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ABSTRACT 

Generalized Disjunctive Programming (GDP) has been introduced recently as an alternative 

model to MINLP for representing discrete/continuous optimization problems. The basic idea of 

GDP consists of representing discrete decisions in the continuous space with disjunctions, and 

constraints in the discrete space with logic propositions. In this paper, we describe a new convex 

nonlinear relaxation of the nonlinear GDP problem that relies on the use of the convex hull of 

each of the disjunctions involving nonlinear inequalities. The proposed nonlinear relaxation is 

used to reformulate the GDP problem as a tight MINLP problem, and for deriving a branch and 

bound method. Properties of these methods are given, and the relation of this method with the 

Logic Based Outer-Approximation method is established. Numerical results are presented for 

problems in jobshop scheduling, synthesis of process networks, optimal positioning of new 

products and batch process design. 

Keywords: Generalized disjunctive programming, branch and bound, mixed-integer nonlinear 

programming, nonlinear convex hull.  

 

INTRODUCTION 

Mixed Integer Non-Linear Programming (MINLP) models are widely used in 

discrete/continuous optimization (Grossmann and Kravanja, 1997). MINLP problems arise, for 

instance, in process synthesis (heat exchanger networks and reactor networks), in process design 

(optimal positioning of product and feed location in distillation column), in the synthesis of 

process networks, and in the design and scheduling of batch and continuous multiproduct plants. 

Algorithms for solving MINLP problems include Branch and Bound (BB) (Gupta and 

Ravindran, 1985; Borchers and Mitchell, 1994; Stubbs and Mehrotra, 1999; Leyffer, 1999), 

Outer-Approximation (OA) (Duran and Grossmann, 1986; Yuan et al., 1988; Fletcher and 

Leyffer, 1994), Generalized Benders Decomposition (GBD) (Geoffrion, 1972), Extended Cutting 

Plane (ECP) (Westerlund and Pettersson, 1995), LP/NLP based branch and bound (Quesada and 

Grossmann, 1992), and branch-and-cut (Stubbs and Mehrotra, 1999). For a detailed review, see 

Grossmann and Kravanja (1997).  

Generalized Disjunctive Programming (GDP), which can be regarded as a generalization of 

disjunctive programming (Balas, 1985), has been introduced as an alternative model to the 

MINLP problem that uses disjunctions and logic propositions (Raman and Grossmann, 1994). 
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While the MINLP model is based entirely on algebraic equations and inequalities for 

discrete/continuous optimization problem, the GDP model allows a combination of algebraic and 

logical equations, which facilitates the representation of discrete decisions. Türkay and 

Grossmann (1996) have proposed a logic -based Outer-Approximation algorithm for solving 

nonlinear GDP problems for process networks involving two terms in each disjunction. Th is 

algorithm is based on the idea of extending the Outer -Approximation algorithm by solving NLP 

subproblems in reduced space, and MILP master problems corresponding to the convex hull of 

the linearization of the nonlinear inequalities. In addition, several  NLP subproblems must be 

solved to initialize the master problem in order to cover all the terms in the disjunctions. This 

algorithm has been implemented in LOGMIP, a computer code developed by Vecchietti and 

Grossmann (1999).  

In this paper, we address the solution of GDP problems that involve disjunctions with 

multiple terms. We first describe the convex hull of a disjunction involving convex nonlinear 

inequalities, which provide the tightest relaxation of the disjunction. The equations describing 

the convex hull are used as a basis to develop a convex nonlinear relaxation of the GDP problem. 

This NLP relaxation can be used for reformulating it as an MINLP problem, or for developing a 

special purpose branch and bound method which will be described in detai l. We examine the 

relation of the proposed method with the one Türkay and Grossmann (1996) which can handle 

only disjunctions with two terms and is restricted to process networks. We describe in this paper 

the basic ideas of the proposed method, and emphas ize its geometrical interpretation. Detailed 

proofs can be found in Lee and Grossmann (1999). The proposed methods are applied to small 

analytical examples, and to problems dealing with jobshop scheduling, process networks, 

optimal positioning of new produ cts, and design of a batch process. 

 

GENERALIZED DISJUNCTIVE PROGRAMMING 

Consider the Generalized Disjunctive Programming problem (Raman and Grossmann, 1994), 

which is an extension of the work of Balas (1985). In general, the GDP model includes Boolean 

variables, disjunctions and logic propositions as shown in problem (P),  
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Here x ∈  Rn is the vector of continuous variables and Yjk are Boolean variables. ck ∈  R1 are 

continuous variables and γjk are fixed charges; f: Rn →  R1 is the term for continuous variables x in 

the objective function and r: Rn →  Rq are common constraint sets that hold regardless of the 

discrete decisions. f(x) and r(x) are convex functions. A disjunction is composed of an OR 

operator (∨) and a number of terms. In e ach term, there are the Boolean variables Yjk, a set of 

convex nonlinear inequalities gjk(x), gi
jk: Rn →  R1, i∈ Ijk, k ∈  K, where Ijk is an index set of 

inequalities, and a cost variable ck. If Yjk is true, then gjk(x) ≤ 0 and ck = γjk are enforced. 

Otherwise, the corresponding constraints are ignored. We assume here that each term in the 

disjunctions gives rise to a non -empty feasible region. In process synthesis problems, gjk(x) are 

heat or mass balance equations, or specifications of the process, and γjk are fixed charges for each 

process. Jk is an index set of the terms for each disjunction k, Jk = { j | j = 1,2,...,mk }, k ∈  K. 

Finally, Ω (Y) = True correspond to logic propositions in terms of the Boolean variables. The 

logic propositions Ω (Y) are expressed in Conjunctive Normal Form (CNF):  

(1)                                       )()()(
),(),(,...,2,1 



 ¬∨∨=Ω

∈∈=
∧ jkQkjjkPkjSs

YYY
ss

 

where Ps is the set of Boolean variables Yjk which are true, and Qs is the set of Boolean variables 

Yjk which are false in clause s, s = 1,2,… ,S. In CNF, every clause that is expressed in terms of the 

‘OR’ operator must be true. 

In problem (P), the functions f(x), r(x), and gjk(x) are assumed to be convex and bounded. 

Also, it is assumed that problem (P) has a non -empty compact feasible region. The GDP problem 

(P) can be reformulated as the following MINLP problem (BM) by replacing the Boolean 

variables Yjk by binary variables yjk, and using big -M constraints. The logic constraints Ω (Y) are 

converted into linear inequalities (Williams, 1985) which leads to the following big -M MINLP;  
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In this model, Mjk are the “big-M” parameters that render the inequalities gjk(x) redundant 

when yjk = 0. The inequalities Ay ≤ a can be systematically derived from the CNF form of Ω (Y) 

as discussed in Raman and Grossmann (1991). Note also that the relaxation of (BM) is obtained 

by treating the binary variables as continuous in the range 0 ≤ Yjk ≤ 1. 

 

ILLUSTRATIVE EXAMPLE 1 

Consider the following GDP problem with one disjunction,   

.3,2,1},,{  ,0,8,0                           

(2)      
3

01)4()2(
1

01)1()4( 
2

01)()( 

                                                             ..                                                           
)2()3(min                                      

21

2
2

2
1

3

2
2

2
1

2

2
2

2
1

1

2
2

2
1

=∈≥≤≤

















=
≤−−+−∨

















=
≤−−+−∨

















=
≤−+

+−+−=

jfalsetrueYcxx

c
xx

Y

c
xx

Y

c
xx

Y

ts
cxxZ

j

 

There are three terms in the disjunction, and exactly one of them must be true. The feasible 

region of (2) is given by three disconnected circles as seen in Figure 1. The global optimal 

solution of (2) is Z* = 1.172, Y* = (false,true,false) and x* = (3.293,1.707).  

By using 0-1 variables yj, (2) can be reformulated as an MINLP problem (BM) with big -M 

constraints:  
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If y1 = 1, then the first inequality constraint is enforced and if y1 = 0, it becomes redundant 

assuming that M is a sufficiently large number. If the binary variab les yj are treated as continuous 

variables in the MINLP problem (3), then for M = 30 the relaxed MINLP problem of (3) has the 

optimal solution Z* = 1.031 and y* = (0.029,0.971,0).  

 

GDP PROBLEM WITH ONE DISJUNCTION 

For simplicity, we will first assume that  in problem (P) we have only one disjunction, i.e., | K| =1. 

Hence, each term j in the disjunction has only one Boolean variable Yj, and the index k can be 

removed from (P) leading to (P1),  
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Each term in the disjunction defines a fea sible region Sj,  j ∈  J, where Sj = {(x,c) | c = γj, r(x) 

≤ 0, gj(x) ≤ 0}. Note that problem (2) is a particular instance of problem (P1).  

In the following sections, we derive a nonlinear relaxation of problem (P1) which is tighter 

than the relaxation of t he big-M MINLP problem (BM). We use the proposed NLP relaxation as 

a basis for deriving an MINLP reformulation and propose a special purpose branch and bound 

method. We then generalize this method to problem (P) which involves multiple disjunctions (| K| 

>1).  

 

CONVEX HULL OF NONLINEAR DISJUNCTION 

Consider the following disjunction that arises in problem (P1):  
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where the functions gj(x) are assumed to be bounded convex functions over x. In addition, x is 
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assumed to be bounded, i.e., 0 ≤ x ≤ U. The disjunction means that exactly one of the Boolean 

variables Yj must be true, which in turn means that gj(x) ≤ 0 and c = γj. These constraints are 

redundant when Yj is false.  

The convex hull of the disjunction in (4) is given by all points th at can be generated from 

taking the linear combination of points in the feasible regions Sj, j∈J. Figure 2 illustrates 

geometrically the convex hull of the disjunction ( x∈S1)∨(x∈S2)∨(x∈S3). 

As is shown in Appendix A, the convex hull of (4) is given by the following set of equations:  
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The equations in (5) define a convex set in the space ( x, c, ν, λ). This property follows from 

the fact that all equations in (5) are linear, and the last inequality is convex.  As proven by Hiriart-

Urruty and Lemaréchal (1993), if g(x) is convex and bounded over the feasible region and λ ≥ 0, 

then the function h(ν,λ) = λg(ν/λ) is a bounded convex function when h(0,0) is defined as its 

limiting value, 0. Hence the inequalities λg(ν/λ) ≤ 0 are convex (see also Stubbs and Mehrotra, 

1999). 

The equations in (5) describe the convex relaxation of the disjunction in (4). Note in (5) that x 

is expressed as the sum of disaggregated variables νj, and c is expressed as a convex combination 

of γj with weight factors λj. The relaxation in (5) provides the tightest relaxation of the 

disjunctive feasible region of (4) as it corresponds to its convex hull. Also, if λj → 1, then x →  νj
 

and c →  γj. λj = 1 implies that Yj is true and the j-th constraint λjgj(νj/λj) ≤ 0 in (5) i s the same as 

the constraint of the j-th term in (4). Hence, the j-th term in the disjunction of (4) is satisfied 

when λj equals one in (5) (Yj is true). Finally, notice that if gj(x) is a linear function, (5) reduces 

to the equations proposed by Balas (1985). 
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NONLINEAR CONVEX RELAXATION PROBLEM  

We define a continuous relaxation of (P1) using as a basis the equations of the convex hull (5). 

Since this relaxation problem has no Boolean variables, the continuous variables λj are used 

instead, and the logic  propositions are represented with the inequalities Aλ ≤ a. The Convex 

Relaxation Programming (CRP) problem for one disjunction (| K| = 1) is then given as follows:  
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where for implementation the inequality 0)/( ≤j
j

jj g λνλ  must be reformulated as 

0))/(()( ≤++ ελνελ j
j

jj g where ε is a small tolerance (typical value 0.0001). Note that in 

(CRP), the number of constraints increases by ( n+n×m+1), where n is the dimension of vector x. 

This is due to the constraints x = Σνj, 0 ≤ νj ≤ λjUj and Σλj = 1. The number of variables 

increases by m×(n+1), where m is the number of terms in the disjunction ( m = |J|). Problem 

(CRP), which can be regarded as an extension from the work of Ceria and Soares (1999) for 

disjunctive programming, corresponds  to a convex nonlinear programming problem . This 

follows from the fact that the logic inequalities are linear and the feasible region of problem 

(CRP) is convex. Since the objective function contains the linear summation term and f(x) is 

convex, the objective function is convex. Therefore, problem (CRP) is a convex NLP problem.  

It also follows that if the problem (GDP) has a bounded optimal solution, then the optimum of 

(CRP) is unique and corresponds to its global minimum. Furthermore, the feasible region  of 

(CRP), FC, is a relaxation of the feasible region of problem (P1), FP. Therefore, since FP ⊆  FC, 

and the objective function of (CRP) is also a relaxation of the objective function of (P1), the 

solution of (CRP), (ZL)*, yields a lower bound of the optimal solution of problem (P1), Z*, i.e., 
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(ZL)* ≤ Z*. 

The above properties of (CRP) can be exploited to reformulate problem (P1) as an MINLP. 

Alternatively we can develop a special branch and bound search procedure as will be shown later 

in the paper. It shou ld be noted that in problem (CRP), νj
 are the disaggregated variables of the 

vector of continuous variables x, while λj are weights that measure the “closeness” by which 

each term of the disjunction is satisfied ( x →  νj as λj →  1). Generally, solving an op timization 

problem with problem (CRP) yields a solution λj with fractional values .  However, when one of 

the λj becomes 1 and the other weights are zero, problem (CRP) becomes problem (P1) with 

fixed Yj = true and all the other Yj′, j′≠ j = false in the di sjunction. 

 

EXAMPLE 1 CONTINUED 

If we apply the (CRP) model to the GDP problem (2), the convex NLP relaxation problem is as 

follows: 
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To avoid division by zero in the nonlinear constraints,  ε is introduced as a small tolerance ( ε = 

0.0001). The optimal solution of (6) is ZL = 1.154 and xL = (3.195,1.797). Notice that the lower 

bound (1.154) is rather tight compared to the optimal solution (1.172). Also, the lower bound of 

the relaxed big-M MINLP problem (3) is lower than the lower bound of CRP problem (1.031 vs. 

1.154). In fact, the relaxation gap of the CRP problem (6) is 1.54%, while the relaxation gap of 

relaxed MINLP problem (3) is 12.0%. 

By letting zj = νj/λj from the solution in (6),  xL can be expressed as a convex combination of zj 
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with weight λj as shown in Figure 1 ( ∑=
j

jj zx λ ). Two important points are noted. (i) Each zj 

lies at the boundary of each feasible region Sj when λj is nonzero. This means that all the relaxed 

nonlinear constraints in (6) are active. The objective function value at each zj,  f(νj/λj) + γ j, yields 

an upper bound to the local solution of that feasible region (see Table 1). (ii) Each λj shows how 

close the optimal point xL is to each feasible region Sj (the larger λj is, the closer xL is to Sj). From 

this information, a good guess is that the global optimal solution of GDP problem is in Sj which 

has the largest λj (see z2 in Figure 1). Therefore, when we apply a branch and bound method to 

GDP problem, λj can be used as an indicator showing wh ich Boolean variable should be selected 

as a branching variable at the next node in the search tree.  

 

SOLUTION METHODS 

Having derived the nonlinear convex relaxation problem (CRP), there are two major solution 

approaches one can take. The simplest and mos t direct one is to reformulate (CRP) as the 

following MINLP problem (|K| = 1). 
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Again, the tolerance ε (e.g. 0.0001) is introduced in the constraints to avoid division by zero, 

and an additional inequality in terms of a valid upper bound Uj has been introduced to ensure that 

νj = 0 when λj = 0. Lee and Grossmann (1999) proved that the lower bound predicted by the 

relaxation of problem (P2) is greater than or equal to the lower bound predicted by the relaxation 

of the MINLP counterpart as given by problem (BM).  

Problem (P2) can be solved with any standard method for MINLP problem discussed in the 
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introduction section (e.g., Branch and Bound, Outer -Approximation, Generalized Benders 

Decomposition, and Extended Cutting Plane). The other  alternative is to develop a specific 

branch and bound method that exploits more directly the property of the convex hull as will be 

discussed in the next section.  

 

A BRANCH AND BOUND ALGORITHM WITH CONVEX RELAXATION  

A branch and bound algorithm with the proposed nonlinear convex relaxation in (CRP) is 

outlined in this section for the case of only one disjunction (| K| = 1).  

First, the CRP problem of the given GDP problem is solved. The branching rule that can be 

used is to select the variable λj closest to 1 because this corresponds to the disjunctive term that 

is closest to being feasible. By solving the corresponding NLP subproblem, this generally yields 

a good upper bound as was shown in the illustrative example 1.  

After branching on one term of disjunc tion, we propose to select the convex hull of the 

remaining terms of the disjunction j′∈J, j′≠ j, which have not been examined yet. For the case of 

one disjunction (|K| =1), this corresponds to the dichotomy:  

)(conv       j
jj
Jjj SfixorSfixeither ′

≠′
∈′
∪•  

This means that either the solution is in the subregion Sj, or else somewhere in the convex hull 

of the remaining set of subregions Sj′, j′ ∈  J, j′≠ j. As will be shown later with the results, this 

branching rule is generally very effective.  

Based on the above idea, the main steps of the proposed branch and bound algorithm for | K| = 

1 are as follows (see Figure 3): 

 

Branch and bound algorithm for Generalized Disjunctive Programming, |K| = 1.   

Step 0. Initialization  

(a) Set Z* = ∞ .  

(b) Select ε. 

(c) Set T = J. 

Step 1. CRP problem  

(a) Solve the CRP problem with the convex hull of Sj,  j ∈  T.  

(b) Obtain the optimal objective value ZL and the optimal point xL.  
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(c) If all λj are 0 or 1, then xL is a feasible solution to the GDP problem (P1). The global optimal 

solution is ZL and xL. Set Z* = ZL and x* = xL. Exit. 

(d) Otherwise, xL lies outside all Sj (j=1,2,… ,m). Go to step 2. 

Step 2. Branch on one term  

(a) Select Yj with the largest λj (≠ 0, 1) in the solution of CRP problem.   

(b) Set Yj = true and Yj′  = false, j′ ≠ j (Fix λj as 1). 

(c) Solve GDP problem (P1) with fixed Yj.   

(d) Obtain the optimal objective value ZU and optimal point xU.   

(e) Set T  = T \ j.  

(f) If ZU ≤ Z*, then set Z* = ZU and x* = xU. 

Step 3. Check the remaining terms  

(a) If T is empty, then exit.  

(b) Else if T is not empty, then go to step 4.  

Step 4. Branch on the remaining terms  

(a) Fix λj as 0 (remove Sj from convex hull).  

(b) Solve the CRP problem with the convex hull of remaining feasible regions ( Sj′,  j′≠ j,  j′∈  T).  

(c) Obtain the optimal objective value ZL and the optimal point xL.  

(d) If ZL ≥ ZU, then exit. The glo bal optimal solution is ZU, xU. 

(e) Else if ZL < ZU, then go to step 2. 

 

REMARKS 

The above algorithm has obviously finite convergence since the number of terms in the 

disjunction is finite. Also, since the nonlinear functions are convex, the subproblems have a  

unique optimal solution. Hence, the rigorous validity of the bounds can be guaranteed, with 

which the branch and bound method is in turn guaranteed to obtain the global optimum. 

Furthermore, given the strength of the relaxation one can also in general exp ect the enumeration 

of fewer nodes. 

An important point that is worth noting in the proposed branch and bound enumeration is the 

case when the proposed branching rule does not yield a true partition. This may arise as follows. 

After searching one particular  feasible subregion j, the convex hull of the remaining feasible 

subregions (Sj′, j′ ≠ j) generally yields an increase to the lower bound. However, if this lower 
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bound is the same as before, there is the need to verify whether partitioning has in fact take n 

place. This can be done by the following test. If xL ∉  conv(∪ Sj′, j′≠ j), where xL is the optimal 

solution of the parent node, then this is a ‘partitionable set’ (see Figure 4(a)).  If xL ∈  conv(∪ Sj′, 

j′≠ j), then the set of subregions is a ‘non -partitionable set’ (see Figure 4(b)) because the point xL 

remains feasible in the convex hull of the subregion j′ and hence the lower bound remains the 

same after branching. This test step can be used in the proposed algorithm to accelerate the 

search by avoiding repeated identical lower bounds.  

 

EXAMPLE 1 CONTINUED 

Figure 5 shows the corresponding search tree when we apply the proposed branch and bound 

algorithm to Example 1. At the root node, the search set is T = {1, 2, 3} and CRP problem (6) 

yields a lower bound ZL = 1.154. This optimal point xL lies outside the feasible region of GDP 

problem (2) since xL does not satisfy any term in the disjunction (see Figure 1). Hence, this 

solution is infeasible for problem (2). Among the weights, λ2 has the largest value a s seen in 

Table 1, so we select Y2 and set Y2 as true. At the first node, the GDP problem is solved with 

fixed Y = (false,true,false). Only Y2 is set as true and the other Yj′ are set as false. It means that 

we fix λ2 as 1 and other λj as 0 in problem (6).  Therefore, the feasible region is restricted to S2 

only. Solving problem (2) with Y2 = true yields an upper bound ZU = 1.172. Since S2 has been 

examined, it is removed from the search set, T = {1,2,3}\{2} = {1,3}. At the second node, we 

consider the convex hull of S1 and S3. The CRP problem is then problem (6) without the 

constraints and variables for S2. By solving this CRP problem, a lower bound ZL = 3.327 is 

obtained. Since this lower bound 3.327 is greater than the upper bound ZU = 1.172, the feasible 

solution of S1 and S3 will be greater than ZL = 3.327 > ZU = 1.172. Hence, the global optimal 

solution is ZU = 1.172 and the search ends after 3 nodes.  

Table 2 shows the comparison among the standard BB, OA, GBD, and ECP algorithms 

applied to the big-M MINLP formulation (3), and the reformulated MINLP (PR) in (6). The 

standard BB finds the optimal solution in 5 nodes (see Figure 6), and other algorithms show 

almost the same number of major iterations in solving both the big -M and the CRP formulations. 

However, the convex hull predicts tighter lower bound than the relaxation of the big -M 

formulation. Note that OA requires 2 MILP and 2 NLP subproblems to solve (PR) compared 

with 3MILP and 3NLP subproblems to solve (BM). GBD solves 3 MILP and 3 NLP 
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subproblems for both formulations. ECP solves 19 and 20 MILPs, respectively.  

 

GENERALIZATION TO MULTIPLE DISJUNCTIONS 

For the case of multiple disjunctions (| K| > 1) as in problem (P), the MINLP reformulation of 

(P2) can be readily generalized as follows:  
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where the tolerance ε is also introduced in the nonlinear inequalities as in (6). The dimension of 

the variables in (PR) increases due to the double indices in νjk and λjk. Similarly, as in the case of 

(P2), MINLP methods such as Branch and Bo und, Outer-Approximation, Generalized Benders 

Decomposition, and Extended Cutting Plane can be applied to solve problem (PR). Also, the 

relaxation of this problem yields stronger lower bounds than the relaxation of problem (BM).  

As for the proposed branch and bound, the solution procedure of the GDP problem with a 

number of disjunctions, | K| ≥ 1, can be easily generalized (see Lee and Grossmann, 1999). In this 

algorithm, we solve the relaxation of problem (PR), which allows λjk to be continuous between 0 

and 1. This relaxed problem of (PR) corresponds to the CRP problem of GDP problem (P). The 

global optimal solution is the best upper bound after termination of the branch and bound 

enumeration.  

 

Relation to logic-based Outer-Approximation Method 

Türkay and Grossmann (1996) proposed a Logic-Based Outer-Approximation algorithm when 

the GDP problem (P) is applied to process networks. In this case the GDP has the following 

form, 
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which in contrast to (P), has only two terms in each disjunc tion to denote the existence (Yk) or 

non-existence (¬ Yk) of units. In problem (DP) Bk is a matrix which forces the subset of variables 

xZ to zero when Yk is false. As shown in Appendix B, an interesting point is that applying the 

outer-approximation method  to the MINLP reformulation (PR) reduces to the logic -based outer-

approximation method by Türkay and Grossmann (1996). The reason is that the master problem 

for both methods becomes identical. 

 

NUMERICAL RESULTS 

In this section, we present the comparison o f the proposed branch and bound algorithm with 

standard branch and bound algorithm. Both algorithms use a depth -first search rule. All the 

example problems were solved with GAMS (Brooke et al., 1997) on a 300MHz Pentium II PC. 

The GAMS/CONOPT NLP solver was used in both algorithms and comparisons were also 

performed with GAMS/DICOPT++.  

 

EXAMPLE 2 

The corresponding GDP problem taken from Grossmann and Kravanja (1997) is given by (7). 

The global optimal solution is Y* = (false,true,false), x* = (1,1), and Z* = 3.5.  
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As seen in Table 3, the solution of problem (7) with a standard branch and bound algorithm 

applied to the big-M MINLP formulation (Grossmann and Kravanja, 1997) predicts a lower 

bound of 2.532 and requires 5 nodes for the t ermination. In contrast, by applying the proposed 

specialized branch and bound method to the GDP in (7) only 3 nodes are required, which is 

largely due to the improved lower bound of 3.468 that is predicted.  

 

EXAMPLE 3: JOBSHOP SCHEDULING PROBLEM  

The next example is scheduling problem with 3 jobs and 3 stages (Raman and Grossmann, 

1994). The objective of the following GDP model is to minimize the makespan:  
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The optimal solution has a makespan of Z* = 11 hours, Y* = (false,true,false), and x* = 

(3,0,1). This optimal schedule is shown in Figure 7. When the model in (8) is converted into a 
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big-M MILP (BM), a standard BB solves this problem in 13 nodes. In contrast, the proposed BB 

solves the GDP in (8) in only 5 nodes. In this case the lower bound from the linear convex hull 

(8.162) is not much tighter than that of big -M relaxation (8.000). However, the proposed 

algorithm reduces the number of nodes significantly.  

 

EXAMPLE 4: PROCESS NETWORK SUPERSTRUCTURE  

This example was originally p roposed by Duran and Grossmann (1986) as an MINLP problem.  

The model is given as a GDP problem by Türkay and Grossmann (1996).  
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Logic Propositions: 
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The optimal solution  is Z* = 68.01, Y* = (false,true,false,true,false,true,false,true), and x* = 

(4.294,0,0,4.294,2,0.667,0.203,0.464,0,0.464,1.333,1.333,2,0.267,0,0,0.58,0.715,2,1.648,0,0,1.6

48,1.381,0.58). Figure 8 shows the superstructure of the process , and Figure 9 shows its optimal 

configuration . The Boolean variables Yk denote the existence or non-existence of process 1-8.  

As seen in Table 4, the proposed algorithm applied to the GDP in (9) -(11) finds the optimal 

solution in only 5 nodes. Using the big -M formulation re ported by Duran and Grossmann (1986), 

17 nodes were required with the standard branch and bound method, and 12 nodes with the 

branch and cut by Stubbs and Mehrotra (1999). As seen in Figure 10, we first consider the 

convex hull of each of the eight disjunc tions and the weight of the first term in each disjunction 

is shown. The relaxed optimum objective obtained at the root node, 62.48, is quite close to the 

optimal solution 68.01 of GDP problem. Since the second term in each disjunction sets a subset 

of the variables to zero, we consider only the weight of the first term in each disjunction ( λ1k). 

The eight weights shown in Figure 10 correspond to each Boolean variable Yk. At the root node, 

λ12 has the largest fractional value. At the first node, we fix the first term of the second 

disjunction (set Y2 as true) and consider the convex hull in each of the remaining seven 
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disjunctions, k = 1,3,4,5,6,7,8. After fixing λ12 = 1, the optimal solution at the first node has only 

one fractional weight, λ13. So λ13 is selected and fixed as 1 at the second node. The solution of 

the second node yields the upper bound 71.79. After backtracking, the global optimal solution, 

68.01, is obtained at the third node. At the fourth node, a lower bound 75.01 is obtained with 

fractional λ1k. Since this lower bound is greater than the current upper bound of 68.01, the search 

stops.   

Table 5 shows the comparison with other algorithms when the problem (9) -(11) is 

reformulated as the MINLP problem (PR) with the convex hull representation  for the 

disjunctions. Note that the proposed BB algorithm and the standard BB yield the same lower 

bound (62.48) since they start by solving the same relaxation problem of (PR). The difference in 

the number of nodes lies in the branching rules. The OA met hod requires 3 major iterations and 

the first relaxed solution is lower than that of BB method. OA, GBD and ECP start with initial 

guess Y0 = [1,0,1,1,0,0,1,1]. Note that in the GBD and OA methods, one major iteration consists 

of one NLP subproblem and one MILP master problem. Again, the proposed algorithm yields the 

tightest lower bound and requires the fewest number of subproblems.  

For comparison, the logic -based OA method by Türkay and Grossmann (1996) yields the 

lower bound 67.9 with 3 initial NLP subp roblems (NLPS) and finds the optimal solution (68.01) 

in one major iteration requiring a total of 4 NLP and 2 MILP’s . The proposed method requires 5 

NLP’s.  

 

EXAMPLE 5: OPTIMAL POSITIONING OF A NEW PRODUCT 

The fifth example problem consists in determining the optimal positioning of a new product in a 

multiattribute space (Duran and Grossmann, 1986). Here we consider a market with a set of 

existing products (M) and a set of consumers (N). The existing products can be located in a 

multiattribute space of dime nsion K with coordinates δjk, j = 1,… , M, k = 1,… , K. Each consumer 

is characterized by an ideal point zik, and a set of weights wik, i = 1,… , N, k = 1,… , K both 

representing consumer’s concept of an ideal product. A region which defines closeness to the 

ideal point for each consumer can be determined in terms of the existing products. Based on 

these criteria, a consumer is assumed to select a product closest to the ideal point. The objective 

is to design the optimal location of the product, xk, k = 1,… , K to maximize the profit. The 

revenue of the new product from sales to consumer i is given ci, and f(x) is the cost of reaching 
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locations of the new product within an attribute space. This example was formulated as an 

MINLP problem by Duran and Grossmann (19 86), and can be expressed as the following GDP 

problem.  
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The data for 10 existing products, 25 consumers, 5 attributes, and the GDP problem are 

shown in Appendix C. The optimal solution is Z* = -8.064, Y*1,6,8,15,17,20,25 = true, and x* = 

(2,7.792,6.056,3.573,4). 

The lower bound obtained from the relaxation of model (PR) (-8.685) is much closer to the 

optimal solution ( -8.064) than that of the big -M formulation (BM) by Duran and Grossmann 

(1986) (-19.10) (see Table 6). The tightness of the lower bound substantially reduces the number 

of nodes in the BB algorithm (89 vs. 11). Also, model (PR) is solved in 3 major iterations by the 

OA algorithm compared with 9 of model (BM).    

 

EXAMPLE 6: DESIGN OF A MULTI-PRODUCT BATCH PLANT 

The last example is a batch plant design with multiple units in parallel and intermediate storage 

tanks (Ravemark, 1995; Vecchietti and Grossmann, 1999). This problem consists of determining 
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the volume of the equipment, the number of units in parallel, and the volu me and location of the 

intermediate storage tanks. The objective is to minimize the investment cost. The GDP model is 

as follows: 
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The disjunctions correspond to the storage tank volume and the batch size. The objective 

function is n onlinear  and convex, and the convex hull is linear because the constraints in the 

disjunctions are linear. The data and the optimal solution are shown in Appendix C . The optimal 

structure, which has a cost of 261,883, is shown in Figure 11. The relaxation gap is 14.4% (PR) 

vs. 16.2% (BM). The proposed BB significantly reduces the number of nodes by 81% (391 vs. 

73) compared to the standard BB (see Table 6). When the OA algorithm is applied to both model 

(BM) and (PR), it takes more CPU time to solve model (PR) than (BM) (40.91 vs. 13.47 sec).  
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CONCLUSION 

A novel solution algorithm has been proposed for GDP problems which correspond to 

discrete/continuous optimization problems that involve disjunctions with nonlinear inequalities 

and logic propositions. A n ew nonlinear relaxation of the GDP problem and its properties have 

been presented. The proposed relaxation problem (CRP) of the GDP problem is based on the 

convex hull of each nonlinear disjunction, and is used for the reformulation of the GDP problem 

as the MINLP problem (PR), which can be solved with MINLP algorithms such as BB, OA, 

GBD, and ECP. The relation of problem (PR) with the logic based outer -approximation 

algorithm by T ürkay and Grossmann was established. A special purpose branch and bound 

algorithm for the GDP problem was also proposed based on the CRP problem.  

The numerical results of six GDP problems showed that the proposed branch and bound 

algorithm, which makes use of the relaxation (CRP), requires fewer nodes and less CPU time 

than the st andard branch and bound method which makes use of the big -M relaxation. These 

GDP problems were also reformulated as the MINLP problem (PR), and solved by existing  

MINLP algorithms.  
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APPENDIX A 

Proof of Convex Hull 

Theorem 2. The convex hull of the disjunction in (4) is given by  
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Proof. The convex hull of the disjunction in (4) can be expressed as a convex combination of  

multipliers λj that multiply the constraints in the disjunction.  
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The equation (A.3) can be linearized by setting cj = cλj, which leads to, 

(A.5)                                                       , Jjc jjj ∈= λγ  

The inequality (A.2) is generally nonconvex due to the bilinearity that is introduced by the 

product. We can convexify, however, the inequality by defining the new variable νj = xλj. From 

the convexity condition of λj, the following equations hold.  
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Furthermore, rewriting (A.2) in terms of νj and λj, for λj ≥ 0, 

(A.8)                                               ,0)/?( Jj g j
j

jj ∈≤λλ  

From Hiriart -Urruty and Lemaréchal (1993), the above inequality is convex. From the 

assumption, νj is bounded by 

(A.9)                                              ,?0 Jj U jj
j ∈≤≤ λ  

where Uj is an upper bound for each νj. Hence, the convex hull is given by the equations and 

inequalities in (A.1).                                                                                                                        ¦  

 

APPENDIX B 

Relation to logic-based Outer-Approximation Method for problem (DP) 

In the algorithm by Türkay and Grossmann (1996), which addresses the solution of problem 

(DP), the NLP subproblem for fixed values of the Boolean variable s Yk
l at iteration l, is given by, 
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The outer-approximation  master problem is given by  the following disjunctive problem in 

which the nonlinear constraints are linearized at the optimal solutions of problem (FX -DP), 
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The index l = 1,2,… ,L corresponds to the iteration counter, while KL
k is the set of those iterations 

in which the left term of the k-th disjunction in (DP) is active, thus yielding a linear 

approximation for the inequality gk(x) ≤ 0. Problem (MP) can be transformed into the following  

MILP problem by using the convex hull of each disjunction with linearized constraints   (see 

equation (5)):  
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where xNk is the vector of variables which are non -zero when Yk is false, while xZk is the vector of 

variables that takes a value of zero. This partition of the continuous variables x is performed 

according to the definition of the matrix Bk in (DP). 

Since each disjunction must have at least one linearization, several NLP  subproblems must be 

solved initially. The fewest number of such NLP subproblems can be determined from a set 

covering problem (Türkay and Grossmann,  1996). 

For the case of two terms in each disjunction in problem (DP), problem (PR) reduces to,  
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where x = [xZ, xN]. Note that the above constraints have been simplified because νZ
2k = 0 since 

the corresponding variables xZ take a value of zero in the second term of the disjunction.  

For fixed Yk
l in (PRT) we have, ,0,1 11  is false  if Y? is true  if Y? l

k
l
k

l
k

l
k == with which problem 

(PRT) becomes: 
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It is clear that  for fixed Yk
l the NLP subproblem (FX-PRT) is identical to problem (FX -DP). 

Rather than linearizing the  original  constraints as in problem (MP), we linearize the nonlinear 

convex hull formulation in (P RT) to define the master problem of the outer -approximation 

algorithm . Then the corresponding MILP master problem is given as follows, 
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Note that if we let xl = (ν1k,l/λl
1k) and treat λ1k as binary variable yk, then the linearized 

constraints (M-PRT) and the convex hull of the linear disjunction in problem  (DP-MP) are the 

same. Also, the partition of x in non -zero and zero variables is used in the same way as in (DP -

MP). Hence, the MILP problem in (M-PRT) is identical to the  MILP master problem (DP-MP) 

of Türkay and Grossmann (1996) . Thus, we can conclude that for the case of problem (DP), 

applying the outer -approximation method to the MINLP reformulation (PR) reduces to the logic -

based outer-approximation method by Türkay and Grossmann (1996).  

 

APPENDIX C 

Data for GDP example problems 5 and 6 

EXAMPLE 5 

i Ideal points (zik) 
K =1     2         3          4          5 

Attribute weights (wik) 
k =1      2         3         4          5 

1 
2 
3 
4 
5 

2.26    5.15    4.03    1.74    4.74 
5.51    9.01    3.84    1.47    9.92 
4.06    1.80    0.71    9.09    8.13 
6.30    0.11    4.08    7.29    4.24 
2.81    1.65    8.08    3.99    3.51 

9.57    2.74    9.75    3.96    8.67 
8.38    3.93    5.18    5.2      7.82 
9.81    0.04    4.21    7.38    4.11 
7.41    6.08    5.46    4.86    1.48 
9.96    9.13    2.95    8.25    3.58 
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6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

4.29    9.49    2.24    9.78    1.52 
9.76    3.64    6.62    3.66    9.08 
1.37    6.99    7.19    3.03    3.39 
8.89    8.29    6.05    7.48    4.09 
7.42    4.60    0.3      0.97    8.77 
1.54    7.06    0.01    1.23    3.11 
7.74    4.4      7.93    5.95    4.88 
9.94    5.21    8.58    0.13    4.57 
9.54    1.57    9.66    5.24    7.90    
7.46    8.81    1.67    6.47    1.81 
0.56    8.1      0.19    6.11    6.40  
3.86    6.68    6.42    7.29    4.66 
2.98    2.98    3.03    0.02    0.67 
3.61    7.62    1.79    7.8      9.81 
5.68    4.24    4.17    6.75    1.08 
5.48    3.74    3.34    6.22    7.94 
8.13    8.72    3.93    8.8      8.56 
1.37    0.54    1.55    5.56    5.85 
8.79    5.04    4.83    6.94    0.38 
2.66    4.19    6.49    8.04    1.66 

9.39    4.27    5.09    1.81    7.58 
1.88    7.2      6.65    1.74    2.86 
4.01    2.67    4.86    2.55    6.91 
4.18    1.92    2.60    7.15    2.86 
7.81    2.14    9.63    7.61    9.17 
8.96    3.47    5.49    4.73    9.43 
9.94    1.63    1.23    4.33    7.08 
0.31    5         0.16    2.52    3.08 
6.02    0.92    7.47    9.74    1.76 
5.06    4.52    1.89    1.22    9.05 
5.92    2.56    7.74    6.96    5.18 
6.45    1.52    0.06    5.34    8.47 
1.04    1.36    5.99    8.10    5.22 
1.40    1.35    0.59    8.58    1.21 
6.68    9.48    1.6      6.74    8.92 
1.95    0.46    2.9     1.79    0.99 
5.18    5.1      8.81    3.27    9.63 
1.47    5.71    6.95    1.42    3.49 
5.4      3.12    5.37    6.1      3.71 
6.32    0.81    6.12    6.73    7.93 

j Existing products (δjk) 
k =1       2         3         4         5 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.62    5.06    7.82    0.22    4.42 
5.21    2.66    9.54    5.03    8.01 
5.27    7.72    7.97    3.31    6.56 
1.02    8.89    8.77    3.1      6.66 
1.26    6.8      2.3      1.75    6.65 
3.74    9.06    9.8      3.01    9.52 
4.64    7.99    6.69    5.88    8.23 
8.35    3.79    1.19    1.96    5.88 
6.44    0.17    9.93    6.8      9.75 
6.49    1.92    0.05    4.89    6.43 

 

EXAMPLE 6  

JjIiBbJjVvVvNnMm ijijjjjjjjjj ∈∈=∈==== ;),log(   ;),log(),log(),log(),log( 
))  

i = products; j = stages; H = horizon time = 6000 h  

Qi = production rate of product i: A = 250000, B = 150000, C = 180000, D = 160000, E = 

120000 

Sij = size factor for product i at stage j 

i \ j 1 2 3 4 5 6 
A 7.9 2.0 5.2 4.9 6.1 4.2 
B 0.7 0.8 0.9 3.4 2.1 2.5 
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C 0.7 2.6 1.6 3.6 3.2 2.9 
D 4.7 2.3 1.6 2.7 1.2 2.5 
E 1.2 3.6 2.4 4.5 1.6 2.1 

 

Pij = processing time of product i at stage j 

i \ j 1 2 3 4 5 6 
A 6.4 4.7 8.3 3.9 2.1 1.2 
B 6.8 6.4 6.5 4.4 2.3 3.2 
C 1.0 6.3 5.4 11.9 5.7 6.2 
D 3.2 3.0 3.5 3.3 2.8 3.4 
E 2.1 2.5 4.2 3.6 3.7 2.2 

 

Optimal Solution: Y* = {false,true,false,false,false} 

j 1 2 3 4 5 6 
Vj 2491.9 1030 2127 2807 2495 2261 
Nj 1 1 1 1 1 1 
Mj 2 2 2 2 1 1 

Vj (storage) 0 8637.8 0 0 0 0 
Cost (Z*) 261,883  
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Table 1. Disaggregated variables and local optimal points of example 1.  

Feasible 
Region 

λj zj
 = νj/λj f(νj/λj) + γj Local optimal 

point (x1, x2) 
Local optimal 

value 
S1 0.016 (0.000, 1.000) 12.000 (0.832, 0.555) 8.7890 
S2 0.955 (3.306, 1.720) 1.1720 (3.293, 1.707) 1.1716 
S3 0.029 (1.306, 4.720) 13.268 (2.447, 3.106) 4.5279 

 

Table 2. Comparison of the results for example 1.  

Formulation Opt. 
Solution 

Lower 
Bounda Method Standard 

BB 
Proposed 

BB OAb GBDc ECPc 

(BM) 1.172 1.013 
Major 
Iter. 

/Nodes 
5 - 3 3 19 

(PR) 1.172 1.154 
Major 
Iter. 

/Nodes 
- 3 2 3 20 

aNLP relaxation. bOA begins with NLP relaxation. cGBD and ECP begin with initial guess y0 = (1,0,0).  

 

Table 3. Comparison of the results for example 2.  

Method No. of NLP Subproblems Lower Bound 
Standard BB-formulation (BM)  5 2.532 
Proposed BB-formulation (PR)  3 3.468 

 
 

Table 4. Comparison of branch and bound methods for example 4.  

 Method Standard 
BB 

Branch 
& Cut 

Proposed 
BB 

Optimal 
Solution 

Nodes 17 12 (16 Cuts) - Formulation 
(BM) Relaxed Opt. 15.08 15.08 - 

68.01 

Nodes - - 5 Formulation 
(PR) Relaxed Opt. - - 62.48 

68.01 

 

Table 5. Comparison of algorithms for formulation (PR) of example 4.  

Method* Standard 
BB 

Proposed 
BB 

OA 
(Major) 

GBD 
(Major) 

ECP Logic-based 
OA* 

No. of nodes 
/ Iteration 

11 
(Nodes) 

5 
(Nodes) 

3 
(Iter.) 

8 
(Iter.) 

7 
(Iter.) 

3 subproblem 
1 Major Iter. 

Relaxed Optimum 62.48 62.48 8.541 -551.4 -5.077 67.9 
*All methods except logic -based OA solve the reformulated MINLP problem (PR). 
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Table 6. Comparison of formulations (BM ) and (PR) for GDP examples. 

OA  
Major It.      CPU sec 

BB  
Nodes        Lower Bound 

Problem  
Number 

GDP  
Global  
Opt. (BM) (PR) (BM) (PR) 

2 3.500    3      0.641    3      1.060       5       2.532    3          3.468 
4* 68.01  11      3.044    2      1.094     17       15.08    5          62.48 
5 -8.064    9      5.817     3      2.863     89      -19.10  11         -8.685 
6 261,883  10      13.47  16      40.91   391      219,335  73        224,165 

(*with logic propositions)  
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 Figure 1. Feasible region of example 1.  
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Figure 2. Convex hull of feasible region . 
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Figure 3. The proposed branch and bound algorithm, for | K| = 1. 

Set Z* = ∞ , select ε .
Set T = { j | j = 1,2,… ,m}

Solve (CRP) with conv(Sj), j∈T.

Select Sj with λj closest to one. 
Solve (P1) with fixed Sj, ZU = f(xU) 

T = T \ j
if ZU ≤Z* then Z* = ZU , x* = xU

T is empty ? Y

N

START

All λj are 0 or 1 ?
Y

N

Global Optimal Solution
Z* = f(xL)

x* = xL

END

Solve (CRP) with conv(Sj), j ∈ T.
ZL = f(xL) 

ZL ≥ ZU ?
N

Y

Global Optimal Solution 
Z* = f(xU), x* = xU
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Figure 4. Partitionable and Non -partitionable sets. 
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Figure 5. The proposed branch and bound tree: example 1.  
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Figure 6. Standard branch and bound tree: example 1.  

Fix Y1 = 1 
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 Fix Y2 = 0 Fix Y2 = 1 

Optimal Solution  
Z* = 1.172

Y* = [ 0,1,0 ]
ZU = 4.528
Y = [ 0,0,1 ]

0
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   : Branching Var.  
Bold : Fixed Var.
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Figure 7. The optimal schedule for example 3.  
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Figure 8. Superstructure for example 4.  

 

1

2

6

7

4

3

5 8

x1

x4

x6

x21

x19

x13

x14

x11

x7

x8

x12

x15

x9

x16 x17

x25
x18

x10

x20

x23x22 x24x5

x3x2

Y1

Y8

Y7

Y6

Y4

Y5

Y3

Y2



42

Figure 9. The optimal structure of example 4.  
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Figure 10. The proposed branch and bound method for example 4.  

ZL = 62.48
λ1k = [0.31,0.69,0.03,1,0,1,0,1]

ZU = 68.01 = Z*
λ 1k = [0,1,0,1,0,1,0,1]

Optimal Solution

ZU = 71.79
λ 1k = [0,1,1,1,0,1,0,1]

Feasible Solution
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ZL = 65.92
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 Figure 11. The optimal plant structure of example 6.  
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