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Abstract  

 
 
              The main goal of this dissertation is to proffer an extensive table of upper bounds 
on A(n,d) with the help of the values on A(n,d,w). A(n,d) denotes the maximal number of 
binary code words of length n and Hamming distance of at least d with no restriction on 
weight. A(n,d,w) designates the maximal possible number of code words of length n, 
Hamming distance d apart and weight w of all codewords (number of nonzero components) 
in a constant weight binary code.  
 

 An (n,d,w) constant weight binary code is an (n, d) binary code in which all code words 
have same number w of ones and (n-w) zeros. 
 

    The maximum possible sizes of binary codes A(n,d) and constant weight binary 
codes A(n,d,w) have been computed so far for all lengths n≤ 28 and d≤ 14. This paper 
presents a detailed survey of the computation of known upper bounds for the size of block 
codes and it also evolved around improving the previous research and presenting the 
improvements. Most improvements occur for A(n,12,w), for n=27 and n=28. In addition, this 
paper also presents extended tables of the existing tables of upper bounds of block codes 
A(n,d) for n≤ 40 and d≤ 20. It was achieved by making use of extended tables of upper 
bounds of constant weight binary codes A(n,d,w) for n≤ 40, d≤ 20 and  w≤ 20. 
 

 To obtain these results, we have implemented few theorems in the C programming 
language and these theorems are taken from [1].Also, the GLPK software has been used in 
solving the linear programming part, which facilitates solving problems with a large number 
of constraints. Further more a detailed survey on different types of codes is presented in this 
paper.  
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Chapter 1 
 
1. Introduction 
 
                 The ultimate aim of communication systems is to transmit information from the 
information source to the destination without any errors like noise, attenuation, bandwidth 
limitations, interference etc., which are introduced in the channel. One of the ways of 
detecting and minimizing these errors over a noisy communication channel is by channel 
coding. 

 
 The intention of reducing these errors has resulted in the invention of different types 

of codes like linear codes, block codes, convolutional codes, Hadamard codes, etc., each 
designed to meet specific transmission requirements in specific channels [29]. Block codes are 
one of the types of codes that can reduce the errors to a considerable extent.  The quest 
running for decades in communication theory for finding the maximum possible size of block 
codes with given parameters has been quenched by computing upper and lower bounds for 
block codes. These upper and lower bounds are computed because the maximum possible 
size of block codes is in general not known. 

 
An (n,d) is a binary code and it is  a set of code words of length n, distance d. Let 

A(n,d) denote the maximum number of codewords in any linear or nonlinear binary code of 
length n and minimum distance d between code words. 
 

An (n,d,w) constant weight binary code is a set of binary code words (n,d) in which all 
code words have same number w of ones and  (n-w) zeros, where n is the  length of the binary 
code, d is the Hamming distance and w is the weight of all code words(number of nonzero 
components). Let A(n,d,w) denote the maximum possible number of code words in a constant 
weight binary code. 

 
 Much research has been carried out in computing upper bounds for the size of  block 

codes for all lengths n≤ 28 and minimum distances d≤ 14 [3]. Since 2001, there has not been 
much improvement in this research. This thesis is focused on reproducing the values of the 



                    

 9

upper bounds on block codes A(n,d) in  table I in [1],and to extend this table  to n≤ 40 and 
d≤ 20 with the help of the extended tables of  constant weight codes A(n,d,w) for n≤ 40, d≤ 20 
and w≤ 20.  

 
This thesis takes a structured approach to compute the known values of the upper 

bounds, starting with the application of few theorems that were derived by different authors 
[1] and working gradually to reach the goal. Initially theorems 1- 4 in [1] are implemented in 
the C programming language to reproduce table I in [1] and later this table has been improved 
and extended to n≤ 40 and d≤ 20.  

 
The thesis is organized as follows: 
 

Chapter 1 presents a sneak preview and a broad brush overview of the whole thesis 
work. 

   In Chapter 2, the basic idea of information theory, definition of the information and 
an expression for the measurement of the information content, definition of the entropy are 
provided under the section 2.1. Also, an analysis and elementary design of the elements of the 
overall communication system, with an explanation to some of the basic terms like Shannon’s 
law, explained in the subsection 2.1.4.1 and  SNR (Signal to- Noise ratio), explained in the 
subsection 2.1.5 are provided in this chapter. Few more concepts like coding, its necessity in 
communication systems, types of coding are also briefly discussed.  

 
Chapter 3 provides a detailed coverage of block codes and classification there of. 

Some important terms such as Hamming distance and Hamming weight are explained in the 
sections 3.2 and 3.3 respectively. Different types of codes such as constant weight codes, 
linear codes, Hamming codes (an example of block codes), cyclic codes, BCH codes, Reed 
Solomon codes are briefly explained in this chapter. The significance of bounds on block 
codes is also elucidated in this chapter. 

 
Chapter 4 gives a complete survey of the previous research results accomplished in 

the generation of upper bounds for block codes in the last decades. 
 
 Chapter 5 includes a mathematical treatment of linear programming. A few linear 

programming software packages are investigated in section5.2.In addition, this chapter also 
confers the experiences from using a few linear programming software packages. Also, the 
GLPK linear programming software package is described in section 5.3. 

 
Chapter 6 is devoted to the computation of the known upper bounds for block codes, 

A(n,d), for n≤ 28 and d≤ 14 using theorems 1-4 in [3], by  utilizing  bounds on constant 
weight codes A(n,d,w), for n≤ 28 and d≤ 14 in [4].The above computation is explained in detail 
under the section 6.1.An overview on the analysis of upper bounds on the constant weight 
codes is presented in section 6.2 and the  improvements upon the known upper bounds on 
A(n,d,w) for n≤ 28 and d≤ 14  in [3] are discussed in detail in section 6.3.Also section 6.4 
thoroughly discusses the improved values of known upper bounds for block codes, A(n,d) for  
n≤ 28 and d≤ 14.This chapter also covers a discussion some problems that arose during the 
computation.  
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In  Chapter 7, section 7.1  covers a discussion of the extended tables for  constant 
weight codes, A(n,d,w),from n≤ 40, d≤ 20 and  w≤ 20. Subsection 7.1.1 discusses few problems 
that arose during the extension of tables of upper bounds for constant weight codes, 
A(n,d,w),for n≤ 40, d≤ 20, w≤ 20. Also, Section 7.2 focuses on main part of this dissertation 
i.e. computation of upper bounds for block codes, A(n,d), for n≤ 40, d≤ 20.The subsection 
7.2.1 discusses some problems  that arose during the computation of upper bounds for block 
codes, A(n,d), for n≤ 40, d≤ 20. 

 
 Finally, chapter 8 is the epilogue of this dissertation, which includes conclusions in 

section 8.1 and ends with future works in the section 8.2.  
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Chapter 2 

 
2. Basic idea of Information Theory 
 

 This chapter is completely devoted to some of the important terms in 
communication systems. It gives a brief introduction to information theory, provides 
definitions of information, entropy. An expression for the measurement of information 
content is also presented in this chapter. An analysis on the transfer of messages through the 
channels is discussed in the section 2.1.4.Definition of Signal to noise ratio (SNR) is provided 
in the section 2.1.4.1. This chapter provides an overview of coding, its necessity in 
communication system and also different types of coding are explained in this chapter. 

2.1 Information Theory   
 

The idea of quantitative measure of the information has been around for a while, to 
explain the aspects of information and communication. Claude Elwood Shannon in 1948 
formulated principally a new field what is now called Information theory. Since then he went 
on to invent new disciplines of information theory and revolutionize the field of 
communications.  

2.1.1 Information -Definition 
 
Shannon defined the ‘Information’ as the symbols that contain unpredictable news i.e. 

he proposed the idea that information is based on uncertainty. In information theory, the 
term information is used in a special sense, it is measure of the freedom of choice with which a 
message is selected from the set of all possible messages thus it is distinct from the meaning, 
since it is entirely possible for a string of nonsense words and a meaningful sentence to be 
equivalent with respect to information content [37].  



                    

 12

 

2.1.2 Measurement of the Information content  

 
Shannon defined a quantity called self-information.  The mathematical expression for the 

information content is [37]. Information theory numerically measures the quantity of the 
information in a message in bits.  

 
( ) log ( )bi A P A= −                                             (2-1) 

 
Where: 
         A is an event, which is a set of outcomes of a random experiment, 
         P (A) denotes the probability of the occurrence of the event A and  
         i(A) is the self information associated with A. 
 
The above concept explains that if the probability of an event is low (more uncertainty) in the 
communication channel, the amount of the self- information associated with it high  
information associated with it is high and vice versa.  

2.1.2.1 Entropy-Definition 
 
             Shannon showed that if the experiment is a source that puts out the symbols iA from 
a set A, then the entropy is a measure of the average number of binary symbols needed to code 
the output of the source [37]. 
 
 Average self information: 
 

)(log)( ibi APAPH ∑−=                       (2-2) 
 

2.1.3 Code-Definition 
                 
Definition: The set of binary sequences is called a Code [42].Codes is invented to correct 
errors on noisy communication channels. Suppose there a lot of important messages (0’s and 
1’s) to be sent over the communication channel. There can be a possibility that the receiver 
will receive 1, when 0 is sent and receives 0 when 1 is sent. Say on an average 1 out of every 
100 symbols will be in error that is  for each bit there is a probability P=0.01 that the channel 
will make a mistake and this channel is called  binary symmetric channel. For in order to give 
some protection against errors on the  communications  channel,  these messages are encoded 
into a code word i.e. A block of k message symbols 1 2..... ku u u u= ( 0iu = or 1) will be encoded 
into a code word 1 2 ..... nx x x x= ( 0ix =  or 1 ) where n≥k  these code words form a code. The 
figure 3.2 in section 3.1.1.1 clearly illustrates this [29].  
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 2.1.4 Analysis of the transfer of messages through the channels 
 
              To get a better understanding of Information theory Shannon explained some of the 
details: Any communication system involves three steps 1.coding the message at its source 
2.transmitting the message through a communication channel and 3.decoding the message at 
its destination. In the first step the message has to be in put into some kind symbolic 
representations that is in the form of codes and this information is transmitted via the 
channel where at the destination this message is decoded to extract the original data. The 
information may be corrupted by the noise during this process. Information theory further 
shows that this noise creates uncertainty as to the correspondence between the transmitted 
and the received signals. His theory replaces each element in this model with a mathematical 
model that describes the elements behavior within the system.  
 
 
 
 
 
 
 

 
 
An important theorem of information theory states that if a source with a given 

entropy feeds information to a channel with a given capacity, and if the source entropy is less 
than the channel capacity, a code exists for which the frequency of errors may be reduced as 
low as desired. If the channel capacity is less than the source entropy, no such code exists[35].  

           
The ultimate limitation of a channel to efficiently and reliably transmit information 

without error is characterized by the channel capacity defined in the section 2.1.4.2.The task 
of providing high channel efficiency is the goal of coding techniques. The failure to meet 
perfect performance is measured by the bit-error-rate (BER). Typically BERs are of the 
order 610− . Shannon used mathematics to define the capacity of any communication channel 
to optimize the signal to noise ratio in his law. Before stating Shannon’s law the signal to 
noise ratio is defined in the section 2.1.4.1. 

 
 

1.... ku u u=  
MESSAGE 

  1..... nx x x=  
CODEWORD 

             
y x e= +  
 RECEIVED 
  VECTOR  

  
   

  1........ ne e e=
    CODE
VECTOR

Figure 2.1 Block diagram of overall communication system. 

MESSAGE 
SOURCE  

ENCODER  ⊕ DECODER USER 

CHANNEL 

ESTIMATE OF  
MESSAGE   
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2.1.4.1 Signal to- noise ratio  

 Definition: It is a measure of the received average- signal power to the noise power written 
as S/N or SNR. It is measured in decibels [35-36].There is a distinction between 
communication channel designed bit rate of so many bits and its actual information capacity. 
Information theory says that one need not lower the transmission rate to anything below the 
channel capacity to achieve smaller error probabilities [35].  

S
N

= ( )
( )

b

o

E R
N W

                                                   (2-3)                      

Where: 
           

0

bE
N

is the ratio of the bit energy to the noise power spectral density, in decibels. 

           R
W

 is the spectral  efficiency. 

            R is the code rate.  
           W is the bandwidth  
 
 
2.1.4.2 Shannon’s law 
 
Capacity –Definition: This statement defines the theoretical maximum rate at which error-
free digits can be transmitted over a bandwidth–limited channel in the presence of noise. The 
Shannon-Hartley formula for channel capacity is given by [35]. 

 

2log 1 SC W
N

 = + 
 

                                             (2-4) 

Where: 
         C is the channel capacity in bits per second, 
         W is the bandwidth in Hertz (cycles/sec) and  
        

0

bE RS
N N W
=  is the signal to noise ratio.  

 
Explanation  
 
                When the information rate R, equals the channel capacity C, the curve separates the 
region of reliable communications from that region where reliable communications is not 
possible. The expression clearly states that reliable transmission (transmission with error 
probability less any given value) is possible even over noisy channels as long as the 
transmission rate is less than channel capacity [36]. The noisy channel coding theorem stated 
in the subsection 2.1.4.4, gives the capacity of a general discrete – memory less channel. The 
graph illustrates the relation between the capacity C and the signal to Noise ratio SNR[36].   
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Figure 2.2 Graph showing the capacity against Signal to Noise ratio. 
 

2.1.4.3 Mutual Information 
 
The mutual information between two discrete random variables X and Y is denoted 

by I(X;Y) and defined by [35].  
 

( ) ( ) ( )YXHXHYXI −=;                                                 (2-5) 
Where: 

XH
Y

 
 
 

 denotes the entropy (or uncertainty) of the random variable X after random     

variable Y is known. 
       

         ( )
X

H X H
Y

−  
 
 

  is the amount of the information provided by the random variable Y 

about the random variable X. 

2.1.4.4 Noisy channel coding theorem 
 
The maximum rate at which one can communicate over a discrete memory less 

channel and still make the error probability approach 0 as the code block length increases is 
called channel capacity. The capacity of a discrete memory less channel is given by [35]. 
 

);(max
)(

YXIC
xP

=                                                        (2-6) 

Where:    
          ( )YXI ;  is the mutual information between the channel input X and the output Y. 
 
 
 
 
 



                    

 16

 Explanation 
 
          If the transmission rate R is less than C, then for any δ > 0 there exists a code with 
block length n large enough whose error probability is less than δ .If R>C, the error 
probability of any code with any block length is bounded away from 0.This theorem gives a 
fundamental limit on the possibility of reliable communication over a noisy channel [35]. 

 2.2 Coding  

        This section presents definition of coding and its necessity in communications systems. 
Also types of coding are types are included in section 2.2.3. 

2.2.1 Definition 

 The "Coding" is perceived as the operation of the identification of the symbols or the 
bit groups of one code to the symbols or the bit groups of other code. Information 
transmission through communication channels becomes considerably more difficult because 
of the disturbances and noises in the channel. It is an effective means by which errors can be 
detected and corrected in a communications channel [37]. 

2.2.2 Necessity of Coding 

  The necessity of coding arises first of all from need to adapt the form of message to 
the given communication channel intended for transformation. The main purpose of coding 
in communication systems, the altering of the characteristics of a signal is to make the signal 
more suitable for an intended application. One of the important applications of coding is to 
increase the overall bit error probability. As per Shannon’s channel capacity theorem the 
probability of the error ( )bP E  can approach zero, provided the information rate is less than the 
channel capacity. For in order to make the probability of the error tend to zero “coding” is 
necessary[35].The only way to transmit messages reliably over a noisy communication channel 
at a positive rate without an exponential increase in the bandwidth is by coding. 

2.2.3 Types of Coding 
 

The term coding is applied to many operations within communications systems. 
Shannon’s information theory deals with few of the types of coding namely, source coding 
(data compression), and channel coding (error protection) [9].  

 
• Source coding  
 

  A form of Coding where an analog or digital source is altered in some way to make it 
best suited for transmission purposes. 

 Reduces “size” of data. 
 Analog- Encode analog source data into a binary format.  
 Digital – Reduce the “size” of digital source data. 
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•     Channel coding 
 
   It involves the addition of some extra bits to the transmitted data stream resulting   in 

longer coded vector of   symbols in order to provide a means of correcting  transmission  
errors. Mostly involves operations on binary data. 
 

 Increases “size” of data. 
 Digital – add redundancy to identify and correct errors.   
 Analog – represent digital values by analog signals. 

 

 2.2.4 Channel Coding 
 
          Channel Coding is most often applied to communications links in reducing the 
information rate and improve the reliability of the information being transferred. In 
information theory and coding there are two ways of detecting and correcting the errors 
namely- 

2.2.4.1 Error Detection Coding 
 

An error detection technique involves recognizing that part of the received 
information in error and if admissible it requests a repeat transmission or may simply inform 
the receiver that the transmission was corrupted (ARQ) Automatic Repeat Request system. 
There are three types of ARQ operations namely: 

 
• Stop and Wait ARQ: One of the ARQ methods where the transmitter waits for an 

acknowledgement of correct reception known as (ACK). If the received message is in 
error it returns a NAK (negative acknowledgement). 
 

• Go Back n ARQ: The method in which the transmitter continues to transmit 
messages in a sequence until a NAK is received. It identifies the message in error and 
the transmitter back tracks this message starting to retransmit all messages in the 
sequence from which the error occurred. No ACK’S are used and has less signaling 
overhead. 
 

• Selective ARQ: by making the protocol slightly complex, and by providing buffer in 
the receiver and at the transmitter, it is desirable for the receiver to inform the 
transmitter of the specific message that is in error, making the necessity of the 
transmitter to send that particular error message. 

2.2.4.2 Forward Error Correction Coding 
                                                                                       

It is a method of providing reliable digital data transmission and storage when    the 
communication medium used has low Signal to Noise Ratio. In forward error correction 
coding technique, instead of transmitting the digital data in a raw bit form the data is encoded 
with extra bits at the source and these extra bits transform the data into valid code word in 
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the coding scheme. Hence the longer code word is transmitted and the receiver can decode it, 
to retrieve the desired information. The space of valid code words is smaller than the space of 
possible bit strings of that length therefore the destination can recognize invalid code words. 
This whole process takes place without recourse for retransmission hence named as Forward 
Error Correction also known as error correction and error detection coding. There are two types of 
channel codes namely [18&35]. 

1. Block Coding  

In a block code the information sequence is broken into blocks of length k and each 
block is mapped into channel inputs of length n.This mapping is independent from the 
previous blocks i.e. there exists no memory from one block to another block[35] .Its is 
explained in detail in chapter 3. 

 2. Convolutional Coding  
 
    Convolution codes extend the concept of a block code to allow memory from block 
to block. Each encoded bit is therefore a linear combination of information symbols in the 
current block and a selected number of preceding blocks. In convolutional codes, there exists 
a shift register of length L. The information bits enter the shift register 0k  bits at a time and 
then 0n bits which are linear combinations of various shift register bits are transmitted over 
the channel. These 0n bits depend not only on the recent 0k bits that just entered the shift 
register, but also on the ( ) 01L k−  previous contents of the shift register that constitute its state.  
The quantity Lmc =  is defined as the constraint length of the convolutional code. The 
numbers of states of the convolutional code are equal to ( ) 012 kL−  [35]. 

2.2.5 Coding efficiency 

 
   The efficiency of a code is a measure of how well errors can be detected versus bit 

overhead required to implement the code. Certain code types are better at detecting errors 
than correcting them, and these are thus well suited to ARQ schemes explained in subsection 
2.2.4.1 where we need to know an error has occurred, and our corrective action is to request a 
retransmission. Equally there are codes that are best suited for correcting and these will be 
used where no retransmission was possible. Example of this type of code is missile control 
systems [6].                                                
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Chapter 3 

 
3. Block Coding 
 
          Block coding is a special case of error-control coding defined in section 2.2.4.2. This 
chapter includes basic idea of block codes, constant weight codes- definition, linear codes, 
Hamming codes, Cyclic codes, Bose–Chaudhuri-Hocquenghem (BCH) codes and Reed 
Solomon codes. It also defines some of the terms like Hamming distance, Hamming weight 
in sections 3.2 and 3.3 respectively. Also a brief idea of bounds on block codes is provided in 
section 3.10. 

3.1 Linear Block Codes 

  Block codes operate on relatively large (typically, up to a couple of hundred bytes) 
message blocks, each of k information bits.  The encoder transforms each message word 
independently into code word thus corresponding to 2k  different possible messages i.e. there 
are 2k different possible code words at the encoder output .This set of 2k  code words of 
length n is called (n, k) block code.   

    The increase in block length means that the useful data rate (the information transfer 
rate) is reduced by a factor k/n called code rate. The additional bits are carefully chosen such 
that they help to differentiate one pattern of k bits in a block from a different pattern of k 
input bits. The redundancy and code rate of the block code are given below [6, 18 & 35]. 

Code rate = 
n
k                                                        (3-1) 

         Redundancy =1 k
n

−                                                    (3-2) 
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Our ability to detect errors depends on the rate. A low rate has a high detection probability, 
but a high redundancy.The class of block coding techniques includes categories shown in the 
diagram below. 
 

 

 
 
                                Figure 3.1 Block diagram explaining block codes 

 

3.1.1. Linear block codes - Definition  
 

 A block code is linear, if any linear combination of two code words is also a 
codeword. In the binary case that if ic and jc are code words then ji cc ⊕ is also a code word, 
where⊕  denotes bit –wise modulo-2 addition [35]. 
 
 
 3.1.1.1. Linear codes -Explanation  
 

 
Figure 3.2 Block diagram explaining Linear codes 

 
       A block of messages bits kuuuu ,.....,, 21=  will be encoded a codeword nxxxx ,.....,, 21=  
which form a code where n≥k. A linear code is described by this method of encoding. The 
first part of the codeword consists of the message itself followed by (n-k) check symbols 

.,....,1 nk xx + the check symbols are chosen in such a way that the codewords satisfy  

H

1

2

.

.

.

n

x
x

x

 
 
 
 
 
 
 
  
 

  = trHx =0                                            (3-3) 
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Where H is parity check matrix of the code of length ( )n k n− × and is given by 

[ ]| n kH A I −=  and A is some fixed ( )n k k− ×  matrix of 0’s and 1’s and n kI −  is a unit matrix 

of length ( ) ( )n k n k− × − . ‘0’ is a column matrix of length ( ) 1n k− × . The Equation (3-3) is 
to be performed modulo2.  The above definition clearly explains that a linear block code is a k-
dimensional subspace of an n-dimensional space.  

3.1.1.2 Classification of Linear block codes  
 
The following tree diagram illustrates some examples  of linear block codes and their 
relations[35].  
 
 

 

  

 

          

 

 
 
 
 
 

   Figure 3.3 Tree diagram of classification of Block codes  

 

3. 2 Hamming distance 
 
This section defines Hamming distance and minimum Hamming distance.  

3.2.1 Hamming distance-Definition 
  
              It is defined as the number of bit positions in which the corresponding bits of two 
binary words of the same length are different .i.e. The Hamming distance between 1011101 
and 1001001 is two. It is denoted as d ( , )i jc c  where ic and jc are code words. The greater the 
Hamming distance, the more dissimilar the code words and the better the chance of detecting 
or correcting errors [35].  

LINEAR BLOCK CODES 

 CYCLIC CODES 

    BCH CODES 

  HAMMING CODES  REED SOLOMON CODES 
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3.2.2 Minimum Hamming distance 
 

 The minimum Hamming distance of a code is the minimum Hamming distance 
between all pairs of code words in a code [35].The errors detected and corrected by a block 
code are given below [6].                   
 
                           Errors detected = ( )1−d                                         (3-4) 

                          Errors corrected = ( )
2

1−d                                        (3-5) 

Where: 
           d is the minimum Hamming distance. 

3.3 Hamming weight  
This section defines Hamming weight and minimum Hamming weight. 

  3.3.1 Hamming weight  

    The Hamming weight is defined as the number of “1” bits (i.e. non zero bits) of a 
binary code word in a bit sequence denoted by w ( ic ) where ic is the code word. For 
example the hamming weight of 1010 is 2 [35].   

 3.3.2 Minimum Hamming weight 

   The minimum Hamming weight of a code is the minimum of the weights of the code 
words except the all zero code words [35]. 

3.4 Constant weight Codes-Definition 

   Constant weight binary codes are an important class of error correcting codes .An  
(n,d,w) constant weight binary code is an (n,d) binary code in which all the code words has 
same number w of ones. Where (n,d) is a binary code and it is a set of code words of length 
n, distance d [29]. 

3.5 Cyclic Codes 

    Cyclic codes are a subclass of linear block codes for which easily implementable 
encoders and decoders exist. This section defines cyclic codes and also discusses the 
properties of cyclic codes. 

3.5.1 Cyclic codes -Definition  
 

A Cyclic code is a linear code with an extra condition that if C is a code word, a cyclic 
shift of it is also a codeword [29]. A cyclic shift of the codeword ( )nn ccccC ,,.....,, 121 −=  is 
defined to be ( ) ),,,.......,,( 1132

1 cccccC nn−= . A cyclic code can easily be created by 
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performing right cyclic shifts on an initial code word, developing a new code word with each 
shift, which continues until original code word is obtained i.e. simply all the elements of a 
code word are shifted one space to the right and the element on the end moves to the 
beginning of the codeword [35&28]. 

3.5.2 Properties of Cyclic codes  
 

 The structure of these cyclic codes was better understood and studied by mapping 
them to polynomials. The code word polynomial corresponding to ( )nn ccccC ,,.....,, 121 −=   
is defined by: 

nn
nn

n

i

in
i cpcpcpcpcpC ++++== −

−−

=

−∑ 1
2

2
1

1
1

........)(                         (3-6) 

The code word polynomial corresponding to ( ) ),,,.......,,( 1132
1 cccccC nn−=  

( )
1

2
1

2
3

1
2

1 ........)( cpcpcpcpcpC nn
nn +++++= −
−−                            (3-7) 

 
The following theorem clearly explains the structure of cyclic codes 
 
Theorem: In any (n,k) cyclic code all code word polynomials are multiples of a polynomial of 
degree (n-k) of the form  
 

( ) 1........1
2 ++++= −

−−− pgpgppg kn
knkn                                     (3-8) 

 
called the generator polynomial, where ( )pg divides 1+np .Further more for any information 
sequence ( )kk xxxxx ,.,,........., 121 −= we have the information sequence polynomial ( )pX  
defined by ( ) kk

kk xpxpxpxpX ++++= −
−−

1
2

2
1

1 ........  and the code word polynomial 
corresponding to x is given by ( ) ( ) ( )pgpXpC = .The fact that any code word polynomial is 
the product of the generator polynomial and the information sequence polynomial, implies 
that ( )nn ccccC ,,.....,, 121 −=  is the discrete convolution of the two sequences 

( )kk xxxxx ,.,,........., 121 −=  and ( )1,,,.........,1 2 knggg −= . Further information of generating 
the generator matrix and encoding of cyclic codes can be found in [35]. 
 

3.6 BCH codes 

              They are a general family of the block codes called Bose, Chaudhuri, and 
Hocquenghem codes which can correct any number of errors (t errors) if the code word   
used is long enough. They are a subclass of cyclic codes which are versatile in design. BCH 
code can be defined by the following parameters for any m and t [29 & 35].      

                         2 1mn = −                                                                     (3-9) 

      n k mt− ≤                                                                  (3-10) 
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       2 1d t= +                                                                              (3-11) 

Where:   
        t is the number of errors that can be corrected by BCH code. 

3.7 Hamming Codes 
This section briefly explains the Hamming codes and also discusses the parameters used to 
define them. 

3.7.1 Introduction to Hamming codes  

     One example of a cyclic code are the binary Hamming codes.. They were discovered 
independently in 1949 by Marcel Golay and in 1950 by Richard Hamming [28]. 

3.7.2 Hamming codes -Definition  

   A Binary Hamming code is constructed by a parity check matrix H, in which the 
columns of this matrix consist of all nonzero binary vectors of length r (each vector used 
only once).The parameters of these particular codes are 12 −= rn ( )2≥r (size of each code 
word), rk r −−= 12 (for determining the size of code), and d=3(minimum distance) for all 
Hamming codes. This makes binary Hamming codes [ 12 −= rn , rk r −−= 12 , d=3]  as 
perfect single error correcting codes, and  equivalent to cyclic codes. They can: 

 Detect all single- and double-bit errors  
 Correct all single-bit errors.  

                In order to decode Hamming codes, a simple syndrome decoding method is used, 
where the codeword received is multiplied by the Hamming Matrix and the result is the 
binary representation of where the error occurred [6, 35 & 28]. 

Rate of these codes is [35]: 

      
12

12
−
−−

= r

r

C
rR                                        (3-12) 

Where:    
         n is the total number of bits in the block. 
         k is the number of information bits in the block. 
         r is the number of check bits in the block, where r = n – k. 
 

3.8 Reed-Solomon codes 

 This section provides an introduction to Reed Solomon codes. It also discusses the 
properties of Reed Solomon codes along with few of its applications  
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3.8.1 Introduction 

    Reed -Solomon (RS) codes are block-based error correcting codes with a wide range 
of applications in digital communications. The Reed-Solomon encoder takes a block of 
digital data and adds extra "redundant" bits. Errors occur during transmission or storage for 
a number of reasons (for example noise, scratches on a CD, etc). The Reed-Solomon 
decoder processes each block and attempts to correct errors and recover the original data. 
The number and type of errors that can be corrected depends on the characteristics of the 
Reed-Solomon code. 

3.8.2 Properties of Reed -Solomon codes 

   Reed –Solomon codes operate at the symbol level rather than the bit level i.e. the 
incoming data stream is first packaged into small blocks, and these blocks are then treated as 
new set of k symbols of s bits each to be packaged into a super-coded block of n symbols, 
the result is that the decoder is able to detect and correct complete error blocks up to t 
symbols. It is thus possible for a whole symbols to be corrupted leading to a burst of errors, 
even still the receiver will be able to reinstate the correct information. Thus the Reed 
Solomon Code is specified as RS(n ,k) [6&35]. 

 

Figure 3.3 Block diagram of the typical Reed Solomon code. 

  A Reed Solomon is clearly defined by the following parameters- 
 

n = 2s – 1                                       (3-13) 
12 += td                                        (3-14) 

 
        Where: 
                  2t= n-k 
                  n is the maximum code word length of  a Reed Solomon code.                                                
                  s is the symbol size in bits. 
                  t defines the  number of errors the code is capable of correcting. 

3.8.3 Applications 

 RS codes are often to correct errors in mobile radio systems where burst errors 
are common. 

 Also used as a part of the error correcting mechanism  in many storage devices 
(including tape, Compact Disk, DVD, barcodes, etc) and CD players  

 They are also helpful in correcting the burst of errors caused by the inevitable 
scratches on the disk surface [6]. 
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3.9 Brief idea of bounds on block codes 
 
Say  
        A(n,d,w)    =         Maximum number of code words in any binary code of length n,  
               constant weight w and minimum distance d. 
        A(n,d)        =        Maximum number of code words in any linear or nonlinear binary  
                                     code of length n and minimum distance d between code words. 
   
                The quest of finding the largest possible size of A(n,d) in coding theory was 
quenched in the other way by finding lower and upper bounds on A(n,d) because the 
maximum size in general is not known. The upper bounds on A(n,d) were found having 
assumed that bounds on A(n,d,w) are known[4]. 
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Chapter 4 
 
4. Previous Works 
 

In order to understand, analyze and improve an idea, the best way is to have basic 
knowledge of the background research and also grasping some of the ideas from them is very 
important. This chapter is reserved for previous research carried out in computing upper 
bounds for block codes and also discusses previous research on bounds. The question of 
finding the largest possible size A(n,d) of an (n,d) binary code remained unanswered as it is 
impossible to find it. Though this is not solved, various lower and upper bounds were 
developed. Computation of upper bounds involved many analytical methods like linear 
programming and algebra. Upper bounds on A(n,d) were developed with the help of upper 
bounds for constant weight codes, A(n,d,w).  

 
   A number of attempts have been made and the upper bounds for error correcting and 
error detecting codes were found in [20] April 1950 by Hamming. Later in Dec 1959 [38] 
upper bounds for error detecting and error correcting codes of finite length were obtained by 
exploiting the geometric model of coding. Then in April 1962 [22] Johnson found a new 
upper bound for error –correcting codes which improves most values on Wax’s bounds. 
 
  In the course of introducing this new upper bounds Johnson introduced two new 
bounds (A and B) on the maximum number of code words in constant  weight minimum 
distance binary block code which had been obtained independently during the study of error 
correcting codes by Freiman. Johnson described an upper bound for A(n,d,w) with added 
refinement in [23&26]. 

 
Then later in July 1964 [17] Freiman discussed some upper bounds on the size of 

constant weight codes with minimum distance d=2u, given by Johnson in [22] and derived 
one of its own, based on packing considerations. The first table of upper bounds on A(n,d)  
and on A(n,d,w),for, n≤ 24 ,d≤ 10 and w≤ 14 was found in 1977 [29, pg 684-691]. The 
improved version of these tables with some new values was presented in [7].Another update 
appeared in Honkala’s Licentiate thesis [21, sec 6].  
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Some new upper bounds for constant weight codes (12 new upper bounds) appeared 

in [15] in July 1980.These bounds were obtained, using the updated tables of Graham and 
Sloane [19] as initial values in Johnson’s formula [26].These updated tables in [19] are a 
revised version of the lower bounds in [7].Revised tables with improved lower bounds were 
further published in May 1980 [27 & 11]. 

 
The best known lower bounds on A(n,d,w) for, n≤ 28, d≤ 18 and w≤ 18 were 

published in 1990 [12]. In [12] upper bounds are given only for those parameters where these 
bounds are known to coincide with lower bound Then in Jun 2000 new upper bounds on the 
size of constant weight binary codes, derived from bounds of spherical codes were presented 
in [2], in addition to this, Johnson bound given in [22] and the linear programming bound for 
constant weight codes were improved. Further in Nov 2000, improvements on the best 
known upper bounds on A(n,d,w) for n≤ 24 , d≤ 12 and  w≤ 14  were made and also extended 
tables up to n≤ 28 and d≤ 14 were presented[1]. 
 
 

 A Table of upper bounds on A(n,d) for the range n≤ 24 and d≤ 10 was published in 
[16 p.248].A wider range of parameters was included [12].Updates to the combination of the 
upper bounds in [16] and [12] are published in [3].The table in [3] includes 4 new bounds and 
extends the range of the parameters compared to the previous tables on A(n,d). 

 
  

  A new upper bound which is at least as good as Johnson bound for all values of n and 
d is given in April 2002. It is found that for small values of n and d the best known method to 
obtain upper bounds on A(n,d) is linear programming and a new set of inequalities for linear 
programming. The improved upper bounds on A(n,d) for n≤ 28 generated with these new 
inequalities were published in [32].An updated version of the tables of  upper bounds for 
small general binary codes after the published tables in [7] were made available online [10].A 
new upper bound on the maximum size A(n,d) was presented in [38]. This bound is based on 
block-diagonalsing the Terwilliger algebra of the Hamming scheme. It was shown that the 
bound strengthens the Delsarte bound and also the improved upper bounds on A(n,d) for  
n≤ 28 and d≤ 10 were presented in [38].   
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Chapter 5 
 
5. Linear Programming 

 
 This chapter begins with an overview that is intended to introduce linear 

programming in the section 5.1.The results of the survey on the linear programming software 
packages are discussed in the section 5.2.The very next part of this section presents the list of 
very few freely available linear programming software packages. The last part of this section 
explains one of the experiences faced in an attempt to use one of these software packages. 
The GLPK linear programming software package with supported reasons for choosing it are 
demonstrated in the section 5.3. 

5.1 Linear programming 
 
                The basic purpose of linear programming is to optimize a linear objective function 
of continuous real variables, subject to linear constraints. The problem was first solved in 
1940s when Dantzig developed the simplex method to solve planning problems for US Air 
force. Later it was applied to problems ranging from engineering and economics. Later other 
methods like ellipsoid and interior point method were developed. Simplex method and linear 
programming methods are still used in practice [31]. 
 
Primal problem of linear programming  
 

Any minimization problem can be formulated as a maximization problem and vice 
versa by negating the sign of the objective function   

 
                                 Max           Tc x  →  (Objective function)                          (5-1) 
                                 Subj         Ax b=                                                               (5-2)   
                                                  0ix ≥                                                                (5-3) 
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Where:  
         1mc ×∈ℜ , m nA ×∈ℜ  is non singular and  
         1mb ×∈ℜ  and 1nx ×∈ℜ  is variable.  
                 

 The objective function attains optimal value at some optimal solution. In addition 
any point that satisfies the constraints is called feasible. Further information on linear 
programming can be found in [29].  

5.2 Survey on linear programming software packages 
 

 An online survey made on the free accessible linear programming software packages 
has resulted in many products, which aid in maximizing and minimizing linear constraints 
subject to linear equalities and inequalities in continuous decision variables. Many of these 
products are also intended to solve large scale linear programming problems [31]. 

 

5.2.1 List of very few Linear Programming software packages 
 

There are large numbers of software packages. Very few of the linear programming 
Software packages Linear Programming, Simplex /Interior Point method [31]: 
 

• CPLEX ( purpose: Linear programming , simplex/Interior Point method) 
• LIPSOL (Matlab sparse LP by interior points) 
• PCx, sparse interior-point code linear programming  
• CLP, Simplex based linear programming solver from COIN-OR. 
• Linprog, low dimensional linear programming in C(Seidel's algorithm, by Mike 

Hohmeyer). 
• GLPK, GNU Linear programming Kit (ANSI C package for large scale linear and 

mixed integer linear programming) etc. 
 

5.2.2 Experience faced while using few of the software packages  
 
  An attempt in using the PCx software package went vain as it does not serve the 

purpose of this thesis even though there are C libraries available in this package. The reason is 
that it doesn’t work for higher number of constraints or variables and its limitation is up to 25 
variables and worked very well for up to 25 variables.  Part of our time is not spared in at least 
attempting to increase the limit of this software package as it is discovered to be very difficult 
and shifted in trying for another free available linear programming software package that 
meets the requirements of this thesis. 
 
  Next trail in using the GLPK (GNU linear programming kit) worked well even for 
larger number of variables and has a set of routines written in C language which is rudiment 
in this dissertation to solve the linear programming part. 
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5.3 GLPK (GNU Linear programming Kit) 
 

The GLPK is widely available general purpose software package. It is destined for solving 
large scale linear programming (LP), mixed integer programming (MIP) and other related 
problems by means of revised simplex method with minimum effort .This package available 
with the documentation is currently developed, maintained and made available online for free 
use by Andrew Makhorin. It is a productive contributor for the people all over the world. It 
supports the GNU programming languages which are a subset of AMPL language. The 
impetus for choosing only this particular package in spite of not using all other packages even 
though some are very fast than this (for example CPLEX is 10-100 times faster) is that it 
meets some of our requirements like, it is a set of routines written in ANSI C programming 
language and organized in the form of callable library (it meets the requirement of this work 
as all the simulations of the thesis are actualized in C programming language) [31]. 

 
In addition to this GLPK software package also helps to find an optimum solution for 

large scale linear programming problems using simplex method, with up to several 100,000 
constraints, variables with less effort. It is even faster than PCx software package and robust 
too. It is capacious, versatile, efficient and numerically more stable enough to characterize the 
sensitivity of optimum with respect to the changes in the data [30].For further information 
about the simplex method and how does this software package converts the linear 
programming problem into its standard form depending on the types of the variable and 
bounds of variable refer to the documentation of GLPK [31]. 
 

Understanding of the concepts of types of the variables and bounds of variables plays a 
vital role in getting appropriate results as per the need. Many errors arose at the time of this 
work when GLPK is implemented because of illusive understanding of above concepts. 
Rectifications of these bugs are very clearly discussed in the section 6.3.  
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Chapter 6 

 
6. Upper Bounds 
 

Having defined some basic concepts like block codes, convolutional codes, types of 
block codes, the main discussion of reproducing upper bounds on block codes can be started. 
This chapter includes computation of known upper bounds for block codes, A(n,d) for n≤ 28, 
d≤ 14. It also includes a detailed discussion of the improvements on known upper bounds for 
block codes which occurred due to the improvements on constant weight codes, A(n,d,w) for 
n≤ 28, d≤ 14  and w≤ 14  followed by the discussion of problems that arise when the 
theorems are applied in C programming. 
 

6.1 Computation of the known upper bounds on block codes 

             This section  is a practical treatment of computing  known upper bounds for block 
codes A (n, d) for 28n ≤ and 14d ≤ .Sections 6.1.1 and 6.1.2  include reproducing upper 
bounds on block codes using theorems 1- 2 and 3- 4  in [3] respectively. These bounds are 
computed using known upper bounds on constant weight codes A(n,d,w) for n≤ 28, d≤ 14 and 
w≤ 14 in [4] . Motivated by the published bounds for block codes in [3] these bounds for 
A(n,d) are  extended from 40n ≤  and  d≤ 20 which are discussed in chapter 7. In order to 
reach this goal, the upper bounds for constant weight codes are to be extended to n≤ 40, 
d≤ 20,w≤ 20 which are discussed in section 7.1.  Most improvements occurred when 
extending the tables of constant weight codes which are thoroughly discussed in section 6.2.  
These improvements  on  bounds for constant weight codes, A(n,d,w), for w=10 & w=11 at 
n=28 and  d=14  lead to the improvements on block codes  A(n,d) for  n≤ 28 and  d≤ 14  
which are discussed in section 6.3. 

 
In other words, it can be said that the better bounds on A(n,d,w) lead to new bounds 

on A(n,d).  The interrelationship between A(n,d,w) and A(n,d) is clearly explained by Elias 
[8,pp.451-456] and Bassalygo[5]. 
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Bassalygo-Elias inequality: 
 

                                            ( )2( , ) , ,
n

A n d A n d w
n
w

≤
 
 
 

                 (6-1) 

 6.1.1 Upper bounds on A(n,d), for n≤ 28 and d≤ 14 using theorems 1 & 2 
 

The superscripts on upper bounds produced in [3] indicates the method (theorem) 
from which they are computed, except the values with the superscript S. Bounds with the 
superscript S are simply taken from [3]. This section mainly presents a brief explanation of 
reproducing upper bounds on A(n,d) by  applying theorems 1-4 [3]  in the C programming 
language. The following bounds are due to Plotkin [34].  
 
Theorem 1 

                                       ( ) ( )dnAdnA ,12, −≤                                                (6-2) 

                                       
( ) 


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

−
≤

nd
ddnA

2
2,

                     if n < 2d              (6-3) 

                                        ( ) ndnA 2, ≤                                 if n = 2d              (6-4) 
 

Theorem 2 
  
The improved sphere packing bound by Johnson [12, pg.532] is given below.For 
every positive integer δ  
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− − −    − − −        ≤ + + +    − −           

 
Theorem 2 taken from [3] was implemented in the C programming language to 

compute upper bounds with superscript 2. The bounds on A(n,d,w) required for computation 
are taken from [4]. As a result of implementation, it was observed that the upper bounds that 
were computed first did not match the upper bounds in [3]. When rechecked thoroughly, it 
was noticed that theorem 2 was stated incorrectly in [3].  It is thus rectified and presented 
correctly in this paper using [29].  

 
 One important result of the above theorem is A(24, 4)≤ 344308, which was known to 

Johnson in 1971 [25, table I, p.472] but has been overlooked in later tables [12&16] [3].  
 
 

(6-5) 
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6.1.2 Upper bounds on A(n,d), for n≤28 and d≤ 14 using theorems 3& 4. 
 

This section provides the definition of the distance distribution of a binary code and 
the linear programming bound introduced by Delsarte.  Theorems 3 & 4 are also stated in this 
section.  

6.1.2.1 Distance distribution of a binary code 
 
       Definition: The distance distribution of a binary code C consists of the numbers 

0 1, ,........, nA A A and its sequence is defined as [3]: 

                     ( ) ( ){ }1 2 1 2, : , /iA c c C C d c c i C= ∈ × =                           (6-6) 
 
 For i = 0,1,2,…,n, where ( )1 2,d c c  is the Hamming distance between code words, 1 2&c c . 
Also, if d is odd then  
 
                       A(n, d) = A( 1, 1n d+ + )                                                   (6-7) 
 
Also, 0iA =  for all odd  I, and for any (n,d)  binary code with even d, there exists another 
 (n,d) binary code with the same number of code words having even weight [3]. 

 6.1.2.2  Upper bounds on A(n,d), for n≤28, d≤ 14 using theorem 3. 
                          
Linear programming bound by Delsarte 
 
Delsarte showed that the distance distribution of any code satisfies [3]: 

                                  ( ) 0
0

≥∑
=

iPA k

n

i
i                                                      (6-8) 

                                                                 
Where: 
             k =0, 1, 2……, n 
           ( )xPk  is the Krawtchouk polynomial of degree k, given by [3] 
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Theorem 3: 
 
 For every even positive integer d  
 

          2 2 2
( , ) 1 max ..........d d nA n d A A A+  

 

  ≤ + + + +    
                                 (6-10)      

                                                       
Subject to constraints  

       ( )0 , ,iA A n d i≤ ≤ ,               , 2, .........., 2
2
ni d d  = +   

                       (6-11) 

( )
2

2
/ 2

(2 )

n

j k
j d

n
kA P j

 
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=

≥ −∑ ,           1, 2, .............,
2
nk  =   

.                           (6-12) 

 
 
Implementation 
 

  The above theorem [3] is implemented in the C programming language to compute 
upper bounds on A(n,d) for n≤ 28, d≤ 14 with superscript 3. At first these bounds were 
computed with the help of the values of A(n,d,w) for  n≤ 28,  d≤ 14 and w≤ 14  taken from [4]. 
Later these bounds on A(n,d,w), for  n≤ 28,  d≤ 14 & w≤ 14  were also computed when 
extending the tables for blockcodes. All values of A(n,d,w) for all n up to 28 and  all even d up 
to 14 and w ranging from (d/2+1) to the integer part of n/2 are taken from [4] except a few  
values  of A(n,d,w)  for w outside this interval or for odd d.  These values are computed by 
implementing theorem 8 in [1] and the source for this idea was obtained from [3]. 

 
 The linear programming in the above theorem is solved using GLPK software which 

is discussed in section 5.3. The first and foremost step taken to solve linear programming is to 
analyze the constraints for the type of the variable and the bounds of the variable. Depending 
on their type, the constraints are altered from their original system of equality to the standard 
form given in the documentation of the GLPK software. These set of constraints are solved 
using the C programming language which uses GLPK routines. 

 
 The variables in the above set of constraints fall in the category of double bounded 

variables. Many errors arose when theorem 3 was implemented because of misconception of 
the type of the variable and the bounds of the variable in the documentation of GLPK 
software. Rectification of these bugs is discussed in detail in section 6.4. 
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6.1.2.3 Upper bounds on A(n,d), for n≤28 and  d≤ 14 using theorem 4 
 

    The distance distribution of an (n, d) binary code of odd size M satisfies [1] 
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The bounds with the superscript 4 in the table I [3] are computed by implementing 

theorem 4. This theorem is merely based on verifying the bounds obtained by theorems 1, 2 
& 3. The lowest bound obtained by the above theorems is checked to fall in the category of 
any one of the below inequalities and then is correspondingly verified by inserting that bound. 
If the resultant value of theorem 4 is not matched with the value obtained previously, then 
that bound is reduced by 1 and tried again by the above procedure. This procedure is repeated 
until the obtained value matches the inequalities. 

     
Upper bounds with superscript S 

 
The bounds with the superscript S are explained as bounds for specific parameters 

which do not follow theorems 1-4.  Each of these values is taken from [3].  The source for 
these bounds is clearly explained in [3] 
 

6.2 Discussion of problems when reproducing upper bounds on A(n,d)  
 
       The problems that arose when reproducing upper bounds on A(n,d), for n≤ 28 and d≤ 14 
are discussed in this section.  

No errors occurred when theorems 1, 2[3] were implemented, but many errors arose 
when theorem 3 was implemented, i.e. the generated bounds were not the same as the bounds 
in [3],they were differing by one or two significant figures compared to the actual bounds.  In 
a step to debug these errors, all of the constraints generated with the help of the krawtchouk 
polynomial for a specific value of n and d were printed out and the maximum value of the 
objective function was calculated by hand. It didn’t help to rectify the bugs and this proved 
that the constraints generated were correct and there was something wrong in the linear 
programming implementation. The program found a feasible point where the objective 
function was higher than the true maximum. Careful review of the GLPK documentation 
proved that the implementation of the linear programming software package was wrong. The 
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bugs were due to misunderstanding of the concept of “the types of the variables and the 
bounds of the variables” in the GLPK documentation [30]. At first it was considered that the 
constraints fell in the category of “variable with upper bound and variable with lower bound,” 
but later it was discovered as an error and it was found that the constraints fell in the category 
of “double bounded variable.”    

6.3 Improvements on known upper bounds on A(n,d,w)  
 
  The improvements on known upper bounds for constant weight codes, A(n,d,w) for 
n≤ 40, d≤ 20 and w ≤ 20 are discussed in this section.  

In order to compute the upper bounds of  block codes A(n,d) for n≤ 40, d≤ 20, the 
existing tables on A(n,d,w) were extended to n≤ 40, d≤ 20 , w≤ 20 by implementing corollary 5 
and 6 and theorems 9,10,11,12,13,14,20 [1]. The result of the above implementation improved 
a couple of bounds on A(n,d,w). Three new updates to bounds in these tables in [4] are 
presented in this section. These are bounds on A(n,d,w) for n≤ 28, d≤ 14 and w≤ 14  , namely, 

,58)10,12,27( ≤A 90)11,12,27( ≤A  and 147)11,12,28( ≤A . These improved bounds were 
generated using theorem 9.  

 

6.4 Extended tables of upper bounds on A(n,d,w). 
 

The extended tables of upper bounds on A(n,d,w) for n≤ 40 , d≤ 20 & w≤ 20  are 
presented in the appendix. These tables were extended after reproducing the existing tables of 
constant weight codes, A(n,d,w), for n≤ 40, d≤ 20 , w≤ 20. This is done in sequence of steps: 
At first theorems 5,9,20 were applied in C programming language and the lowest value 
obtained from these three theorems was taken as an initial constant weight bound. Secondly, 
this bound was taken as a reference and was made use in the other theorems mentioned in the 
section 6.3.The lowest resultant value of theorems 10,11,12,13,14 was taken as the upper 
bound for the constant weight code. 

6.4.1 Discussion of Problems while extending the tables of upper bounds on 
A(n,d,w)  

The problems that arose when extending the tables of upper bounds on A(n,d,w) for 
n≤ 40, d≤ 20, w≤ 20 are thoroughly discussed in this section. When the existing tables of 
constant weight codes were extended, many problems occurred, e.g. the bounds generated on 
A(n,d,w) for n≤ 28 and d≤ 14 were greater than the known bounds in [4].  In order to debug 
these errors, the implementation of corollary 5 [1] and theorems 9, 10, 11, 12, 13, 14 and 20[1] 
was rechecked and there was an error in the implementation of theorem 11[1].  Initially the 
output of corollary 6[1] is taken, but then later this idea is changed by considering the least 
values obtained from the  implementation of  all of the theorems, corollary 6, 32(partially), 33 
and 35 [1]. Better bounds for constant weight codes were obtained in the result. Another 
problem in theorem 9[1] was that there were a lot of recursions (it takes long time to compute 
the values). After changing the code, time was saved and computation was fast. 
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Chapter 7 
 
7. Extending the table of upper bounds for block codes 
 

This chapter mainly focuses on extending the block codes on A(n,d), for n≤ 40, d≤ 20, 
with the help of the extended tables of constant weight codes, A(n,d,w), for n≤ 40, d≤ 20 , 
w≤ 20 discussed in the previous chapter in section 6.4.1.Section 7.1 discusses the 
improvements on known upper bounds on A(n,d),for n≤ 28 and d≤ 14.The problems that 
arose while computing upper bounds  on  A(n,d), for n≤ 40, d≤ 20, w≤ 20  are explained in  
subsection 7.2.1.   

 

7.1 Improvements on known upper bounds on A(n,d) 
 

The discussion of improvements on known upper bounds for block codes, A(n,d) for 
n≤ 28 and d≤ 14 is included in this section. 

The three new bounds on A(n,d,w), for n≤ 28, d≤ 14 and w≤ 14 namely, 
,58)10,12,27( ≤A 90)11,12,27( ≤A  and 147)11,12,28( ≤A did not improve any bounds on 

A(n,d), for n≤ 28 and d≤ 14.  

7.2 Computation of upper bounds on A(n,d), for n≤40 and d≤20. 
 

   The bounds on A(n,d,w) for n≤ 40, d≤ 20 & w≤ 20,  generated in section 6.4 
were used to compute the upper bounds on A(n,d),for n≤ 40 and d≤ 20. These upper 
bounds were produced by applying theorems 1-4[3] in the C programming language. 
Initially theorems 1-3[3] were applied in the C programming language and the lowest 
value computed from these three theorems is taken as an upper bound. Later this lowest 
value was checked to fall in any one of the inequalities of theorem 4 and it is 
correspondingly verified by inserting that value. If the resultant value of the theorem 4 is 
not matched with the bound obtained previously, then that bound is reduced by 1 and the 
above procedure is repeated until the obtained value matches the inequalities. The tables 
of upper bounds on A(n,d), for n≤ 40, d≤ 20  is presented in this section. 
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                                                     TABLE I  
 
                                   A TABLE OF BOUNDS ON A(n,d). 
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7.2.1 Discussion of problems during the computation of upper bounds on 
A(n,d).   
 
 

The problems that arose while computing the upper bounds on A(n,d) for n≤ 40 and  
d≤ 20  are discussed in this subsection. When computing upper bounds on A(n,d) for  higher  
values of n and for lower value d ( say for example A(40,4)), it was observed that the value of 
the computed upper bounds was  too high. These higher values of upper bounds created an 
error of numerical instability in linear programming in theorems 3 and 4 [3]. 
This problem was solved by calling C routines (lpx_scale_prob(lp) or 
lpx_set_in_parm(lp,LPX_K_PRESOL,1)).These routines help in scaling of the constants in the 
linear inequalities.  
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Chapter 8 

 
8. Conclusions  
           

This section presents the conclusions in producing upper bounds on A(n,d),  for 
n≤ 40 and d≤ 20 and also future works. 

 

8.1 Conclusions  
             

 The new upper bounds for block codes, A(n,d), for n≤ 40 and d≤ 20 were computed 
with the help of the extended tables of upper bounds on A(n,d,w), for n≤ 40, d≤ 20 and 
w≤ 20.Upper bounds on A(n,d), for n≤ 28 and d≤ 14 were  also re-produced and are  
presented  in this paper. Three new updates on A(n,d,w) for  n≤ 28, d≤ 14 and w≤ 14  were 
computed namely, ,58)10,12,27( ≤A 90)11,12,27( ≤A and 147)11,12,28( ≤A . The new 
updates for constant weight codes, A(n,d,w) for  n≤ 28, d≤ 14 and w≤ 14  didn’t improve any 
bounds on block codes, A(n,d) for  n≤ 28 and  d≤ 14. 
  

8.2 Future works  
 

Bounds on A(n,d,w) may be still improved(i.e a tight bound can be produced) by 
implementing theorems 36 and 37 [1]. But this may consume a lot of time when implemented 
for higher values of n. These bounds on A(n,d,w) may also improves bounds on A(n,d) but not 
to the large extent. 
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APPENDIX  - I 
 
A TABLE OF UPPER BOUNDS ON A(n,4,w) 
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A TABLE OF UPPER BOUNDS ON A(n,6,w) 
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A TABLE OF UPPER BOUNDS ON A(n,8,w) 
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A TABLE OF UPPER BOUNDS ON A(n,10,w) 
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A TABLE OF UPPER BOUNDS ON A(n,12,w) 
 

 
 
 
A TABLE OF UPPER BOUNDS ON A(n,14,w) 
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A TABLE OF UPPER BOUNDS ON A(n,16,w) 
 

 
 
A TABLE OF UPPER BOUNDS ON A(n,18,w) 
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A TABLE OF UPPER BOUNDS ON A(n,20,w) 
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