CHALMERS

Upper bounds for block codes

Bojja Neelima

Rahman Syed Mustafizur

Master’s Thesis

International Master’s Program in

Digital Commmunication Systems and Technology.

Department of Signals and Systems, Repott Number
Chalmers University of Technology EX037/2005
Goteborg, Sweden, 2005

Abstract

The main goal of this dissertation is to proffer an extensive table of upper bounds
on A(n,d) with the help of the values on A(ndw). A(nd) denotes the maximal number of
binary code words of length » and Hamming distance of at least 4 with no restriction on
weight. A(n,dw) designates the maximal possible number of code words of length 7,
Hamming distance & apart and weight » of all codewords (number of nonzero components)
in a constant weight binary code.

An (n,dw) constant weight binary code is an (7, d) binary code in which all code words
have same number w of ones and (n-w) zeros.

The maximum possible sizes of binary codes A(#,d) and constant weight binary
codes A(ndw) have been computed so far for all lengths #»<2§ and 4<74. This paper
presents a detailed survey of the computation of known upper bounds for the size of block
codes and it also evolved around improving the previous research and presenting the
improvements. Most improvements occur for A(n,12,), for n=27 and #=28. In addition, this
paper also presents extended tables of the existing tables of upper bounds of block codes
A(nd) tor n<40 and d<20. It was achieved by making use of extended tables of upper
bounds of constant weight binary codes A(n,d,w) for n<40, d< 20 and w<20.

To obtain these results, we have implemented few theorems in the C programming
language and these theorems are taken from [1].Also, the GLPK software has been used in
solving the linear programming part, which facilitates solving problems with a large number
of constraints. Further more a detailed survey on different types of codes is presented in this

papet.

Acknowledgements

We would like to express our sincere thanks to Erik Agrell, our supervisor and examiner, who
offered us the opportunity to participate in this interesting research project. This thesis work
can not be prepared without his gracious supervision. All information and comments we have
taken from him were very helpful to construct the work. His constant encouragement and
great help has helped us to wind up this thesis.

We would also thank our friends especially Mr. Amin for his help and support.

Last but not the least; we would like to give special thanks to the parents, for their
encouragement.

Author names and references are stated in alphabetical order.

Neelima Bojja
Syed Mustafizur Rahman.

CONTENTS

1. INTRODUCTION 8
2. BASIC IDEA OF INFORMATION THEORY 11
2.1 INformation TREOLY...cc.cvuiiiiieiieiieieiestee ettt st s et 11
2.1.1 Information -DefINItion ...occuuieiiiie et et ettt e et e et e e e et e e e e aaeeeetaeeeetreeeeessseeenanreas 11

2.1.2 Measurement of the InfOrmation COMTENT.....iiiuiiiiiiiireeiiiieeriiieeeireeeesreeeesraeeessereeeesereeessssseeessses 12

2.1.3 COAE-DEfINItION . .uttiieeetiieiitieeeetteeeeiteeestteeestbeeeeeteeeaseseeeesssseeeassaeessseaeasssseeesssseesssseeeesssseessssens 12

2.1.4 Analysis of the transfer of messages through the channels...........ccoooviiiiiiiiniiiiiie, 13

2.2 COMINEG .ttt 16
2.2.1 DEFINItION 1.cttiieeeiiieeeetie et e eee e e et e e et e e et e e e e ette e e e e ta e e e eeataeeeeaaeaeeetaeeeeeaaeeeeatteaeeetaeeeaareas 16

2.2.2 NeCeSSItY Of COINE...uviiviriiiiiiiieiiiiiiiie e st 16

2.2.3 TYPES OFf COILZ vttt et s sttt b e s e 16

2.2.4 Channel COINEcouiiuiiiiiiiiiiiiiiiec e e st 17

2.2.5 Coding effICIENCY ...ouviiiiiiiiiiiiiieieiec e e e 18

3. BLOCK CODING 19
3.1 LINEAL BIOCK COAES vttt e e e et e e et e e e e e e e et e e e eeaaeeeeeaneeeeenneeeean 19
3.1.1. Linear block codes - Definitioncccuuiiiiiiiieieiiie ettt ettt e e e et e e et e e e e 20

3. 2 Hamming dISTANICE. c..everuiruiriieiieiteietesteste sttt ettt sttt sttt st bt et sa et e s b e bt et nennen 21
3.2.1 Hamming distance-DefINitioncc.couivuiruiiiiieiiiiiie ittt s 21

3.2.2 Minimum Hamming diStANCEc.coviviiiiiiiiiiiieieiee et 22

3.3 Hamming WeIGRt....ccuoiuiiiiiiiiiiiiiiiiiccccce e s 22
3.3.1 Hamming WeEIGHTc.couiiiiiiiiiiiiiiiii e e 22

3.3.2 Minimum Hamming Weightcccooiiiiiiiiiiiiiiiiii 22

3.4 Constant weight Codes-Definition.......ccoiiiiiiiiiiiiiiii s 22
3.5 CYCHE COARS. ettt sttt sttt ettt sb e b sa et a et besae bt et n s 22
3.5.1 Cyclic codes ~DefINitiOnNeeuveieiiiiniirieiiieieeteet ettt sttt st st 22

3.5.2 Properties Of CYCHC COAES ..ouiiuiiuiiiiiiiiiiiiiiiiicieietee e s 23

3.0 BOH COAESuuiiiniiiiiaiiiie ettt ettt ettt e e et e e etae e e e sttt e e e eatbeeeeaasaeeesasaaaeesssesesassaeeeassseaeansseseassssesenareeaans 23
3.7 Hamming COdEsccuevuiriiiiiiiiiiiiiiiiiiiii e e 24
3.7.1 Introduction to Hamming COAEscoviiiiiiiiiiiiiiiiiiiiiiiiii s 24

3.7.2 Hamming codes -DefIition........coiuiiiiiiiiiiiie e 24

3.8 REEd-SOLOMON COAES...oiiuriiiiitiie et eee ettt eete e e et e e et e e et e e e et e e e eeaaeeeeeaaeeeeeaseeeeeaseseeasseeenarenaens 24
3.8.1 TNELOAUCHON 1ueiiiiiiiieeiiie e ettt eett ettt e e et e e et e e e ettt e e eeateeeeeaaaeeeeaseeeeeaseeeeesaseeetseseeeaseneeenneeas 25

3.8.2 Properties of Reed -Solomon €odesccoiiiiiiiiiiiiiiiiiiiii 25

3.8.3 APPLCALIONS. c..eueuieiiiiiieiti ettt ettt e st s s e 25

3.9 Brief idea of bounds 0n BIOCK COAES....iuriiiiiiiiiiiiiieiciieeectte ettt e et e et e e e rre e e e e b eeeesesaeeeereaaens 26

4. PREVIOUS WORKS 27
5.1 Linear PrOZIAMIMINGcoveuiiuiieuirteieterteeetesteeete sttt ae e ee s s e se st e e eae st e e esesae e esesae e enesae e enesaeneeneas 29
5.2 Survey on linear programming sOftware packagesccovvviiiiiiiiiiiiiii i 30
5.2.1 List of very few Linear Programming softwate packagescccceverenirieirieeiienieneneneeeeeeeenenen 30

5.2.2 Experience faced while using few of the software packages.........c.cccooeeiiiiiiiiiiiiiiniiiie 30

5.3 GLPK (GNU Lineat programming IKIt) ...c.eeceeeeeeerienienininieieieiesiesiesie sttt st eseeeennenens 31

6. UPPER BOUNDS 32
6.1 Computation of the known upper bounds on block codes........cc.couiviiiiniiiniiiiiiiiiiiiien 32
6.1.1 Upper bounds on A(#,d), for n=<28and d<14 using theorems 1 & 2o, 33

6.1.2 Upper bounds on A(#,d), for n=<28 and d< 14 using theorems 3& 4......cccoevviviiiiiiiiiiiiiiiiiee, 34

6.2 Discussion of problems when reproducing upper bounds on A(n,d).....cccoviviiiiiiiiniiiiiiiiiii, 36

6.3 Improvements on known upper bounds on A(0,d, W)ocoiiiiiiiiiiiii e 37
6.4 Extended tables of upper bounds on A(n,d,w).cooiiiiiiiiiiii e 37
6.4.1 Discussion of Problems while extending the tables of upper bounds on A(n,d,w)ccceviiiiininns 37

7.1 Improvements on known upper bounds 0n A(0,d) c..ooveiiiiiiiiiiiien 38
7.2 Computation of upper bounds on A(n,d), for n 40 20d dS20. oo 38
7.2.1 Discussion of problems during the computation of upper bounds on A(f,d).....cccceveviviriiiininnne. 40

8. CONCLUSIONS 41
8.1 COMCIUSIONS. ¢ttt ettt sttt ettt sttt ettt et bt sa e bt e bt oot et e aese e bt sueeueeneensentens 41
8.2 FFULULE WOTKS c.viiiiiiiiiii e 41
9.REFERENCES 48

Chapter 1

1. Introduction

The ultimate aim of communication systems is to transmit information from the
information source to the destination without any errors like noise, attenuation, bandwidth
limitations, interference etc., which are introduced in the channel. One of the ways of
detecting and minimizing these errors over a noisy communication channel is by channel
coding.

The intention of reducing these errors has resulted in the invention of different types
of codes like linear codes, block codes, convolutional codes, Hadamard codes, etc., each
designed to meet specific transmission requirements in specific channels [29]. Block codes are
one of the types of codes that can reduce the errors to a considerable extent. The quest
running for decades in communication theory for finding the maximum possible size of block
codes with given parameters has been quenched by computing upper and lower bounds for
block codes. These upper and lower bounds are computed because the maximum possible
size of block codes is in general not known.

An (n,d) is a binary code and it is a set of code words of length n, distance d. Let
A(n,d) denote the maximum number of codewords in any linear or nonlinear binary code of
length n and minimum distance d between code words.

An (n,d,w) constant weight binary code is a set of binary code words (#,4) in which all
code words have same number w of ones and (n-w) zeros, where 7 is the length of the binary
code, 4is the Hamming distance and » is the weight of all code words(number of nonzero
components). Let A (n,d,») denote the maximum possible number of code words in a constant
weight binary code.

Much research has been carried out in computing upper bounds for the size of block
codes for all lengths #< 2§ and minimum distances 4< 74 [3]. Since 2001, there has not been
much improvement in this research. This thesis is focused on reproducing the values of the

upper bounds on block codes A(#,d) in table I in [1],and to extend this table to #»<40 and
d< 20 with the help of the extended tables of constant weight codes A(n,d,w) tor n<40, d< 20
and w< 20.

This thesis takes a structured approach to compute the known values of the upper
bounds, starting with the application of few theorems that were derived by different authors
[1] and working gradually to reach the goal. Initially theorems 1- 4 in [1] are implemented in
the C programming language to reproduce table I in [1] and later this table has been improved
and extended to #<40 and 4< 20.

The thesis is organized as follows:

Chapter 1 presents a sneak preview and a broad brush overview of the whole thesis
work.

In Chapter 2, the basic idea of information theory, definition of the information and
an expression for the measurement of the information content, definition of the entropy are
provided under the section 2.1. Also, an analysis and elementary design of the elements of the
overall communication system, with an explanation to some of the basic terms like Shannon’s
law, explained in the subsection 2.1.4.1 and SNR (Signal to- Noise ratio), explained in the
subsection 2.1.5 are provided in this chapter. Few more concepts like coding, its necessity in
communication systems, types of coding are also briefly discussed.

Chapter 3 provides a detailed coverage of block codes and classification there of.
Some important terms such as Hamming distance and Hamming weight are explained in the
sections 3.2 and 3.3 respectively. Different types of codes such as constant weight codes,
linear codes, Hamming codes (an example of block codes), cyclic codes, BCH codes, Reed
Solomon codes are briefly explained in this chapter. The significance of bounds on block
codes is also elucidated in this chapter.

Chapter 4 gives a complete survey of the previous research results accomplished in
the generation of upper bounds for block codes in the last decades.

Chapter 5 includes a mathematical treatment of linear programming. A few linear
programming software packages are investigated in section5.2.In addition, this chapter also
confers the experiences from using a few linear programming software packages. Also, the
GLPK linear programming software package is described in section 5.3.

Chapter 6 is devoted to the computation of the known upper bounds for block codes,
A(nd), for n<28 and d<74 using theorems 1-4 in [3], by utilizing bounds on constant
weight codes A (n,dw), for n< 28 and d< 74 in [4]. The above computation is explained in detail
under the section 6.1.An overview on the analysis of upper bounds on the constant weight
codes is presented in section 6.2 and the improvements upon the known upper bounds on
Andw) tor n<28 and d<74 in [3] are discussed in detail in section 6.3.Also section 6.4
thoroughly discusses the improved values of known upper bounds for block codes, A(#,d) for
n<28 and d<74.This chapter also covers a discussion some problems that arose during the
computation.

In Chapter 7, section 7.1 covers a discussion of the extended tables for constant
weight codes, A(n,d,w),from n<40, d< 20 and w< 20. Subsection 7.1.1 discusses few problems
that arose during the extension of tables of upper bounds for constant weight codes,
An,dw)for n<40, d< 20, w<20. Also, Section 7.2 focuses on main part of this dissertation
i.e. computation of upper bounds for block codes, A(n,d), for n<40, d<20.The subsection
7.2.1 discusses some problems that arose during the computation of upper bounds for block
codes, A(n,d), for n<40, d< 20.

Finally, chapter 8 is the epilogue of this dissertation, which includes conclusions in
section 8.1 and ends with future works in the section 8.2.

10

Chapter 2

2. Basic idea of Information Theory

This chapter is completely devoted to some of the important terms in
communication systems. It gives a brief introduction to information theory, provides
definitions of information, entropy. An expression for the measurement of information
content is also presented in this chapter. An analysis on the transfer of messages through the
channels is discussed in the section 2.1.4.Definition of Signal to noise ratio (SNNR) is provided
in the section 2.1.4.1. This chapter provides an overview of coding, its necessity in
communication system and also different types of coding are explained in this chapter.

2.1 Information Theory

The idea of quantitative measure of the information has been around for a while, to
explain the aspects of information and communication. Claude Elwood Shannon in 1948
formulated principally a new field what is now called Information theory. Since then he went
on to invent new disciplines of information theory and revolutionize the field of
communications.

2.1.1 Information -Definition

Shannon defined the ‘Information’ as the symbols that contain unpredictable news i.e.
he proposed the idea that information is based on uncertainty. In information theory, the
term znformation is used in a special sense, it is measure of the freedom of choice with which a
message is selected from the set of all possible messages thus it is distinct from the meaning,
since it is entirely possible for a string of nonsense words and a meaningful sentence to be
equivalent with respect to information content [37].

11

2.1.2 Measurement of the Information content

Shannon defined a quantity called se/f-information. The mathematical expression for the
information content is [37]. Information theory numerically measures the quantity of the
information in a message in bits.

i(4) =~log, P(4) 2-1)

Where:
A is an event, which is a set of outcomes of a random experiment,
P (A) denotes the probability of the occurrence of the event 4 and
7#(A) is the self information associated with A.

The above concept explains that if the probability of an event is low (more uncertainty) in the
communication channel, the amount of the self- information associated with it high
information associated with it is high and vice versa.

2.1.2.1 Entropy-Definition

Shannon showed that if the experiment is a source that puts out the symbols 4, from

a set A, then the enfropy is a measure of the average number of binary symbols needed to code
the output of the source [37].

Average self information:

H ==Y P(4,)log, P(4,) 22)

2.1.3 Code-Definition

Definition: The set of binary sequences is called a Code [42].Codes is invented to correct
errors on noisy communication channels. Suppose there a lot of important messages (0’s and
1’s) to be sent over the communication channel. There can be a possibility that the receiver
will receive 1, when 0 is sent and receives 0 when 1 is sent. Say on an average 1 out of every
100 symbols will be in error that is for each bit there is a probability P=0.07 that the channel
will make a mistake and this channel is called bznary symmetric channel. For in order to give
some protection against errors on the communications channel, these messages are encoded

into a code word i.e. A block of £ message symbols u =u,u,....u, (u, =0or 1) will be encoded

into a code word x =xx,...x, (x, =0 or 1) where #n>£ these code words form a code. The

tigure 3.2 in section 3.1.1.1 clearly illustrates this [29].

12

2.1.4 Analysis of the transfer of messages through the channels

To get a better understanding of Information theory Shannon explained some of the
details: Any communication system involves three steps 1.coding the message at its source
2.transmitting the message through a communication channel and 3.decoding the message at
its destination. In the first step the message has to be in put into some kind symbolic
representations that is in the form of codes and this information is transmitted via the
channel where at the destination this message is decoded to extract the original data. The
information may be corrupted by the noise during this process. Information theory further
shows that this noise creates uncertainty as to the correspondence between the transmitted
and the received signals. His theory replaces each element in this model with a mathematical
model that describes the elements behavior within the system.

CHANNEL
MESSAGE | ENCODER 1N .| DECODER .| USER
SOURCE T > T 3 T > 7
U=, XKy T y=xte ESTIMATE OF
! k CODEWORD RECEIVED MESSAGE
MESSAGE ezqen VECTOR
CODE
VECTOR

Figure 2.1 Block diagram of overall communication system.

An important theorem of information theory states that if a source with a given
entropy feeds information to a channel with a given capacity, and if the source entropy is less
than the channel capacity, a code exists for which the frequency of errors may be reduced as
low as desired. If the channel capacity is less than the source entropy, no such code exists[35].

The ultimate limitation of a channel to efficiently and reliably transmit information
without error is characterized by the channel capacity defined in the section 2.1.4.2.The task
of providing high channel efficiency is the goal of coding techniques. The failure to meet
perfect performance is measured by the bit-error-rate (BER). Typically BERs are of the

order107°. Shannon used mathematics to define the capacity of any communication channel
to optimize the signal to noise ratio in his law. Before stating Shannon’s law the signal to
noise ratio is defined in the section 2.1.4.1.

13

2.1.4.1 Signal to- noise ratio

Definition: It is a measure of the received average- signal power to the noise power written
as S/N or SNR. It is measured in decibels [35-36].There is a distinction between
communication channel designed bit rate of so many bits and its actual information capacity.
Information theory says that one need not lower the transmission rate to anything below the
channel capacity to achieve smaller error probabilities [35].

E,R
S _(ER) 2-3)
N (NOW)
Where:
£y s the ratio of the bit energy to the noise power spectral density, in decibels.
NO

R s the spectral efficiency.
w

R is the code rate.
W is the bandwidth

2.1.4.2 Shannon’s law

Capacity —Definition: This statement defines the theoretical maximum rate at which error-
free digits can be transmitted over a bandwidth—limited channel in the presence of noise. The
Shannon-Hartley formula for channel capacity is given by [35].

S
C=Wlog, (1 +Wj (2-4)

Where:
C is the channel capacity in bits per second,
W is the bandwidth in Hertz (cycles/sec) and

S _ER s the signal to noise ratio.
N N
Explanation

When the information rate R, equals the channel capacity C, the curve separates the
region of reliable communications from that region where reliable communications is not
possible. The expression clearly states that reliable transmission (transmission with error
probability less any given value) is possible even over noisy channels as long as the
transmission rate is less than channel capacity [36]. The noisy channel coding theorem stated
in the subsection 2.1.4.4, gives the capacity of a general discrete — memory less channel. The
graph illustrates the relation between the capacity C and the signal to Noise ratio SNR[30].

14

I Exceeds capacity !

]

-20 -10 [10 20 30 40 50

Graph of capacity C (in b/s'Hz) against SNE. (in dB):

Figure 2.2 Graph showing the capacity against Signal to Noise ratio.

2.1.4.3 Mutual Information

The mutual information between two discrete random wvariables X and Y is denoted

by I(X;Y) and defined by [35].

I(X;Y)=H(X)- H(X/Y) (2-5)
Where:

H (KJ denotes the entropy (or uncertainty) of the random variable X after random
Y

variable Y is known.

H(X)-H (%) is the amount of the information provided by the random variable Y

about the random variable X.

2.1.4.4 Noisy channel coding theorem

The maximum rate at which one can communicate over a discrete memory less
channel and still make the error probability approach 0 as the code block length increases is
called channel capacity. The capacity of a discrete memory less channel is given by [35].

C=max/(X;Y) (2-6)

P(x)
Where:
1 (X Y) is the mutual information between the channel input X and the output Y.

15

Explanation

If the transmission rate R is less than C, then for any 6 >0 there exists a code with
block length # large enough whose error probability is less than ¢ .If R>C, the error
probability of any code with any block length is bounded away from 0.This theorem gives a
fundamental limit on the possibility of reliable communication over a noisy channel [35].

2.2 Coding

This section presents definition of coding and its necessity in communications systems.
Also types of coding are types are included in section 2.2.3.

2.2.1 Definition

The "Coding" is perceived as the operation of the identification of the symbols or the
bit groups of one code to the symbols or the bit groups of other code. Information
transmission through communication channels becomes considerably more difficult because
of the disturbances and noises in the channel. It is an effective means by which errors can be
detected and corrected in a communications channel [37].

2.2.2 Necessity of Coding

The necessity of coding arises first of all from need to adapt the form of message to
the given communication channel intended for transformation. The main purpose of coding
in communication systems, the altering of the characteristics of a signal is to make the signal
more suitable for an intended application. One of the important applications of coding is to
increase the overall bit error probability. As per Shannon’s channel capacity theorem the
probability of the error B, (E) can approach zero, provided the information rate is less than the
channel capacity. For in order to make the probability of the error tend to zero “coding” is

necessary|35].The only way to transmit messages reliably over a noisy communication channel
at a positive rate without an exponential increase in the bandwidth is by coding.

2.2.3 Types of Coding

The term coding is applied to many operations within communications systems.
Shannon’s information theory deals with few of the types of coding namely, source coding
(data compression), and channel coding (error protection) [9].

e Source coding

A form of Coding where an analog or digital source is altered in some way to make it
best suited for transmission purposes.
» Reduces “size” of data.
» Analog- Encode analog soutce data into a binary format.
» Digital — Reduce the “size” of digital source data.

16

¢ Channel coding

It involves the addition of some extra bits to the transmitted data stream resulting in
longer coded vector of symbols in order to provide a means of correcting transmission
errors. Mostly involves operations on binary data.

» Increases “size” of data.
» Digital — add redundancy to identify and correct etrors.
» Analog — represent digital values by analog signals.

2.2.4 Channel Coding

Channel Coding is most often applied to communications links in reducing the
information rate and improve the reliability of the information being transferred. In
information theory and coding there are two ways of detecting and correcting the errors
namely-

2.2.4.1 Error Detection Coding

An error detection technique involves recognizing that part of the received
information in error and if admissible it requests a repeat transmission or may simply inform
the receiver that the transmission was corrupted (ARQ) Automatic Repeat Request system.
There are three types of ARQ operations namely:

e Stop and Wait ARQ: One of the ARQ methods where the transmitter waits for an
acknowledgement of correct reception known as (ACK). If the received message is in
error it returns a NAK (negative acknowledgement).

e Go Back n ARQ: The method in which the transmitter continues to transmit
messages in a sequence until a NAK is received. It identifies the message in error and
the transmitter back tracks this message starting to retransmit all messages in the
sequence from which the error occurred. No ACK’S are used and has less signaling
overhead.

e Selective ARQ: by making the protocol slightly complex, and by providing buffer in
the receiver and at the transmitter, it is desirable for the receiver to inform the
transmitter of the specific message that is in error, making the necessity of the
transmitter to send that particular error message.

2.2.4.2 Forward Error Correction Coding

It is a method of providing reliable digital data transmission and storage when the
communication medium used has low Signal to Noise Ratio. In forward error correction
coding technique, instead of transmitting the digital data in a raw bit form the data is encoded
with extra bits at the source and these extra bits transform the data into valid code word in

17

the coding scheme. Hence the longer code word is transmitted and the receiver can decode it,
to retrieve the desired information. The space of valid code words is smaller than the space of
possible bit strings of that length therefore the destination can recognize invalid code words.
This whole process takes place without recourse for retransmission hence named as Forpard
Error Correction also known as error corvection and error detection coding. There are two types of
channel codes namely [18&35].

1. Block Coding

In a block code the information sequence is broken into blocks of length £ and each
block is mapped into channel inputs of length ~.This mapping is independent from the
previous blocks i.e. there exists no memory from one block to another block[35] .Its is
explained in detail in chapter 3.

2. Convolutional Coding

Convolution codes extend the concept of a block code to allow memory from block
to block. Each encoded bit is therefore a linear combination of information symbols in the
current block and a selected number of preceding blocks. In convolutional codes, there exists
a shift register of length L. The information bits enter the shift register k, bits at a time and

then n, bits which are linear combinations of various shift register bits are transmitted over

the channel. These n, bits depend not only on the recent k,bits that just entered the shift

register, but also on the (L-1)k, previous contents of the shift register that constitute its state.
The quantity m, = L is defined as the constraint length of the convolutional code. The

numbers of states of the convolutional code are equal to 2k [35].

2.2.5 Coding efficiency

The efficiency of a code is a measure of how well errors can be detected versus bit
overhead required to implement the code. Certain code types are better at detecting errors
than correcting them, and these are thus well suited to ARQ schemes explained in subsection
2.2.4.1 where we need to know an error has occurred, and our corrective action is to request a
retransmission. Equally there are codes that are best suited for correcting and these will be
used where no retransmission was possible. Example of this type of code is missile control
systems [6].

18

Chapter 3

3. Block Coding

Block coding is a special case of error-control coding defined in section 2.2.4.2. This
chapter includes basic idea of block codes, constant weight codes- definition, linear codes,
Hamming codes, Cyclic codes, Bose—Chaudhuri-Hocquenghem (BCH) codes and Reed
Solomon codes. It also defines some of the terms like Hamming distance, Hamming weight
in sections 3.2 and 3.3 respectively. Also a brief idea of bounds on block codes is provided in
section 3.10.

3.1 Linear Block Codes

Block codes operate on relatively large (typically, up to a couple of hundred bytes)
message blocks, each of £ information bits. The encoder transforms each message word
independently into code word thus corresponding to 2* different possible messages i.c. there

are 2 different possible code words at the encoder output .This set of 2F code words of
length 7 is called (7, £) block code.

The increase in block length means that the useful data rate (the information transfer
rate) is reduced by a factor £/ called code rate. The additional bits are carefully chosen such
that they help to differentiate one pattern of £ bits in a block from a different pattern of £
input bits. The redundancy and code rate of the block code are given below [6, 18 & 35].

Code rate = k (3-1)
n

Redundancy =1- K (3-2)
n

19

Our ability to detect errors depends on the rate. A low rate has a high detection probability,
but a high redundancy. The class of block coding techniques includes categories shown in the
diagram below.

k—blt data Word; ENCODER ﬂ—blt COdC Word;

Figure 3.1 Block diagram explaining block codes

3.1.1. Linear block codes - Definition

A block code is linear, if any linear combination of two code words is also a
codeword. In the binary case that if ¢;and ¢ are code words then ¢; ® ¢ is also a code word,

where® denotes bit —wise modulo-2 addition [35].

3.1.1.1. Linear codes -Explanation

MESSAGE .| ENCODER .| CHANNEL
SOURCE | |
MESSAGE
CODE WORDS
U, Uyyennen SUy
xl 2 x2 LR > xn NOISE

A block of messages bits # =u,,u,,.....,u, will be encoded a codeword x = x,,Xx,,..... X

which form a code where #> 4. A linear code is described by this method of encoding. The
first part of the codeword consists of the message itself followed by (#-&) check symbols

X; 105 X, the check symbols are chosen in such a way that the codewords satisfy
X

Xy

H| | = Hx"=0 (3-3)

20

Where H is parity check matrix of the code of length (n— k) xnand is given by
H= [A | In_k] and A is some fixed (n—k)xk matrix of 0’s and 1’s and /,_, is a unit matrix
of length (n—k)x (n - k) . ‘0 is a column matrix of length (n—k)x1. The Equation (3-3) is
to be performed modulo2. The above definition clearly explains that a linear block code is a 4-

dimensional subspace of an #-dimensional space.

3.1.1.2 Classification of Linear block codes

The following tree diagram illustrates some examples of linear block codes and their
relations|35].

LINEAR BLOCK CODES

v
CYCLIC CODES

y
BCH CODES

HAMMING CODES REED SOLOMON CODES

Figure 3.3 Tree diagram of classification of Block codes

3. 2 Hamming distance

This section defines Hamming distance and minimum Hamming distance.

3.2.1 Hamming distance-Definition

It is defined as the number of bit positions in which the corresponding bits of two
binary words of the same length are different .i.e. The Hamming distance between 1011101

and 1001001 is two. It is denoted as d(c,,c,) where ¢,;and ¢; ate code words. The greater the

Hamming distance, the more dissimilar the code words and the better the chance of detecting
or correcting errors [35].

21

3.2.2 Minimum Hamming distance

The minimum Hamming distance of a code is the minimum Hamming distance
between all pairs of code words in a code [35].The errors detected and corrected by a block
code are given below [6].

Errors detected = (d - 1) (3-4)

(@-1)

Errors corrected = ~——= (3-5)

Whete:
dis the minimum Hamming distance.

3.3 Hamming weight

This section defines Hamming weight and minimum Hamming weight.
3.3.1 Hamming weight

The Hamming weight is defined as the number of “1” bits (i.e. #on zero bits) of a
binary code word in a bit sequence denoted by » (c¢;) where ¢,is the code word. For

example the hamming weight of 1010 is 2 [35].
3.3.2 Minimum Hamming weight

The minimum Hamming weight of a code is the minimum of the weights of the code
words except the all zero code words [35].

3.4 Constant weight Codes-Definition

Constant weight binary codes are an important class of error correcting codes .An
(n,d,w) constant weight binary code is an (7,d) binary code in which all the code words has
same number » of ones. Where (7,d) is a binary code and it is a set of code words of length
n, distance d [29].

3.5 Cyclic Codes

Cyclic codes are a subclass of linear block codes for which easily implementable
encoders and decoders exist. This section defines cyclic codes and also discusses the
properties of cyclic codes.

3.5.1 Cyclic codes -Definition

A Cyclic code is a linear code with an extra condition that if C is a code word, a cyclic
shift of it is also a codeword [29]. A cyclic shift of the codeword C = (cl,cz, C, 1,C) is

S¥n-1°"n

defined to beC(l)Z(cz,c3, ,C,15C,,C). A cyclic code can easily be created by

22

performing right cyclic shifts on an initial code word, developing a new code word with each
shift, which continues until original code word is obtained i.e. simply all the elements of a
code word are shifted one space to the right and the element on the end moves to the
beginning of the codeword [35&28].

3.5.2 Properties of Cyclic codes

The structure of these cyclic codes was better understood and studied by mapping

them to polynomials. The code word polynomial corresponding to C = (cl,cz, ,cn_l,cn)
is defined by:
C(p) =Zc[p”’i =c,p" ey p" T +c,,p+c, (3-6)
i=1
The code word polynomial corresponding to C W= (Cy,C55meeensC,y5C,5C)
C(l)(p)zczp”_1 +e p" T A, +c, . pl+e, pte (3-7)

The following theorem clearly explains the structure of cyclic codes

Theorenr: In any (1,£) cyclic code all code word polynomials are multiples of a polynomial of
degree (#-£) of the form

glp)=p " +g,p"" "+ +g,..p+1 (3-8)
called the generator polynomial, where g(p)divides p" +1.Further more for any information
sequence X = (xl,xz, ,xk_l,xk)we have the information sequence polynomial X (p)
defined by X(p) =x,p" 7 +x,p" P+ +x,,p+x, and the code word polynomial

corresponding to x is given by C (p) =X (p)g(p).The fact that any code word polynomial is
the product of the generator polynomial and the information sequence polynomial, implies
that C= (cl,cz, ,cn_l,cn) is the discrete convolution of the two sequences

X = (xl,xz, ,xk_l,xk) and g = (1, F< S 2 Zi ,l). Further information of generating

the generator matrix and encoding of cyclic codes can be found in [35].

3.6 BCH codes

They are a general family of the block codes called Bose, Chaudhuri, and
Hocquenghem codes which can correct any number of errors (# errors) if the code word
used is long enough. They are a subclass of cyclic codes which are versatile in design. BCH
code can be defined by the following parameters for any 7 and 7 [29 & 35].

n=2"-1 (3-9)

n—k<mt (3-10)

23

d=21+1 (3-11)

Where:
¢is the number of errors that can be corrected by BCH code.

3.7 Hamming Codes

This section briefly explains the Hamming codes and also discusses the parameters used to
define them.

3.7.1 Introduction to Hamming codes

One example of a cyclic code are the binary Hamming codes.. They were discovered
independently in 1949 by Marcel Golay and in 1950 by Richard Hamming [28].

3.7.2 Hamming codes -Definition

A Binary Hamming code is constructed by a parity check matrix H, in which the
columns of this matrix consist of all nonzero binary vectors of length r (each vector used

only once). The parameters of these particular codes are n =2" —1(r > 2) (size of each code
word), k =2" —1—r (for determining the size of code), and d=3(minimum distance) for all
Hamming codes. This makes binary Hamming codes [n=2" -1,k =2" —1-r, d=3] as
perfect single error correcting codes, and equivalent to cyclic codes. They can:

» Detect all single- and double-bit errors
» Cortrect all single-bit errors.

In order to decode Hamming codes, a simple syndrome decoding method is used,
where the codeword received is multiplied by the Hamming Matrix and the result is the
binary representation of where the error occurred [6, 35 & 28].

Rate of these codes is [35]:

2" —r-1
R. =-"" - 3-12
C 7 _1 ()

Where:
7 1s the total number of bits in the block.

£ is the number of information bits in the block.
ris the number of check bits in the block, whetre r = 7 — £.

3.8 Reed-Solomon codes

This section provides an introduction to Reed Solomon codes. It also discusses the
properties of Reed Solomon codes along with few of its applications

24

3.8.1 Introduction

Reed -Solomon (RS) codes are block-based error correcting codes with a wide range
of applications in digital communications. The Reed-Solomon encoder takes a block of
digital data and adds extra "redundant” bits. Errors occur during transmission or storage for
a number of reasons (for example noise, scratches on a CD, etc). The Reed-Solomon
decoder processes each block and attempts to correct errors and recover the original data.
The number and type of errors that can be corrected depends on the characteristics of the
Reed-Solomon code.

3.8.2 Properties of Reed -Solomon codes

Reed —Solomon codes operate at the symbol level rather than the bit level i.e. the
incoming data stream is first packaged into small blocks, and these blocks are then treated as
new set of £ symbols of s bits each to be packaged into a super-coded block of n symbols,
the result is that the decoder is able to detect and correct complete error blocks up to 7
symbols. It is thus possible for a whole symbols to be corrupted leading to a burst of errors,
even still the receiver will be able to reinstate the correct information. Thus the Reed
Solomon Code is specified as RS (#,£) [6&35].

k 2

DATA PARITY

Figure 3.3 Block diagram of the typical Reed Solomon code.
A Reed Solomon is clearly defined by the following parameters-

n=2_1 (3-13)
d=2t+1 (3-14)

Where:
21= n-k
7 1s the maximum code word length of a Reed Solomon code.
sis the symbol size in bits.
¢ defines the number of errors the code is capable of correcting.

3.8.3 Applications

» RS codes are often to correct errors in mobile radio systems where burst errors
are common.

» Also used as a part of the error correcting mechanism in many storage devices
(including tape, Compact Disk, DVD, barcodes, etc) and CD players

» They ate also helpful in correcting the burst of errors caused by the inevitable
scratches on the disk surface [6].

25

3.9 Briefidea of bounds on block codes

Say
Amdw) = Maximum number of code words in any binary code of length 7,
constant weight » and minimum distance 4.
An,d) = Maximum number of code words in any linear or nonlinear binary

code of length # and minimum distance & between code words.

The quest of finding the largest possible size of A(nd) in coding theory was
quenched in the other way by finding lower and upper bounds on .A(nd) because the
maximum size in general is not known. The upper bounds on .A(nd) were found having
assumed that bounds on A(#,d,) are known|[4].

26

Chapter 4

4. Previous Works

In order to understand, analyze and improve an idea, the best way is to have basic
knowledge of the background research and also grasping some of the ideas from them is very
important. This chapter is reserved for previous research carried out in computing upper
bounds for block codes and also discusses previous research on bounds. The question of
finding the largest possible size .A(n,d) of an (n,d) binary code remained unanswered as it is
impossible to find it. Though this is not solved, various lower and upper bounds were
developed. Computation of upper bounds involved many analytical methods like linear
programming and algebra. Upper bounds on A(,d) were developed with the help of upper
bounds for constant weight codes, A (n,d,w).

A number of attempts have been made and the upper bounds for error correcting and
error detecting codes were found in [20] April 1950 by Hamming. Later in Dec 1959 [38]
upper bounds for error detecting and error correcting codes of finite length were obtained by
exploiting the geometric model of coding. Then in April 1962 [22] Johnson found a new
upper bound for error —correcting codes which improves most values on Wax’s bounds.

In the course of introducing this new upper bounds Johnson introduced two new
bounds (A and B) on the maximum number of code words in constant weight minimum
distance binary block code which had been obtained independently during the study of error
correcting codes by Freiman. Johnson described an upper bound for .A(n,d,») with added
refinement in [23&20].

Then later in July 1964 [17] Freiman discussed some upper bounds on the size of
constant weight codes with minimum distance d=2u, given by Johnson in [22] and derived
one of its own, based on packing considerations. The first table of upper bounds on A(7,d)
and on A(ndw)for, n<24 ,d<710 and w<714 was found in 1977 [29, pg 684-691]. The
improved version of these tables with some new values was presented in [7].Another update
appeared in Honkala’s Licentiate thesis [21, sec 0].

27

Some new upper bounds for constant weight codes (12 new upper bounds) appeared
in [15] in July 1980.These bounds were obtained, using the updated tables of Graham and
Sloane [19] as initial values in Johnson’s formula [26].These updated tables in [19] are a
revised version of the lower bounds in [7].Revised tables with improved lower bounds were
further published in May 1980 [27 & 11].

The best known lower bounds on A(ndw) for, n<28, d<18 and w<1718 were
published in 1990 [12]. In [12] upper bounds are given only for those parameters where these
bounds are known to coincide with lower bound Then in Jun 2000 new upper bounds on the
size of constant weight binary codes, derived from bounds of spherical codes were presented
in [2], in addition to this, Johnson bound given in [22] and the linear programming bound for
constant weight codes were improved. Further in Nov 2000, improvements on the best
known upper bounds on A(n,d,w) tor n<24 , d<712 and w<174 were made and also extended
tables up to #< 28 and 4< 74 were presented|[1].

A Table of upper bounds on A(#,d) for the range #»< 24 and d< 70 was published in
[16 p.248].A wider range of parameters was included [12].Updates to the combination of the
upper bounds in [16] and [12] are published in [3].The table in [3] includes 4 new bounds and
extends the range of the parameters compared to the previous tables on A(#,d).

A new upper bound which is at least as good as Johnson bound for all values of n and
d is given in April 2002. It is found that for small values of n and d the best known method to
obtain upper bounds on A(n,d) is linear programming and a new set of inequalities for linear
programming. The improved upper bounds on A(nd) for n<28 generated with these new
inequalities were published in [32].An updated version of the tables of upper bounds for
small general binary codes after the published tables in [7] were made available online [10].A
new upper bound on the maximum size A(7,d) was presented in [38]. This bound is based on
block-diagonalsing the Terwilliger algebra of the Hamming scheme. It was shown that the
bound strengthens the Delsarte bound and also the improved upper bounds on A(n,d) for
n< 28 and d< 10 were presented in [38].

28

Chapter 5
5. Linear Programming

This chapter begins with an overview that is intended to introduce linear
programming in the section 5.1.The results of the survey on the linear programming software
packages are discussed in the section 5.2.The very next part of this section presents the list of
very few freely available linear programming software packages. The last part of this section
explains one of the experiences faced in an attempt to use one of these software packages.
The GLPK linear programming software package with supported reasons for choosing it are
demonstrated in the section 5.3.

5.1 Linear programming

The basic purpose of linear programming is to optimize a linear objective function
of continuous real variables, subject to linear constraints. The problem was first solved in
1940s when Dantzig developed the simplex method to solve planning problems for US Air
force. Later it was applied to problems ranging from engineering and economics. Later other
methods like ellipsoid and interior point method were developed. Simplex method and linear
programming methods are still used in practice [31].

Primal problem of linear programming

Any minimization problem can be formulated as a maximization problem and vice
versa by negating the sign of the objective function

Max ¢’ x — (Objective function) (5-1)
Subj Ax=b (5-2)
%20 (5-3)

29

Where:
ceR™, 4eR™" is non singular and
1 1 - .
beR™ and x e R"™ is variable.

The objective function attains optimal value at some optimal solution. In addition
any point that satisfies the constraints is called feasible. Further information on linear
programming can be found in [29].

5.2 Survey on linear programming software packages

An online survey made on the free accessible linear programming software packages
has resulted in many products, which aid in maximizing and minimizing linear constraints
subject to linear equalities and inequalities in continuous decision variables. Many of these
products are also intended to solve large scale linear programming problems [31].

5.2.1 List of very few Linear Programming software packages

There are large numbers of software packages. Very few of the linear programming
Software packages Linear Programming, Simplex /Interior Point method [31]:

e CPLEX (purpose: Linear programming , simplex/Intetior Point method)

e LIPSOL (Matlab sparse LP by interior points)

e PCx, sparse interior-point code linear programming

e CLP, Simplex based linear programming solver from COIN-OR.

e Linprog, low dimensional linear programming in C(Seidel's algorithm, by Mike
Hohmeyer).

e GLPK, GNU Linear programming Kit (ANSI C package for large scale linear and
mixed integer linear programming) etc.

5.2.2 Experience faced while using few of the software packages

An attempt in using the PCx software package went vain as it does not serve the
purpose of this thesis even though there are C libraries available in this package. The reason is
that it doesn’t work for higher number of constraints or variables and its limitation is up to 25
variables and worked very well for up to 25 variables. Part of our time is not spared in at least
attempting to increase the limit of this software package as it is discovered to be very difficult
and shifted in trying for another free available linear programming software package that
meets the requirements of this thesis.

Next trail in using the GLPK (GNU linear programming kit) worked well even for

larger number of variables and has a set of routines written in C language which is rudiment
in this dissertation to solve the linear programming part.

30

5.3 GLPK (GNU Linear programming Kit)

The GLPK is widely available general purpose software package. It is destined for solving
large scale linear programming (LP), mixed integer programming (MIP) and other related
problems by means of revised simplex method with minimum effort ."This package available
with the documentation is currently developed, maintained and made available online for free
use by Andrew Makhorin. It is a productive contributor for the people all over the world. It
supports the GNU programming languages which are a subset of AMPL language. The
impetus for choosing only this particular package in spite of not using all other packages even
though some are very fast than this (for example CPLEX is 10-100 times faster) is that it
meets some of our requirements like, it is a set of routines written in ANSI C programming
language and organized in the form of callable library (it meets the requirement of this work
as all the simulations of the thesis are actualized in C programming language) [31].

In addition to this GLPK software package also helps to find an optimum solution for
large scale linear programming problems using simplex method, with up to several 100,000
constraints, variables with less effort. It is even faster than PCx software package and robust
too. It is capacious, versatile, efficient and numerically more stable enough to characterize the
sensitivity of optimum with respect to the changes in the data [30].For further information
about the simplex method and how does this software package converts the linear
programming problem into its standard form depending on the types of the variable and
bounds of variable refer to the documentation of GLPK [31].

Understanding of the concepts of types of the variables and bounds of variables plays a
vital role in getting appropriate results as per the need. Many errors arose at the time of this
work when GLPK is implemented because of illusive understanding of above concepts.
Rectifications of these bugs are very clearly discussed in the section 6.3.

31

Chapter 6

6. Upper Bounds

Having defined some basic concepts like block codes, convolutional codes, types of
block codes, the main discussion of reproducing upper bounds on block codes can be started.
This chapter includes computation of known upper bounds for block codes, .A(n,d) for n< 28,
d<14. It also includes a detailed discussion of the improvements on known upper bounds for
block codes which occurred due to the improvements on constant weight codes, A (#,d,w) for
n<28, d<14 and w<74 followed by the discussion of problems that arise when the
theorems are applied in C programming.

6.1 Computation of the known upper bounds on block codes

This section is a practical treatment of computing known upper bounds for block
codes A (n, d) for n<28and d <14 Sections 6.1.1 and 6.1.2 include reproducing upper
bounds on block codes using theorems 1- 2 and 3- 4 in [3] respectively. These bounds are
computed using known upper bounds on constant weight codes A(n,d,w) for n< 28, d< 14 and
w<14 in [4] . Motivated by the published bounds for block codes in [3] these bounds for
A(nd) are extended from n<40 and 4<20 which are discussed in chapter 7. In order to
reach this goal, the upper bounds for constant weight codes are to be extended to #<40,
d<20,w<20 which are discussed in section 7.1. Most improvements occurred when
extending the tables of constant weight codes which are thoroughly discussed in section 6.2.
These improvements on bounds for constant weight codes, A(n,d,w), for w=10 & w=11 at
n=28 and d=14 lead to the improvements on block codes A(#nd) for #<28 and d<14
which are discussed in section 6.3.

In other words, it can be said that the better bounds on A(#,d,w) lead to new bounds

on Afnd). The interrelationship between A(n,d,w) and A(nd) is cleatly explained by Elias
[8,pp.451-456] and Bassalygol[5].

32

Bassalygo-Elias inequality:

n

6.1.1 Upper bounds on A(n,d), for n=28 and d<14 using theorems 1 & 2

A(n,d) (n,d, w) (6-1)

The superscripts on upper bounds produced in [3] indicates the method (theorem)
from which they are computed, except the values with the superscript S. Bounds with the
superscript S are simply taken from [3]. This section mainly presents a brief explanation of
reproducing upper bounds on A(n,d) by applying theorems 1-4 [3] in the C programming
language. The following bounds are due to Plotkin [34].

Theorem 1
A(n,d)<24(n—1,d) 6-2)
An,d) < 2{ d J
2d —n ifn<2d (6-3)
Aln,d)<2n ifn=2d (6-4)
Theorem 2

The improved sphere packing bound by Johnson [12, pg.532] is given below.For

every positive integer O

-1

n—1 20 -1
]—[jA(n—1,25,25—1)

A(n,28)<2" ["_I}L 7{;1}(0 5_{1(”5_1)J (6-5)

Theorem 2 taken from [3] was implemented in the C programming language to
compute upper bounds with superscript 2. The bounds on A(#,d,») required for computation
are taken from [4]. As a result of implementation, it was observed that the upper bounds that
were computed first did not match the upper bounds in [3]. When rechecked thoroughly, it
was noticed that theorem 2 was stated incorrectly in [3]. It is thus rectified and presented
correctly in this paper using [29].

One important result of the above theorem is A(24, 4)<344308, which was known to
Johnson in 1971 [25, table I, p.472] but has been overlooked in later tables [12&16] [3].

33

6.1.2 Upper bounds on A(n,d), for n< 28 and d= 14 using theorems 3& 4.

This section provides the definition of the distance distribution of a binary code and
the linear programming bound introduced by Delsarte. Theorems 3 & 4 are also stated in this
section.

6.1.2.1 Distance distribution of a binary code

Definition: The distance distribution of a binary code C consists of the numbers
Ay A, , A, and its sequence is defined as [3]:

4 =H(c1,cz)erC:d(cl,cz):i}‘/‘q (6-6)

For 7 = 0,1,2,...,n, where d (Cl,cz) is the Hamming distance between code words,c, &c, .
Also, if dis odd then

A, d) = A(n+1,d+1) (6-7)

Also, 4 =0 forall odd 1, and for any (#,d) binary code with even 4, there exists another

(n,d) binary code with the same number of code words having even weight [3].

6.1.2.2 Upper bounds on A(n,d), for n= 28, d< 14 using theorem 3.

Linear programming bound by Delsarte

Delsarte showed that the distance distribution of any code satisfies [3]:

> 4£()20 (6-)

Where:
k=0,1,2......
P, (x) is the Krawtchouk polynomial of degree k, given by [3]

n

ne-3C0 (307 =

j J

34

Theorem 3:

For every even positive integer o

A(n,d) Sl+[max(Ad + Ay, +A2L%JJJ (6-10)

Subject to constraints

0< 4 <A(nd.i), i=d,d+2,.... 2EJ (6-11)

H
> 4,82Hz-(}). k=1,2 . FJ . 6-12)

j=d/2

Implementation

The above theorem [3] is implemented in the C programming language to compute
upper bounds on A(n,d) for n=28, d< 14 with superscript 3. At first these bounds were
computed with the help of the values of A(ndw) for n<28, d<14 and w< 14 taken from [4].
Later these bounds on A(ndw), for #n<28, d<14 & w<14 were also computed when
extending the tables for blockcodes. All values of .A(n,d,») for all n up to 28 and all even 4 up
to 14 and w» ranging from (d/2+1) to the integer part of #/2 are taken from [4] except a few
values of A(ndw) for w outside this interval or for odd d. These values are computed by
implementing theorem 8 in [1] and the source for this idea was obtained from [3].

The linear programming in the above theorem is solved using GLPK software which
is discussed in section 5.3. The first and foremost step taken to solve linear programming is to
analyze the constraints for the type of the variable and the bounds of the variable. Depending
on their type, the constraints are altered from their original system of equality to the standard
form given in the documentation of the GLPK software. These set of constraints are solved
using the C programming language which uses GLPK routines.

The variables in the above set of constraints fall in the category of double bounded
variables. Many errors arose when theorem 3 was implemented because of misconception of
the type of the variable and the bounds of the variable in the documentation of GLPK
software. Rectification of these bugs is discussed in detail in section 6.4.

35

6.1.2.3 Upper bounds on A(n,d), for n<28and d< 14 using theorem 4

The distance distribution of an (n, d) binary code of odd size M satisfies [1]

2l
N =M (n n

> 4,,P(2))= m [kJ k=12,........ {—J

e 2 (6-13)
While if M = 2(m0d4) , then for at least one I €10,....., n}
n
H (2—M)(]+2Pk (1)
) k "
Y- s
e 2 (6-14)

The bounds with the superscript 4 in the table I [3] are computed by implementing
theorem 4. This theorem is merely based on verifying the bounds obtained by theorems 1, 2
& 3. The lowest bound obtained by the above theorems is checked to fall in the category of
any one of the below inequalities and then is correspondingly verified by inserting that bound.
If the resultant value of theorem 4 is not matched with the value obtained previously, then
that bound is reduced by 1 and tried again by the above procedure. This procedure is repeated
until the obtained value matches the inequalities.

Upper bounds with superscript S

The bounds with the superscript S are explained as bounds for specific parameters
which do not follow theorems 1-4. Each of these values is taken from [3]. The source for
these bounds is clearly explained in [3]

6.2 Discussion of problems when reproducing upper bounds on A(n,d)

The problems that arose when reproducing upper bounds on A(n,d), for n< 28 and d< 14
are discussed in this section.

No errors occurred when theorems 1, 2[3] were implemented, but many errors arose
when theorem 3 was implemented, i.e. the generated bounds were not the same as the bounds
in [3],they were differing by one or two significant figures compared to the actual bounds. In
a step to debug these errors, all of the constraints generated with the help of the krawtchouk
polynomial for a specific value of 7 and 4 were printed out and the maximum value of the
objective function was calculated by hand. It didn’t help to rectify the bugs and this proved
that the constraints generated were correct and there was something wrong in the linear
programming implementation. The program found a feasible point where the objective
function was higher than the true maximum. Careful review of the GLPK documentation
proved that the implementation of the linear programming software package was wrong. The

36

bugs were due to misunderstanding of the concept of “the types of the variables and the
bounds of the variables” in the GLPK documentation [30]. At first it was considered that the
constraints fell in the category of “variable with upper bound and variable with lower bound,”

but later it was discovered as an error and it was found that the constraints fell in the category
of “double bounded variable.”

6.3 Improvements on known upper bounds on A(n,d,w)

The improvements on known upper bounds for constant weight codes, A (#,d,w) for
1n<40, d< 20 and w <20 are discussed in this section.

In order to compute the upper bounds of block codes A(#n,d) tor n<40, d<20, the
existing tables on A(n,d,w) were extended to #< 40, d< 20, w< 20 by implementing corollary 5
and 6 and theorems 9,10,11,12,13,14,20 [1]. The result of the above implementation improved
a couple of bounds on A(ndw). Three new updates to bounds in these tables in [4] are
presented in this section. These are bounds on A(n,d,w) tor n< 28, d< 14 and w< 14 , namely,
A(27,12,10) <58, A(27,12,11) <90 and A(28,12,11) <147. These improved bounds were

generated using theorem 9.

6.4 Extended tables of upper bounds on A(n,d,w).

The extended tables of upper bounds on A(ndw) for n<40 , d<20 & w<20 are
presented in the appendix. These tables were extended after reproducing the existing tables of
constant weight codes, A(n,dw), for n<40, d<20 , w<20. This is done in sequence of steps:
At first theorems 5,9,20 were applied in C programming language and the lowest value
obtained from these three theorems was taken as an initial constant weight bound. Secondly,
this bound was taken as a reference and was made use in the other theorems mentioned in the
section 6.3.The lowest resultant value of theorems 10,11,12,13,14 was taken as the upper
bound for the constant weight code.

6.4.1 Discussion of Problems while extending the tables of upper bounds on
A(n,d,w)

The problems that arose when extending the tables of upper bounds on A(n,d,w) for
n<40, d<20, w<20 are thoroughly discussed in this section. When the existing tables of
constant weight codes were extended, many problems occurred, e.g. the bounds generated on
A(n,dw) tor n<28 and d< 14 were greater than the known bounds in [4]. In order to debug
these errors, the implementation of corollary 5 [1] and theorems 9, 10, 11, 12, 13, 14 and 20[1]
was rechecked and there was an error in the implementation of theorem 11[1]. Initially the
output of corollary 6[1] is taken, but then later this idea is changed by considering the least
values obtained from the implementation of all of the theorems, corollary 6, 32(partially), 33
and 35 [1]. Better bounds for constant weight codes were obtained in the result. Another
problem in theorem 9[1] was that there were a lot of recursions (it takes long time to compute
the values). After changing the code, time was saved and computation was fast.

37

Chapter 7

7. Extending the table of upper bounds for block codes

This chapter mainly focuses on extending the block codes on A(#,d), for n<40, d< 20,
with the help of the extended tables of constant weight codes, A(n,dw), for n<40, d<20 ,
w<20 discussed in the previous chapter in section 6.4.1.Section 7.1 discusses the
improvements on known upper bounds on A(n,d),for n<28 and d<714.The problems that
arose while computing upper bounds on _A(nd), for n<40, d<20, w<20 are explained in
subsection 7.2.1.

7.1 Improvements on known upper bounds on A(n,d)

The discussion of improvements on known upper bounds for block codes, A(#,d) for
n< 28 and d< 14 is included in this section.

The three new bounds on A@mdw), for n<28, d<714 and w<74 namely,
A(27,12,10) <58, A(27,12,11) <90 and 4(28,12,11) <147 did not improve any bounds on
A(n,d), for n< 28 and d<14.

7.2 Computation of upper bounds on A(n,d), for n<40 and d=20.

The bounds on A(n,d,w) tor n<40, d<20 & w<20, generated in section 6.4
were used to compute the upper bounds on A(nd).for n<40 and d<20. These upper
bounds were produced by applying theorems 1-4[3] in the C programming language.
Initially theorems 1-3[3] were applied in the C programming language and the lowest
value computed from these three theorems is taken as an upper bound. Later this lowest
value was checked to fall in any one of the inequalities of theorem 4 and it is
correspondingly verified by inserting that value. If the resultant value of the theorem 4 is
not matched with the bound obtained previously, then that bound is reduced by 1 and the
above procedure is repeated until the obtained value matches the inequalities. The tables
of upper bounds on A(#,d), for n<40, d< 20 is presented in this section.

38

TABLE 1

A TABLE OF BOUNDS ON A(n,d).

n d
6 8 10 12 14 16 18 20

6 41 21

7 81 21

8 16" 2! 2!

9 20 4! 2!

10 40 6 2! 2!

11 72° 12! 2! 2!

12 144° 24! 4 2! 2!

13 256° 32° 4 2! 2!

14 512° 64 g 2! 2! 2!

15 10247 128° 16' 4 2! 2!

16 2048° 256 32! 4 2! 2! 2!

17 3276° 340° 37¢ 6 2! 2! 2

18 6552! 680" 72° 10° 4! 2! 2! 2!

19 13104 1288* 144° 20° 4! 2! 2! 2!

20 26208 2372% 279° 40" 6 2! 2! 2! 2!
21 13689* 4096° 512° 48* g 4! 2! 2! 2!
22 87378 6941* 1024° 88’ 12! 4! 2! 2! 2!
23 173491 13774% 2048 150° 24! 4 2! 2! 2!
24 344308° 24106* 4096° 280° 48! 6! 4! 2! 2!
25 500185" 48148’ 6425° 549* 56° g 4! 2! 2!
26 1198370" 86132° 10336 1029° 0g* 14! 4! 2! 2!
27 2396740" 162400° 17804° 1764° 169* 28! 6 4! 2!
28 4793480" 291269* 32205° 3200° 288’ 56" g 4! 2!
29 8388608° 581825 58096° 6361° 572° 72° 10" 4 2!
30 16777215 1110093* 110681° 124471 1124° 128° 16 6" 4
31 33554430" 2032919’ 185452° 22293 1821* 194" 32! 6 4
32 67108860" 3710516° 351908 40866° 3081* 314* 64' g 4
33 119304645* 7417221 621377* 80230° 5820° 628° 81 128 4
34 238600200" 14589012° 1203920° 149100° 11640° 1253* 141* 18 6
35 475815004° 26460065° 2122136° 238969 21273' 2004 213' 36 &
36 0482395327 48457828* 3945072* 450436* 36608° 3176 352° 72Y 10
37 1717986917° 95392922° 7023248 755268 66940° 5256° 7045 92' 12
38 3435973834' 185174115 13005832% 1421104° 133819 10209 1408 157 20
39 6871947668 351813133 24866373° 2584100* 254498° 20117* 2212% 229* 40
40 | 13743895336' 625445573° 47234313° 4563008° 458265° 36041° 3508° 349' g0

39

7.2.1 Discussion of problems during the computation of upper bounds on
A(n,d).

The problems that arose while computing the upper bounds on A(n,d) for <40 and
d<20 are discussed in this subsection. When computing upper bounds on A(#,d) for higher
values of n and for lower value d (say for example .4(40,4)), it was observed that the value of
the computed upper bounds was too high. These higher values of upper bounds created an
error of numerical instability in linear programming in theorems 3 and 4 [3].

This problem was solved by «calling C routines (px_scale_prob(lp) or
ipx_set_in_parm(lp,| . PX_K_PRESOL,7)).These routines help in scaling of the constants in the
linear inequalities.

40

Chapter 8

8. Conclusions

This section presents the conclusions in producing upper bounds on A(#,d), for
n<40 and d< 20 and also future works.

8.1 Conclusions

The new upper bounds for block codes, A(n,d), for n<40 and d< 20 were computed
with the help of the extended tables of upper bounds on A(ndw), for n<40, d<20 and
w<20.Upper bounds on A(nd), for n<28 and <74 were also re-produced and are
presented in this paper. Three new updates on A(n,dw) for n<28, d<14 and w<14 were
computed namely, A(27,12,10) <58, A4(27,12,11)<90and A(28,12,11) <147. The new
updates for constant weight codes, A(n,d,w) for n<28, d< 14 and w<74 didn’t improve any
bounds on block codes, A(n,d) for n<28 and d<14.

8.2 Future works

Bounds on A(nd,w) may be still improved(i.e a tight bound can be produced) by
implementing theorems 36 and 37 [1]. But this may consume a lot of time when implemented
for higher values of 7. These bounds on A(n,d,w) may also improves bounds o7 4(n,d) but not
to the large extent.

41

APPENDIX -1

A TABLE OF UPPER BOUNDS ON A(n,4,w)

3 4 3 3 7] g 10 11 12
5| ¥
7 7
8 ’n 14
9| 12 18°
w| 13 30° 35
nm| 17 35 66°
12| f 51° 24° 137
13| 28 65° 132° 187
14| 28 01° 182° 308° 3647
15 39 oy MY 459 660°
6| 37 40° 336° 727 040° 1320°
17 4 157 476° 952 1753 210°
18 4 109 36357 1428 2448 30447 4420°
10 s 229 752° 1789° 3876 58147 8326°
Wl so0 285 912° 2506° S11P° 9690° 12920° 16652°
| 00 3% 1197 319% 7518 13416° 12610° 2713
1| 73 385 1336° 4399 10032° w0678 337047 40742 347647
ok - S § [S L T 14421° 28842° 5283%° 73426° 104006°
| 88 g08% 2011% 7084® 18216° 43263° 76912° 126799° 164365° 2080127
5| 100° 550° 2490° 83797 23300° 5692%° 120175 192280° 288179* 342843°
6| 104 830° 2860° p7o0° 31122° 82229 164450° 312455 454480° 624387°
7| 7T 0 350t 2870° 41618° 103036° 2466757 444015° 766935° 1022580°
ag| 1218 m19® 3931° 6380° 51480° 143663° 3267787 600600° 1130220° 1789515°
9 1345 877" 4749° 18999° 57860 1866157 469338° 047636° 1820010° 2731365°
30| 140 10057 5282° 7 814247 234475° 6220507 1408074° 2584516° 4552275°
3| 155 1085 6230 1051567 315518° 876523 1928355 3968208° 6676666°
3| 180" 12407 60447 332370 124283 4206247 11218407 2804880° 36097607 10581888°
33| 176 13207 81847 38192F 156665° 126677 1342288 3702075 B414540° 15426840°
M| 18P 1496° 8076 46376° 185504° 663R267 19367427 5243779 1144277F 23841478%
35| 1970 1583 1047 52360° 231880° BI1SB0F 23BO31F 6TTRSOT 16684751 33374756
36| 204° 1773 113977 628327 269280° 1043460° 3246320° 9321562° 22134499° 50054253
37| 222* 18877 13120° T0281° 332112° 1245420° 42897787 12011384° 31354344° 684022035
38| 28t 2M09° 143417 83093 3R15257 1577337% 52384407 163011567 41493872° 00188756
30| 2470 2223 164497 93216 452946° 1859934° 58339727 20507916° 577950077 134855084°
40| 253" M470° 17784° 109660° 332662° 2314730° BI6637Y 273438887 74574240° 192650023
Continue Bounds on A 4,w)
H w

13 14 13 16 17 15 19 0

6 685630
17T 1296803°
18 2202480° 23593606
9 3p01095° 4362280°
30 5303150° 8554273% 9124560°
31 108s55423° 13936075° 176788307
31 16434870° 24812395 29774880° 33337660°
33 268617157 38730336 34387169° 61410680
M 40347120° 65235393 8TROOISI® 115997946% 122821378
35 541885047 1008478007 152216383° 102082330° 238819300°
36 02422428° 165056384% 242082720° 3424B6861° 406763023 477638600°
37T 142462104° 244259274° 4071390307 559816290° 745412579F 8361239917
38 1990440067 386682833 G1R790160° 96603331F 1251334060° 15736487770 16722479827
39 2078662687 556989381° 10053754177 130B301015° 2218309232° 2711267130° 3230121173
40 4149387207 851046480° 1485305016° 25134383427 3548043564° 4920576115 FT07930800° 6460242346

42

A TABLE OF UPPER BOUNDS ON A(n,6,w)

1] L

1 g 6 7]] 10 11 12
8 2
9 ¥
0| 5 6
11 5 11°
12 of 12° 777
13 13 184 26°
4| 14 28" 42%° 427
15 15 42° 70 78°
16| 20° 48° 112° 138° 1507
17| 20% 597 136° 2287 2807
18 Erig 72 1997 340° 428" 5
10| 25t 837 208° 5204 7187 785"
20 30 100° 276° 651° 11074 1363 ETiER
21 3r? 126° 350° gag? 16054 13507 25857
22 i 136° 162° 1100° 1277 37667 44157 30647
3| 40f 170° 521° 1518° 3162° 5819° 7521 795320
u| 2 192° 5a0° 1786 4554° g43?* 12186 14582°
25 50° 210° goc’ 2428° s581° 12620 190374 24630%
| 32 260° o10° 2671° 7891° 16122° 288934 420807
| 54 280° 1m® 350 10027 23673° 43529° 66079
28 537 302¢ 1306° 4ge0® 12285° 31105° §3756H 10423140
0 55 3647 1459 34100 16965 30585 90465 164749%
30 67" 390° 1820° §252° 20287° 563307 118759 246722
31 76 415% 2015 2060° 24226° 69877 175305 33467 3664812
| s 486" 22137 @1 32240° 26136° 223606° 500977 268434%
33 2* 528° 26737 10432° 370057 118213 284248 570818 1200607"
M| oo 557 2942° 2083 44336 143536 4019247 g7e3a4 1900651
35 o6 6447 3249° 14960° 36%00° 172417 502376 127884%° 1562536
6| oof 691° 3864° 16709° 67320° 227200° 6207017 1644139° 1836347
T our 732 4261% 20424% 77279 276760° 340640° 2087812 5069428°
B 0 847° 4636° 23131° 97014° 32628%° 1051688° 29040297 66114047
ol nr 280° 5473 25820° 112763 420394 1272527 372871 0432004°
40] 130° 935° 59267 312747 120145° 301168° 1681576° 46273707 12429040°
Continue Bounds on Ak, &, w)
H L

13 15 16 17 19 20
36| 6l
27| 91080%
28| 1642207 1697407
19| 280604% 322266%
30| s10037® s03028% 583148%
31| 203583 1014649% 11208497
32| 1264543% 1746057 20151357 1000688%
33| 1990876% 2862969 3513792F 3779731
M| 3133015 4514363% 6404304% GRB44600 6902118
35| 4021126® 7112473 10298300% 12520303% 13398784
36| 70062353 111942007 16204029% 214937414 23733500% 25400490%
37| 10919403° 17586482% 25725823" 36066393 43687624% 456748127
38| 14218328° 26830871 40541832% 30306398% T6749715% 83423603 B6716641F
39| 108342127 40225345 A3TSSI01 03032811% 130488702% 152005473 1680078030
40| 20040289° 366601777 O00B4504% [48368210% 217220568 270368316% 207181571F 328206021

43

A TABLE OF UPPER BOUNDS ON A(n,8,w)

3 6 7] [] 10 11 12 13
0] 2
11| 2%
12| 3 T
13| 30 4%
14| 4 7 5
15| & 10° 15°
16| & 18 16°)
17| e 17 M e
18| 9¢ 21° 39% 54° 68"
10| 127 2g° 57¢ 0% 114°
w| 18 A 80° 142° 195" 2287
|2 56 1200 210° 320" 3897
12| 2a® 7@ 1w 330° 493" g4 =T
1323 e’ 25¥ 506° 7427 1078" 13007
| 247 9 28 759° 10787 16247 1128" 2576
13 030° 10 3280 856t 15307 2446° 35547 4169"
6| 30% 130 37T 10865 a1s00 36917 3315% 6834" 7083°
7| 32 13 swf 1252° 214" 5260% Fay7" 105477 119817
19| 33° 148® sa0® 1750° 3mest 73T 11039" 17299% 217367
90 39° 150 6170 1957" 5206% 1030F 17736® 25730 36408%
30| 427 195 681" 2313" 6523° 14440™ 24800 38878® 59299%
3| 43 217" 863 26380 T967° 104789 348080 60694 80152
3| a4 2200 002" 452" 0379° 254047 488727 865707 140580"
33|51 242 1079 4092° 12657° 30950° 68324® 121856™ 200874
M| 54 289° 1175 4585 15458 43033° 042049 171169% 305660
33| 560 315 1445 S140° 17830° 54103 126393+ 230036% 434507
3| 577 336" 16207 65027 205607 541887 168010 335546% 613457%
IT| g 351 1776 T402° 26730 TA072° 215005° 467976 263628
3| 68 411" 1905 B436° 31632° 1015747 262794° 650582 1212483
30| 707 442" 2289" O286% 36556° 123364° 360126" 854080° 1697476
40| 72° 485" 23257 11445% 412717 1462247 448506° 1200420° 23693407
Continue Bounds on A, & w)
L] W

14 15 16 17 13 19 20

18| 232657
9 39570™
30| eg312™ 77927
3| 114471® 1288207
31| 100864 217646" 236998
33| 303505 369898 4045507
M| 463168 06753 6900447 751168
35| 705369™ 10086780 1241052 138504
36| 1100376™ 1571965 2031818™ 2374588% 2637516™
37| 1570752® 2466859' 3302826" 4224238% 4614454®
38 2232508* 3736123 5403761F 6811026% 78960617 2390801*
39 3161117™ 5525450 8473650 11103454 14204503% 16071975%
40 [4460740° 8207579%° 12892738% 18458566% 23704627 28076842% 31583317%

44

A TABLE OF UPPER BOUNDS ON A(n,10,w)

i W
6 7 8 9 10 11 12

12 r

13 2

14 210 720

15 3 kS

16 315 __1_5 43_,

17 E 57 g

18 410 & g 10

10 410 g’ 121 19°

20 510 10" 17 20° g

21 7 131 21° 35° 42°

22 7 164 33° 51° 734 31

23 g’ 204 467 g 17 135%

X gt 24° &0° 1194 1717 223 247
25 10" 37 75° 158% 2627 3zt 4447
26 13 36" 104° 214% 410° sg" 7281
27 14 295 21° 299% 577 000" 1289"
28 16" 36° 168° 3767 g21% 1434" 1981*
29 20° 66° 20%° 541° 1090° 2055% 3097%
30 25° gs’ pY vid §76° 1623° 2045% 5137°
3 3P 109 329 850 2095° 4328® 7507%
32 3™ 139 436" 1169° 2720° 6094° 11541°
33 33 146° 573" 15087 38577 81607 16758°
34 34 160° 620° 2164° 5433 11758* 231207
35 35° 170° 700° 1’ 6966™ 15358* 31273%
36 35" 180 765 2800° 8613 20026 41106™
37 47° 85 832 3145° 10360° 26058 53923
38 44° 222° 87¢’ 3512° 11957 33825% 70599
30 45 245° 1082° 3804° 13696° 41430 92246
40 45 257° 1225° 4808° 15216° 49803° 120271%

Continue Bounds on A, 10, w)

H W

13 14 15 16 17 18 19 20

6 824

27 1460"

18 243" 26207

0 4ng 5050°

3 7009 8888 9088®

I o151 15409 17204

32 18608™ 24679 29770 30316%

33 28033 39786" 53535 55685™

M 30452™ 65498 79867 93800 109301%

35 55302 97064™ 134603 165013® 176685

36 70031® 141080% 208896* 256172® 286906 288780%

37T 110721 203513% 323126% 4347430 487339 532074%

38 147770 275485 4T1136% 661573 B13629% 880880% 026414

39 195111 396428% 661166™ 1011085 1325600% 1537543% 1607405%

40 256046 540123" 9B4261% 1534849% 2202622 2656882* 2052378® 3009020

45

A TABLE OF UPPER BOUNDS ON A(n,12,w)

i w
7 K 4 1= 16 17 15 0 0
a2
15| 2°
e
18 3f
]| 3°
w| 3
i s
23| 2
2| . 3
il w257 g™ 40 50°
6] 5 137 26 37 69! 237 07
17| g 150 3 587 9g° 140™ 1562
1| 8% 19ty 87" 147 109% M50 T IET
9 8 26" 61° 129 1970 29g® 443 507"
| 9¢ 30° s0® 159% 268" 4977 679% 903" 1003
B oge 3 97 197 380% 6927 1033® 14MY 1583
Blw™ 36 1107 245 573 o1® 1656° 2143F 25110 26320
3B o4 1327 309" 739 1412 2330 32350 41170 47007
M2 46 1547 3960 959 2082° 3333 s119¢ 733" gT4e’ 9400°
L1552 1780 519% 12607 2777 4746% 83327 114277 15064% 17638
36| 165 66° 209 407 1608" 3613% 7113 11943% 18561® 23016 28861® 302607
|7 78 277 769° 21527 4738 102830 174597 28981 38462”47147 525707
Bl aee mp* 312F 10290 26367 6293 [3849" 27643° 42310% 607947 823927 09526° 105140°
2 92 3467 12167 3648° §340™ 18879° 38579° 63116 102979 13T3TI® 1696097 203636
40 25 110" 408 1384° 4471° 12010% 262767 52871 06TIEY 154724% 215014% 202752% 342835% 3334037
A TABLE OF UPPER BOUNDS ON A(n,14,w)
H i

10

11

-
L]

16

17

18

19

10"

.{w

A10

=10 10
35 35
210 4.'5
210 4'.(
413 =10
5 6'.':
& g
615 ql

=1 L

L I T T
SeLa8

—_
[
- =]

(=]
—
W W

L
—_

ki
115
23

597

75"
g2
114*
135

5D
136

¥
(]
-

[e
o= On

[Y.s Ty
voE B

(¥

(=3

[==]
=

137

70

77

127
168%
210
263"
336
_-12!’
603
g48*
1030°

14

50°
g8
137'!:1
183
243
334
491
728
956"
1267
1702%

24507

295!_’!
5717
1011™
1642
23g5"
3456%
s0ng2*
7881%
12860°

1142
1792%
2731%
41427
66317
11658°
17019

2848
4562*

4 80
34

14405+

3
23002

8633"
18511°
20164

30438%

46

A TABLE OF UPPER BOUNDS ON An,16,w)

H W
10 11 11 14 15 16 18

18

19

0

) | 2¥

22 a1 0

13 j,lc. ‘:;'.n

M N S

25 ELR L

26 yo g5 4w

27 3I.‘l 5*- jlc-

28 LA 8°

29 EE A 10°

3o 6 6" 10° 15° 16°

31 6 8 11" WP

iz 6" 9" 16° 37 32° £2°

33 T# 12 22 55 58 66"

M 7o 3 80° 103° 123°

35 g 18" 35 1247 157% 184
L 48° o8’ 160% 212 2657 307F 3%
1* 28" 64° 136° 07" 2967 4077 3240 606™
125370 g7™ 172 2gRM 4147 T30 o09" 1106* 12127
12 390 113F 2147 3447 636M 995 14297 18677 2016™
147 40° 1307 237" 438" 0177 15177 2254 2738 3073 31977

A TABLE OF UPPER BOUNDS ON A(n,18,w)

W

o 11 12 13 14 1 16 17 18 19 20

£

i

. -5
S

L a5 320
21". 10 20
2.!’. Al S 1Li] VG

N R

¥ 0P 30 4

3 SII'I 3If'l _" _1I'l

¥ 5* 5 5 6
Elu 5'“ i‘: -Tlll'l 6_:\. EI’
3‘” Ll: SI“ E.l'. TI:'I E EII'I
EL L 7 o 17 11

£ 6 2 w00 1# 1T I8

5 o 1 P L3 g o 3

4 5 G 10 15 2 28 3

10] 5 . 1 5 5 5 5
4] 9 12 19 36 36 36 70

S G 66" 747

A (1 U - g7 1190 1397 148
47 1 27 39 eg 145 17 203 a7

5 8 13 40 80" 104 186™ 235 282* 316% 320

47

A TABLE OF UPPER BOUNDS ON A(n,20,w)

W
11 1z 13 14 15 16 17 18 19
—
s
¥
] -}:.
e
& Mo o
-;u' :|-- :_n -}'n
-__}u' ?,|-- :n ;'n
SN L S
A A L L
EAR: L L G
3* o o 4 g 4
LR L . . &
ERE L S L
N G Y S g° 10
£ L S [/ RS § L b o
£ 4§ g w12 o1s 190w
L L T A ¥ L § L
£ F ™ 100 165 25 39" 400 4P

48

9.REFERENCES

[1] E.Agrell, A.Vardy and K.Zeger, “Upper bounds for constant weight codes,”IEEE
Trans.Inform. Theory., vol.46, pp.2373-2395, Nov.2000.

[2] E.Agrell, A.Vardy, KZeger, “Constant weight Code Bounds from Spherical Code
Bounds,” ISIT2000, Sorrento, Italy 25-30, 2000.

[3] E.Agrell, A.Vardy and K.Zeger, “A Table of upper bounds for binary codes,” IEEE Trans.
Inform. Theory, Vol 47, no.7, Nov. 2001.

[4] E.Agrell,A.vardy, and K.Zeger. Tables of binary block codes. Online available
www.s2.chalmers.se/~agrell

[5] L.A.Bassalygo, “New upper Bounds for Error correcting codes, ProblInform.Trans”
vol.1, no.4, pp.32-35, 1968. (Original appearance in Russian in Probl.Pered.Inform. vol.1, pp.41-
44, Oct.-Dec.1965).

[6] A. Bateman, “Digital communications,” Design for the Real World, first edition 1998.

[7] M.R.Best,A.E.Brouwer,F.].MacWilliams, A.M.Odlyzko, and N.J.A.Sloane, “Bounds for
binary codes of length less than 25,7 IEEE TransInform.Theory, volIT-24, pp.81-93,
Jan.1978.

[8] R.E Blahut, Theory and Practice of Error Control Codes. Reading, MA: Addison-Wesley,
1983.

[9] C. A. Bouman: Digital Color Imaging - April 29, 2005,School of Electrical Engineering,
Purdue University,West Lafayette, IN 47907,USA.
http://dynamo.ecn.purdue.edu/~bouman/ee637/notes/pdf/SourceCoding.pdf
[10]A.E.Brouwer,Dept.ofMath., Techn.University. Eindhoven,Nethetlands,acb@cwi.nl,vo1.3,
March23,2004.http/ /www.win.tue.nl/~aeb/codes/binary-1.html.

[11] A.E.Brouwer,” A Few New Constant Weight Codes,”IEEE Trans.Inform. Theory., vol.20,
Pp.366-366, May 1980.

[12] A. E.Brower, J.B.Shearer, N.J.A.Sloane and W.D.Smith.” A New table of constant weight
codes,” IEEE Tran.Inform.Theory, vol.36, pp.1334-1380, Nov.1990.

[13] M.Buratti “Recursive constructions for difference matrices and relative difference
families,].Combin.Des” vol.6, pp.165-182, 1998.

[14]M.].Colbourn, “Analytic and Computer Techniques for set packings,”M.Sc.Thesis,
Department of Computer science, University of Toronto, Toronto, ON, Canada, 1977.

[15] M.J.Colbourn, “Some Upper Bounds for Constant Weight Codes,” IEEE Trans.
Inform. Theory., vol.IT-26, No.4, July1980.

[16] J.H.Conway and N.J.A.Sloane, Sphere packings, Lattices and Groups. New York, NY:
Springer, 3rd ed., 1999.

[17]C.V.Frieman, “Upper bounds for fixed weight codes of specified minimum distance,”
IRE Trans.Inform. Theory., vol.IT, pp.246-248, July 1964.

[18]].D.Gibson, The Communications Handbook, Second Edition, CRC Press, NY, USA
1996.

[19]R.L.Graham and N.J.A.Sloane, “Lower Bounds for Constant Weight Codes,”

IEEE Trans.Inform. Theory, vol.IT-26, pp.37-43, Jan.1980.

[20]R.W.Hamming, “Error detecting and Error correcting codes,” Bell sys.Tech.], vol.29,
pp-147-160; April, 1950.

[21]Honkala, “Bounds for Binary constant weight and coverage codes,” Licentiate Thesis,
Dept.Math., Univ. Turku, Finland, Mar.1987.

49

[22]S.M.Johnson, “A New Upper Bounds for Error correcting codes,” IRE Trans.Inform
Theory., vol.IT-8, pp.203-207, April 1962.

[23]S.M.Johnson, “Improved asymptotic bounds for error—correcting codes,” IEEE Trans.
Inform. Theory., vol.IT-9, pp.198-205, July 1963.

[24] S.MJohnson “A new upper bound for error-correcting codes,” IRE Trans.Inform. Theory.,
vol.IT-17, pp.446-478, July1971.

[25] S.M.Johnson, “On Upper bounds for unrestricted binary error- correcting codes,” IEEE
TransInform. Theory., vol.IT-17, pp.466-478, July 1971.

[26] S.M.Johnson, “Upper Bounds for Constant Weight error correcting codes,” Discrete
Math., vol.3, pp.109-124, 1972.

[27] R.E.Kibler, “Some New Constant Weight Codes,” IEEE Trans.Inforn.Theory., vol.26,
pp-364-365, May 1980.

[28] Lubos Thoma, Department of Mathematics, 9 GreenhonseRoad, Suite3Kingston, Rhodelsland

02881-0816,US A .http:/ /www.math.uti.edu/~thoma/teaching/mth391_fall2004/hams.htm.
[29] F.J.MacWilliams and N.J.A.Sloane, “The Theory of Error-Correcting Codes,” Amsterdam, The
Netherlands: North- Holland, 1977.

[30] A. Makhorin, Jan 2001, Free Software Foundation, 51 Franklin St, Fifth Floor, Boston
MA 02110-1301 USA http://www.gnu.org/software/glpk/glpk.htm

[31] A. Makhorin, Jan 2001 Free Software Foundation, 51 Franklin St, Fifth Floor, Boston
MA 02110-1301 USA http://sourceforge.net/project/shownotes.phprrelease_id=228974.
[32] B.Mounits, T.Etzion and S. Litsyn, IEEE Trans. Inform. Theory., vol.48.No.4, April 2002.
[33] P.R.J.Ostergard, T.Baicheva, and E.Kolev, “Optimal binary one-error correcting codes of
length 10 have 72 code words,”IEEE Trans.Inform.Theory, vol.45, pp.1229-1231, May 1999.
[34] M.Plotkin, “Binary codes with specified minimum distance,” IRE Trans Inform. Thoery.,
vol.IT-06, pp.445-450, Sep.1960.

[35]G.Proakis and M. Salehi “Communication Systems Engineering,” Second Edition, 2002.
[36] 1.S.Reed and X. Chen, “Error Control Coding for Data networks,” First Edition,1999.
[37] K. Sayood, “Introduction to Data Compression,” Second Edition.2000

[38]A. Schrijver, "New code upper bounds from the Terwilliger algebra," Apr. 2004.
http://homepages.cwi.nl/~lex/files/codes.pdf

[39] C.L.M.Van Pul, “On bounds on codes,” Masters Thesis, Dept. Math.Comput. Sci.,
Eindhoven Univ.Technol., Eindhoven,The Netherlands, Aug.1982.

[40] N.Wax.”On Upper Bounds for Error Detecting and Error correcting codes of finite
length,” IEEE Trans Inform. Theory., vol.IT-5, pp, 168-174; December, 1959.

[41]Doig Scott Building,Craibstone Estate, Bucksburn, Aberdeen, AB21 9Y A, Scotland.
http:/ /www.4i2i.com/reed_solomon_codes.htm

[42] Lucent Technologies, 600 Mountain Ave., MurrayHill, NJ, USA.
http://www.lucent.com/minds/infotheory/docs/history.pdf

50

