
Fault Injection Attacks on Cryptographic Devices:
Theory, Practice and Countermeasures

Alessandro Barenghi
Politecnico di Milano

Milan, Italy
barenghi@elet.polimi.it

Luca Breveglieri
Politecnico di Milano

Milan, Italy
luca.breveglieri@polimi.it

Israel Koren
University of Massachussets

Amherst, MA, USA
koren@ecs.umass.edu

David Naccache
Ecole Normale Supérieure

Paris, France
naccache@ens.fr

Abstract—Implementations of cryptographic algorithms con-
tinue to proliferate in consumer products due to the increasing
demand for secure transmission of confidential information.
Although the current standard cryptographic algorithms proved
to withstand exhaustive attacks, their hardware and software
implementations have exhibited vulnerabilities to side channel
attacks, e.g., power analysis and fault injection attacks. This
paper focuses on fault injection attacks that have been shown
to require inexpensive equipment and a short amount of time.
The paper provides a comprehensive description of these attacks
on cryptographic devices and the countermeasures that have been
developed against them.

After a brief review of the widely used cryptographic algo-
rithms, we classify the currently known fault injection attacks
into low cost ones (which a single attacker with a modest budget
can mount) and high cost ones (requiring highly skilled attackers
with a large budget). We then list the attacks that have been
developed for the important and commonly used ciphers and
indicate which ones have been successfully used in practice.
The known countermeasures against the previously described
fault injection attacks are then presented, including intrusion
detection and fault detection. We conclude the survey with a
discussion on the interaction between fault injection attacks (and
the corresponding countermeasures) and power analysis attacks.

I. INTRODUCTION

Cryptographic algorithms are being employed in an in-
creasing number of consumer products, e.g., smart-cards, cell-
phones and set-top boxes, to meet their high security require-
ments. Many of these products require high-speed operation
and include, therefore, dedicated hardware encryption and/or
decryption circuits for the cryptographic algorithm. Unfortu-
nately, these hardware circuits, unless carefully designed, may
result in security vulnerabilities

The cryptographic algorithms (also called ciphers) that are
being implemented, are designed so that they are difficult to
break mathematically [1]. To obtain the secret key, which al-
lows the decryption of encrypted information, an attacker must
perform a brute force analysis that requires a prohibitively
large number of experiments. For the most commonly used
cryptographic algorithms, there is no known methodology to
significantly reduce the secret key search space.

However, it has been shown that secret information (such
as the key of the encryption algorithm) can leak through
side channels. Examples of such side channels are the time
needed to perform the encryption or the power consumed

by the device implementing the encryption algorithm. Timing
and power side channel attacks are based on the fact that
the individual computation steps that are needed during the
encryption are dependent on the bits of the secret key and
thus, the time needed for these steps and the power consumed
by them are directly correlated to the secret key bits. These
attacks have proven to be effective and incur a relatively low
cost. Furthermore, once a side-channel attack technique has
been developed and made public, high technical skills and/or
expensive equipment are not required to apply it in practice.

Another type of a side-channel attack is based on the
electromagnetic radiation that emanates from the individual
circuits executing the encryption/decryption. This attack is
even more dangerous than power analysis since it can be
performed at some distance from the circuit, and a direct
contact with the circuit, that can be detected by suitable
sensors, is not necessary.

Side-channel attacks have become a major industrial con-
cern in the last fifteen years and resulted in an intensive
research effort to develop suitable countermeasures that can
defeat the attacks, or at least make them more difficult
and time consuming to perform. Many different types of
countermeasures have been developed, including: restructuring
of the algorithm, shielding of the device, randomizing the
computation, using power independent implementation, and
others.

A different type of side-channel attack that proved to be very
effective, is realized through the injection of deliberate (mali-
cious) faults into a cryptographic device and the observation of
the corresponding erroneous outputs [2], [3]. Using this type of
attack and analyzing the outputs of the cryptographic device,
called differential fault analysis (DFA) [4], the number of
experiments needed to obtain the bits of the secret key can be
drastically reduced. This kind of active side-channel attacks (in
contrast to the previously described passive ones) has been in
the last decade the subject of intense and expanding research,
as it has been demonstrated to be highly effective [5]–[7].

Thus, incorporating countermeasures against fault injection
attacks into cryptographic devices through some form of fault
detection and possibly tolerance, is necessary for security
purposes as well as for the more common objective of data
integrity [8]–[10].

We start this survey paper with a brief overview of the two

important classes of ciphers, namely symmetric (or private)
key and asymmetric (or public) key. We then explain the
general approach to fault injection based attacks and describe
the DFA technique. Next we present the state-of-the-art in
fault injection attacks that can be mounted against symmetric
and asymmetric key ciphers, and we illustrate them using
two ciphers of each type. Finally, we present the currently
known countermeasures against fault injection attacks in-
cluding algorithmic changes, sensors and shields, and fault
detection or correction techniques. A comprehensive list of
references completes the survey and provides pointers to the
main literature contributions to this rapidly evolving scientific
and technological topic.

II. DESCRIPTION OF CRYPTOGRAPHIC ALGORITHMS

Cryptographic algorithms use secret keys for encrypting the
given data (known as plaintext) thus generating a ciphertext,
and for decrypting the ciphertext to reconstruct the original
plaintext. The keys used for the encryption and decryption
steps can be either identical (or trivially related), leading to
what are known as symmetric key ciphers, or they can be
different, leading to what are known as asymmetric key (or
public key) ciphers. Symmetric key ciphers have simpler, and
therefore faster, encryption and decryption processes compared
to asymmetric key ciphers. The main weakness of symmetric
ciphers is the shared secret key which may be subject to
discovery by an adversary, and therefore, must be changed
periodically. The generation of new keys, commonly carried
out using a pseudo random number generator, must be very
carefully executed because, unless properly initialized, such
generators may result in easy to discover keys. The new
keys must then be distributed securely, preferably by using a
more secure (but more computationally intensive) asymmetric
cipher.

Symmetric key ciphers can be either block ciphers which
encrypt a block consisting of a fixed number of plaintext bits
at the same time, or stream ciphers which encrypt one bit at
a time. Stream ciphers are not as frequently used as block
ciphers, but still play a role in certain applications as we will
see below.

Some well-known block ciphers include the Data Encryp-
tion Standard (DES) and the more recent Advanced Encryption
Standard (AES). DES uses 64-bit plaintext blocks and a 56-
bit key, while AES uses 128-bit blocks and keys of size
between 128 and 256 bits. Longer secret keys are obviously
more secure, but the size of the data block also plays a role
in the cipher’s security. For example, smaller blocks may
allow frequency-based attacks, such as relying on the higher
frequency of the letter “e” in an English text.

The encryption process for symmetric ciphers is designed
with the goal of scrambling the plaintext as much as possible.
This is done by repeating a computationally simple series of
steps (called a round) several times to achieve the desired
scrambling. This process must still be reversible so that the
reverse process followed during decryption can generate the
original plaintext using the same secret key.

In contrast, asymmetric key (public key) ciphers allow users
to communicate securely without having access to a shared
secret key. Here, the sender and recipient each have two
cryptographic keys called the public key and the private key.
The private key is kept secret, while the public key may be
widely distributed. In a way, one of the two keys can be used
to “lock” a safe; while the other key is needed to unlock it.
If a sender encrypts a message using the recipient’s public
key, only the recipient can decrypt it using the corresponding
private key.

Another noteworthy application of public key ciphers is
sender authentication: the sender encrypts a message with her
own private key. By managing to decrypt the message using
the sender’s public key, the recipient is assured that the sender
(and no one else) has generated the message.

A. Simple symmetric key stream cipher: SNOW 3G

The simplest ciphers in use nowadays are stream ciphers that
generate a pseudo-random stream of key bits that is bitwise
XOR-ed with the plaintext to generate the ciphertext. The main
advantage of stream ciphers is that they can be implemented
using a small hardware circuit and can operate at a high speed,
making them extremely suitable for power constrained devices
such as mobile phones.

As an example of a lightweight stream cipher, we describe
below SNOW 3G that has been chosen by the 3GPP committee
(of the European Telecommunication Standards Institute) as
one of the data confidentiality standards for phone calls [11].

SNOW 3G is the third instance of the SNOW cipher family
proposed in [12]. It improves its predecessor - the SNOW
2.0 cipher, which was included in the ISO/IEC CD 18033-
4 [13] standard, by enhancing robustness with respect to
algebraic cryptanalysis. The cipher generates a sequence of
32-bit words from a 128-bit key and a 128-bit initialization
variable following the scheme depicted in Figure 1. The circuit
includes a shift register (composed of sixteen 32-bit wide
elements, s15 . . . s0) and a finite-state machine (composed of
three 32-bit registers, R1, R2 and R3) that is included to
render the output highly non-linear. The � symbol denotes
addition modulo 232, while the ⊕ symbol denotes a 32-bit
bitwise XOR. The two boxes marked S1 and S2 are lookup
tables implementing nonlinear mappings of the input four
bytes into different output four bytes, while a and a−1 denote
multiplications over Z232 by fixed coefficients.

The cipher is initialized by filling the state and the three
registers R1, R2 and R3 with material from the key and the
initialization vector. It is then updated for a number of cycles
with no output produced. After this initialization phase, the
circuit outputs 32 bits of keystream every cycle while updating
the internal state as shown in the block diagram.

B. Symmetric key block ciphers: DES and AES

The more complex block ciphers like DES and AES can
provide high security levels when large amounts of data must
be encrypted and the available computing system is not overly
constrained.

R
1 R

2
R

3

a
-1 a

s
15

s
11

s
5

s
2

s
1

s
0

Output

Figure 1. Snow 3G Block Diagram

Two crucial properties that every good block cipher must
have are called confusion and diffusion. Confusion refers to
establishing a complex relationship between the ciphertext and
the key, while diffusion implies that any natural redundancy
that exists in the plaintext (and can be exploited by an
adversary) will dissipate in the ciphertext.

DES has been the first official standard cipher for commer-
cial purposes [14]. In DES, most of the confusion is provided
by the SBoxes: lookup tables representing nonlinear functions
which are applied repeatedly to the input, while bitwise
expansions and permutations provide the required diffusion.

In 1999, a specially designed circuit was successful in
breaking DES in less than 24 hours [15], thus proving that the
security provided by a 56-bit key is insufficient. Consequently,
a newer standard (the Advanced Encryption Standard (AES))
has been established in 2002 [16], [17] with key size between
128 to 256 bits. The use of DES is however, still widespread
either in its original form or, more frequently, in its more
secure variation called Triple DES. Triple DES applies DES
three times with different keys, and offers as a result a higher
level of security. One variation uses 3 different keys for a total
of 168 bits instead of 56, while another variation uses only 2
of them (112 bits in total).

The new standard block cipher, AES, is widely used and is
now part of the IEEE P1619 standard for data encryption [18]
and of the IEEE 802.11i standard for network communi-
cation [19]. AES is realized as a sequence of substitutions
and permutations on a 128-bit plaintext, interleaved with the
addition of the key through bitwise XOR. These operations
are organized in so called rounds and the number of these
rounds, denoted by Nr, depends on the length of the key,
namely, Nr = 10, 12, or 14 for a 128, 192 or 256-bit AES
key, respectively. The 128-bit data is usually represented as
a 4 × 4 matrix of bytes called the state of the cipher, and is
denoted by S with the byte elements si,j (0 ≤ i, j ≤ 3). The
state S is modified during each encryption round, until the
final 128-bit ciphertext is produced.

Every round of the encryption process consists of the
following four steps:

1) SubBytes - each state byte undergoes independently

(of other bytes) a non-linear substitution of the form
T (s−1

i,j). Due to the complexity of this transformation,
the 256 possible outcomes of this transformation are
commonly pre-computed and stored in an 256 × 8
bits lookup table called S-Box. The non-linear function
tabulated in the S-Box has been chosen in such a way
that the distribution of the output bytes is robust against
statistical attacks, i.e., small differences in the input
will map to an arbitrary difference in the output. This
property was explicitly required since the DES proved
to be vulnerable to this type of attacks.

2) ShiftRows - the bytes of the first, second, third and
fourth rows of the state matrix are rotated by 0, 1, 2
and 3 bytes, respectively. The state after this step is

S =


s0,0 s0,1 s0,2 s0,3
s1,1 s1,2 s1,3 s1,0
s2,2 s2,3 s2,0 s2,1
s3,3 s3,0 s3,1 s3,2

 (1)

3) MixColumns - the four bytes in each column are used to
generate four new bytes through linear transformations,
as shown below (j = 0, 1, 2, 3)

s0,j = (α⊗ s0,j)⊕ (β ⊗ s1,j)⊕ s2,j ⊕ s3,j
s1,j = s0,j ⊕ (α⊗ s1,j)⊕ (β ⊗ s2,j)⊕ s3,j
s2,j = s0,j ⊕ s1,j ⊕ (α⊗ s2,j)⊕ (β ⊗ s3,j)
s3,j = (β ⊗ s0,j)⊕ s1,j ⊕ s2,j ⊕ (α⊗ s3,j) (2)

where α = x (or 02 in hexadecimal notation), β = x+1
(or 03 in hexadecimal notation), ⊗ and ⊕ are the
modulo 2 multiply and add operations, respectively,
of the polynomial representations of the state bytes,
and the α and β coefficients performed modulo the
generator (irreducible) polynomial of AES which is
g(x) = x8+x4+x3+x+1. Polynomial presentations of
binary numbers and operations modulo a given generator
polynomial are described in [20].

4) AddRoundKey - the round sub-key is added through
bit-wise XOR to the state. Separate round sub-keys are
generated using a key schedule process.

All four steps are performed at each round except the last
one, where the MixColumns step is omitted. In addition, prior
to the first round, the first sub-key is added to the original
plaintext.

The individual round sub-keys are generated using a key
schedule/expansion procedure that computes the 128-bit round
keys, kj , given the input key k that consists of l 32-bit
words where l is equal to 4, 6 or 8. Thus, the key schedule
process generates a total of 4(Nr + 1) 32-bit words organized
as a linear array denoted by W [0, . . . , 4(Nr + 1) − 1]. The
first l words of W are loaded with the user supplied key.
The remaining words are generated according to Algorithm
II.1 where RCON is an array of predetermined constants,
SubByte is the byte substitution of AES, and <<< 8 denotes
a rotation of a word to the left by 8 bit positions.

Algorithm II.1: The AES key schedule.
Input: k: secret key, l: key length in words, Nr: number

of rounds
Output: W : array containing round keys
begin1

for i = l to 4(Nr + 1)− 1 do2

if i ≡ 0 mod l then3

W [i] = W [i− l]⊕ SubByte[W [i− 1] <<<4

8])⊕RCON [i/l]
else if l = 8 and i ≡ 4 mod l then5

W [i] = W [i− l]⊕ S[W [i− 1]]6

else7

W [i] = W [i− l]⊕W [i− 1]8

return W9

end10

C. Asymmetric key cipher: RSA

Although a number of asymmetric ciphers are in use, the
most well-known and widely deployed public key cipher is the
RSA algorithm named after its three inventors Rivest, Shamir
and Adleman [21].

To employ the RSA cipher one must first generate a pair
of keys, each one of which is able to decrypt what has been
encrypted by the other one. One of these two keys (henceforth
called the public key) will be publicly disclosed to everyone,
thus allowing any person to encrypt a message and send it
to the owner of the key pair. This owner is the only person
able to decrypt the message, since the second key (which is
referred as the private key and is never disclosed), is the only
one that will enable decrypting the message encrypted with
the public key.

The process required to generate the key pair consists of
the following steps:

1) Select two large prime numbers p and q and calculate
their product n = pq.

2) Select a small odd integer e that is relatively prime to

ϕ(n) = (p− 1)(q − 1)

Two numbers (not necessarily primes) are said to be
relatively prime if their only common factor is 1. For
example, 6 and 25 are relatively prime although none of
them is a prime number.

3) Find the integer d that satisfies the relationship

de = 1 mod ϕ(n)

d is thus the inverse of e if the calculations are done
mod ϕ(n).

(e, n) constitutes the public key, while (d, n) will serve as
the secret private key. The security provided by RSA depends
on the difficulty of factoring the large integer n into its
two prime factors. Since there is no known polynomial time
algorithm to factor a composite number, it is sufficient to select
two very large prime numbers p and q to construct the modulus

n in order to make the key derivation extremely difficult. To
make the factoring time prohibitively large, each of the prime
numbers p and q must have at least hundreds of bits. The
current practice, after massive computational efforts proved the
feasibility of factoring a 768-bit number, is that the required
length of the moduli, for civilian and military applications, are
1024 and 2048 bits, respectively. For confidential data that
must be preserved for long time durations, 4096-bit moduli
are recommended.

If a person wishes to send a message m to the owner of a
key pair, he uses the public key to compute the ciphertext as
c = me mod n. Notice that this encryption scheme makes it
necessary to restrict the message size of m so that is satisfies
0 < m < n. Upon receiving the encrypted message c, the
owner of the key pair will decrypt it using his private key by
calculating cd mod n = mde mod n = m mod n.

The most complex operation required when performing
RSA encryption and decryption is exponentiation modulo n. A
number of techniques are being used to reduce the complexity
of this operation. First, since the only restriction on the choice
of the exponent e is that it is relatively prime with φ(n), a
small prime number is selected, e.g., 3, 17 or 65537, thus
reducing the complexity of encryption. Another speedup in
the exponentiation is achieved by employing a multiplication
technique known as Montgomery multiplication [22] that
greatly simplifies the required modular reductions. To speed up
decryption, for which the private exponent d can not be chosen
arbitrarily, the Chinese Remainder Theorem is used allowing
to perform the computations modulo p and q separately (and in
parallel) and then recombine the two results to obtain the final
result modulo n. The separate computations are performed
modulo smaller numbers (half the size of n), requiring less
time and a smaller circuit.

D. Novel asymmetric algorithm: ECC

Elliptic curve ciphers are based on the use of points on a
cubic curve P over a finite field GF (p) where p is a prime
number. The main idea is that it is possible to define an oper-
ation on the set points of an elliptic curve that behaves exactly
like addition (i.e., it has a neutral element, is commutative and
it is possible to find an inverse for every point of the curve).
By using points on a curve P it is possible to obtain a trapdoor
function akin to the one used in common discrete logarithm
cryptosystems. This trapdoor function relies on the ease of
adding a point of the curve k times to itself, a procedure known
as point-scalar multiplication. Given a point Q = kP , it is
computationally very difficult to find k provided that the curve
has a sufficiently large number of points. A key feature of these
ciphers is the choice the curve. Thus, it is necessary to select a
curve that has a sufficiently large number of points and has no
special properties which could reduce the difficulty of solving
the so called Elliptic Curve Discrete Logarithm Problem.

The advantage of elliptic curve ciphers is the smaller size of
the numbers involved in the computations. Typically, safe sizes
for the prime p so that the curve will have a sufficient number
of points range from 160 to 250 bits. This reduction in operand

size is especially important for computationally constrained
devices such as smart cards [23], or when a large number
of encryptions/decryptions is expected, such as in protecting
Domain Name Systems (DNS) transactions [24].

III. FAULT INJECTION TECHNIQUES

The fault injection techniques that have been developed
in order to alter maliciously the correct functioning of a
computing device currently include: variations in the power
supply voltage level, injection of irregularities in the clock
signal, radiation or EM disturbances, overheating the device
or exposing it to intense light. Since the range of these
techniques is wide and getting wider, we first classify the
methodologies used for the attack according to their cost. We
will also point out in this section the degree of technical skill
and knowledge of the implementation required to perform the
injection, and characterize the achievable faults with respect to
their (temporal and spatial) precision and effectiveness. This
classification would allow circuit designers to determine the
possible threats to their secure implementation depending on
the skill and budget of the perceived attackers.

A. Low cost fault injection techniques

We consider as low cost the injection methods requiring less
than $3000 of equipment in order to set up the attack. This
cost is well within the means of a single motivated attacker,
and thus, these fault injection techniques should be considered
as a serious threat to the implementations of secure chips that
may be subjected to them.

The first fault injection technique we describe is the un-
derpowering of the device. Through running the chip with a
depleted power supply, the attacker is able to insert transient
faults starting from single bit errors and becoming more inva-
sive as the supply voltage gets lower. Since this technique does
not require precise timing, the faults tend to occur uniformly
throughout the computation, thus requiring the attacker to
be able to discard results that are not fit to lead an attack.
This methodology, reported to be effective on large integrated
circuits such as the ARM9 processor [25], [26], as well as on
small ASIC implementations of the ciphers [27], [28], results
in delaying the correct set-up for the logic gates of the circuit.
The voltage underfeeding, achieved by employing a precise
power supply unit, requires the attacker to be able to tap into
the power supply line of the device and connect his power
supply unit. This requires only basic skills and can be easily
achieved in practice without leaving evidence of tampering.
Moreover, no knowledge of the implementation details of the
device is needed.

One refinement of the aforementioned technique is the
injection of well-timed power spikes or temporary brown-outs
into the supply line of the circuit. Using this technique, it
is possible to skip the execution of a single instruction in a
software implementation of the cipher by reducing the feeding
voltage for the duration of a single clock cycle. The authors
of [29] report a successful application of this technique to
an 8-bit microcontroller and over-voltage spikes have been

successfully applied to de-packaged RFID tags in [30]. In
order to inject a timed voltage lapse the attacker needs a
custom circuit capable of dropping the feeding voltage below
a certain threshold. This custom circuit should be supplied
with the same clock that drives the microcontroller allowing
it to correctly time the injection of the spike. The temporal
precision of the fault injection is directly dependent on the
accuracy of the voltage drop both in terms of duration and
synchronization with the target device. The difficulties in
applying this technique increase with the clock rate of the
attacked circuit due to the mutual induction of the feeding
line.

Another viable option for an attacker is to tamper with the
clock signal. For example, it is possible to shorten the length
of a single cycle through forcing a premature toggling of
the clock signal. Such shortening, according to [31], causes
multiple errors corrupting a stored byte or multiple bytes.
These errors are transient and thus it is possible to induce
such faults without leaving any tamper evidence. To alter the
length of the clock cycle, the attacker needs to have direct
control over the clock line, which is the typical case when
smart cards are targeted [31]. It is not possible to attack chips
that generate their own clock signal since disconnecting the
clock line from the circuit is difficult. The attack mentioned
in [31] involves a modified smart card reader that is capable
of shortening the duration of a specific clock cycle through
either forcing the raising edge to occur earlier or delaying
the falling edge, depending on the kind of driven smart card.
The modification to the card reader is not trivial but can still
be performed without any special and expensive tools. Clock
alteration techniques are hindered by the need to supply a
regular clock within the working range of the device, while
retaining the ability of altering a single clock edge. This
implies that the equipment inducing the alteration must be
working at a higher clock frequency than the attacked device,
and this is intrinsically more difficult as the target device
working frequency increases.

Another possibility for an attacker is to alter the environ-
mental conditions, for instance, by causing the temperature to
rise. A temperature rise has been reported to cause multiple
multi-bit errors in DRAM memories [32]. The authors report
a thermal fault injection attack against the DRAM chips
of a common desktop computer. The reported number of
flipped bits is around 10 per 32-bit word, when the working
temperature of the DRAM is brought up to 100 ◦C. The
number of faulty words is also reported to be in the range
of tenths. The equipment used included a 50W light bulb
and a thermometer. The level of heating was tuned through
modifying the distance from the chip. The setup thus requires
minimal technical knowledge, and the equipment is readily
available. One drawback of this technique is that it tends to
cause invasive faults in sensitive devices. Another downside is
that the circuit may be destroyed through excessive heating.

A practical way to induce faults without having to tap into
the device is to cause strong EM disturbances near it. The
Eddy currents induced in the circuit by strong EM pulses

cause temporary alterations of the level of a signal, which
may be recorded by a latch. Since the EM pulse is affecting
uniformly the entire attacked device, it is necessary to shield
the components which should not be subject to faults using
a properly grounded metal plate or mesh. This technique
has been shown to be effective against an 8-bit microcon-
troller [33] by employing, as a source of EM disturbances,
a spark generator and placing it very close to the attacked
chip. The authors have also demonstrated that a more efficient
fault injection can be achieved by first removing the plastic
package of the chip. Their spark generator consisted of a
simple piezoelectric gas lighter that was held directly above
the device. All the parts of the circuit which did not need to be
disturbed were properly shielded through grounded aluminium
plates. The above technique can not be applied to chips that
have a grounded metal packaging (usually as a heat sink)
that acts as an EM shield, unless the chip is decapsulated,
adding a step that requires an uncommon technical skill.
Still, decapsulation can be performed with low cost equipment
(nitric acid and common glassware), thus not raising the cost
of the attack considerably.

Assuming the attacker is able to successfully decapsulate a
chip, he can perform fault injection attacks by illuminating
the die with a high energy light source such as an UV
lamp or a camera flash. The strong radiation directed at the
silicon surface can cause the blanking of erasable EPROM and
FLASH memory cells where constants needed for an algorithm
execution are kept (e.g., the AES S-Boxes). Depending on the
duration of the radiation process, the authors of [34] report
a progressive blanking of all the memory cells as well as
resetting the internal protection fuses of the microcontroller
that was targeted. The authors also show that it is possible to
selectively wipe out a part of the stored data in the memory by
exposing only a part of the die to UV radiation. The required
equipment consists only of an UV lamp that is placed closely
to the exposed die. To shield the circuit parts which need not
be exposed, they can be covered with a readily available UV-
resistant dye. This technique is applicable only if the memory
cells have not been covered by a metallic layer. For example,
metal wires placed above the memory cells may provide a
shield against radiation.

B. High cost fault injection techniques

A class of threats which cannot be ignored if the attackers
have access to a larger budget (above the aforementioned
$3000 and up to millions of dollars) includes fault injection
techniques that rely on having a direct access to the silicon die
and the ability to target individual circuits in a very precise
manner. These techniques, albeit leaving evident traces of
tampering, are very powerful and can considerably increase
the probability of a successful attack.

A simple example of these techniques is based on the use of
a strong and precisely focused light beam to induce alterations
in the behavior of one or more logic gates of a circuit. A strong
radiation of a transistor may form a temporary conductive
channel in the dielectric, which, in turn, may cause the logic

circuit to switch state in a precise and controlled manner
(provided that the used etching technology is not too fine). For
instance, it is possible, through targeting one of the transistors
of an SRAM cell (in the memory of a microcontroller), to
flip it up or down at will [35], [36]. In order to obtain
a sufficiently focused light beam from a camera flash, a
precision microscope must be used. The main limitation of
this technique is the non-polarized nature of the white light
emitted by the camera flash resulting in scattering of the light
when focused through non-perfect lenses. Moreover, it is no
longer possible to hit a single SRAM cell with the current
etching technologies, since the width of the gate dielectric is
now more than 10 times smaller than the shortest wavelength
of visible light.

The most straightforward refinement of the previous tech-
nique is to employ a laser beam instead of a camera flash. The
injected fault model is similar to that obtained when using
a concentrated light beam [35], except for the fact that the
laser beam is capable of always inducing faults. Near Infra-
Red (NIR) lasers can also radiate the silicon die from the
back allowing the attacker to hit circuits which are in the
bottom layers of the chip although with a lower precision
since the silicon substrate scatters the beam (a reduction in
the scattering may be obtained by applying anti-reflective
coatings). It is worth noting that the inability to hit only a
single bit memory cell (due to the size of the concentrated
beam) does not necessarily imply inability to inject a single bit
fault. In [37], Agoyan et al. demonstrated how to inject single
bit fault in a reproducible way, despite the optical precision
of the equipment was not able to target the smallest features
of the target chip.

Currently, commercially available fault injection worksta-
tions are composed of a laser emitter, focusing lens and
a placement surface with stepper motors to achieve a very
precise targeting of the beam. The main foreseen limitation of
this fault injection technique is the fact that it is not possible
to achieve sub-wavelength precision thus limiting the smallest
number of gates hit by the radiation depending on the etching
technology and the laser wavelength.

The most accurate and powerful fault injection technique
uses Focused Ion Beam (FIB) that enables an attacker to
arbitrarily modify the structure of a circuit, reconstruct missing
buses, cut existing wires, mill through layers and rebuild
them. Such FIB workstations are commonly used to debug
and patch chip prototypes, or to reverse engineer unknown
designs through adding probing wires to otherwise inaccessi-
ble parts of the circuit. For instance, [38] reports a successful
reconstruction of an entire read bus of a memory containing
a cryptographic key without damaging the contents of the
memory. State of the art FIBs can operate at a precision of
2.5 nm, i.e., less than a tenth of the gate width of the smallest
etchable transistor. FIB workstations require very expensive
consumables and a strong technical background to fully exploit
their capabilities. The only limit to the FIB technology is
the diameter of the atoms whose ions are used as a scalpel.
Currently, the most common choice is Gallium, which sets the

lower bound to roughly 0.135 nm.
Table I summarizes the important characteristics of the

previously described fault injection techniques.

IV. FAULT INJECTION ATTACKS

The variety of known attacks is already large and keeps
on growing, as several new successful ones are demonstrated
yearly. We first describe a few simple fault attacks on the
SNOW 3G cipher to illustrate the differential fault analysis
(DFA) methodology and show some practical implementations
thereof. Then, we list and discuss several more complex fault
attacks targeting the commonly used AES cipher, and several
targeting RSA, exploiting different vulnerabilities. Next, the
few available attacks targeting ECC are briefly presented, with
some comparison to RSA.

A. Simple attacks on 3G-SNOW

A fault attack against SNOW 3G has been proposed by
Debraize et al [39]. Their technique enhances the one proposed
in [40] against SNOW 2.0 proving that the attack can be
successfully extended despite the tweaks applied to the cipher
to raise its security level. In this attack, the cryptanalysis is
based on viewing the output of the cipher as a nonlinear
function of the inner state, and the shift register is seen as
a generator of a series of outputs which are dependent on
the state of the three FSM registers. The proposed approach
assumes that the attacker is able to introduce a fault into
a specific 32-bit cell of the shift register, without a precise
control on the timing of the fault. Since the target of the fault
is a part of a shift register, the fault model may be expressed
also through its dual, i.e., a fault injected with a clock accurate
timing but without proper control on the location of the
injected fault in the shift register. After injecting the fault, the
attacker analyzes the faulty output differences with respect to
a correct key stream and can deduce the position of the fault
in the shift register based on the position of the 32-bit words
which are different in the two key streams. Once the position
of the fault has been determined, the attack continues by
constructing an equation expressing the difference in the inner
state as an unknown, while the difference between the fault
and correct output word is the known term. After collecting
a sufficient number of equations it is possible to remove the
terms dependent on the registers and, in the best case, obtain a
set of linear equations which can be solved through common
Gaussian elimination. The authors have also proposed an
alternative to Gaussian elimination (for the case where a
complete linear set of equations can not be obtained using
the above technique) that is based on Gröbner bases. Through
decomposition in a Gröbner basis of a equation system it is
possible to solve a small set of nonlinear equations, but since
the algorithm has exponential complexity, the problem may
become computationally intractable. The authors report that
their attack was successful with as few as 22 injected faults
in the inner state, regardless of the value of the 32-bit register
after the fault injection (i.e., no assumptions were made on
how many bits were flipped or their positions).

B. Attacks on AES

This section provides an insight into the most common fault
attacks on AES. These attacks attempt to exploit the byte-wise
processing of the state by inserting either single bit or single
byte faults during the computation.

A simple and straightforward attack on the AES cipher has
been proposed by Bloemer et al. in [41] and aims to change
a single bit right after the first key addition. The objective
is to reset a single bit in the internal state S(0) (in general,
S(i) denotes the state at the beginning of the i-th round) and
observe whether the value of the ciphertext has changed. If
the ciphertext has either changed or was detected as faulty by
a fault detection circuit, the attacker knows that the correct
value of the bit is 1, otherwise it is 0. Since the altered bit
is the result of a xor between the known plaintext and the
key, the attacker is able to recover the key one bit at a time.
Although this attack can in principle, recover any length of
the cipher key, it has been deemed practically infeasible due
to the very precise timing required of the fault injection and
the strict requirement on the position of the injected fault.

The most straightforward attack, among the practically
feasible ones, has been presented by Giraud in [42] and
targets directly the state S(i) during the last round. The attack
assumes that the injected fault only alters a single bit of
the state, prior to the last SubBytes operation. The modified
bit then propagates through the last round and results in a
single byte corruption in the computed ciphertext. Once the
attacker obtains a pair of correct and wrong ciphertext c and
c̃, respectively, he can reduce the number of possible key bytes
employed to encrypt the corrupted byte by inverting the effect
of the last round and checking whether the difference between
the two values (obtained with a single byte key hypothesis)
is a single byte prior to the SubBytes operation. This kind of
attack is thus applicable only to the last AES round that does
not include the MixColumns operation, and therefore, a single
byte difference in the state will not spread to other bytes.
A limitation to the practical instantiation of this attack is
the requirement of a very strict time frame in which the
fault must be injected. The authors of [42] were able to
achieve the required precise timing while attacking an 8-bit
smartcard, by focusing the light emitted by a camera flash
through a microscope. Their apparatus was synchronized to the
smartcard clock and was able to inject correctly timed faults
into the device. Note that the attacker can always determine
whether the injected fault has hit the correct point in the
circuit, since the fault would corrupt only a single byte.

The attack by Giraud has been successfully extended by
Barenghi et al. in [43] allowing the exploitation of a single bit
fault corrupting the state even in a regular round of the cipher.
The diffusion of the fault caused by the MixColumns operation
may be coped with by hypothesizing a larger part of the key
(namely, a whole 32-bit word) and trying all the possible
hypotheses. This is still computationally feasible even with a
common desktop. This extended attack is able to reconstruct
the full key schedule, thus recovering all the round keys,

Table I
FAULT INJECTION TECHNIQUES SUMMARY

Technique Accuracy Accuracy Technical skill Cost Hindered by Requires knowledge Damage to
[space] [time] technological advances of the implementation the device

Underfeeding high none basic low no no no
Clock glitch low high moderate low yes yes no
EM Pulses low moderate moderate low no no possibly

Heat low none low low partial yes possibly
Power supply glitch low moderate moderate low no partial no

Light Radiation low low moderate low yes no yes
Light Pulse moderate moderate moderate moderate yes yes possibly
Laser beam high high high high yes yes possibly

Focused Ion Beam complete complete very high very high yes yes yes

provided enough faulty ciphertexts are available. The authors
of [43] report a practical application of this attack against
a software implementation of AES running on an ARM926-
based system.

Dusart et al. [44] have presented an attack on AES that
is based on a more general fault model: it assumes that the
injected fault alters the value of a single byte between the
(Nr−1)-th and (Nr−2)-th rounds of the encryption primitive,
where Nr is the total number of rounds. This attack is able
to obtain the last round key, and relies on the key schedule
properties to reconstruct the entire AES-128 cipher key. To
exploit the injected fault, an hypothesis on a single word
of the last round key is made in order to invert the last
round and obtain the state right before the last MixColumns
operation. After the removal of the last round, the algorithm
checks if the key hypothesis made is compatible with a single
byte difference in the state through inverting the MixColumns
operation (which is linear with respect to the xor-based key
addition) and checking whether the difference between the
faulty and correct values of the state S(Nr−2) is a single
byte. This method of paring down the candidate keys is quite
efficient and yields a single candidate with as few as three
faulty ciphertexts per key word, thus enabling an attacker to
retrieve the complete AES 128-bit key with only 12 injected
faults. This attack has been practically carried out against a
hardware implementation of AES on a smartcard in [27] and
against a software implementation running on an ARM926
system in [26].

It is possible to further generalize the fault model of the
above attack to a faulty word in the same position assumed by
Dusart et al. This extension, proposed by Moradi et al. in [45],
considers the possible faults occurring in a single word through
splitting them into two categories: the ones affecting all four
bytes of a word and those that affect fewer than four bytes. For
each category the authors provide a bound on how fast they
were able to reduce the keyspace. They show that it is possible
to recover the key with around 1500 faulty ciphertexts. This
key recovery method assumes that the attacker knows to
which of the two categories the fault belongs, since having
a generic word sized fault, without any hypothesis on the
structure, yields no information for the attacker. Moreover,
it is impossible to distinguish a-posteriori if the injected fault

complies with the model needed to perform the key extraction,
thus insisting on the fault injection method to be reliable in
terms of the kind of fault induced. Although relying on quite
reasonable fault injection hypotheses, this attack has not yet
been validated in practice.

Another possible extension of the attack presented by Dusart
et al. has been proposed in [26] and aims at overcoming the
limitation of the attack that allows to retrieve only the last
round key. The main difficulty of retrieving a round key before
the last one is due to the effect of the MixColumns operation
which is present in all the rounds of the cipher except for the
last, and provides full diffusion of the injected fault over the
whole cipher state after two applications. The key to work
around this issue is to compute the difference between the
correct and faulty cipher state at the end of the Nr − 1 round
(thus eliminating the effect of the Nr−1 key), and then invert
the effect of the MixColumns on the differential value (which
is not difficult since MixColumns is linear with respect to
the xor operation). After obtaining the difference between the
faulty and the correct states right before the SubBytes step
of the Nr − 1 round, a guess is made on the correct value
of a single word of the state, deriving the value of the faulty
word from the difference. After obtaining both values it is
possible to roll back the SubBytes operation, which was not
possible while holding only differential information due to
the non-linear nature of the SubBytes. The last step of the
attack checks whether the predicted fault fits the fault model
and consequently, discards the inner state hypothesis if it does
not. This allows the attacker to fully recover the internal state
of the cipher before adding the last key, thus enabling the
recovery of this round key. In [26] the authors provide a
practical validation of the proposed attack technique against a
software implementation of the AES cipher.

A practically feasible attack worth mentioning is the one
involving the complete blanking of the S-Box lookup tables
of the cipher, achievable through resetting the memory where
they are stored. This attack effectively reduces the whole AES
cipher to the last AddRoundKey operation, which is performed
on a known cipher state, i.e. the null values fetched from the
blanked S-Box. This in turn allows the immediate recovery of
the last round key by the attacker, although it does not allow
to recover the other round keys thus limiting the effectiveness

of the attack to AES-128. This attack has been proved to be
feasible on a number of microcontrollers where the S-Box
was stored in the internal flash memory. The devices had to
be decapsulated before being radiated with ultraviolet light
in order to wipe clean the memory. Proper targeting of the
memory locations which had to be blanked was achieved using
a UV-resistant dye to cover the parts which needed to be
protected.

A number of fault injection attacks targeting the key
scheduling algorithm (employed to generate round keys from
the user supplied key) have been developed. These attacks
exploit the highly regular structure of the AES key schedule
in order to infer bytes of the key through corrupting one or
more bytes during the expansion of the last round key bits. In
particular, the attacks proposed by Giraud et al. in [42] and by
Chen et al. in [46] exploit a single byte corruption introduced
after the key schedule procedure has been performed, and are
thus able to obtain a precise fault that does not propagate to
the keys which are derived from it. While this fault model
is reasonable whenever the key schedule is precomputed and
its result stored in some kind of permanent memory, it is not
possible to attack AES implementations which perform key
expansion on the fly.

In [47], Peacham et al. proposed an attack which takes into
account not only a single fault injection in the cipher, but also
its effect on the computation of the following parts of the key.
This can be done by propagating the fault through the xor and
the SubBytes steps since their structure is not dependent on
the employed key. The fault model employed by the attack
is a single 32-bit word corruption during the computation of
the penultimate round key, thus it is employable also in the
practical scenario where the key expansion is computed on the
fly, even if the attacker is not able to inject a precise fault into
a single byte. The authors of [47] describe a successful attack
mounted using laser induced fault injection on a commercial
grade secure implementation of AES, that did not include any
countermeasures against fault attacks, and employed an all-at-
once key scheduling strategy. This attack was further enhanced
in [48] to reduce the number of faults required to deduce the
entire last round key to four instead of more than 10.

Table II summarizes the key charachteristics of different
fauly injection attacks on AES that were described in this
section.

C. Attacks on RSA

Due to the asymmetric nature of the RSA cipher two kinds
of attacks are possible. The first one attempts to recover
either the factorization of the public modulus n or the secret
exponent d. The second one tries to decrypt the ciphertext c
with no knowledge of the secret key whatsoever. This section
starts with a description of the former, which can only be
applied during the phase that uses the secret exponent d.
This can be either the decryption phase of a message that
has been encrypted with the public key or the signature
phase of a message sent by the private key owner for sender
authentication purposes.

The first attack which has been proposed to factor the RSA
secret modulus, and actually the very first fault attack tech-
nique to be developed, is the so called Bellcore attack [5]. This
technique enables the attacker to factor the modulus n through
inducing an error during the computation of the exponentiation
phase of an RSA implemented using the Chinese Remainder
Theorem.

Consider, for example, the signature phase where the signa-
ture s is computed as s = md mod n using a CRT recombina-
tion of the two values sp = md mod p and sq = md mod q.
The recombination, denoted by CRT (sp, sq), is accomplished
using the so-called Garner method:

s =
(
sp + p ((sq − sp)(p−1 mod q) mod q)

)
mod n

The main benefit of this method is that it achieves sig-
nificant time and area savings by performing the expo-
nentiations with smaller exponents. Since sp = md mod
p = md mod (p−1) mod p and sq = md mod q =
md mod (q−1) mod q, the exponents to be used are dp =
d mod (p− 1) and dq = d mod (q − 1) which are of order p
and q, respectively, instead of n.

Unfortunately, this simpler way to compute the signature
also yields an easy path for attackers. The main idea behind the
Bellcore attack is to corrupt only one of the two computations,
i.e., either sp or sq . If, for example, a fault is injected during
the computation of sq while the computation of sp remains
error free, the faulty result may be used to successfully factor
the modulus n. Denoting the faulty value of sq by s̃q = sq+∆,
we can rewrite the faulty result of the CRT recombination as
s̃ = CRT (sp, s̃q), which is equal to:

s̃ = s+ p
(
∆(p−1 mod q) mod q

)
mod n

One can now compute the quantity s̃ − s that shares the
factor p with the modulus n. Therefore, it is possible to extract
p = gcd(s̃ − s, n) efficiently using Euclid’s Algorithm, thus
factoring n.

Moreover, as shown in [7], the modulus factorization is
feasible using only the message m and one faulty computation
of the signature s̃ by exploiting the knowledge of the public
exponent e to calculate p = gcd(s̃e −m,n). This allows an
attacker to factor the modulus even in the case the value of
the correct signature s is not available.

The simplicity of the fault model assumed by this attack
is the most important property of this technique: any random
fault perturbing one part of the computation is able to break the
cipher. A number of practical implementations of this attack
have been attempted. For example, the authors of [49] have
induced errors into a smartcard through voltage spikes injected
into the power supply line of the device. Even with such a
simple setup, the attack was successful in more than 90% of
the attempts, further proving the serious threat posed by this
attack technique.

The second way to attack RSA is to retrieve the private
exponent d while the device is signing messages. This attack
is applicable when the RSA implementation performs the
exponentiation through a sequence of square-and-multiply

Table II
AES ATTACKS SUMMARY (KS IS THE KEY SCHEDULE)

Attack Fault model Spots usable faults Fault Position Cipher / KS Max Key Length Practically applied
[41] Single bit No First ARK Cipher Any No
[42] Single bit No Last round Cipher 128 No
[43] Single bit Yes Last 3 rounds Cipher Any Yes
[44] Single byte No Last 2 rounds Cipher 128 Yes
[45] Single word No Last 2 rounds Cipher 128 No
[26] Single byte Yes Last 3 rounds Cipher Any Yes
[34] Whole SBox Yes SBox Cipher 128 Yes
[46] Exact byte Yes 9th round key KS 128 No
[42] Single byte No 9th round key KS 128 No
[47] Single word Yes 9th round key KS 128 Yes
[48] Single word Yes 9th round key KS 128 No

steps. In this attack scenario the attacker has free access to
the device and is allowed to choose arbitrary ciphertexts to
be fed while injecting faults. It is also assumed that there is
no limit to the number of fault injection experiments that the
attacker can perform. This assumption restricts the technique
to non destructive fault injections.

The key point of the secret exponent recovery attack, first
proposed in [6], is to induce a number of faults during the
signature process, with each fault leaking the value of a single
bit of the exponent. Two types of injected faults can achieve
the desired outcome. One is a single transient flip of a bit in d
during the computation of the RSA signature. Another way to
achieve an analogous effect is to induce a fault that will result
in skipping the condition check which determines whether
the current intermediate value must be multiplied by the base
in a common left-to-right square and multiply exponentiation
procedure. As a result of either fault, the corrupted signature
s̃ may assume one of the following two possible values:
s̃ = sd−2i mod n or s̃ = sd+2i mod n depending on whether
the value of the single bit in position i was flipped up or
down. Consequently, either s/s̃ mod n or s̃/s mod n would
be equal to m2i mod n, where i ∈ [0, v − 1] and v is the bit
size of the secret exponent d.

To simplify the attack, all the possible values of m2i (for
i ∈ [0, v−1]) can be precomputed and stored in a lookup table,
A. After a fault has been injected and the faulty signature s̃
observed, the lookup table A is searched for a match with
either s/s̃ mod n or s̃/s mod n. If the first value matches
an entry in the table the attacker knows that the i-th bit value
is 1 and was changed to 0 by the fault, while if the second
value produces a match, the original value of the i-th exponent
bit was 0. This procedure can be iterated as necessary.

This attack can also be successful if the injected fault hits
two bits of the secret key d. The main difference would be
that a bigger lookup table would need to be prepared with v2

instead of v entries.
To estimate the number of randomly positioned single-bit

faults needed to discover the values of v unknown key bits
define a random variable X counting the number of faults
injected until all the bits have been hit. Assume that j key
bits have already been hit and denote by Xj the random

variable indicating the number of faults that should be injected
in order to increase the number of bit hits to j+1. Xj follows
a geometric distribution with parameter v−j

v . Therefore, the
probability that after k injections a yet untouched (single)
bit gets hit is given by Prob(Xj = k) = v−j

v

(
j
v

)k−1
. The

expected value of Xj is E[Xj] = v
v−j . Since the random

variable X satisfies X =
∑v−1
j=0 Xj , its expected value is

E[X] = v
∑v
j=1

1
j ≤ v ln(v + 1).

This implies that on the average R = v ln(v + 1) single-
bit faults should be injected in order to retrieve all the bits
of the secret key. For example, if the RSA implementation
uses a 1024-bit key, the attacker will need approximately R =
1024 ln(1024) ∼= 3083 restarts of the device and successful
fault injections in order to extract the entire secret exponent.
As in any such attack, the attacker can stop the fault injections
when a brute force search of the remaining key bits becomes
feasible.

A variant of this attack has been proposed and applied
in practice by Schmidt et al. in [29]. The authors caused
the skipping of the squaring step in the square and multiply
algorithm by introducing glitches into the clock signal of the
attacked microcontroller. The employed methodology allows
a very precise control of which instruction is skipped and the
authors were therefore, successful in recovering all the bits of
secret exponent d one bit at a time.

An example of applying the technique proposed by Bao [6]
that is worth mentioning is the one reported in [50]. Yen et
al. have used the technique under a safe error assumption.
An error is injected into a single multiply operation during a
square and multiply always algorithm and the attacker needs
only to observe whether the device is behaving correctly. Any
misbehavior (e.g., producing a faulty output value or no output
at all) indicates to the attacker that the injected fault has hit a
useful multiplication, implying that the bit (of d) driving that
multiplication was equal to one. This technique has allowed
to bypass all the countermeasures which were known at that
time, since the actual faulty output was not needed.

A third way to attack the RSA cryptosystem is to devise
a way to extract the e-th root of a number modulo n in a
reasonable time. This has been shown to be feasible in [25],
by exploiting the knowledge of another power of the same

Algorithm IV.1: e-TH ROOT EXTRACTION

Input: e1, e2 ∈ {1, . . . , ϕ(n)− 1}, e1 ≥ e2 ,
c1 = me1 mod n, c2 = me2 mod n

Output: (m,n): either (m,⊥) if the e-th root may be
extracted, (p, q) if the modulus can be factored
or (⊥,⊥) otherwise

begin1

τ ← gcd(c1, n)2

if τ 6= 1 then3

return (τ, n/τ)4

τ ← gcd(c2, n)5

if τ 6= 1 then6

return (τ, n/τ)7

if gcd(e1, e2) 6= 1 then8

return (⊥,⊥)9

γ1, γ2 ← c1, c210

ε1, ε2 ← e1, e211

/* Integer division */
θ ← b ε1ε2 c, ρ← ε1 mod ε212

γ3 ← γ1γ
−θ
2 mod n13

while ρ 6= 0 do14

γ1, γ2 ← γ2, γ315

ε1, ε2 ← ε2, ε1 − θε216

/* Integer division */
θ ← b ε1ε2 c, ρ← ε1 mod ε217

γ3 ← γ1γ
−θ
2 mod n18

return (γ2,⊥)19

end20

number. This technique can be used in order to recover the
plaintext message without the need to obtain the secret key.

The fault model assumed by this attack is a modification to
the value of the public exponent e, leading to two encryptions
of the same message sharing the same modulus n. While
this does never happen due to an incorrect generation of two
public-private key pairs (otherwise the two key holders would
be able to mutually read each other’s messages), the encryption
of a same message through exponentiation by two different
public exponents e1 and e2 may be forced through proper
fault injection.

Once the values of the two different ciphertext resulting
from the encryption of the same message are obtained, it is
possible to efficiently extract the e-th root by exploiting the
following observation. Assuming that e1 > e2, the value of

me3 = (me1) · (me2)−1

can be easily computed. The value of e3 is lower than that of
e1 and it is possible to lower it further until it becomes lower
than e2. Notice that the attacker knows the values of e1 and e2
since they are public, so he knows exactly the value of e3. In
order to further lower the value of the exponent it is possible
to compute the value of

me4 = (me2) · (me3)−1

and repeat the procedure until either en+1 = en or en = 1.
This procedure amounts to computing the greatest common
divisor of e1 and e2 and employs the descending sequence
of remainders as a pivot for the divisions among the two
encrypted messages.

Algorithm IV.1 describes an efficient method to retrieve
the plaintext of an RSA encryption using Euclid’s greatest
common divisor algorithm as a pivot to perform operations
on the two known ciphertexts.

In order to compute the value of m−e2 from me2 as required
by the algorithm, it is necessary that gcd(m,n) = 1; if this is
not the case, it is possible to use me2 to factor n by simply
computing their greatest common divisor. This implies that if
the root extraction attack is not applicable, the system may be
easily broken otherwise.

Algorithm IV.1 computes gcd(e1, e2) following Eu-
clid’s algorithm and calculates at each step the value of
me1 mod e2 mod n using the values c1 = me1 mod n and
c2 = me2 mod n (lines 13 and 18). This, under the assumption
that e1 and e2 are co-prime, will lead to the computation of
m1.

If e1 and e2 are randomly chosen, a known result in
number theory [51] states that, provided that two numbers are
randomly chosen from a large enough range, the probability
of them being co-prime approaches 6

π2 ≈ 0.61. This implies
that, on the average, two fault injections will be sufficient to
successfully extract the encrypted message.

We next estimate the computational complexity of the
algorithm. Assuming that e1 ≥ e2, the number of steps that
Euclid’s algorithm must perform is of the order of O(log(e1))
that is equal to O(logϕ(n)) (Lamé’s Theorem [52]). Thus,
taking into account the fact that the complexity of perform-
ing modular multiplication, exponentiation and inversion is
O(log3 n), the complexity of the whole algorithm is O(log4 n)
and therefore, tractable even for large values of n.

In order to employ Algorithm IV.1 in a fault attack scenario,
the values of e1 and e2 must be known: this is equivalent to
a precise fault injection assumption regarding the number of
faulty exponent bits and their positions. This assumption may
be relaxed, at the cost of computing the algorithm for each
fault hypothesis and then checking if the recovered plaintext
is the correct one through re-encrypting it and comparing it
with the correct ciphertext.

Table III summarizes the properties of the attacks on RSA
indicating the required precision of the fault injection and the
practical applicability of the techniques. Many of the proposed
attacks on RSA have been implemented and successfully
mounted against real world devices, thus mandating proper
incorporation of countermeasures into RSA implementations.

D. Attacks on ECC

Developing fault injection techniques to attack ECC-based
ciphers proved to be more difficult than attacking RSA-based
ciphers due to the higher complexity of the mathematical
operations involved.

Table III
RSA ATTACKS SUMMARY

Attack Fault model Required Timing Enc / Sig Algorithm Practically applied
[7] Anything Rough Signature CRT Yes
[6] Single bit flip Precise Signature Plain Yes

[50] Safe error attack Precise Signature CRT No
[29] Instruction skip Precise Signature Plain Yes
[25] Few bits flip Rough Encryption Plain Yes

Most of the attacks on ECC that have been proposed
exploit the structural similarity between the exponentiation
through square and multiply used in RSA and the point-
scalar multiplication through the double and add method used
in ECC. Both ciphers have a common structure where, at
each step, an operation (or a set of operations) is executed
depending on the value of a single bit of the secret key.

This, in turn, implies that it is possible to apply the same
bit flip and check attack which was suggested by Bao et
al. [6] to recover the secret RSA exponent during the signature
operation. Alongside the same attack strategies, also safe
error attacks may be employed if a double and add always
(the ECC’s analog to the RSA’s square and multiply always)
algorithm is employed. A variation of the safe error attack,
relying on the fact that all the computations on elliptic curves
are performed on signed values, is the so-called sign flip
attack [53]. Through flipping the sign bit of the exponent digit
being operated on by the point multiplication algorithm, it is
possible to successfully alter the final result, and recover which
bit had been flipped.

In addition to the attack techniques that are similar to their
RSA counterparts, there are attacks whose goal is lowering
the security of the ECC cipher through changing the group of
points on which it works. In [54] the authors propose injecting
a fault into the base point which gets multiplied k times. This
way, the point will no longer belong to the curve selected
by the designer, but possibly to another one whose number
of points is lower, thus making it possible to attempt a brute
force attack on the scheme.

Another attack, directly targeted at the ECC structure, is
described in [55], where the authors notice that a fault injected
into the point coordinates during the scalar multiplication may
move the point into a subgroup of the main group of curve
points (called a twist of the curve), which has a smaller number
of points. The authors show that their attack technique is able
to successfully break curves standardized by both NIST [56]
and IEEE [57] up to a security level equivalent to the one
provided by the AES with a 128-bit key.

A different approach to attack the elliptic curve signature
algorithm has been proposed in [58]. The key point is to alter
one bit of the inputs of a single-word multiplication during
the final multi-word multiplication employed to produce the
signature value. The value of the wrong signature is exploited
to retrieve one word of the secret key; the attack retrieves the
full value of the secret key word by word. This fault attack
technique has been extended to multiple bit faults in [59].

V. COUNTERMEASURES

This section describes the basic principles underlying the
countermeasures against fault attacks: intrusion detection, al-
gorithmic resistance, and error detection and possibly correc-
tion techniques, and will attempt to systematically classify the
currently known countermeasures.

One approach to protect an implementation of a crypto-
graphic algorithm against fault attacks relies on making the
implementation physically inaccessible. This requires encasing
the device in a tamper-proof box and including sensors to
detect any attempted tampering with the device. This method
has been applied in high-end cryptographic coprocessors such
as the IBM 4764 [60].

Other, more cost-effective, approaches to protect against
fault injection attacks modify the design of the cryptographic
device to allow the detection of the injected faults. One such
approach relies on duplicating the encryption or decryption
process (using either hardware- or time-redundancy) and com-
paring the two results. This approach assumes that the injected
faults are transient and will not manifest themselves in exactly
the same time in these two executions. Although easy to
apply, this approach may often impose a overhead too high
to be practical. Another approach is based on error detection
codes which usually require a smaller overhead compared to
straightforward duplication, although possibly at the cost of
a lower fault coverage. Thus, a trade-off between the fault
coverage and the (hardware and/or time) overhead should be
expected.

When using error detecting codes (EDCs) for detecting
faults during the encryption/decryption process, check bits are
first generated for the input, then, for each operation(s) that
the data bits undergo, the check bits of the expected result
are predicted. Periodically, check bits for the actual result are
generated and compared to the predicted check bits: a fault is
detected if the two sets do not match.

The validation checks can be scheduled at various granu-
larities of the cipher, be it after every operation applied to the
data, following each round, or only once at the end of the
encryption process.

The first step, that of generating the check bits for the
input, is straightforward. The non-trivial part is devising the
prediction rules for the new values of the check bits fol-
lowing each transformation that the data bits undergo during
the encryption/decryption process. The complexity of these
prediction rules, combined with the frequency at which the
comparison is made, determine the overhead of applying the

EDC, rather than duplication, as a protection against fault
attacks.

A. Suggestions for 3G-SNOW

Providing fault attack protection in stream ciphers is par-
ticularly challenging due to the fact that these ciphers are
commonly used in devices with strict timing and circuit size
constraints. This in turn, excludes the use of high overhead
techniques. A viable approach to providing moderate error
checking capabilities is to employ nonlinear error detecting
codes, like the ones described in [61]. These codes check the
integrity of the state and provide a moderate error correction
capabilities thus enabling a reliable functioning of the circuit
even when under attack.

B. Protection options for AES and DES

The countermeasures that have been proposed to protect
symmetric block ciphers mainly rely on the introduction of
redundancy in the execution, either in the form of error de-
tecting codes (information redundancy) or through duplicated
execution (time or hardware redundancy). These schemes are
similar to the conventional redundancy techniques that are
described in [20].

With temporal duplication the encryption (or decryption)
algorithm is executed twice on the same hardware, while with
hardware (spatial) duplication the algorithm is executed on two
separate circuits. In both cases, the two results are compared
and any mismatch indicates an error which may be the result
of a maliciously injected fault. These schemes work under
the assumption that injecting identical faults during the two
independent executions is extremely difficult. Temporal redun-
dancy incurs a performance penalty while spatial redundancy
results in a bigger circuit with higher power consumption.

A variation of the above duplication techniques can be
applied if the system has a separate hardware unit or software
program for executing the inverse of the cryptographic prim-
itive that should be protected. For example, if a device that
encrypts a symmetric block cipher also includes an implemen-
tation (in hardware or software) of the decryption algorithm,
then the calculated ciphertext can be decrypted and if the
result of this decryption matches the original plaintext, the
ciphertext is considered fault-free and safe to output. In [62],
the authors described the application of the above technique at
different levels of granularity, i.e., checking against the inverse
operation at the operation, round or full cipher level. The
proposed scheme allows a precise and early identification of
the step during which the fault occurred.

A technique to mask the high latency introduced when
temporal duplication is applied to the execution of a cipher
has been proposed in [63]. The authors developed a Dual Data
Rate (DDR) architecture for AES, allowing to compute twice
the same cipher with negligible time overhead by operating
at double the frequency of the remaining circuit. The area
overhead is reasonable, since the only parts which must be
duplicated are the registers holding the cipher state.

Parity-based EDCs were proposed as an effective way to
detect faults in the AES in [64], [65] and were previously
shown to be useful also for DES [66].

Parity bits can be associated with entire 32-bit words, with
individual bytes or even with nibbles (sets of 4 bits), with each
such scheme providing a different fault coverage and entailing
a different overhead in terms of extra hardware and delay.

As an example, we illustrate the procedure for developing
parity prediction rules when using a parity bit for each byte
of the AES state. We discuss next the prediction rules for the
four steps included in each round.

The prediction of the output parity bits for the ShiftRows
transformation is straightforward: it is a rotated version of the
input parity bits. Equally simple is the prediction of the output
parity bits of the AddRoundKey step: it consists of adding the
input parity matrix associated with the state to the parity matrix
associated with the current round key.

The SubBytes step commonly uses SBoxes which are 256×
8-bit look-up tables. The input to the SBox will already have
an associated parity bit. To generate the outgoing parity, a
parity bit can be stored with each data byte, increasing the
number of bits in each location in the SBox to 9. To make
sure that input parity errors are not discarded, we will have to
check the parity of the input data, and if an error is detected,
stop the encryption process.

A lower overhead solution would be to propagate the input
parity errors so that they can be detected later on. This can be
achieved by including the incoming parity bit when addressing
the SBox, thus further increasing the table size to 512×9. The
entries that correspond to input bytes with correct parity will
include the appropriate SubBytes transformation result with a
correct parity bit. The other entries will contain a deliberately
incorrect result, such as an all zeroes byte with an incorrect
parity bit.

If fault attacks on the SBox address decoder can be ex-
pected, the above scheme is insufficient. Adding a small table
that will include the predicted parity bit and one (or more)
correct output data bits, as suggested in [64], will allow the
detection of most of the addressing circuitry faults.

The prediction of the output parity bits of the MixColumns
step is the most complex one. Equations for predicting the
parity bits have been derived in [64] and are shown below

p0,j = p0,j ⊕ p2,j ⊕ p3,j ⊕ s(7)0,j ⊕ s
(7)
1,j

p1,j = p0,j ⊕ p1,j ⊕ p3,j ⊕ s(7)1,j ⊕ s
(7)
2,j

p2,j = p0,j ⊕ p1,j ⊕ p2,j ⊕ s(7)2,j ⊕ s
(7)
3,j

p3,j = p1,j ⊕ p2,j ⊕ p3,j ⊕ s(7)3,j ⊕ s
(7)
0,j (3)

where pi,j is the parity bit associated with state byte si,j , and
s
(7)
i,j is the most significant bit of si,j .

The question that remains is the granularity at which the
comparisons between the generated and predicted parity bits
will be made. Scheduling one validation check at the end of the
whole encryption process has the obvious advantage of having
the lowest overhead in terms of hardware and extra delay.

Theoretically, this could result in the error indication being
masked during the encryption procedure, yielding a match
between the generated and predicted parity bits in spite of
the ciphertext being erroneous. It can be shown, however, that
errors injected at any step of the AES encryption procedure
will not be masked, and therefore, a single validation check of
the final ciphertext is sufficient for error detection purposes.

Still, not every combination of errors can be detected by
this scheme. Parity-based EDCs are capable of detecting any
fault that consists of an odd number of bit errors. However,
an even number of bit errors occurring in a single byte will
not be detected. Moreover, if errors are injected in both the
state and the round key, some data faults of odd cardinality
will not be detected. Although we cannot expect a 100% fault
coverage when using a parity-based EDC, the fault coverage
has been shown to be very high, even when multiple faults
are considered.

In a similar way, EDCs can be developed for other symmet-
ric key ciphers. Several such ciphers which rely on modular
addition and multiplication will better match residue codes.
Other symmetric ciphers have been shown to require a very
expensive implementations of EDCs, leading to the conclusion
that the brute force duplication is probably a more suitable
solution. The cost of providing protection against fault-based
attacks should be taken into account when selecting a cipher
for a device.

C. Protection of RSA

Protecting the RSA encryption and decryption primitives
without introducing significant overheads, proved to be a
challenging task for researchers. The high complexity of the
required calculations (relative to those for symmetric block
ciphers) results in bigger circuits and/or higher latency, making
full temporal or spatial redundancy too costly, especially for
resource constrained devices such as smart cards. On the other
hand, RSA proved to be very vulnerable to fault attacks,
especially when a CRT-based implementation is used.

A lower overhead can be achieved if an EDC is used. Since
the RSA cipher is based on modular arithmetic operations,
residue codes are a natural choice. At the beginning of the
execution, the check bits for the input are generated based on
the selected modulus c for the residue check (m mod c where
m is the original message). Then, the operations performed
during the RSA algorithm can be applied to the input check
bits to obtain the predicted output check bits. The residue
check will fail to detect an error when the faulty ciphertext
has the same residue check as the correct one. Assuming that
the fault injected is random, this match will happen with a
probability of 1/c and thus, a higher value of c will result in
a higher fault coverage (but also a higher overhead).

Another approach, proposed by Shamir in [67] is based on
randomizing the computation every time the RSA algorithm is
executed. Randomization can serve as a countermeasure not
only against fault injection attacks, but also against timing
and power attacks since the latency and power profile would
depend on some randomly chosen parameters. The proposed

scheme targets CRT-based implementations. A random integer
r is selected and the following two computations are per-
formed: srp = md mod rp and srq = md mod rq. Then, the
correctness of the computations is checked by verifying that
srp = srq mod r. Only if no error is detected the final result
s = CRT (srp, srq) is produced. This scheme however, may
be subject to a Bellcore-type attack by injecting a fault into
either srp or srq after the above check has been done but prior
to the CRT recombination.

To overcome the above vulnerability, a variation of Shamir’s
scheme was proposed by Ciet et al. [68] employing two
different random values which are multiplied with the two
prime moduli of the CRT computation. The effect of the
random numbers is removed only after the CRT recombination
has been performed, thus preventing the Bellcore-type attack.

A generic approach to detecting faults during decryption
by executing the inverse process (i.e., encryption) is a viable
countermeasure for RSA since the public exponent e is often
very small, and consequently, the cost of performing the
encryption is negligible. There are however, two issues to
be resolved if this countermeasure is to be deployed. The
first is that the public exponent e is not always available
in the decryption device (e.g., in a smart card). This issue
was resolved by Joye [69] who proposed the embedding
of the public exponent into the modulus n, thus making it
available to the device. The second problem arises when the
decrypting device employs the CRT-based algorithm. Such
devices are often designed to only perform operations with
small moduli rather than the full RSA module n. Since the
checking involves a modulo n computation, this may cause a
significant slowdown of the process. To solve this problem,
Boscher et al. [70] proposed a way to employ a CRT-based
scheme for the checking thus avoiding the potential slowdown.

To protect RSA encryption and implementations of RSA
decryption that are not CRT-based, a strategy to check er-
rors during modular exponentiation is necessary. Modular
exponentiation is frequently executed using a “square and
multiply” sequence described in Algorithm V.1. The inputs
to this algorithm are the encrypted message c, the modulus n
and the k-bit private key d = dk−1, dk−2, · · · , d0.

Algorithm V.1: A straightforward decryption algorithm for
RSA.
Input: c, n, d = [dk−1, dk−2, · · · , d0]: secret exponent
Output: m: plaintext
begin1

a← s2

for i← k − 2 to 0 do3

a← a2 mod n4

if di = 1 then5

a← c · a mod n6

return m7

end8

This algorithm correctly produces the desired result in k

steps, where a squaring operation is always performed, and a
multiplication operation is performed only if the corresponding
bit of the private exponent d is equal to one. Unfortunately, this
algorithm is vulnerable to simple power analysis techniques,
which rely on the different power consumption caused by the
presence or lack of the multiplication, to infer the value of the
private exponent bits. The most straightforward solution to this
issue is to follow a “square and multiply always” strategy, such
as the one described in Algorithm V.2.

Algorithm V.2: A modified decryption algorithm for RSA.
Input: c, n, d = [dk−1, dk−2, · · · , d0]: secret exponent
Output: m: plaintext
begin1

a← s2

for i← k − 2 to 0 do3

a← a2 mod n4

b← c · a mod n5

if di = 1 then6

a← b7

else8

a← a9

return m10

end11

This strategy always performs the multiplication, thus equal-
izing the power consumption of the otherwise different it-
erations. Although this strategy is effective in preventing
power analysis based attacks, it is possible to attack the
aforementioned algorithm through an easy safe error attack.
By disturbing the multiplication, through fault injection, it is
possible to deduce the corresponding bit of the secret exponent
in the following way. If, despite the injection of a fault, the
output is correct then the multiplication was unnecessary while
if the output is incorrect (or no output is produced due to the
fault being internally detected), then the multiplication was
needed.

These safe error attacks can be prevented, as was pointed
out in [71], by computing the exponentiation using the Mont-
gomery Laddering technique depicted in Algorithm V.3. The
technique uses two temporary values a and b whose values are
recomputed every iteration and as a result, any fault injected
during an inner operation will be detected. This technique has
the added benefit that it makes it possible to check at each
iteration whether the relationship ma = b holds [72]. The
number and positions of such checks may be determined by
the designer, according to a trade-off between the computation
time and the security level.

Unfortunately, this technique increases the vulnerability to
power attacks since the computation now includes a condi-
tional construct that results in an imbalance, albeit slight, in
the power consumption. To overcome this problem and obtain
a fault and power analysis resistant exponentiation algorithm,
Fumaroli et al. [73] proposed a variant of the Montgomery
laddering technique that employs a randomization scheme

Algorithm V.3: A Montgomery Ladder algorithm for RSA
decryption.
Input: c, n, d = [dk−1, dk−2, · · · , d0]: secret exponent
Output: m: plaintext
begin1

a← s2

for i← k − 2 to 0 do3

a← a2 mod n4

b← c · a mod n5

if di = 1 then6

a← a2 mod n7

b← a · b mod n8

else9

a← a2 mod n10

b← a · b mod n11

return m12

end13

and substitutes the conditional instruction in the previous
algorithm by a fast multiplication of the temporary values
of the Montgomery ladder with the bit of the exponent. The
randomization of the encrypted message is performed through
exponentiating rm instead of m, where r is a small random
number. In parallel to the exponentiation, r−e is computed
and then used to remove the randomization (also known as
blinding) effect after the computation.

The randomization introduced by Fumaroli prevents an
attacker from knowing the actual result of the exponentiation,
and provides a way to check if the computation proceeds prop-
erly using the same relationship which held for the original
Montgomery ladder. Still, as was later pointed out in [74], it
is possible to inject an undetected error in the result, if the
attacker only corrupts the calculation of the blinding removal
value r−e. Such a fault may constitute a security risk if the
above technique is employed in the computation of one of
the two halves of the CRT-based decryption. If the undetected
faulty value is employed in the CRT reconstruction, it leads
to the same scenario as in the Bellcore attack.

To obtain a protected CRT-based low overhead decryption
algorithm, Boscher et al. [75] combined a checking strategy
for the CRT recombination with a fully protected exponentia-
tion.

An alternate strategy to hinder attacks on RSA relies on
propagating the effects of the injected fault on the whole
computation, leading to a faulty output which is not exploitable
by the attacker. This strategy, denominated fault infective
computation in [76], shifts the focus of the countermeasure
from detecting the faults, to directly hindering the attacker
without altering the computation flow, thus implicitly pre-
venting safe error attacks. A generalisation of this concept,
denominated fault resilient computation, has been presented
in [77], focusing on the design of a circuit which relies on
dual-rail logic to implement the same key concept.

D. Protection of ECC

Elliptic curve cryptosystems can be protected by extending
some of countermeasures that were developed for RSA and
adapting them to the different group operations performed
during ECC encryption/decryption. In [78] the authors present
a list of countermeasures for ECC taking into account all
the previously proposed attacks. In particular, the authors
suggest, as a practical defense against safe error and bit
flipping attacks on the double and add ladder, to compute
the kP through splitting k into two values. Furthermore, to
avoid exploitable deterministic behavior, a random number r
(smaller than k) should be selected leading to the computation
of [k mod r]P + [bkr c]P . A second suggested guideline is to
avoid decision checks in the same way they are avoided in
the Montgomery laddering during RSA exponentiation. This
way, an error during the double and add ladder will yield a
random result avoiding information leakage. Another informa-
tion leakage prevention approach, proposed in [79], involves
randomizing the base point P used in the kP operation. This
countermeasure introduces further randomness into the scheme
hindering the recovery of the value of k regardless of the faults
induced during the computation.

VI. POWER AND FAULT ATTACKS SYNERGIES

Although we have focused in this paper on fault injection
attacks, we must keep in mind that there are other types of
side channel attacks that a possible attacker may follow in an
attempt to breach the security of a system. A commonly used
approach is through power analysis attacks, which measure
the amount of power consumed while performing encryption
or decryption during the normal (fault-free) operation of the
attacked device.

An example of these attacks is the differential power attack
whose goal is to construct a key-dependent model of power
consumption that depends on the switching activity of the
circuit, and try to find which one fits best the actual measure-
ments taken on the device. The most common way to protect
against this kind of attacks is to design the device such that it
has a constant power consumption regardless of the ongoing
computation.

Traditionally, fault attacks and power analysis attacks were
considered disjoint attack methodologies. This lead to the
assumption that protecting the device against each one of these
two possible attacks individually, the device is consequently
protected against any combination of these two types of
attacks. This assumption, however, proved to be false, and
it has been shown that it is possible to exploit fault attacks
in order to enhance the efficiency of power attacks. The
key idea behind the combined attack is that a fault induced
during a computation can alter, in addition to the result of the
computation, also the power consumed by the device due to a
change in the switching activity of the circuit.

The first combined attack technique was reported by Amiel
et al. in [80]. In this work, the authors showed that it is
possible to attack an RSA exponentiation that was protected
against power analysis attacks using a balanced algorithm

with message randomization, by inducing ad-hoc faults. The
technique involves the partial or total blanking of the contents
of the register holding the base value of the message m, which
in turn, reduces the power consumption of the multiplication
by m. Since this multiplication is performed only when the
current bit of the secret exponent d is 1, the authors were
able to obtain the secret key simply by observing which
operations did consume less power after the fault injection.
The authors have also pointed out that this kind of attack
cannot be prevented by simple countermeasures against faults
such as checking the signature at the end of the computation.
This is due to the fact that the information leakage happens
during the computation and a-posteriori checks cannot prevent
it.

One way to protect against these attacks is to detect the
injected fault immediately, rather than wait until the com-
putation of the signature is completed, and upon detection,
abort the process and thus avoid generating the power profile
that divulges the secret key. Well-known examples of this
type of countermeasures are the error detection codes based
on either parity or residue checking. These codes, through
adding redundant check bits to the data processed, are able to
detect on the fly an invalid alteration of the data. However,
the addition of circuitry to process the added check bits may
help differential power analysis attacks since the check bits
are highly correlated to the data bits being processed.

In [81], [82] the authors reported the results of correlation
power analysis attacks (that are more powerful than differential
power analysis) on an implementation of AES where the
output buffer of the S-Box has been extended to include an
error detection circuit. The considered error detection codes
were parity, residue modulo 3 and residue modulo 7. The
results of this study showed that the introduction of error
checking circuits would help the attacker by reducing the
number of power traces needed to discover the bits of the
secret key. The experiments in this study were performed
with an added measurement noise that must be expected
during any practical power analysis attack. A reduction in
the required number of traces has been observed even if the
attacker is unaware of the presence of check bits in the attacked
implementation. Furthermore, the authors observed that the
higher the number of check bits is, the easier the power attack
becomes.

These observations suggest that, albeit targeting different
side channels, substantial synergies between active and passive
attacks exist and these may be exploited by a malicious
attacker. This in turn implies that novel countermeasures
against either power or fault attacks should always take into
consideration their impact on the robustness against the other
type of side channel attacks.

VII. FUTURE RESEARCH DIRECTIONS

We conclude this survey with a brief description of possible
new research directions in the field of fault injection attacks.
One such direction will focus on establishing formal models
for fault injection attacks and exploring their effectiveness.

This will allow a top-down analysis of possible fault attacks
instead of the current bottom-up approach.

The number and types of fault attacks that are being
developed for the various ciphers is steadily increasing but no
clear classification has emerged. The current trend is to model
the injected faults as errors in the underlying mathematical
formulae rather than mistakes in the computations performed
by a certain computer model. This approach makes it difficult
to establish a relationship between the fault model and the
existing technology and consequently, its practical relevance is
becoming questionable. An alternative approach might be the
development of a scientifically rigorous quantification of the
robustness of an implementation of a cryptographic primitive
(e.g., RSA encryption) against fault attacks by modeling the
primitive as a program that runs on a given virtual machine
model. One can then determine the fault resilience and cost
of the cryptographic primitive implementation where the re-
silience can be defined in one of the following ways:

• Being able to return the correct result despite a fault, or
• Detecting the fault and discontinuing the process, or
• Returning an incorrect result making it difficult for the

attacker to recover either the secret key or the plaintext.

The overhead (cost) of the given implementation can be
measured in terms of the execution time or the code size of
the program implementing the primitive. A number of possible
virtual machines can serve as a framework for the above model
ranging from the theoretical Turing Machine to more practical
ones.

Clearly, exploring the solution space with respect to these
resilience and cost parameters for crypto-primitives implemen-
tations that incorporate countermeasures, would have theo-
retical and practical significance. Such analysis can then be
extended to complete implementations of cryptographic pro-
tocols consisting of a set of crypto-primitives (e.g., Transport
Layer Security [83]).

Determining the resilience versus cost trade-offs in a the-
oretical way may prove to be difficult. Instead, successive
approximations can be obtained by using known attacks pro-
cedures. Such procedures could be used to compare primitives
and different virtual machine models, and thus progressively
refine the analysis.

Besides the above described new research direction, there is
still a need to keep developing countermeasures against fault
attacks and new ways to make implementations more immune
to attacks, and improve the techniques to test the robustness
of cryptographic primitives and the robustness provided by
technological advancements.

To illustrate the need for the development of new counter-
measure consider the following scenario. Assume a message
m1 is encrypted into a ciphertext c1 using RSA. Injecting a
one-bit fault into m1 during a second encryption will result in
the encryption of the message m2 = m1 xor 2i = m ± 2i =
m+ b, for a b predictable by the attacker; hence z = m1 is a

common root of the two equations below:

ze − c1 = 0 mod n
(z + b)

e − c2 = 0 mod n

Thus m1 will be retrieved with a high probability by the
operation below:

gcd (ze − c1, (z + b)
e − c2) = z −m1 mod n

The complexity is quadratic in e and the attack will hence
work only for small public exponents. This attack is derived
from a non-fault (i.e., algorithmic) attack on RSA [84] and
uncovers an unexpected relationship.

In addition, a number of recently developed crypto-
primitives deserve more extensive theoretical and practical in-
vestigations. Examples include elliptic curve pairing or lattice-
based operations, which are currently of considerable interest.

Furthermore, the number of known countermeasures is as
large as the number of different fault attacks that have been
developed and quite often, a countermeasure has been finely
tuned to a specific attack. There is a need to design more
general countermeasures that will be effective against many
fault attacks and yet be inexpensive. Developing theoretical
generic countermeasures may be too ambitious, and a more
promising approach seems to be that of unifying the existing
ones (e.g., [70], [85]). The results in this field are still limited
to a couple of primitives, thus a deeper insight is required.

A further research direction is represented by the advent of
multi-core processors in mobile environments. Since crypto-
primitives have been mainly designed and implemented on
serial processors, there is an ongoing transition to their imple-
mentation on multi-core platforms. Currently, it is unclear how
to extend the known fault attack methodologies and techniques
to a parallel algorithm, which may be processing several keys
simultaneously or several plaintexts using one key. Another
related question is whether fault injection attacks (and more
generally, side-channel attacks) on parallel implementations
will retain their feasibility on these modern platforms.

REFERENCES

[1] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1996.

[2] R. J. Anderson and M. G. Kuhn, “Low cost attacks on tamper resistant
devices,” in Proc. International Workshop on Security Protocols, pp.
125–136, 1998.

[3] D. Boneh, R. DeMillo, and R. Lipton, “On the importance of eliminating
errors in cryptographic computations,” Journal of Cryptology, vol. 14,
no. 2, pp. 101–119, Nov. 2001.

[4] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Proc. CRYPTO, pp. 513–525, 1997.

[5] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the Importance of
Checking Cryptographic Protocols for Faults,” in Proc. EUROCRYPT,
pp. 37–51, 1997.

[6] F. Bao, R. H. Deng, Y. Han, A. B. Jeng, A. D. Narasimhalu, and T.-
H. Ngair, “Breaking Public Key Cryptosystems on Tamper Resistant
Devices in the Presence of Transient Faults,” in Proc. International
Workshop on Security Protocols, pp. 115–124, 1998.

[7] A. K. Lenstra, “Memo on RSA Signature Generation in the Presence of
Faults,” September 1996, unpublished memo.

[8] L. Breveglieri, I. Koren, D. Naccache, and J.-P. Seifert, Eds., Pro-
ceedings of the Third International Workshop in Fault Diagnosis and
Tolerance in Cryptography, 10 October 2006, ser. Lecture Notes in
Computer Science. Springer, 2006, vol. 4236.

[9] L. Breveglieri, S. Gueron, I. Koren, D. Naccache, and J.-P. Seifert, Eds.,
Proceedings of the Fourth International Workshop on Fault Diagnosis
and Tolerance in Cryptography, 10 September 2007. IEEE Computer
Society, 2007.

[10] ——, Proceedings of the Fifth International Workshop on Fault Diag-
nosis and Tolerance in Cryptography, 10 August 2008. IEEE Computer
Society, 2008.

[11] SNOW 3G Specifications, European Telecommunications Standards In-
stitute Std., September 2006.

[12] P. Ekdahl and T. Johansson, “A New Version of the Stream Cipher
SNOW,” in Proc. Selected Areas in Cryptography, vol. 2595, pp. 47–
61, 2003.

[13] ISO/IEC 18033-4:2005 Information technology – Security techniques –
Encryption algorithms – Part 4: Stream ciphers, ISO Std., 2005.

[14] FIPS-46-3: Data Encryption Standard (DES), National Institute of
Standards and Technology (NIST) Std., 1999.

[15] M. Curtin, Brute force: cracking the data encryption standard. Springer,
2005.

[16] FIPS-197: Advanced Encryption Standard, National Institute of Stan-
dards and Technology (NIST) Std., 2001.

[17] J. Daemen and V. Rijmen, The design of Rijndael: AES–the Advanced
Encryption Standard. Springer Verlag, 2002.

[18] IEEE P-1619 Standard for Cryptographic Protection of Data on Block-
Oriented Storage Devices, IEEE Std., 2008.

[19] IEEE Standard for Information Technology-Telecommunications and
Information Exchange Between Systems-Local and Metropolitan Area
Networks-Specific Requirements-Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std.,
1997.

[20] I. Koren and C. M. Krishna, Fault Tolerant Systems. San Francisco,
CA, USA: Morgan-Kaufman, 2007.

[21] R. Rivest, A. Shamir, and L. Adleman, “Method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, pp. 120–126, 1978.

[22] P. Montgomery, “Modular multiplication without trial division,” Math-
ematics of computation, vol. 44, pp. 519–521, 1985.

[23] STMicroelectronics, “ST23 highly secure smartcard ICs,” January
2010. [Online]. Available: http://www.st.com/stonline/products/families/
smartcard/sc st23.htm

[24] D. J. Bernstein, “DNSCurve: Usable security for DNS,” January 2009.
[Online]. Available: http://dnscurve.org/

[25] A. Barenghi, G. Bertoni, E. Parrinello, and G. Pelosi, “Low Voltage
Fault Attacks on the RSA Cryptosystem,” in Proc. Workshop on Fault
Diagnosis and Tolerance in Cryptography, pp. 23–31, 2009.

[26] A. Barenghi, G. M. Bertoni, L. Breveglieri, M. Pellicioli, and G. Pelosi,
“Low Voltage Fault Attacks to AES,” in Proc. International Symposium
on Hardware-Oriented Security and Trust, pp. 7–12, 2010.

[27] N. Selmane, S. Guilley, and J.-L. Danger, “Practical Setup Time Vi-
olation Attacks on AES,” in Proc. European Dependable Computing
Conference, pp. 91–96, 2008.

[28] A. Barenghi, C. Hocquet, D. Bol, F.-X. Standaert, F. Regazzoni, and
I. Koren, “Exploring the Feasibility of Low Cost Fault Injection At-
tacks on Sub-threshold Devices through an Example of a 65nm AES
Implementation,” in Proc. Workshop on RFID Security and Privacy, pp.
48–60, 2011.

[29] J.-M. Schmidt and C. Herbst, “A Practical Fault Attack on Square
and Multiply,” in Proc. Workshop on Fault Diagnosis and Tolerance
in Cryptography, pp. 53–58, 2008.

[30] M. Hutter, T. Plos, and J.-M. Schmidt, “Contact-Based Fault Injections
and Power Analysis on RFID Tags,” in Proc. IEEE European Conference
on Circuit Theory and Design, pp. 409–412, 2009.

[31] F. Amiel, C. Clavier, and M. Tunstall, “Fault Analysis of DPA-Resistant
Algorithms,” in Proc. Workshop on Fault Diagnosis and Tolerance in
Cryptography, vol. 4236, pp. 223–236, 2006.

[32] S. Govindavajhala and A. Appel, “Using memory errors to attack a
virtual machine,” in Proc. IEEE Symposium on Security and Privacy,
pp. 154–165, 2003.

[33] J.-M. Schmidt and M. Hutter, “Optical and EM Fault-Attacks on
CRT-based RSA: Concrete Results,” in Proc. Austrian Workhop on
Microelectronics (Austrochip), pp. 61–67, 2007.

[34] J.-M. Schmidt, M. Hutter, and T. Plos, “Optical Fault Attacks on AES: A
Threat in Violet,” in Proc. Workshop on Fault Diagnosis and Tolerance
in Cryptography, pp. 13–22, 2009.

[35] S. Skorobogatov, “Semi-invasive attacks-a new approach to hardware
security analysis,” University of Cambridge, Computer Laboratory, Tech.
Rep. UCAM-CL-TR-630, 2005.

[36] S. P. Skorobogatov and R. J. Anderson, “Optical Fault Induction
Attacks,” in Proc. Workshop on Cryptographic Hardware and Embedded
Systems, pp. 2–12, 2002.

[37] M. Agoyan, J.-M. Dutertre, A.-P. Mirbaha, D. Naccache, A.-L. Ribotta,
and A. Tria, “How to flip a bit?” in Proc. IEEE 16th International On-
Line Testing Symposium (IOLTS), pp. 235 –239, 2010.

[38] R. Torrance and D. James, “The State-of-the-Art in IC Reverse Engi-
neering,” in Proc. Workshop on Cryptographic Hardware and Embedded
Systems, p. 381, 2009.

[39] B. Debraize and I. M. Corbella, “Fault Analysis of the Stream Cipher
Snow 3G,” in Proc. Workshop on Fault Diagnosis and Tolerance in
Cryptography, pp. 103–110, 2009.

[40] F. Armknecht and W. Meier, “Fault attacks on combiners with memory,”
in Proc. Selected Areas in Cryptography, vol. 3897, pp. 36–50, 2006.

[41] J. Bloemer and J.-P. Seifert, “Fault Based Cryptanalysis of the Advanced
Encryption Standard (AES),” in Proc. Financial Cryptography, pp. 162–
181, 2003.

[42] C. Giraud, “DFA on AES,” in Proc. International Conference on the
Advanced Encryption Standard, vol. 3373, pp. 27–41, 2005.

[43] A. Barenghi, G. M. Bertoni, L. Breveglieri, M. Pellicioli, and G. Pelosi,
“Fault attack on AES with single-bit induced faults,” in Proc. Sixth
International Conference on Information Assurance and Security, pp.
7–13, 2010.

[44] P. Dusart, G. Letourneux, and O. Vivolo, “Differential Fault Analysis
on A.E.S.” Applied Cryptography and Network Security, vol. 2846, pp.
293–306, 2003.

[45] A. Moradi, M. T. M. Shalmani, and M. Salmasizadeh, “A generalized
method of differential fault attack against AES cryptosystem,” in Proc.
International Workshop on Cryptographic Hardware and Embedded
Systems, pp. 91–100, 2006.

[46] C.-N. Chen and S.-M. Yen, “Differential fault analysis on aes key
schedule and some countermeasures,” in Proc. Information Security and
Privacy, pp. 217–217, 2003.

[47] D. Peacham and B. Thomas, “A DFA attack against the AES key
schedule,” SiVenture Whitepaper, October 2006.

[48] C. H. Kim and J.-J. Quisquater, “New Differential Fault Analysis on
AES Key Schedule: Two Faults Are Enough,” in Proc. International
Conference on Smart Card Research and Advanced Applications, pp.
48–60, 2008.

[49] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert, “Fault
Attacks on RSA with CRT: Concrete Results and Practical Countermea-
sures,” in Proc. Workshop on Cryptographic Hardware and Embedded
Systems, pp. 81–95, 2003.

[50] S.-M. Yen and M. Joye, “Checking before output may not be enough
against fault-based cryptanalysis,” IEEE Transaction on Computers,
vol. 49, no. 9, pp. 967–970, 2000.

[51] G. Hardy, An Introduction to the Theory of Numbers, 5th ed., ser. Oxford
Science Publications. Oxford Press, 1979.

[52] D. E. Knuth, Art of Computer Programming, Volume 2: Seminumerical
Algorithms, 3rd ed. Addison-Wesley Professional, November 1997.

[53] J. Blomer, M. Otto, and J. P. Seifert, “Sign change fault attacks on
elliptic curve cryptosystems,” in Proc. Workshop on Fault Diagnosis
and Tolerance in Cryptography, pp. 25–40, 2005.

[54] I. Biehl, B. Meyer, and V. Müller, “Differential Fault Attacks on Elliptic
Curve Cryptosystems,” in Proc. CRYPTO, pp. 131–146, 2000.

[55] P.-A. Fouque, R. Lercier, D. Réal, and F. Valette, “Fault attack on elliptic
curve montgomery ladder implementation,” in Proc. Workshop on Fault
Diagnosis and Tolerance in Cryptography, pp. 92–98, 2008.

[56] FIPS-186-3: Digital Signature Standard (DSS), National Institute of
Standards and Technology (NIST) Std., 2009.

[57] IEEE Standard Specifications for Password-Based Public-Key Crypto-
graphic Techniques, IEEE Std., 2009.

[58] A. Barenghi, G. Bertoni, A. Palomba, and R. Susella, “A novel fault
attack against ECDSA,” in Proc. IEEE International Symposium on
Hardware-Oriented Security and Trust, pp. 161 –166, 2011.

[59] A. Barenghi, G. M. Bertoni, L. Breveglieri, G. Pelosi, and A. Palomba,
“Fault attack to the elliptic curve digital signature algorithm with
multiple bit faults,” in Proc International Conference on Security of
Information and Networks, pp. 63–72, 2011.

[60] IBM, “Ibm 4764 pci-x cryptographic coprocessor specifications,” [On-
line] http://www.ibm.com/security/cryptocards/pdfs/bs330.pdf.

[61] M. Karpovsky and A. Taubin, “New class of nonlinear systematic error
detecting codes,” IEEE Transactions on Information Theory, vol. 50,
no. 8, pp. 1818–1820, 2004.

[62] R. Karri, K. Wu, P. Mishra, and Y. Kim, “Fault-based side-channel
cryptanalysis tolerant Rijndael symmetric block cipher architecture,” in
Proc. IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems, pp. 427–435, 2001.

[63] P. Maistri, P. Vanhauwaert, and R. Leveugle, “A Novel Double-Data-
Rate AES Architecture Resistant against Fault Injection,” in Proc.
Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 54–
61, 2007.

[64] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, “Error
analysis and detection procedures for a hardware implementation of
the advanced encryption standard,” IEEE Transactions on Computers,
vol. 52, no. 4, pp. 492–505, 2003.

[65] G. Bertoni, L. Breveglieri, I. Koren, and P. Maistri, “An efficient
hardware-based fault diagnosis scheme for AES: performances and
cost,” in Proc. IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, pp. 130–138, 2004.

[66] A. Butter, C. Kao, and J. Kuruts, “DES encryption and decryption unit
with error checking,” US Patent 5,432,848, July 1995.

[67] A. Shamir, “Method and apparatus for protecting public key schemes
from timing and fault attacks,” US Patent 5,991,415, 1999.

[68] M. Ciet and M. Joye, “Practical Fault Countermeasures for Chinese
Remaindering Based RSA,” in Proc. Workshop on Fault Diagnosis and
Tolerance in Cryptography, pp. 124–131, 2005.

[69] M. Joye, “Protecting RSA against Fault Attacks: The Embedding
Method,” in Proc. Workshop on Fault Diagnosis and Tolerance in
Cryptography, pp. 41–45, 2009.

[70] A. Boscher, H. Handschuh, and E. Trichina, “Fault Resistant RSA
Signatures: Chinese Remaindering in Both Directions,” Cryptology
ePrint Archive, Report 2010/038, 2010.

[71] M. Joye and S.-M. Yen, “The montgomery powering ladder,” in Proc.
Workshop on Cryptographic Hardware and Embedded Systems, pp. 291–
302, 2003.

[72] C. Giraud, “An RSA Implementation Resistant to Fault Attacks and
to Simple Power Analysis,” IEEE Transactions on Computers, vol. 55,
no. 9, pp. 1116–1120, 2006.

[73] G. Fumaroli and D. Vigilant, “Blinded Fault Resistant Exponentiation,”
in Proc. Workshop on Fault Diagnosis and Tolerance in Cryptography,
p. 62, 2006.

[74] C. H. Kim and J.-J. Quisquater, “How can we overcome both side
channel analysis and fault attacks on RSA-CRT?” in Proc. Workshop
on Fault Diagnosis and Tolerance in Cryptography, pp. 21–29, 2007.

[75] A. Boscher, H. Handschuh, and E. Trichina, “Blinded Fault Resistant
Exponentiation Revisited,” in Proc. Workshop on Fault Diagnosis and
Tolerance in Cryptography, pp. 3–9, 2009.

[76] S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon, “Rsa speedup with chinese
remainder theorem immune against hardware fault cryptanalysis,” IEEE
Transactions on Computers, vol. 52, no. 4, pp. 461 – 472, april 2003.

[77] S. Guilley, L. Sauvage, J.-L. Danger, and N. Selmane, “Fault injection
resilience,” 2010, pp. 51–65.

[78] M. Ciet and M. Joye, “Elliptic curve cryptosystems in the presence
of permanent and transient faults,” Designs, Codes and Cryptography,
vol. 36, no. 1, pp. 33–43, 2005.

[79] A. Dominguez-Oviedo and M. Hasan, “Error Detection and Fault
Tolerance in ECSM Using Input Randomization,” IEEE Transactions on
Dependable and Secure Computing, vol. 6, no. 3, pp. 175–187, 2009.

[80] F. Amiel, K. Villegas, B. Feix, and L. Marcel, “Passive and Active Com-
bined Attacks: Combining Fault Attacks and Side Channel Analysis,”
in Proc. Workshop on Fault Diagnosis and Tolerance in Cryptography,
pp. 92–102, 2007.

[81] F. Regazzoni, T. Eisenbarth, J. Großschädl, L. Breveglieri, P. Ienne,
I. Koren, and C. Paar, “Power attacks resistance of cryptographic s-
boxes with added error detection circuits,” in Proc. IEEE International
Symposium on Defect and Fault Tolerance in VLSI, pp. 508–516, 2007.

[82] F. Regazzoni, T. Eisenbarth, L. Breveglieri, P. Ienne, and I. Koren,
“Can knowledge regarding the presence of countermeasures against fault
attacks simplify power attacks on cryptographic devices?” in Proc. IEEE
International Symposium on Defect and Fault-Tolerancein VLSI Systems,
pp. 202–210, 2008.

[83] The Transport Layer Security (TLS) Protocol Version 1.2, Internet
Engineering Task Force (IETF) Std., 2008.

[84] D. Coppersmitsh, M. Franklin, J. Patarin, and M. Reiter, “Low-exponent
rsa with related messages,” in Proc. EUROCRYPT, pp. 1–9, 1996.

[85] M. Joye, “On the security of a unified countermeasure,” in Proc.
Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 87–
91, 2008.

