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ABSTRACT

Generalized Digjunctive Programming (GDP) has been introduced recently as an alternative
model to MINLP for representing discrete/continuous optimization problems. The basic idea of
GDP consists of representing discrete decisions in the continuous space with disjunctions, and
constraints in the discrete space with logic propositions. In this paper, we describe a new convex
nonlinear relaxation of the nonlinear GDP problem that relies on the use of the convex hull of
each of the disjunctions involving nonlinear inequalities. The proposed nonlinear relaxation is
used to reformulate the GDP problem as a tight MINLP problem, and for deriving a branch and
bound method. Properties of these methods are given, and the relation of this method with the
Logic Based Outer-Approximation method is established. Numerical results are presented for
problems in jobshop scheduling, synthesis of process networks, optimal positioning of new

products and batch process design.

Keywords. Generalized disjunctive programming, branch and bound, mixed-integer nonlinear

programming, nonlinear convex hull.

INTRODUCTION
Mixed Integer Non-Linear Programming (MINLP) models are widely wused in
discrete/continuous optimization (Grossmann and Kravanja, 1997). MINLP problems arise, for
instance, in process synthesis (heat exchanger networks and reactor networks), in process design
(optimal positioning of product and feed location in distillation column), in the synthesis of
process networks, and in the design and scheduling of batch and continuous multiproduct plants.
Algorithms for solving MINLP problems include Branch and Bound (BB) (Gupta and
Ravindran, 1985; Borchers and Mitchell, 1994; Stubbs and Mehrotra, 1999; Leyffer, 1999),
Outer-Approximation (OA) (Duran and Grossmann, 1986; Yuan et al., 1988; Fletcher and
Leyffer, 1994), Generalized Benders Decomposition (GBD) (Geoffrion, 1972), Extended Cutting
Plane (ECP) (Westerlund and Pettersson, 1995), LP/NLP based branch and bound (Quesada and
Grossmann, 1992), and branch-and-cut (Stubbs and Mehrotra, 1999). For a detailed review, see
Grossmann and Kravanja (1997).

Generalized Digjunctive Programming (GDP), which can be regarded as a generalization of
disiunctive programming (Balas, 1985), has been introduced as an alternative model to the
MINLP problem that uses disjunctions and logic propositions (Raman and Grossmann, 1994).



While the MINLP model is based entirely on agebraic equations and inequalities for
discrete/continuous optimization problem, the GDP model allows a combination of algebraic and
logical equations, which facilitates the representation of discrete decisions. Turkay and
Grossmann (1996) have proposed a logic-based Outer-Approximation algorithm for solving
nonlinear GDP problems for process networks involving two terms in each disunction. Th is
algorithm is based on the idea of extending the Outer -Approximation algorithm by solving NLP
subproblems in reduced space, and MILP master problems corresponding to the convex hull of
the linearization of the nonlinear inequalities. In addition, several NLP subproblems must be
solved to initialize the master problem in order to cover al the terms in the digunctions. This
algorithm has been implemented in LOGMIP, a computer code developed by Vecchietti and
Grossmann (1999).

In this paper, we address the solution of GDP problems that involve disjunctions with
multiple terms. We first describe the convex hull of a disunction involving convex nonlinear
inequalities, which provide the tightest relaxation of the disunction. The equations describing
the convex hull are used as a basis to develop a convex nonlinear relaxation of the GDP problem.
This NLP relaxation can be used for reformulating it as an MINLP problem, or for developing a
gpecia purpose branch and bound method which will be described in detai I. We examine the
relation of the proposed method with the one Tirkay and Grossmann (1996) which can handle
only disjunctions with two terms and is restricted to process networks. We describe in this paper
the basic ideas of the proposed method, and emphasize its geometrical interpretation. Detailed
proofs can be found in Lee and Grossmann (1999). The proposed methods are applied to small
analytical examples, and to problems dealing with jobshop scheduling, process networks,
optimal positioning of new produ cts, and design of a batch process.

GENERALIZED DISJUNCTIVE PROGRAMMING

Consider the Generalized Disjunctive Programming problem (Raman and Grossmann, 1994),
which is an extension of the work of Balas (1985). In general, the GDP model includes Boolean
variables, digunctions and logic propositions as shown in problem (P),
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Here x T R’ is the vector of continuous variables and Yj are Boolean variables. ¢ 1 R are
continuous variables and gy are fixed charges; f: R'® R'isthe term for continuous variables x in
the objective function and r: R” ® R" are common constraint sets that hold regardless of the
discrete decisions. f(x) and r(x) are convex functions. A disjunction is composed of an OR
operator (U) and a number of terms. In each term, there are the Boolean variables Yy, a set of
convex nonlinear inequalities gi(X), g R' ® R, il Iy, k1 K, where I is an index set of
inequalities, and a cost variable cy. If Y« is true, then gi(X) £ 0 and ¢« = gk are enforced.
Otherwise, the corresponding constraints are ignored. We assume here that each term in the

disiunctions gives rise to a non-empty feasible region. In process synthesis problems, g(x) are
heat or mass balance equations, or specifications of the process, and g are fixed charges for each
process. Ji is an index set of the terms for each disjunction k, k= {j |j = 1,2,...mc}, kT K.
Finally, W(Y) = True correspond to logic propositions in terms of the Boolean variables. The

logic propositions W(Y) are expressed in Conjunctive Normal Form (CNF):

W)= § 0 ) 0 @Y% (1)

s=1,2,..,S € k)i R ik Q.

where Ps is the set of Boolean variables Yjx which are true, and Qs is the set of Boolean variables
Yjk which are falsein clause s, s=1,2,...,S In CNF, every clause that is expressed in terms of the
‘OR’ operator must be true.

In problem (P), the functions f(x), r(x), and g(x) are assumed to be convex and bounded.
Also, it is assumed that problem (P) has a non -empty compact feasible region. The GDP problem
(P) can be reformulated as the following MINLP problem (BM) by replacing the Boolean
variables Yjc by binary variables yj, and using big-M constraints. The logic constraints W(Y) are
converted into linear inequalities (Williams, 1985) which leads to the following big -M MINLP,



min Z:é égjkyjk +f(x)
KK T3,
st. r(x)£O0
gx()EM, (1- yjk)’jT 'Jk’kT K (BM)
é Yi =1 kT K
N
Ay £ a
x30,y, 1 {08,jT J ki K
In this model, Mk are the “big-M” parameters that render the inequalities gj(X) redundant
when yjx = 0. The inequalities Ay £ a can be systematically derived from the CNF form of WY)
as discussed in Raman and Grossmann (1991). Note also that the relaxation of (BM) is obtained

by treating the binary variables as continuous intherange 0 £ Yjx £ 1.

ILLUSTRATIVE EXAMPLE 1

Consider the following GDP problem with one disunction,
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There are three terms in the digunction, and exactly one of them must be true. The feasible
region of (2) is given by three disconnected circles as seen in Figure 1. The global optimal
solution of (2) is Z* = 1.172, Y* = (falsetrue,false) and x* = (3.293,1.707).

By using 0-1 variables y, (2) can be reformulated as an MINLP problem (BM) with big-M
constraints:

minZ = (x, - 3° +(x, - 2)° +2y, +y, +3y,
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If y1 = 1, then the first inequality constraint is enforced and if y; = O, it becomes redundant
assuming that M is a sufficiently large number. If the binary variab lesy; are treated as continuous
variables in the MINLP problem (3), then for M = 30 the relaxed MINLP problem of (3) has the
optimal solution Z* = 1.031 and y* = (0.029,0.971,0).

GDP PROBLEM WITH ONE DISJUNCTION

For simplicity, we will first assume that in problem (P) we have only one disunction, i.e., | K| =1.
Hence, each term j in the disjunction has only one Boolean variable Y;, and the index k can be
removed from (P) leading to (P1),
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Each term in the disjunction defines afea sibleregion S, j1 J, where § = {(x,c) | c= g, r(X)
£0, g(x) £ 0}. Note that problem (2) is a particular instance of problem (P1).
In the following sections, we derive a nonlinear relaxation of problem (P1) which is tighter
than the relaxation of t he big-M MINLP problem (BM). We use the proposed NLP relaxation as
a basis for deriving an MINLP reformulation and propose a specia purpose branch and bound

method. We then generalize this method to problem (P) which involves multiple disunctions (| K|
>1).

CONVEX HULL OF NONLINEAR DISJUNCTION
Consider the following digjunction that arises in problem (P1):
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where the functions g;j(x) are assumed to be bounded convex functions over x. In addition, X is



assumed to be bounded, i.e., 0 £ x £ U. The digunction means that exactly one of the Boolean
variables Y; must be true, which in turn means that gj(x) £ 0 and ¢ = g. These constraints are
redundant when ; is false.

The convex hull of the digunction in (4) is given by al points th at can be generated from
taking the linear combination of points in the feasible regions S, j1 J. Figure 2 illustrates
geometrically the convex hull of the disiunction ( XI S)H)UXI S)UXI ).

Asis shown in Appendix A, the convex hull of (4) is given by the following set of equations:
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The equations in (5) define a convex set in the space ( x, ¢, n, | ). This property follows from
the fact that al equationsin (5) are linear, and the last inequality is convex. As proven by Hiriart-
Urruty and Lemaréchal (1993), if g(X) is convex and bounded over the feasible regionand | 3 0,
then the function h(n,l ) =1 g(n/l') is a bounded convex function when h(0,0) is defined as its
limiting value, 0. Hence the inequalities | g(n/l ) £ O are convex (see also Stubbs and Mehrotra,
1999).

The equations in (5) describe the convex relaxation of the disjunction in (4). Note in (5) that X
is expressed as the sum of disaggregated variables n', and ¢ is expressed as a convex combination
of g with weight factors | ;. The relaxation in (5) provides the tightest relaxation of the
digunctive feasible region of (4) as it corresponds to its convex hull. Also, if | ;® 1, then X ® n
andc® g.|;=1impliesthat Y;istrue and the j-th constraint | ,-g,-(nj/I i) £0in (5) isthe same as
the constraint of the j-th term in (4). Hence, the j-th term in the disjunction of (4) is satisfied
when | ; equals one in (5) (] is true). Finally, notice that if gj(x) is alinear function, (5) reduces
to the equations proposed by Balas (1985).



NONLINEAR CONVEX RELAXATION PROBLEM

We define a continuous relaxation of (P1) using as a basis the equations of the convex hull (5).
Since this relaxation problem has no Boolean variables, the continuous variables | ; are used
instead, and the logic propositions are represented with the inequalities Al £ a. The Convex
Relaxation Programming (CRP) problem for one disunction (| K| = 1) is then given as follows:
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where for implementation the inequality Ijgj(nj/I ;JEO must be reformulated as

(I, +e)g;(n o ; +€)) £0where e is a small tolerance (typical value 0.0001). Note that in

(CRP), the number of constraints increases by (n+n” n+1), where n is the dimension of vector x.
This is due to the constraints x = S/, 0 £ ' £ 1,U; and Sl ; = 1. The number of variables
increases by m" (n+1), where m is the number of terms in the digunction ( m = |J]). Problem
(CRP), which can be regarded as an extension from the work of Ceria and Soares (1999) for
disjunctive programming, corresponds to a convex nonlinear programming problem . This
follows from the fact that the logic inequalities are linear and the feasible region of problem
(CRP) is convex. Since the objective function contains the linear summation term and f(X) is
convex, the objective function is convex. Therefore, problem (CRP) is a convex NLP problem.

It also follows that if the problem (GDP) has a bounded optimal solution, then the optimum of
(CRP) is unique and corresponds to its global minimum. Furthermore, the feasible region of
(CRP), Fg, is arelaxation of the feasible region of problem (P1), Fp. Therefore, since Fp | Fe,
and the objective function of (CRP) is also a relaxation of the objective function of (P1), the
solution of (CRP), (Z")*, yields a lower bound of the optimal solution of problem (P1), Z*, i.e.,



(ZH* £ 7*.

The above properties of (CRP) can be exploited to reformulate problem (P1) as an MINLP.
Alternatively we can develop a special branch and bound search procedure as will be shown later
in the paper. It should be noted that in problem (CRP), n' are the disaggregated variables of the
vector of continuous variables x, while | ; are weights that measure the “closeness’ by which
each term of the disjunction is satisfied (x ® nl as | i ® 1). Generally, solving an optimization
problem with problem (CRP) yields a solution | j with fractional values. However, when one of
the | ; becomes 1 and the other weights are zero, problem (CRP) becomes problem (P1) with

fixed Y; = true and al the other Yi¢je j = false in the di gunction.

EXAMPLE 1 CONTINUED

If we apply the (CRP) model to the GDP problem (2), the convex NLP relaxation problem is as
follows:
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To avoid division by zero in the nonlinear constraints, e isintroduced as a small tolerance (e =
0.0001). The optimal solution of (6) is Z- = 1.154 and X" = (3.195,1.797). Notice that the lower
bound (1.154) is rather tight compared to the optimal solution (1.172). Also, the lower bound of
the relaxed big-M MINLP problem (3) is lower than the lower bound of CRP problem (1.031 vs.
1.154). In fact, the relaxation gap of the CRP problem (6) is 1.54%, while the relaxation gap of
relaxed MINLP problem (3) is 12.0%.

By letting z = ni/l j from the solution in (6), X" can be expressed as a convex combination of Z



with weight | ; as shown in Figure 1 ( X = é | ;z; ). Two important points are noted. (i) Each z
i

lies at the boundary of each feasible region § when | ; is nonzero. This means that all the relaxed

nonlinear constraints in (6) are active. The objective function value at each z, f(n'/l i) + 0, yields
an upper bound to the local solution of that feasible region (see Table 1). (ii) Each | ; shows how
close the optimal point X" is to each feasible region S (the larger | ; is, the closer X" isto S). From
this information, a good guess is that the global optimal solution of GDP problemisin §which
has the largest | (see z in Figure 1). Therefore, when we apply a branch and bound method to

GDP problem, | j can be used as an indicator showing which Boolean variable should be selected

as a branching variable at the next node in the search tree.

SOLUTION METHODS
Having derived the nonlinear convex relaxation problem (CRP), there are two major solution
approaches one can take. The simplest and most direct one is to reformulate (CRP) as the
following MINLP problem (|K| = 1).
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Again, the tolerance e (e.g. 0.0001) is introduced in the constraints to avoid division by zero,
and an additional inequality in terms of avalid upper bound U; has been introduced to ensure that
n' = 0 when | j = 0. Lee and Grossmann (1999) proved that the lower bound predicted by the
relaxation of problem (P2) is greater than or equal to the lower bound predicted by the relaxation
of the MINLP counterpart as given by problem (BM).
Problem (P2) can be solved with any standard method for MINLP problem discussed in the



introduction section (e.g., Branch and Bound, Outer -Approximation, Generalized Benders
Decomposition, and Extended Cutting Plane). The other alternative is to develop a specific
branch and bound method that exploits more directly the property of the convex hull as will be

discussed in the next section.

A BRANCH AND BOUND ALGORITHM WITH CONVEX RELAXATION
A branch and bound algorithm with the proposed nonlinear convex relaxation in (CRP) is
outlined in this section for the case of only one digunction (| K| = 1).

First, the CRP problem of the given GDP problem is solved. The branching rule that can be
used is to select the variable | j closest to 1 because this corresponds to the disjunctive term that
is closest to being feasible. By solving the corresponding NLP subproblem, this generally yields
a good upper bound as was shown in the illustrative example 1.

After branching on one term of digunc tion, we propose to select the convex hull of the
remaining terms of the disjunction jd J, j& j, which have not been examined yet. For the case of
one digunction (|K| =1), this corresponds to the dichotomy:

- dther fixS, or fixconv(_éEJ S,
]
e

This means that either the solution isin the subregion §, or else somewhere in the convex hull
of the remaining set of subregions S j¢T J,j¢ j. As will be shown later with the results, this
branching rule is generally very effective.

Based on the above idea, the main steps of the proposed branch and bound algorithm for | K| =
1 are as follows (see Figure 3):

Branch and bound algorithm for Generalized Digunctive Programming, |K| = 1.
Step O. Initialization

(@) SetzZ* =¥.

(b) Selecte.

(c) SetT=J.

Step 1. CRP problem

(a) Solve the CRP problem with the convex hull of S, jT T.

(b) Obtain the optimal objective value Z- and the optimal point X-.



(c) Ifdlljare0or1,then X" is a feasible solution to the GDP problem (P1). The global optimal
solution is Z-and x". Set Z* = Z"and x* = x". Exit.

(d) Otherwise, X" liesoutside al S (j=1,2,...,m). Go to step 2.

Step 2. Branch on one term

(a) Select Y; withthelargest | j (* 0O, 1) in the solution of CRP problem.

(b) SetY;=trueand Y;c = false, j¢* | (Fix|jasl).

(c) Solve GDP problem (P1) with fixed Y;.

(d) Obtain the optimal objective value 7" and optimal point x".

() SetT =T\j.

(f) 1f zY £ 7*, then set Z* = 7" and x* = x".

Step 3. Check the remaining terms

(@) If Tisempty, then exit.

(b) Elseif T is not empty, then go to step 4.

Step 4. Branch on the remaining terms

(& Fix|;as0 (remove § from convex hull).

(b) Solve the CRP problem with the convex hull of remaining feasible regions ( S, j& j, j& T).

(c) Obtain the optimal objective value Z- and the optimal point X-.

(d) If Z-3 ZY, then exit. The global optimal solution is Z", x".

(e) Elseif Z- < 7", then go to step 2.

REMARKS
The above agorithm has obviously finite convergence since the number of terms in the
disunction is finite. Also, since the nonlinear functions are convex, the subproblems have a
unique optimal solution. Hence, the rigorous validity of the bounds can be guaranteed, with
which the branch and bound method is in turn guaranteed to obtain the globa optimum.
Furthermore, given the strength of the relaxation one can also in general exp ect the enumeration
of fewer nodes.

An important point that is worth noting in the proposed branch and bound enumeration is the
case when the proposed branching rule does not yield a true partition. This may arise as follows.
After searching one particular feasible subregion j, the convex hull of the remaining feasible

subregions (Sg j¢: j) generally yields an increase to the lower bound. However, if this lower



bound is the same as before, there is the need to verify whether partitioning has in fact take n
place. This can be done by the following test. If X~ T conv(ESg e j), Where X" is the optimal
solution of the parent node, then this is a ‘partitionable set’ (see Figure 4(a)). If x-1 conv(E Se
je j), then the set of subregions is a ‘non-partitionable set’ (see Figure 4(b)) because the point X
remains feasible in the convex hull of the subregion j¢and hence the lower bound remains the
same after branching. This test step can be used in the proposed algorithm to accelerate the
search by avoiding repeated identical lower bounds.

EXAMPLE 1 CONTINUED

Figure 5 shows the corresponding search tree when we apply the proposed branch and bound
algorithm to Example 1. At the root node, the search set is T = {1, 2, 3} and CRP problem (6)
yields a lower bound Z- = 1.154. This optimal point X" lies outside the feasible region of GDP
problem (2) since X" does not satisfy any term in the disjunction (see Figure 1). Hence, this
solution is infeasible for problem (2). Among the weights, | , has the largest value as seen in
Table 1, so we select Y, and set Y-, as true. At the first node, the GDP problem is solved with
fixed Y = (falsetruefalse). Only Y- is set as true and the other Yjcare set as false. It means that
we fix | ;as 1 and other | j as O in problem (6). Therefore, the feasible region is restricted to S
only. Solving problem (2) with Y, = true yields an upper bound Z" = 1.172. Since S; has been
examined, it is removed from the search set, T ={1,2,3}\{2} = {1,3}. At the second node, we
consider the convex hull of § and S. The CRP problem is then problem (6) without the
constraints and variables for S,. By solving this CRP problem, a lower bound Z" = 3.327 is
obtained. Since this lower bound 3.327 is greater than the upper bound Z” = 1.172, the feasible
solution of S and S will be greater than Z- = 3.327 > Z” = 1.172. Hence, the global optimal
solution is Z” = 1.172 and the search ends after 3 nodes.

Table 2 shows the comparison among the standard BB, OA, GBD, and ECP agorithms
applied to the big-M MINLP formulation (3), and the reformulated MINLP (PR) in (6). The
standard BB finds the optimal solution in 5 nodes (see Figure 6), and other algorithms show
almost the same number of major iterations in solving both the big -M and the CRP formulations.
However, the convex hull predicts tighter lower bound than the relaxation of the big -M
formulation. Note that OA requires 2 MILP and 2 NLP subproblems to solve (PR) compared
with 3MILP and 3NLP subproblems to solve (BM). GBD solves 3 MILP and 3 NLP



subproblems for both formulations. ECP solves 19 and 20 MILPs, respectively.

GENERALIZATION TO MULTIPLE DISJUNCTIONS
For the case of multiple disunctions (|K| > 1) as in problem (P), the MINLP reformulation of
(P2) can be readily generalized as follows:
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where the tolerance e is also introduced in the nonlinear inequalities as in (6). The dimension of
the variables in (PR) increases due to the double indicesin n'* and | i Similarly, as in the case of
(P2), MINLP methods such as Branch and Bound, Outer-Approximation, Generalized Benders
Decomposition, and Extended Cutting Plane can be applied to solve problem (PR). Also, the
relaxation of this problem yields stronger lower bounds than the relaxation of problem (BM).

As for the proposed branch and bound, the solution procedure of the GDP problem with a
number of disiunctions, |K| 3 1, can be easily generalized (see Lee and Grossmann, 1999). In this
algorithm, we solve the relaxation of problem (PR), which allows [ j« to be continuous between 0
and 1. This relaxed problem of (PR) corresponds to the CRP problem of GDP problem (P). The
global optimal solution is the best upper bound after termination of the branch and bound

enumeration.

Relation to logic-based Outer-Approximation M ethod
Turkay and Grossmann (1996) proposed a Logic-Based Outer-Approximation algorithm when
the GDP problem (P) is applied to process networks. In this case the GDP has the following

form,



mnzZ=38c +f(x
kl K
st. r(X)£O
& Y. U &Y u
€0, () £04U B x = 05, ki K (DP)
gc.=g. 8 Ec =014
WY) =True
X, ¢, 20, kl K
which in contrast to (P), has only two terms in each disunc tion to denote the existence (Yk) or
non-existence (@Y) of units. In problem (DP) B is a matrix which forces the subset of variables
Xz to zero when Y is false. As shown in Appendix B, an interesting point is that applying the
outer-approximation method to the MINLP reformulation (PR) reduces to the logic -based outer-
approximation method by Tirkay and Grossmann (1996). The reason is that the master problem

for both methods becomes identical.

NUMERICAL RESULTS

In this section, we present the comparison of the proposed branch and bound algorithm with
standard branch and bound algorithm. Both algorithms use a depth -first search rule. All the
example problems were solved with GAMS (Brooke et al., 1997) on a 300MHz Pentium 11 PC.
The GAMS/CONOPT NLP solver was used in both algorithms and comparisons were also
performed with GAM S/DICOPT++.

EXAMPLE 2
The corresponding GDP problem taken from Grossmann and Kravanja (1997) is given by (7).
The global optimal solutionis Y* = (falsetruefalse), x* = (1,1), and Z* = 3.5.
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As seen in Table 3, the solution of problem (7) with a standard branch and bound algorithm
applied to the big-M MINLP formulation (Grossmann and Kravanja, 1997) predicts a lower
bound of 2.532 and requires 5 nodes for the termination. In contrast, by applying the proposed
speciaized branch and bound method to the GDP in (7) only 3 nodes are required, which is
largely due to the improved lower bound of 3.468 that is predicted.

EXAMPLE 3: JOBSHOP SCHEDULING PROBLEM
The next example is scheduling problem with 3 jobs and 3 stages (Raman and Grossmann,
1994). The objective of the following GDP model is to minimize the makespan:

mnzZ=T
st. T3 x +8

T3 X,+5

T3 X,+6
é Y, u.é Y. u
é . ~aVe Lo 8
éxl'X3+5£OCI éxs'xl+2£00
é Y, u.é aY, u
é aYe 0
&%, - X, t1E0 8% - X, +6£0
¢ Yo e oY, U
gxl_X2+5£OH g Xz'X1£O H

T,%,%,%30
Y T {true, falsg ,k =123.
The optimal solution has a makespan of Z* = 11 hours, Y* = (falsetruefalse), and x* =
(3,0,1). This optimal schedule is shown in Figure 7. When the model in (8) is converted into a



big-M MILP (BM), a standard BB solves this problem in 13 nodes. In contrast, the proposed BB
solves the GDP in (8) in only 5 nodes. In this case the lower bound from the linear convex hull
(8.162) is not much tighter than that of big -M relaxation (8.000). However, the proposed

algorithm reduces the number of nodes significantly.

EXAMPLE 4. PROCESS NETWORK SUPERSTRUCTURE
This example was originally p roposed by Duran and Grossmann (1986) as an MINLP problem.
The model is given as a GDP problem by Turkay and Grossmann (1996).
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Logic Propositions:
Y, b Y, UY, UY,
Y, b Y, UY, UY,
Y, P Y, UY,
Y, P Y,
Y, P Y, UY,
Y, P Y, UY, (10)
Y, P Y, UY,
Y. P Y,
Y, b Y,
Y, b Y,
Y, P Y, UY, U(DY, UDY,)

Specifications:
Y, UY,
Y,UY, (12)
YUY,

The optimal solution is Z* = 68.01, Y* = (falsetruefalsetruefalsetruefalsetrue), and x* =
(4.294,0,0,4.294,2,0.667,0.203,0.464,0,0.464,1.333,1.333,2,0.267,0,0,0.58,0.715,2,1.648,0,0,1.6
48,1.381,0.58). Figure 8 shows the superstructure of the process, and Figure 9 shows its optimal
configuration. The Boolean variables Y, denote the existence or non-existence of process 1-8.

As seen in Table 4, the proposed algorithm applied to the GDP in (9) -(11) finds the optimal
solution in only 5 nodes. Using the big -M formulation reported by Duran and Grossmann (1986),
17 nodes were required with the standard branch and bound method, and 12 nodes with the
branch and cut by Stubbs and Mehrotra (1999). As seen in Figure 10, we first consider the
convex hull of each of the eight disjunc tions and the weight of the first term in each digunction
is shown. The relaxed optimum objective obtained at the root node, 62.48, is quite close to the
optimal solution 68.01 of GDP problem. Since the second term in each disunction sets a subset
of the variables to zero, we consider only the weight of the first term in each disunction ( | 1).
The eight weights shown in Figure 10 correspond to each Boolean variable Yi. At the root node,
| 12 has the largest fractional value. At the first node, we fix the first term of the second

digunction (set Y, as true) and consider the convex hull in each of the remaining seven



digunctions, k =1,3,4,5,6,7,8. After fixing | 12 = 1, the optimal solution at the first node has only
one fractional weight, | 13. So | 13 is selected and fixed as 1 at the second node. The solution of
the second node yields the upper bound 71.79. After backtracking, the global optimal solution,
68.01, is obtained at the third node. At the fourth node, a lower bound 75.01 is obtained with
fractiona | 1. Since this lower bound is greater than the current upper bound of 68.01, the search
stops.

Table 5 shows the comparison with other agorithms when the problem (9) -(11) is
reformulated as the MINLP problem (PR) with the convex hull representation for the
disiunctions. Note that the proposed BB algorithm and the standard BB yield the same lower
bound (62.48) since they start by solving the same relaxation problem of (PR). The difference in
the number of nodes lies in the branching rules. The OA met hod requires 3 mgjor iterations and
the first relaxed solution is lower than that of BB method. OA, GBD and ECP start with initial
guess Y° =[1,0,1,1,0,0,1,1]. Note that in the GBD and OA methods, one major iteration consists
of one NLP subproblem and one MILP master problem. Again, the proposed algorithm yields the
tightest lower bound and requires the fewest number of subproblems.

For comparison, the logic-based OA method by Turkay and Grossmann (1996) yields the
lower bound 67.9 with 3 initial NLP subp roblems (NLPS) and finds the optimal solution (68.01)
in one major iteration requiring atotal of 4 NLP and 2 MILP's . The proposed method requires 5
NLP's.

EXAMPLE 5. OPTIMAL POSTIONING OF A NEW PRODUCT

The fifth example problem consists in determining the optimal positioning of a new product in a
multiattribute space (Duran and Grossmann, 1986). Here we consider a market with a set of

existing products (M) and a set of consumers (N). The existing products can be located in a
multiattribute space of dimension K with coordinates dy, j = 1,..., M, k=1,..., K. Each consumer
is characterized by an ideal point zy, and a set of weights wi, i = 1,..., N, k = 1,..., K both
representing consumer’s concept of an ideal product. A region which defines closeness to the
ideal point for each consumer can be determined in terms of the existing products. Based on

these criteria, a consumer is assumed to select a product closest to the ideal point. The objective
is to design the optimal location of the product, X, k = 1,..., K to maximize the profit. The
revenue of the new product from sales to consumer i is given ¢;, and f(x) is the cost of reaching



locations of the new product within an attribute space. This example was formulated as an
MINLP problem by Duran and Grossmann (19 86), and can be expressed as the following GDP

problem.
%5
mnZ=-3ac¢ - f(x)
i=1
st. X - X, +X;+X, +X% £10
0.6x, - 0.9%, - 0.5x, +0.1x, + X, £ - 0.64
X - X, X - X, + X 3 0.69
0.157x, +0.05x, £1.5

0.25x, +1.05x, - 0.3x; 3 4.5 (12)
Y, u A
a é ay, u

O

W, (X, - 2,)2 £ ngngk ?0,k=12,...54i =1...25

- -:O o
a=p G ° |

(X) =-0.6x7 +0.9x, + 0.5%, - 0.1x - X,
Y 1 {true, falsg,i =1....,25
af x£b,a=[20,304],b=[4589,510]
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R? = min {é W (d - z,)°},i=1..,25
11007

i=Le
p' =[1,0.21,0.2,0.9,0.9,0.1,0.81,0.4,1,0.3,0.1,0.3,0.5,0.
9,0.8,0.1,0.9,11,1,0.2,0.7,0.7]

The data for 10 existing products, 25 consumers, 5 attributes, and the GDP problem are
shown in Appendix C. The optimal solution is Z* = -8.064, Y*16815172025 = true, and x* =
(2,7.792,6.056,3.573,4).

The lower bound obtained from the relaxation of model (PR) (-8.685) is much closer to the
optimal solution (-8.064) than that of the big-M formulation (BM) by Duran and Grossmann
(1986) (-19.10) (see Table 6). The tightness of the lower bound substantially reduces the number
of nodes in the BB algorithm (89 vs. 11). Also, model (PR) is solved in 3 major iterations by the

OA algorithm compared with 9 of model (BM).

EXAMPLE 6. DESIGN OF A MULTI-PRODUCT BATCH PLANT
The last example is a batch plant design with multiple units in parallel and intermediate storage
tanks (Ravemark, 1995; Vecchietti and Grossmann, 1999). This problem consists of determining



the volume of the equipment, the number of units in parallel, and the volu me and location of the

intermediate storage tanks. The objective is to minimize the investment cost. The GDP model is
asfollows:

J J-1
mn Z = é 250exp(n; +m; +0.6v,) +é 150exp(0.5v;)

j=L j=1
Sst.
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f =log(3),m=1.0
Y, T {true, falsg,Y1,,Y2, 1 {08, |1 J;z2=1234
J={123456},11 {AB,C,D,E}

The digjunctions correspond to the storage tank volume and the batch size. The objective
function is nonlinear and convex, and the convex hull is linear because the constraints in the
disunctions are linear. The dataand the optimal solution are shown in Appendix C . The optimal
structure, which has a cost of 261,883, is shown in Figure 11. The relaxation gap is 14.4% (PR)
vs. 16.2% (BM). The proposed BB significantly reduces the number of nodes by 81% (391 vs.
73) compared to the standard BB (see Table 6). When the OA algorithm is applied to both model

(BM) and (PR), it takes more CPU time to solve model (PR) than (BM) (40.91 vs. 13.47 sec).



CONCLUSION

A novel solution algorithm has been proposed for GDP problems which correspond to
discrete/continuous optimization problems that involve disunctions with nonlinear inequalities
and logic propositions. A new nonlinear relaxation of the GDP problem and its properties have
been presented. The proposed relaxation problem (CRP) of the GDP problem is based on the
convex hull of each nonlinear disjunction, and is used for the reformulation of the GDP problem
as the MINLP problem (PR), which can be solved with MINLP algorithms such as BB, OA,
GBD, and ECP. The relation of problem (PR) with the logic based outer -approximation
algorithm by T Urkay and Grossmann was established. A special purpose branch and bound
algorithm for the GDP problem was also proposed based on the CRP problem.

The numerical results of six GDP problems showed that the proposed branch and bound
algorithm, which makes use of the relaxation (CRP), requires fewer nodes and less CPU time
than the standard branch and bound method which makes use of the big -M relaxation. These
GDP problems were also reformulated as the MINLP problem (PR), and solved by existing
MINLP agorithms.
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APPENDIX A
Proof of Convex Hull
Theorem 2. The convex hull of the digunctionin (4) is given by

[o] i [o]
x=a?, c=alg,
it it

N

O£ E£1,U,, jTJ

al,; =L 0£l,£1,j1 3 (A1)

it
l,0,(2' 11 )£0, jTJ
x,?',c30, jTJ
Proof. The convex hull of the digunction in (4) can be expressed as a convex combination of

multipliers | ; that multiply the constraints in the disjunction.

l .9,(0£0,j1J (A.2)
cd,=gl,,jlJ (A.3)
al,=10£l,£1j1J (A.4)

i
The equation (A.3) can be linearized by setting ¢; = cl j, which leads to,
c; =gl ;,il J (A.5)
The inequality (A.2) is generally nonconvex due to the bilinearity that is introduced by the
product. We can convexify, however, the inequality by defining the new variable n' = xi j. From

the convexity condition of | , the following equations hold.



ax,=x=47? (A.6)

iTa it

édj:c:égjlj (A.7)

I i3
Furthermore, rewriting (A.2) intermsof n and | i, for 30,
l,g;(?' /1 )E0,jT J (A.8)
From Hiriart-Urruty and Lemaréchal (1993), the above inequality is convex. From the
assumption, n' is bounded by
0E? £1,U,,jTJ (A.9)

where U; is an upper bound for each n’. Hence, the convex hull is given by the equations and

inequalitiesin (A.1). |

APPENDIX B
Relation to logic-based Outer-Approximation Method for problem (DP)

In the algorithm by Tirkay and Grossmann (1996), which addresses the solution of problem
(DP), the NLP subproblem for fixed values of the Boolean variables Yy at iteration |, is given by,

mnZ=§c +f(x

Kl K
st. r(x)£O0
g9.(X)£0, ¢, =g, forY, =true (FX -DP)
B*x=0, ¢, =0 forY, = false
X, ¢ 20 ki K

The outer-approximation master problem is given by the following digjunctive problem in
which the nonlinear constraints are linearized at the optimal solutions of problem (FX -DP),



. o]
mnZ=gc, +a
K K

1a3 f(x')+Nf(x')"(x- x)p

st. orl=12,..L
1) +Rr(xd)T (x- x)gof,
é Y, 0 é @Y, u
Sgk(x)+Ngk(x) (x- X)£0,IT K¢ Ugskx:og,kT K (MP)
g ¢ =9, i ge=04

WY) =True

K< ={lY =truel =12,...,L}, kT K

a,xc, 2 0Y,I {true falsg, kI K
Theindex | = 1,2,...,L corresponds to the iteration counter, while K. is the set of those iterations
in which the left term of the k-th digunction in (DP) is active, thus yielding a linear
approximation for the inequality gk(x) £ 0. Problem (MP) can be transformed into the following
MILP problem by using the convex hull of each disunction with linearized constraints  (see
eguation (5)):

mnZ =3 g,y, +a

Kl K
. :{a i f(x?mf(xlf(x' X )i forl =1,2,...,L (DP-MP)
T red)+Rr () (x- X) £0%
Nkagk(Xl)T Xz +Nxngk(Xl)T X EL- 9 () +N, g, () X Ty, 1T K¢
XNk = Xll\lk + Xl%lk
0£ Xy, £ Xy Yi» O£ Xy £ X @~ Y,)
Ay £ a
KE={IY, =true,l =12,...,L}, kT K
a,x3* 0,y {01, kI K
where Xk IS the vector of variables which are non-zero when Yy is false, while xz is the vector of
variables that takes a value of zero. This partition of the continuous variables x is performed
according to the definition of the matrix B*in (DP).
Since each digjunction must have at least one linearization, several NLP subproblems must be

solved initially. The fewest number of such NLP subproblems can be determined from a set
covering problem (Turkay and Grossmann, 1996).

For the case of two terms in each disjunction in problem (DP), problem (PR) reduces to,



mnz:égkllk+f(x)

Kl K
st. r(x)£0
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where x = [xz, x]. Note that the above constraints have been simplified because n;* = 0 since
the corresponding variables xztake a value of zero in the second term of the disunction.
For fixed Y in (PRT) we have, 2, =1 if Y, istrue, 2, =0 if Y, isfalse with which problem
(PRT) becomes:
mnZ=3 9., + f(%
kl K
st. r(x) £0
I}, =1 forY, =true
I, =0 for Y, = false
g.(%, . x,)EO forY, =true (FX - PRT)
0£x,,%y, £U, forY, =true
x, =0,%x, =2 forY, = false
O£ £U, forY, = false
Al £a
X, 20,2230, ki K
It is clear that for fixed Yy the NLP subproblem (FX-PRT) is identical to problem (FX -DP).
Rather than linearizing the original constraints as in problem (MP), we linearize the nonlinear
convex hull formulation in (P RT) to define the master problem of the outer -approximation
algorithm. Then the corresponding MILP master problem is given as follows,
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(M - PRT)

Note that if we let X = (n"™'/I''y) and treat | 1 as binary variable v, then the linearized

congtraints (M-PRT) and the convex hull of the linear disjunction in problem (DP-MP) are the

same. Also, the partition of x in non-zero and zero variables is used in the same way as in (DP-
MP). Hence, the MILP problem in (M-PRT) is identical to the MILP master problem (DP-MP)
of Turkay and Grossmann (1996) . Thus, we can conclude that for the case of problem (DP),

applying the outer -approximation method to the MINLP reformulation (PR) reduces to the logic -
based outer-approximation method by Turkay and Grossmann (1996).

APPENDIX C

Data for GDP example problems 5 and 6

EXAMPLE 5
i I deal points (zk) Attribute weights (wik)

K=1 2 3 4 5 k=1 2 3 4 5

1 226 515 403 174 474 957 274 975 396 8.67
2 551 9.01 384 147 9.92 838 393 518 52 7.82
3 406 180 071 9.09 813 981 004 421 738 4.11
4 6.30 011 4.08 7.29 4.24 741 6.08 546 4.86 1.48
5 281 165 808 399 351 996 9.13 295 825 3.58




6 429 949 224 978 1.52 939 427 509 181 7.58
7 9.76 364 6.62 3.66 9.08 188 7.2 6.65 174 286
8 137 699 719 3.03 3.39 401 267 486 255 6.91
9 889 829 6.05 748 4.09 418 192 260 7.15 286
10 742 460 03 097 8.77 781 214 9.63 7.61 917
11 154 7.06 001 123 311 896 347 549 4.73 943
12 774 44 793 595 4.88 994 163 123 433 7.08
13 994 521 858 0.13 4.57 031 5 0.16 252 3.08
14 954 157 9.66 524 7.90 6.02 092 747 974 1.76
15 746 881 167 6.47 181 506 452 189 122 9.05
16 056 81 019 6.11 6.40 592 256 7.74 6.96 5.18
17 386 6.68 6.42 7.29 4.66 645 152 006 534 8.47
18 298 298 3.03 0.02 0.67 104 136 599 810 522
19 361 762 179 7.8 981 140 135 059 858 121
20 568 424 417 6.75 1.08 6.68 948 16 6.74 8.92
21 548 374 334 622 79 195 046 29 179 0.99
22 813 872 393 88 856 518 51 881 327 9.63
23 137 054 155 556 585 147 571 6.95 142 3.49
24 879 504 483 694 0.38 54 312 537 61 371
25 266 419 649 8.04 166 632 081 6.12 6.73 7.93
J

Existing products (dix)
k =1 2 3 4 5

062 506 782 022 4.42
521 266 954 503 8.01
527 7.72 797 331 6.56
102 889 877 31 6.66
126 68 23 175 6.65
374 906 98 301 9.52
464 799 6.69 588 823
835 379 119 19 5.88
644 017 993 68 9.75
649 192 0.05 4.89 6.43

Boo~N~NouhrwNpr

EXAMPLE 6
m, =log(M ),n; =log(N,),v, =log(V,),v, =log(V,), jT J; b, =log(B,),iT 1;jT J
I = products; | = stages; H = horizon time = 6000 h
Qi = production rate of product i: A = 250000, B = 150000, C = 180000, D = 160000, E =
120000
S; = size factor for product i at stage |

i\] 1 2 3 4 5 6
A |79 20 52 49 61 42
B |07 08 09 34 21 25




Cc |07 26 16 36 32 29
D 47 23 16 27 12 25
E 12 36 24 45 16 21

Pj; = processing time of product i at stage

1 2 3 4 5 6
64 47 83 39 21 12
68 64 65 44 23 32
10 63 54 119 57 6.2
32 30 35 33 28 34
21 25 42 36 37 22

—

moOOw> —

Optimal Solution: Y* = {false true,false,false false}

j 1 2 3 4 5 6

V 2491.9 1030 2127 2807 2495 26

N 1 1 1 1 1 1

M; 2 2 2 2 1 1

V, (storage) 0 8637.8 0 0 0 0
Cost (Z*) 261,883




LIST OF TABLES

Table 1. Disaggregated variables and local optimal points of example 1.
Table 2. Comparison of the results for example 1.

Table 3. Comparison of the results for example 2.

Table 4. Comparison of branch and bound methods for example 4.
Table 5. Comparison of algorithms for formulation (PR) of example 4.
Table 6. Comparison of formulations (BM) and (PR) for GDP examples.

LIST OF FIGURES

Figure 1. Feasible region of example 1.

Figure 2. Convex hull of feasible region.

Figure 3. The proposed branch and bound algorithm, for | K| = 1.
Figure 4. Partitionable and Non-partitionable sets.

Figure 5. The proposed branch and bound tree: example 1.
Figure 6. Standard branch and bound tr ee: example 1.

Figure 7. The optimal schedule for example 3.

Figure 8. Superstructure for example 4.

Figure9. The optimal structure of example 4.

Figure 10. The proposed branch and bound method for example 4.
Figure 11. The optimal plant structure of exam ple 6.



Table 1. Disaggregated variables and local optimal points of example 1.

Feasible | z=nll f(n'/l)+g Local optimal Local optimal
Region point (Xq, X2) value

S 0.016 (0.000, 1.000) 12.000 (0.832, 0.555) 8.7890

S 0955  (3.306,1.720) 11720  (3.293, 1.707) 11716

S 0.029 (1.306, 4.720) 13.268 (2.447, 3.106) 4.5279

Table 2. Comparison of the results for example 1.

For mulation Socl)uﬂti'on I'B‘:L‘j"r’ga Method Stag‘éard Proé’g%d OA° GBD® ECF°
Major

(BM) 1.172 | 1.013 Iter. 5 - 3 3 19
/Nodes
Major

(PR) 1172 | 1154 Iter. - 3 2 3 20
/Nodes

3NLP relaxation. "OA begins with NLP relaxation. ‘GBD and ECP begin with initial guess y° = (1,0,0).

Table 3. Comparison of the results for example 2.

M ethod No. of NL P Subproblems L ower Bound
Standard BB-formulation (BM) 5 2.532
Proposed BB-formulation (PR) 3 3.468

Table 4. Comparison of branch and bound methods for example 4.

Method Standard Branch Proposed Optimal
BB & Cut BB Solution
Formulation Nodes 17 12 (16 Cuts) - 68.01
(BM) Relaxed Opt. 15.08 15.08 - '
Formulation Nodes - - 5 68.01
(PR) Relaxed Opt. - - 62.48

Table 5. Comparison of algorithms for formulation (PR) of example 4.

Method* Standard  Proposed OA GBD ECP L ogic-based
BB BB (Major) (Major) OA*

No. of nodes 11 5 3 8 7 3 subproblem

/ Iteration (Nodes) (Nodes) (Iter.) (Iter.) (Iter.) 1 Maor Iter.
Relaxed Optimum 62.48 62.48 8.541 -551.4 -5.077 67.9

*All methods except logic-based OA solve the reformulated MINLP problem (PR).



Table 6. Comparison of formulations (BM ) and (PR) for GDP examples.

Problem GDP OA BB
Number Global Major It. CPU sec Nodes L ower Bound
Opt. (BM) (PR) (BM) (PR)
2 3.500 3 0641 3 1.060 5 2532 3 3.468
4* 68.01 11  3.044 2 1094 17 15.08 5 62.48
5 -8.064 9 5817 3 2863 89 -19.10 11 -8.685
6 261,883 | 10 1347 | 16 4091 391 219335 | 73 224,165

(*with logic propositions)




Figure 1. Feasible region of example 1.
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Figure 2. Convex hull of feasible region.
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Figure 3. The proposed branch and bound algorithm, for | K| = 1.

START

Set Z* = ¥, selecte.
SetT={j|j=12...m
Solve (CRP) with conv(S), ji T.

> Alll .areOorl1? Y

N v

A

Select S with IJ. closest to one.
Solve (P1) with fixed §, 2V = f(x")
T=T\j
if ZY £Z*thenZx =29, x* = xY

Global Optimal Solution
Z* = f(xb)
x* = x-

A 4

@N Y

Solve (CRP) with conv(S), j T T.
7t = f(xd)

y
: Y

Global Optimal Solution |
ZF = f(xY), x* = xY

END




Figure 4. Partitionable and Non-partitionable sets.
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Figure 5. The proposed branch and bound tree: example 1.

Root Node

Convex hull of all S
Z=1.154
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L =
First Node Bfancr} olr?z\l( Second Node
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Z=1172 Z=3.327
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ZY=1.172 Z-=3.327>2Y
Back-track Stop



Figure 6. Standard branch and bound tree: example 1.

Z-=1.031
Y =[0.029,0.971,0]

Fix Y,= 1

ZL = 1.058 Z=8.789
Y =[0,0.975,0.025] (4 Y=[100]
Fix Y,=0
Optimal Solution | _: Branching Var.
ZY = 4,528 Z* =1.172 Bold : Fixed Var.

Y=[001] = = yv=[010]
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Figure 7. The optimal schedule for example 3.
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Figure 8. Superstructure for example 4.
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Figure 9. The optimal structure of example 4.
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Figure 10. The proposed branch and bound method for example 4.

7\ = 62.48
| 4 =[0.31,0.69,0.03,1,0,1,0,1]

Fixl127 Fix|,=0
Z- =65.92 7L =75.01> ZY
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Figure 11. The optimal plant structure of example 6.




