTRUCTURE

This example was originally p roposed by Duran and Grossmann (1986) as an MINLP problem.

The model is given as a GDP problem by Türkay and Grossmann (1996).

17

.25,...,2,1;8,...,2,1},,{ ,0,
]35,0,0,80,35,60,25,65,80,0 ,0,15,0,0,0,15,40,0,0,0,15,1,10,1,0[

0
0

5
01)exp(

0
0

4
01)exp(

(9)
0

0
7

01)5.1/exp(

0
0

6
02

0
0

10
0)(25.1

0
,0

6
05.1

0
0

8
01)2.1/exp(

0
0

5
01)exp(

02 ,05
04.0 ,08.0

 0 ,0
0 ,0 ,0

0 ,0 ,0
 ..

122min

8

181710

8

8

171018

8

7

2221

7

7

2122

7

6

2019

6

6

1920

6

5

1615

5

5

1615

5

4

141312

4

4

131412

4

3

1089

3

3

1089

3

2

54

2

2

45

2

1

23

1

1

23

1

14121412

17101710

241423222023

1512112516917211913

11653876421

8

1

==∈≥
−−−−−−−=

=
===

¬
∨

=
=−−−

=
==

¬
∨

=
=−−

=
==

¬
∨

=
=−−

=
==

¬
∨

=
=−

=
===

¬
∨

=
=−+

=
==

¬
∨

=
=+−

=
==

¬
∨

=
=−−

=
==

¬
∨

=
=−−

≥−≤−
≥−≤−

=−−=−−
=−−=−−−=−−

=−−+=−−=−−

++= ∑
=

jkfalsetrueYcx
a

c
xxx

Y

c
xxx

Y

c
xx
Y

c
xx

Y

c
xx
Y

c
xx

Y

c
xx
Y

c
xx

Y

c
xxx

Y

c
xxx

Y

c
xxx

Y

c
xxx

Y

c
xx
Y

c
xx

Y

c
xx
Y

c
xx

Y

xxxx
xxxx

xxxxxx
xxxxxxxxxx

xxxxxxxxxx
ts

xacZ

kkj

T

T

k
k

18

Logic Propositions:

)(

(10)

53538

47

46

85

215

764

214

83

213

5432

5431

YYYYY
YY
YY
YY

YYY
YYY

YYY
YY

YYY
YYYY
YYYY

¬∧¬∨∨⇒
⇒
⇒
⇒

∨⇒
∨⇒

∨⇒
⇒

∨⇒
∨∨⇒
∨∨⇒

Specifications:

76

54

21

(11)

YY
YY
YY

∨
∨
∨

The optimal solution is Z* = 68.01, Y* = (false,true,false,true,false,true,false,true), and x* =

(4.294,0,0,4.294,2,0.667,0.203,0.464,0,0.464,1.333,1.333,2,0.267,0,0,0.58,0.715,2,1.648,0,0,1.6

48,1.381,0.58). Figure 8 shows the superstructure of the process , and Figure 9 shows its optimal

configuration . The Boolean variables Yk denote the existence or non-existence of process 1-8.

As seen in Table 4, the proposed algorithm applied to the GDP in (9) -(11) finds the optimal

solution in only 5 nodes. Using the big -M formulation re ported by Duran and Grossmann (1986),

17 nodes were required with the standard branch and bound method, and 12 nodes with the

branch and cut by Stubbs and Mehrotra (1999). As seen in Figure 10, we first consider the

convex hull of each of the eight disjunc tions and the weight of the first term in each disjunction

is shown. The relaxed optimum objective obtained at the root node, 62.48, is quite close to the

optimal solution 68.01 of GDP problem. Since the second term in each disjunction sets a subset

of the variables to zero, we consider only the weight of the first term in each disjunction (λ1k).

The eight weights shown in Figure 10 correspond to each Boolean variable Yk. At the root node,

λ12 has the largest fractional value. At the first node, we fix the first term of the second

disjunction (set Y2 as true) and consider the convex hull in each of the remaining seven

19

disjunctions, k = 1,3,4,5,6,7,8. After fixing λ12 = 1, the optimal solution at the first node has only

one fractional weight, λ13. So λ13 is selected and fixed as 1 at the second node. The solution of

the second node yields the upper bound 71.79. After backtracking, the global optimal solution,

68.01, is obtained at the third node. At the fourth node, a lower bound 75.01 is obtained with

fractional λ1k. Since this lower bound is greater than the current upper bound of 68.01, the search

stops.

Table 5 shows the comparison with other algorithms when the problem (9) -(11) is

reformulated as the MINLP problem (PR) with the convex hull representation for the

disjunctions. Note that the proposed BB algorithm and the standard BB yield the same lower

bound (62.48) since they start by solving the same relaxation problem of (PR). The difference in

the number of nodes lies in the branching rules. The OA met hod requires 3 major iterations and

the first relaxed solution is lower than that of BB method. OA, GBD and ECP start with initial

guess Y0 = [1,0,1,1,0,0,1,1]. Note that in the GBD and OA methods, one major iteration consists

of one NLP subproblem and one MILP master problem. Again, the proposed algorithm yields the

tightest lower bound and requires the fewest number of subproblems.

For comparison, the logic -based OA method by Türkay and Grossmann (1996) yields the

lower bound 67.9 with 3 initial NLP subp roblems (NLPS) and finds the optimal solution (68.01)

in one major iteration requiring a total of 4 NLP and 2 MILP’s . The proposed method requires 5

NLP’s.

EXAMPLE 5: OPTIMAL POSITIONING OF A NEW PRODUCT

The fifth example problem consists in determining the optimal positioning of a new product in a

multiattribute space (Duran and Grossmann, 1986). Here we consider a market with a set of

existing products (M) and a set of consumers (N). The existing products can be located in a

multiattribute space of dime nsion K with coordinates δjk, j = 1,… , M, k = 1,… , K. Each consumer

is characterized by an ideal point zik, and a set of weights wik, i = 1,… , N, k = 1,… , K both

representing consumer’s concept of an ideal product. A region which defines closeness to the

ideal point for each consumer can be determined in terms of the existing products. Based on

these criteria, a consumer is assumed to select a product closest to the ideal point. The objective

is to design the optimal location of the product, xk, k = 1,… , K to maximize the profit. The

revenue of the new product from sales to consumer i is given ci, and f(x) is the cost of reaching

20

locations of the new product within an attribute space. This example was formulated as an

MINLP problem by Duran and Grossmann (19 86), and can be expressed as the following GDP

problem.

]7.0,7.0,2.0,1,1,1,9.0,1.0,8.0,9
.0,5.0,3.0,1.0,3.0,1,4.0,1,8.0,1.0,9.0,9.0,2.0,1,2.0,1[

25,...,1},)({min

]10,5,9,8,5.4[],4,0,3,0,2[,
25,...,1},,{
1.05.09.06.0)(

25,...,1,
0

5,...,2,1,0)(

(12) 5.43.005.125.0
5.105.0157.0
69.0

64.01.05.09.06.0
10 ..

)(min

5

1

2

10,...,1

2

5
2
432

2
1

5

1

22

542

21

54321

54321

54321

25

1

=

=−=

==≤≤
=∈

−−++−=

=

=
=≥

¬
∨

=

≤−

≥−+
≤+
≥+−+−

−≤++−−
≤+++−

−−=

∑

∑

∑

==

=

=

T

k
ikjkikji

i

i

k

i

ii

k
iikkik

i

i
i

p

izwR

babxa
ifalsetrueY

xxxxxxf

i
c
kx

Y

pc

Rzxw

Y

xxx
xx
xxxxx
xxxxx
xxxxxts

xfcZ

δ

The data for 10 existing products, 25 consumers, 5 attributes, and the GDP problem are

shown in Appendix C. The optimal solution is Z* = -8.064, Y*1,6,8,15,17,20,25 = true, and x* =

(2,7.792,6.056,3.573,4).

The lower bound obtained from the relaxation of model (PR) (-8.685) is much closer to the

optimal solution (-8.064) than that of the big -M formulation (BM) by Duran and Grossmann

(1986) (-19.10) (see Table 6). The tightness of the lower bound substantially reduces the number

of nodes in the BB algorithm (89 vs. 11). Also, model (PR) is solved in 3 major iterations by the

OA algorithm compared with 9 of model (BM).

EXAMPLE 6: DESIGN OF A MULTI-PRODUCT BATCH PLANT

The last example is a batch plant design with multiple units in parallel and intermediate storage

tanks (Ravemark, 1995; Vecchietti and Grossmann, 1999). This problem consists of determining

21

the volume of the equipment, the number of units in parallel, and the volu me and location of the

intermediate storage tanks. The objective is to minimize the investment cost. The GDP model is

as follows:

},,,,{ },6,5,4,3,2,1{

4,3,2,1;},1,0{2,1},,{
0.1),3log(

;),)log(())log((

),log()log(),log()log(

),4log(0),4log(0

(13) 1,...1,

)100log(

,

,)()10log(

,)()10log(

,

,12,2)log(

,11,1)log(

)exp(

;,)log(

;,)log(
..

)5.0exp(150)6.0exp(250min

1

1

11

1

4

1

4

1

4

1

4

1

1

1

11

EDCBAIJ

zJjYYfalsetrueY

JjIiBbB

JjVvVVvV

Jjnm

Jj

v

Iibb

Y

Iibbbv

Iibbbv

Iibb

Y

JjYYzn

JjYYzm

eQH

JjIimbPe

JjIinbSv
ts

vvmnZ

zjzjj

U
ijij

L
ij

U
jj

L
j

U
jj

L
j

jj

j

ijij

j

ijijijj

ijijijj

ijij

j

z
zj

z
zjj

z
zj

z
zjj

I

i
ii

jijiji

jijijj

J

j
j

J

j
jjj

∈=
=∈∈∈

==
∈∈≤≤

∈≤≤≤≤
∈≤≤≤≤

−=

=
∈=

¬
∨

∈+−+≥
∈+−+≥

∈−≥−≥

∈==

∈==

≥

∈∈−−≥
∈∈−+≥

+++=

+

+

++

+

==

==

=

−

==

∑∑

∑∑

∑

∑∑

µφ

µ
µ

φφ

)))

)
)

)

)

The disjunctions correspond to the storage tank volume and the batch size. The objective

function is n onlinear and convex, and the convex hull is linear because the constraints in the

disjunctions are linear. The data and the optimal solution are shown in Appendix C . The optimal

structure, which has a cost of 261,883, is shown in Figure 11. The relaxation gap is 14.4% (PR)

vs. 16.2% (BM). The proposed BB significantly reduces the number of nodes by 81% (391 vs.

73) compared to the standard BB (see Table 6). When the OA algorithm is applied to both model

(BM) and (PR), it takes more CPU time to solve model (PR) than (BM) (40.91 vs. 13.47 sec).

22

CONCLUSION

A novel solution algorithm has been proposed for GDP problems which correspond to

discrete/continuous optimization problems that involve disjunctions with nonlinear inequalities

and logic propositions. A n ew nonlinear relaxation of the GDP problem and its properties have

been presented. The proposed relaxation problem (CRP) of the GDP problem is based on the

convex hull of each nonlinear disjunction, and is used for the reformulation of the GDP problem

as the MINLP problem (PR), which can be solved with MINLP algorithms such as BB, OA,

GBD, and ECP. The relation of problem (PR) with the logic based outer -approximation

algorithm by T ürkay and Grossmann was established. A special purpose branch and bound

algorithm for the GDP problem was also proposed based on the CRP problem.

The numerical results of six GDP problems showed that the proposed branch and bound

algorithm, which makes use of the relaxation (CRP), requires fewer nodes and less CPU time

than the st andard branch and bound method which makes use of the big -M relaxation. These

GDP problems were also reformulated as the MINLP problem (PR), and solved by existing

MINLP algorithms.

Acknowledgments-The authors would like to acknowledge financial support from the NSF Grant

CTS-9710303 and partial support from Eastman Chemical Company.

REFERENCES

Balas E., Disjunctive Programming and a Hierarchy of Relaxations for Discrete Optimization

Problems. SIAM J. Alg. Disc. Meth. 6. 466-486, 1985.

Borchers B. and J.E. Mitchell, An Improved Branch and Bound Algorithm for Mixed Integer

Nonlinear Programming. Computers and Operations Research, 21, 359-367, 1994.

Brooke A., D. Kendrick, A. Meeraus and R. Raman, GAMS Language Guide, Release 2.25,

Version 92. GAMS Development Corporation, 1997.

Ceria S. and J. Soares, Convex Programming for Disjunctive Optimization. Mathematical

Programming, 86(3), 595-614, 1999.

Duran M.A. and I.E. Grossmann, An Outer -Approximation Algorithm for a Class of Mixed -

Integer Nonlinear Program s. Mathematical Programming, 36, 307-339, 1986.

Fletcher R. and S. Leyffer, Solving Mixed Nonlinear Programs by Outer Approximation.

23

Mathematical Programming, 66(3), 327-349, 1994.

Flippo O.E. and A.H.G. Rinnoy Kan, Decomposition in General Mathematical Pr ogramming.

Mathematical Programming, 60, 361-382, 1993.

Geoffrion A.M., Generalized Benders Decomposition. Journal of Optimization Theory and

Application, 10(4), 237-260, 1972.

Grossmann I.E. and Z. Kravanja, Mixed -Integer Nonlinear Programming: A Survey of

Algorithms and Applications , Large-Scale Optimization with Applications, Part II: Optimal

Design and Control (eds. Biegler et al). Springer -Verlag, 73-100, 1997.

Gupta O.K. and V. Ravindran, Branch and Bound Experiments in Convex Nonlinear Integer

Programming. Management Science, 31(12), 1533-1546, 1985.

Hiriart -Urruty J. and C. Lemaréchal, Convex Analysis and Minimization Algorithms, Vol. 1.

Springer -Verlag, 1993.

Lee S. and I.E. Grossmann, Generalized Disjunctive Programming: Nonlinear Convex Hull

Relaxation and Algorithms, submitted to Mathematical Programming, 1999.

Leyffer S., Integrating SQP and branch -and-bound for Mixed Integer Nonlinear Programming,

submitted to Computational Optimization and Applications, 1999.

Nemhauser G.L. and L.A. Wolsey, Integer and Combinatorial Optimization. John Wiley &

Sons, Inc., 1988.

Quesada I. and I.E. Grossmann, An LP/NLP Based Branch and Bound Algorithm for Convex

MINLP Optimization Problems. Computers Chem. Engng., 16(10/11), 937-947, 1992.

Raman R. and I.E. Grossmann, Relation Between MILP Modelling and Logical Inference for

Chemical Process Synthesis. Computers Chem. Engng., 15(2), 73-84, 1991.

Raman R. and I.E. Grossmann, Modelling and Computational Techniques for Logic Based

Integer Programming. Computers Chem. Engng., 18(7), 563-578, 1994.

Ravemark E., Optimization models for design and operation of chemical batch processes. Ph.D.

Thesis. 1995.

Stubbs R. and S. Mehrotra, A Branch -and-Cut Method for 0-1 Mixed Convex Programming.

Mathematical Programming, 86(3), 515-532, 1999.

Türkay M. and I.E. Grossmann, Logic -based MINLP Algorithms for the Optimal Synthesis of

Process Networks. Computers Chem. Engng., 20(8), 959-978, 1996.

Vecchietti A and I.E. Grossmann, LOGMIP : A Disjunctive 0 -1 Nonlinear Optimizer for Proc ess

24

Systems Models. Computers Chem. Engng., 23, 555-565, 1999.

Westerlund T. and F. Petterson, An Extended Cutting Plane Method for Solving Convex MINLP

Problems. Computers Chem. Engng., 19, supl., S131-S136, 1995.

Williams H.P., Model building in mathematical programming, John Wiley & Sons, Inc., 1985.

Yuan X, S. Zhang, L. Piboleau and S. Domenech, Une Methode d ′optimization Nonlineare en

Variables Mixtes pour la Conception de Porcedes. Rairo Recherche Operationnele, 22, 331,

1988.

APPENDIX A

Proof of Convex Hull

Theorem 2. The convex hull of the disjunction in (4) is given by

Jjcx

Jjg

Jj

JjU

cx

j

j
j

jj

j
Jj

j

jj
j

Jj
jj

Jj

j

∈≥
∈≤

∈≤≤=

∈≤≤

==

∑

∑∑

∈

∈∈

 , 0,?,

 , 0)/?(

(A.1) , 1 0 ,1

 , ?0

 ,?

λλ

λλ

λ

γλ

Proof. The convex hull of the disjunction in (4) can be expressed as a convex combination of

multipliers λj that multiply the constraints in the disjunction.

 (A.4) ,1 0 ,1

(A.3) ,

(A.2) , 0)(

Jj

Jjc

Jjxg

j
Jj

j

jjj

jj

∈≤≤=
∈=
∈≤

∑
∈

λλ
λγλ

λ

The equation (A.3) can be linearized by setting cj = cλj, which leads to,

(A.5) , Jjc jjj ∈= λγ

The inequality (A.2) is generally nonconvex due to the bilinearity that is introduced by the

product. We can convexify, however, the inequality by defining the new variable νj = xλj. From

the convexity condition of λj, the following equations hold.

25

(A.7)

(A.6) ?

∑∑
∑∑

∈∈

∈∈

==

==

Jj
jj

Jj
j

Jj

j

Jj
j

cc

xx

λγλ

λ

Furthermore, rewriting (A.2) in terms of νj and λj, for λj ≥ 0,

(A.8) ,0)/?(Jj g j
j

jj ∈≤λλ

From Hiriart -Urruty and Lemaréchal (1993), the above inequality is convex. From the

assumption, νj is bounded by

(A.9) ,?0 Jj U jj
j ∈≤≤ λ

where Uj is an upper bound for each νj. Hence, the convex hull is given by the equations and

inequalities in (A.1). ¦

APPENDIX B

Relation to logic-based Outer-Approximation Method for problem (DP)

In the algorithm by Türkay and Grossmann (1996), which addresses the solution of problem

(DP), the NLP subproblem for fixed values of the Boolean variable s Yk
l at iteration l, is given by,

Kkcx
falseYforcxB

trueYforcxg

xrts

xfcZ

k

l
kk

k

l
kkkk

Kk
k

∈≥
===
==≤

≤

+= ∑
∈

 ,0 ,
 0 ,0

DP)-(FX ,0)(

 0)(..

)(min

γ

The outer-approximation master problem is given by the following disjunctive problem in

which the nonlinear constraints are linearized at the optimal solutions of problem (FX -DP),

26

KkfalsetrueYcx
KkLltrueYlK

TrueY

K k
c

xB

Y

c
Klxxxgxg

Y

Llfor
xxxrxr

xxxfxf
ts

cZ

kk

l
k

k
L

k

k

k

kk

k
L

lTl
k

l
k

k

lTll

lTll

Kk
k

∈∈≥
∈===

=Ω

∈

=
=

¬
∨

=
∈≤−∇+

=

≤−∇+
−∇+≥

+= ∑
∈

 ,},{ ,0 ,,
 ,},...,2,1,|{

)(

(MP) ,
0
0,0)()()(

,...,2,1
0)()()(

)()()(
 ..

min

α

γ

α

α

The index l = 1,2,… ,L corresponds to the iteration counter, while KL
k is the set of those iterations

in which the left term of the k-th disjunction in (DP) is active, thus yielding a linear

approximation for the inequality gk(x) ≤ 0. Problem (MP) can be transformed into the following

MILP problem by using the convex hull of each disjunction with linearized constraints (see

equation (5)):

Kkyx
KkLltrueYlK

a Ay
yxxyxx

xxx

Klyxxgxgxxgxxg

Llfor
xxxrxr

xxxfxf
ts

yZ

k

l
k

k
L

k
U
NkNkk

U
NkNk

NkNkNk

k
Lk

lTl
kx

l
kNk

Tl
kxZk

Tl
kx

lTll

lTll

Kk
kk

NkZk

∈∈≥
∈===

≤
−≤≤≤≤

+=
∈∇+−≤∇+∇

=

≤−∇+
−∇+≥

+= ∑
∈

 ,}1,0{ ,0,
 ,},...,2,1,|{

)1(0 ,0

,])()([)()(

MP)-(DP ,...,2,1
0)()()(

)()()(
 ..

min

11

21

1

α

α

αγ

where xNk is the vector of variables which are non -zero when Yk is false, while xZk is the vector of

variables that takes a value of zero. This partition of the continuous variables x is performed

according to the definition of the matrix Bk in (DP).

Since each disjunction must have at least one linearization, several NLP subproblems must be

solved initially. The fewest number of such NLP subproblems can be determined from a set

covering problem (Türkay and Grossmann, 1996).

For the case of two terms in each disjunction in problem (DP), problem (PR) reduces to,

27

Kk ??x

aA
U?U?

Ux
?xg

 ??x

xrts

xfZ

kk
k

N
k

N

kk
k

Nkk
k

N

kkZ

k
k

NkZkk

kk

k
N

k
NN

Kk
kk

∈∈≥
≤

≤≤≤≤
≤≤

≤
=+
+=

≤

+= ∑
∈

 ,}1,0{ ,0, ,

0 0

0
(PRT) 0)//(

 1

 0)(..

)(min

2,1
21

22
2

,11
1

11

1
1

,11

21

21

1

λλ
λ

λλ
λ
λλλ

λλ

λγ

where x = [xZ, xN]. Note that the above constraints have been simplified because νZ
2k = 0 since

the corresponding variables xZ take a value of zero in the second term of the disjunction.

For fixed Yk
l in (PRT) we have, ,0,1 11 is false if Y? is true if Y? l

k
l
k

l
k

l
k == with which problem

(PRT) becomes:

Kk ??x

aA
falseY forU?

falseY for?xx

trueYforUxx

trueYforxxg

falseYfor

trueYfor

xrts

xfZ

k
N

k
N

l
kk

k
N

l
k

k
NNZ

l
kkNZ

l
kNZk

l
k

l
k

l
k

l
k

Kk
kk

∈≥
≤

=≤≤
===
=≤≤
=≤

==
==

≤

+= ∑
∈

 ,0, ,

 0

 0,

 ,0

PRT)-(FX 0)(

 0

 1

 0)(..

)(min

21

2
2

2

1

,

1

1

1

λ

λ
λ

λγ

It is clear that for fixed Yk
l the NLP subproblem (FX-PRT) is identical to problem (FX -DP).

Rather than linearizing the original constraints as in problem (MP), we linearize the nonlinear

convex hull formulation in (P RT) to define the master problem of the outer -approximation

algorithm . Then the corresponding MILP master problem is given as follows,

28

Kk ??x

KkLltrueYlK

aA
U?U?

Ux

gg

??
g

xx
g

 ??x

Llfor
xxxrxr

xxxfxf
ts

Z

kk
k

N
k

N

l
k

k
L

kk
k

Nkk
k

N

kkZ

kl
k

lkT

l
k

lk

kxl
k

lk

k

k

k
N

T

l
k

lk
N

kx
k

Z

T

l
k

l
Z

kx

kk

k
N

k
NN

lTll

lTll

Kk
kk

NZ

∈∈≥
∈===

≤
≤≤≤≤

≤≤

∇+

−

≤

∇+

∇

=+
+=

=

≤−∇+
−∇+≥

+= ∑
∈

 ,}1,0{ ,0, ,

 ,},...,2,1,|{

0 0

0

???

PRT)-(M 1

 ,...,2,1
0)()()(

)()()(
 ..

 min

2,1
21

22
2

,11
1

11

1
1

,1

1

,1

1

,1

1

1

1

,1

11

21

21

1

λλ

λ
λλ

λ

λ
λλλ

λλλλ

λλ

α

αλγ

Note that if we let xl = (ν1k,l/λl
1k) and treat λ1k as binary variable yk, then the linearized

constraints (M-PRT) and the convex hull of the linear disjunction in problem (DP-MP) are the

same. Also, the partition of x in non -zero and zero variables is used in the same way as in (DP -

MP). Hence, the MILP problem in (M-PRT) is identical to the MILP master problem (DP-MP)

of Türkay and Grossmann (1996) . Thus, we can conclude that for the case of problem (DP),

applying the outer -approximation method to the MINLP reformulation (PR) reduces to the logic -

based outer-approximation method by Türkay and Grossmann (1996).

APPENDIX C

Data for GDP example problems 5 and 6

EXAMPLE 5

i Ideal points (zik)
K =1 2 3 4 5

Attribute weights (wik)
k =1 2 3 4 5

1
2
3
4
5

2.26 5.15 4.03 1.74 4.74
5.51 9.01 3.84 1.47 9.92
4.06 1.80 0.71 9.09 8.13
6.30 0.11 4.08 7.29 4.24
2.81 1.65 8.08 3.99 3.51

9.57 2.74 9.75 3.96 8.67
8.38 3.93 5.18 5.2 7.82
9.81 0.04 4.21 7.38 4.11
7.41 6.08 5.46 4.86 1.48
9.96 9.13 2.95 8.25 3.58

29

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

4.29 9.49 2.24 9.78 1.52
9.76 3.64 6.62 3.66 9.08
1.37 6.99 7.19 3.03 3.39
8.89 8.29 6.05 7.48 4.09
7.42 4.60 0.3 0.97 8.77
1.54 7.06 0.01 1.23 3.11
7.74 4.4 7.93 5.95 4.88
9.94 5.21 8.58 0.13 4.57
9.54 1.57 9.66 5.24 7.90
7.46 8.81 1.67 6.47 1.81
0.56 8.1 0.19 6.11 6.40
3.86 6.68 6.42 7.29 4.66
2.98 2.98 3.03 0.02 0.67
3.61 7.62 1.79 7.8 9.81
5.68 4.24 4.17 6.75 1.08
5.48 3.74 3.34 6.22 7.94
8.13 8.72 3.93 8.8 8.56
1.37 0.54 1.55 5.56 5.85
8.79 5.04 4.83 6.94 0.38
2.66 4.19 6.49 8.04 1.66

9.39 4.27 5.09 1.81 7.58
1.88 7.2 6.65 1.74 2.86
4.01 2.67 4.86 2.55 6.91
4.18 1.92 2.60 7.15 2.86
7.81 2.14 9.63 7.61 9.17
8.96 3.47 5.49 4.73 9.43
9.94 1.63 1.23 4.33 7.08
0.31 5 0.16 2.52 3.08
6.02 0.92 7.47 9.74 1.76
5.06 4.52 1.89 1.22 9.05
5.92 2.56 7.74 6.96 5.18
6.45 1.52 0.06 5.34 8.47
1.04 1.36 5.99 8.10 5.22
1.40 1.35 0.59 8.58 1.21
6.68 9.48 1.6 6.74 8.92
1.95 0.46 2.9 1.79 0.99
5.18 5.1 8.81 3.27 9.63
1.47 5.71 6.95 1.42 3.49
5.4 3.12 5.37 6.1 3.71
6.32 0.81 6.12 6.73 7.93

j Existing products (δjk)
k =1 2 3 4 5

1
2
3
4
5
6
7
8
9

10

0.62 5.06 7.82 0.22 4.42
5.21 2.66 9.54 5.03 8.01
5.27 7.72 7.97 3.31 6.56
1.02 8.89 8.77 3.1 6.66
1.26 6.8 2.3 1.75 6.65
3.74 9.06 9.8 3.01 9.52
4.64 7.99 6.69 5.88 8.23
8.35 3.79 1.19 1.96 5.88
6.44 0.17 9.93 6.8 9.75
6.49 1.92 0.05 4.89 6.43

EXAMPLE 6

JjIiBbJjVvVvNnMm ijijjjjjjjjj ∈∈=∈==== ;),log(;),log(),log(),log(),log(
))

i = products; j = stages; H = horizon time = 6000 h

Qi = production rate of product i: A = 250000, B = 150000, C = 180000, D = 160000, E =

120000

Sij = size factor for product i at stage j

i \ j 1 2 3 4 5 6
A 7.9 2.0 5.2 4.9 6.1 4.2
B 0.7 0.8 0.9 3.4 2.1 2.5

30

C 0.7 2.6 1.6 3.6 3.2 2.9
D 4.7 2.3 1.6 2.7 1.2 2.5
E 1.2 3.6 2.4 4.5 1.6 2.1

Pij = processing time of product i at stage j

i \ j 1 2 3 4 5 6
A 6.4 4.7 8.3 3.9 2.1 1.2
B 6.8 6.4 6.5 4.4 2.3 3.2
C 1.0 6.3 5.4 11.9 5.7 6.2
D 3.2 3.0 3.5 3.3 2.8 3.4
E 2.1 2.5 4.2 3.6 3.7 2.2

Optimal Solution: Y* = {false,true,false,false,false}

j 1 2 3 4 5 6
Vj 2491.9 1030 2127 2807 2495 2261
Nj 1 1 1 1 1 1
Mj 2 2 2 2 1 1

Vj (storage) 0 8637.8 0 0 0 0
Cost (Z*) 261,883

31

LIST OF TABLES

Table 1. Disaggregated variables and local optimal points of example 1.

Table 2. Comparison of the results for example 1.

Table 3. Comparison of the results for example 2.

Table 4. Comparison of branch and bound methods for example 4.

Table 5. Comparison of algorithms for formulation (PR) of example 4.

Table 6. Comparison of formulations (BM) and (PR) for GDP examples.

LIST OF FIGURES

Figure 1. Feasible region of example 1.

Figure 2. Convex hull of feasible region .

Figure 3. The proposed branch and bound algorithm, for | K| = 1.

Figure 4. Partitionable and Non -partitionable sets.

Figure 5. The proposed branch and bound tree: example 1.

Figure 6. Standard branch and bound tr ee: example 1.

Figure 7. The optimal schedule for example 3.

Figure 8. Superstructure for example 4.

Figure 9. The optimal structure of example 4.

Figure 10. The proposed branch and bound method for example 4.

Figure 11. The optimal plant structure of exam ple 6.

32

Table 1. Disaggregated variables and local optimal points of example 1.

Feasible
Region

λj zj
 = νj/λj f(νj/λj) + γj Local optimal

point (x1, x2)
Local optimal

value
S1 0.016 (0.000, 1.000) 12.000 (0.832, 0.555) 8.7890
S2 0.955 (3.306, 1.720) 1.1720 (3.293, 1.707) 1.1716
S3 0.029 (1.306, 4.720) 13.268 (2.447, 3.106) 4.5279

Table 2. Comparison of the results for example 1.

Formulation Opt.
Solution

Lower
Bounda Method Standard

BB
Proposed

BB OAb GBDc ECPc

(BM) 1.172 1.013
Major
Iter.

/Nodes
5 - 3 3 19

(PR) 1.172 1.154
Major
Iter.

/Nodes
- 3 2 3 20

aNLP relaxation. bOA begins with NLP relaxation. cGBD and ECP begin with initial guess y0 = (1,0,0).

Table 3. Comparison of the results for example 2.

Method No. of NLP Subproblems Lower Bound
Standard BB-formulation (BM) 5 2.532
Proposed BB-formulation (PR) 3 3.468

Table 4. Comparison of branch and bound methods for example 4.

 Method Standard
BB

Branch
& Cut

Proposed
BB

Optimal
Solution

Nodes 17 12 (16 Cuts) - Formulation
(BM) Relaxed Opt. 15.08 15.08 -

68.01

Nodes - - 5 Formulation
(PR) Relaxed Opt. - - 62.48

68.01

Table 5. Comparison of algorithms for formulation (PR) of example 4.

Method* Standard
BB

Proposed
BB

OA
(Major)

GBD
(Major)

ECP Logic-based
OA*

No. of nodes
/ Iteration

11
(Nodes)

5
(Nodes)

3
(Iter.)

8
(Iter.)

7
(Iter.)

3 subproblem
1 Major Iter.

Relaxed Optimum 62.48 62.48 8.541 -551.4 -5.077 67.9
*All methods except logic -based OA solve the reformulated MINLP problem (PR).

33

Table 6. Comparison of formulations (BM) and (PR) for GDP examples.

OA
Major It. CPU sec

BB
Nodes Lower Bound

Problem
Number

GDP
Global
Opt. (BM) (PR) (BM) (PR)

2 3.500 3 0.641 3 1.060 5 2.532 3 3.468
4* 68.01 11 3.044 2 1.094 17 15.08 5 62.48
5 -8.064 9 5.817 3 2.863 89 -19.10 11 -8.685
6 261,883 10 13.47 16 40.91 391 219,335 73 224,165

(*with logic propositions)

34

 Figure 1. Feasible region of example 1.

x1

x2

(0,0)
Convex hull

optimum ZL = 1.154
(3.159,1.797)

S3

S2S1

Convex combination
of zj

Convex hull = conv(∪ Sj)

zj = v j/λj

λ1= 0.016
λ2= 0.955
λ3= 0.029

Local Optimal
point

xL

Global optimum
(3.293,1.707)
Z* = 1.172

Weightz3

z1

z2

35

Figure 2. Convex hull of feasible region .

x1

x2
 S3

S2

S1

x1

x2
 S3

S2

S1

a) disjunctive feasible region b) convex hull

conv(∪ Sj)

36

Figure 3. The proposed branch and bound algorithm, for | K| = 1.

Set Z* = ∞ , select ε .
Set T = { j | j = 1,2,… ,m}

Solve (CRP) with conv(Sj), j∈T.

Select Sj with λj closest to one.
Solve (P1) with fixed Sj, ZU = f(xU)

T = T \ j
if ZU ≤Z* then Z* = ZU , x* = xU

T is empty ? Y

N

START

All λj are 0 or 1 ?
Y

N

Global Optimal Solution
Z* = f(xL)

x* = xL

END

Solve (CRP) with conv(Sj), j ∈ T.
ZL = f(xL)

ZL ≥ ZU ?
N

Y

Global Optimal Solution
Z* = f(xU), x* = xU

37

Figure 4. Partitionable and Non -partitionable sets.

a) Partitionable set

b) Non-partitionable set

S1

S3

S2

S1

S3

¬ Y2

xL xL

¬ Y2

S1 S3

S2 xL

S1 S3

xL

38

Figure 5. The proposed branch and bound tree: example 1.

Y2

Root Node
Convex hull of all Sj

Z = 1.154
λ= [0.016,0.955,0.029]

First Node
Fix λ2 = 1

Z= 1.172
[x1,x2] = [3.293,1.707]

Second Node
Convex hull of S1, S3

Z = 3.327
λ= [0.337 , 0, 0.623]

¬ Y2

ZU = 1.172
Back-track

ZL = 1.154
Branch on Y2

ZL = 3.327 > ZU

Stop

39

Figure 6. Standard branch and bound tree: example 1.

Fix Y1 = 1

ZL = 1.031
Y = [0.029,0.971,0]

 ZL = 1.058
Y = [0,0.975,0.025]

Z = 8.789
Y = [1,0,0]

Fix Y1 = 0

 Fix Y2 = 0 Fix Y2 = 1

Optimal Solution
Z* = 1.172

Y* = [0,1,0]
ZU = 4.528
Y = [0,0,1]

0

2 3

41

 : Branching Var.
Bold : Fixed Var.

40

Figure 7. The optimal schedule for example 3.

Stage 1

Stage 2

Stage 3

time

2 5

43

32

AB

C

41

Figure 8. Superstructure for example 4.

1

2

6

7

4

3

5 8

x1

x4

x6

x21

x19

x13

x14

x11

x7

x8

x12

x15

x9

x16 x17

x25
x18

x10

x20

x23x22 x24x5

x3x2

Y1

Y8

Y7

Y6

Y4

Y5

Y3

Y2

42

Figure 9. The optimal structure of example 4.

2

6

4

8

x4

x6

x19

x13

x14

x11

x7

x8

x12

x17

x25
x18

x20

x23 x24x5

Y8

Y6

Y4

Y2

x10

4.294 2

0.667

1.333

1.6482

0.267

21.333

0.464
0.203

1.648 1.381

0.715

0.464

0.58

0.58

43

Figure 10. The proposed branch and bound method for example 4.

ZL = 62.48
λ1k = [0.31,0.69,0.03,1,0,1,0,1]

ZU = 68.01 = Z*
λ 1k = [0,1,0,1,0,1,0,1]

Optimal Solution

ZU = 71.79
λ 1k = [0,1,1,1,0,1,0,1]

Feasible Solution

ZL = 75.01 > ZU

λ 1k = [1,0,0.022,1,0,1,0,1]

ZL = 65.92
λ 1k = [0,1,0.022,1,0,1,0,1]

0

32

41

 : Branching Var.
Bold : Fixed Var.

Fix λ12 = 1

Fix λ13 = 1 Fix λ13 = 0

Fix λ12 = 0

Stop

44

 Figure 11. The optimal plant structure of example 6.

S

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

