
Submitted to Computer-Aided Design (JCAD)

 -1-

On Surface Reconstruction: A Priority Driven Approach

Xiaokun Li
a
 Chia-Yung Han

b
 William G. Wee

c

a
DCM Research Resources LLC, Germantown, MD 20874, USA

b
Department of Computer Science, University of Cincinnati, OH 45221, USA

c
Department of Electrical & Computer Engineering, University of Cincinnati, OH 45221, USA

Abstract
To reconstruct an object surface from a set of surface points, a fast, practical, and efficient priority driven algorithm

is presented. The key idea of the method is to consider the shape changes of an object at the boundary of the mesh

growing area and to create a priority queue to the advanced front of the mesh area according to the changes. The

mesh growing process is then driven by the priority queue for efficient surface reconstruction. New and practical

triangulation criteria are also developed to support the priority driven strategy and to construct a new triangle at each

step of mesh growing in real time. The quality and correctness of the created triangles will be guaranteed by the tri-

angulation criteria and topological operations. The algorithm can reconstruct an object surface from unorganized

surface points in a fast and reliable manner. Moreover, it can successfully construct the surface of the objects with

complex geometry or topology. The efficiency and robustness of the proposed algorithm is validated by extensive

experiments.

Keywords: Surface and solid modeling, Computational geometry, Surface reconstruction, Triangulation, Meshing

1. Introduction

Three dimensional (3D) object surface reconstruction and modeling plays a very important role in many fields of

science and engineering including computer graphics, computer vision, medical imaging, virtual reality, CAD/CAM,

and reverse engineering [1],[2]. For example, if people want to build a geometrical model to a 3D object for repro-

duction, the only way is to scan the object with a digital-data acquisition device and perform surface reconstruction

to get its geometrical model. Since surface-based representation of a 3D object is crucial not only in data rendering,

but also in 3D object analysis, modeling, and reproduction, many surface reconstruction algorithms have been pro-

posed in recent years. In 3D object reconstruction and display, 3D surface points can be collected either by tactile

methods such as Coordinate Measuring Machines (CMM), or via non-contact methods, such as magnetic field meas-

urement machines and optical range scanners. After surface point acquisition, the next step of 3D object reconstruc-

tion will be data fusion (patch registration and integration) to translate the surface point sets captured at different

view-angles into a common coordinate system, known as the World Coordinate System (WCS), and merge the over-

lapping points of any two neighboring data sets. The last step of the process is surface reconstruction (surface mesh-

ing/triangulation) and rendering. Fig. 1 shows the complete procedure of 3D object reconstruction. The surface re-

construction of an object discussed here can be stated as follows:

Given a set X of surface points xi)(Xxi  of a 3D object in 3R space, a set of compact, connected, orientable

two-dimensional manifolds are constructed to a surface S, so that the mapping function YXf : has 'SS  ,

where 'S is the real surface of the object.

The goal of object surface reconstruction is to generate a surface S that approximates the real surface 'S of an

object, whose CAD model is not available, does not exist, or cannot be obtained for whatever reason. The approxi-

mation should be as accurate as possible. A surface of an object without boundary is called closed surface, other-

wise, called bounded surface. The efficiency and accuracy of the approximation are the major concerns in surface

reconstruction.

Submitted to Computer-Aided Design (JCAD)

 -2-

 (a) Acquired object (b) Data fusion (c) Surface reconstruction and rendering

Fig. 1. Example on 3D Object Reconstruction

2. Related Work

Since object surface reconstruction is very important in many industrial applications, huge research efforts have

been made in recent years. In this section, a brief literature review of the existing surface reconstruction algorithms

is given. According to their philosophy, these methods can be categorized roughly into three classes: the spatial sub-

division scheme based, the surface distance function based, and the incremental mesh growing based.

The key idea of the spatial subdivision scheme can be briefly summarized as follows: First, it subdivides the

bounding space defined by the input point set of an object into disjoint cells, and then reconstructs a surface from

these cells. The methods in [4-12] are in the class of the spatial subdivision scheme. Among them, one typical meth-

od is called marching-cube algorithm proposed by Lorensen [4] in which a travel strategy was designed to construct

an object surface from the selected cells by referring to a predefined lookup table. Another well-known method,

called α-shapes, proposed by Edelsbrunner and Mucke [6] creates and represents an object surface through a finite

set of some selected surface points for different levels of detail. The biggest problem of the α-shapes is that different

α’s are required to be defined at different places of an object. Guo, et al. [30] and Attali [7] improve the quality of

the α-shape-based surface by applying visibility algorithms, and then normalize the generated meshes respectively.

The Delaunay based “sculpting” method proposed by Boissonnat [8] tetrahedrizes the surface points and progres-

sively removes the non-surface triangles of the tetrahedra according to the predefined geometric criteria. The meth-

ods developed in [5] and [9], have the similar principles, but use different criteria. Amenta et al. [10] propose a

Voronoi filtering based method to create an interpolating shape from the sample points, which is called “crust”. The

method is based on 3D Voronoi diagrams and Delaunay triangulation to generate the object surface. The simplified

and more efficient versions of the “crust” are proposed in [11] and [12]. The advantages of the spatial subdivision

scheme based methods are their surface reconstruction can reach a global optimum and multi-resolution representa-

tion can be achieved very easily. Their main drawback is their reconstructed surface is not very accurate and their

computational cost becomes expensive when people want to recover more details of the surface.

Surface distance function based methods first employ a least-square operation to generate an initial surface by es-

timating a local tangent plane for each input surface point. The signed distance of each surface point to the corre-

sponded local tangent plane is then computed. These signed distances are used to build a signed distance function

for all input surface points. The object surface is created by triangulating the zero-set of the signed distance function.

The method proposed by Hoppe et al. [13] is a typical method of this category. Curless and Levoy [14] propose the

similar principles, but they compute a tangent plane for each surface point, divide the 3D space into voxel grids, and

build a volumetric function to these voxel grids. Radial Basis Functions, called RBFs, have become the favorite

technique [33-36] in recent years. The recent developments in this category also include the level set based methods

[19, 20], [31], or called surface deformation based methods, which construct an initial surface to the object, and then

deform the initial surface by minimizing the energy of the level set. The deformation based methods are fast and

robust against noise if the initial guess is not too far from the real shape. One problem of the methods in this catego-

ry is that they are sensitive to the outlier noise due to the very reliance on the distance transform. However, some

new methods [37-42] have been developed recently to process the noisy data sets with stratified reconstruction re-

sults. Another problem is that their processing speed is slow.

Submitted to Computer-Aided Design (JCAD)

 -3-

Incremental mesh growing (surface reconstruction) methods construct an object surface by using the surface-

oriented properties of the input surface points. The methods start the meshing by selecting a single triangle as initial

mesh area and grow the mesh area along the advanced front of the mesh area. All the surface points are the vertices

of the constructed triangles and the mesh growing will be stopped when all surface points are processed. Unlike the

methods in the classes of the subdivision-based and the surface distance-based, the incremental–based methods take

every surface point as triangle vertex. Therefore, they will keep the details of the surface of the object and the recon-

structed surface is more accurate. In recent years, a lot of effort has been made in this direction. Gopi, et al. [16]

propose a method to triangulate the surface points with a localized Delaunay triangulation scheme by projecting

local surface points onto a local 2-D plane and to perform 2-D Delaunay triangulation on the plane. Bernardini et al.

[17] designed a straightforward triangulation method, called the ball-pivoting algorithm (BPA), to generate a surface

from the input surface points by pivoting a virtual ball with a predefined radius along the advanced front of the mesh

area and constructing a new triangle to each boundary edge in sequential order. Under some constrains to input data

(point cloud), BPA guarantees to construct a correct surface. A graph search based approach is proposed by Mencl

and Muller [15], which uses Euclidean Minimum Spanning Tree as an initial wireframe. Grossno and Angle [18]

develop a Spiraling-Edge based triangulation method to create object surface. A surface reconstruction algorithm

driven by an intrinsic property is proposed by Lin, et al. [49]. By combining local and global topological operations,

Huang and Menq [48] propose a surface reconstruction and optimization algorithm. The advantage of the incremen-

tal mesh growing methods is their high accuracy for surface reconstruction. However, these methods are not resilient

to noise and the processing speed of most of them is not fast enough.

There are also some approaches which combine the surface reconstruction methods from different categories to

achieve better results, such as the method proposed by Kuo and Yau [43]. After surface reconstruction, to efficiently

handle the large number of generated triangular meshes, surface simplification methods [23-25] have been devel-

oped to achieve an appropriate rendering frame rate on graphics hardware after surface reconstruction. Hoppe [26,

27], Kim and Lee [28], Pajarola and DeCoro [29] propose efficient methods on progressive mesh for representing

different levels of detail. On the other hand, surface interpolation methods [44-46] have also been developed for

high-fidelity rendering and surface modeling.

For the problems in surface reconstruction, the factors of processing speed, robustness, reliability, easiness on

implementation, etc. are the major concerns of common users. In this paper, a new, fast, and practical surface recon-

struction method, which is designed for dealing with these concerns and called priority driven based incremental

surface reconstruction, is proposed and validated. Experimental results show that the proposed algorithm can deal

with these problems efficiently while providing satisfied reconstruction results.

3. Algorithm Description

In this section, the proposed algorithm is described in detail through seven subsections. First, the overview of the

algorithm is introduced in Section 3.1. Then, the data structure and terminology used in the algorithm are given in

Section 3.2. The principle of the proposed priority driven strategy on mesh growing is described in Section 3.3. For

better understanding, the details of the algorithm are described in the subsequent sections. The initialization strategy

of the mesh growing is described in Section 3.4. In Section 3.5, a new triangulation method is developed to support

the priority driven strategy. The topological operations used in meshing growing are presented in Section 3.6. At

last, the advantages and limitations of using the algorithm are given in Section 3.7.

3.1. Overview

The algorithm input is a set of surface points and the output is a set of triangles. The main steps of the algorithm can

be briefly described as follows: First, all input points are held in a hash table for both point indexing and the nearest

neighbor searching. Then, a starting triangle is chosen at a ‘flat’ place of the object as the initial mesh area. The edg-

es of the starting triangle constitute the initial advanced front of the mesh growing area. A priority driven strategy

for mesh growing is then followed to sweep the advanced front ahead in an effective way. At each step of mesh

growing, a new triangle constructed by a triangulation operation will be added into a triangle list. The mesh keeps

growing along the object surface until all unmeshed surface points are processed. Four topological operations are

defined and applied to support the mesh growing. The sketch of the proposed algorithm and some preliminary re-

sults can be found in [47]. The main contributions of the approach include a priority driven (“flat”-to-“sharp”) strat-

egy, which forces the mesh growing process to propagate in an efficient and reliable fashion, four topological opera-

tions to guarantee the topological correctness of the generated triangles in different situations, and a real-time trian-

Submitted to Computer-Aided Design (JCAD)

 -4-

gulation method to process the data with non-uniform/varying sampling rate, complex geometry and/or topology.

Compared with other conventional methods, such as the methods in [15-18], the proposed algorithm can reconstruct

object surface in real time, has fewer limitations to input data, and works more robust to 3D objects with un-uniform

sampling rate, closed and/or open (bounded) surface. It can even work well for the very challenging situation that

two surfaces of an object are very close to each other.

3.2. Data Structure and Terminology

Efficiently finding a point and searching its neighborhood points in a 3D point set is an important task in object sur-

face reconstruction. In the proposed algorithm, hash table based data structure proposed in [3] and [13] was adopted

for fast neighbor search. To build a hash table, an axis-aligned bounding box is firstly set for the input data set. The

points in the bounding box are then partitioned through a cubical grid whose size is decided by a pre-calculated

dense value  of the surface points, and indexed into sets corresponding to the cube where they are located in.

Then, a hash table is built for accessing these sets through the cube indices. For the nearest neighbor searching, the

standard search strategy described in [21] is utilized. Compared with the most popular data structures, such as kd-

tree [21] and bd-tree [22], it has been proven that the time complexity of finding a given point in a surface point set

represented by hash table can be effectively reduced by a factor of Nlog (N is the size of input points). For the k-

nearest-neighbor problem, the searching time of using hash table becomes)(kO , a constant time.

Fig. 2. Illustration of mesh growing

In any stage of the proposed algorithm, each surface point will be tagged as one of the four following states: free,

close, accepted, and refused. The free points are the points that are not processed and included into the mesh (trian-

gle) list. All input points are tagged as free at the initial stage. The free points close to the current front edge of the

mesh are named close points. Points lay on the mesh areas are named accepted points. The noisy points (noise) of

the input data are tagged as refused points. The boundary of a triangle is called edge. The edges on the advanced

front are assigned as front edges. The accepted points on front edges are also named as front points. The triangle of

the reconstructed surface is called face. The points chosen for constructing a new triangle are called reference

points. These terms are illustrated in Fig. 2.

During the meshing, one invariant must be maintained to guarantee the topology correctness of the reconstructed

surface. The invariant is any edge of the triangular surface can only be connected by two triangles or only one trian-

gle when the edge is on the boundary of a bounded surface. In addition, three parameters need to be computed or

assigned before the mesh growing process. These parameters are: the dense value () of input points, which is the

average distance of a point to its nearest neighbor; the upper bound value (max) of anyone of the three angles of a

new constructed triangle; the upper bound value (max) of the angle between the normal of a new constructed trian-

gle which is incident to the current front edge and the normal of the triangle on the other side of the current front

edge. In our implementation,  is set as the average distance of some randomly selected points (100 points or up to

5% of the input points) to their nearest neighbor, max is 120 , and max is 90 .  will be used to define the ra-

dius of the 3D search region in the newly developed triangulation operation. max is used for triangle quality con-

trol. User can adjust the two parameters during meshing growing or assign different values to different input data

sets, totally depending different quality requirements.

Submitted to Computer-Aided Design (JCAD)

 -5-

3.3. Mesh Growing Driven by Priority

One open issue in the incremental based methods is that it is difficult to guarantee the meshing correctness at the

place where a sharp curvature change has happened. Actually, the issue also exists in the methods of the other two

categories. However, it is always much easier and safer to generate correct meshes (triangles) at a ‘flat’ place. Dur-

ing mesh growing, if we can postpone the meshing operation when the advanced front reaches a ‘sharp curvature

change’ place and force the mesh to propagate on ‘flat’ places first, one interesting thing will happen: In most cases,

the meshing growing will gradually propagate from other directions to the other side of the ‘sharp curvature change’

place through the connected “flat” places as a reliable path, and naturally stitch or make it much easier and safer to

connect the meshes (triangles) on both sides of the sharp curvature. One illustrative example in 2D space is given in

Fig. 3. In the figure, each line can be thought as a triangle. When the mesh growing propagates from Point c to Point

d as shown in Fig. 3 (a), according to the normal value variance of the triangle bc and its neighboring triangle cd, a

potential sharp surface feature is identified near Point c. If the mesh growing can temporarily stop at Point d and

propagates in another direction (from Point b to a), it will reach to Point e eventually as shown in Fig. 3 (b). Then,

the mesh growing will connect Point e and Point d directly or restart the propagation from Point d to complete the

meshing process as shown in Fig. 3 (c). Otherwise, a wrong mesh will most likely be constructed if we continue the

mesh at Point d first as illustrated in Fig. 3(d). In 3D space, it is much easier to find such a “correct” path to con-

struct surface (mesh) by this strategy because of the 3-dimensional freedom. Under the strategy of processing the

‘flat’ place (easy surface feature) first, the difficulty and possibility of causing a meshing error at the place with

sharp curvature change (difficult surface feature) would be reduced significantly, especially incorporating with the

new triangulation method described in Section 3.5 and four topological operations described in Section 3.6.

 (a) Initial stage (b) Correct meshing direction (c) Correct meshing result (d) Wrong mesh

Fig. 3. Illustrative example in 2D space

To implement the strategy in an efficient and practical manner, a priority driven algorithm is proposed and de-

veloped. The main idea of this method is to create and maintain a priority queue during surface construction to guar-

antee the mesh growing always performs at ‘flat’ places first and then ‘sharp change’ places.

The major steps of the algorithm are described as follows:

STEP 1: All input points are tagged as free. Then, the initialization process, as described in Section 3.4, determines

a starting triangle.

STEP 2: The three edges of the starting triangle are tagged as the front edges, whose cost T is set to zero, and

pushed into a minimum priority queue (a sorted queue wherein all points are sorted by their cost T in an in-

creased order), named edge heap.

STEP 3: Pop the front edge which has the smallest cost T from the edge heap and call it current front edge.

STEP 4: Find the free points close to the current front edge by using nearest neighbor search and change their state

from free to close, identify the reference point from these close points (See Section 3.5 for details of these

operations). If no reference point can be found, jump to STEP 7 to continue the mesh growing.

STEP 5: Construct a new triangle with an appropriate topology operation (See Section 3.6 for the definition of topo-

logical operations) and register the new triangle to a triangle list. If there are new front edges created dur-

ing the triangulation, compute their cost T by Eq. (1) and push them into the edge heap.

--- ----

Calculating Cost T: Before adding any new front edge into the edge heap, its cost T needs to be calculat-

ed first for measuring the curvature change of the local surface. The definition of cost T is based on the

fact that the normal deviation of a new triangle and its neighboring triangle (both are connected to the same

front edge) reflects the shape change of the local surface area.

Submitted to Computer-Aided Design (JCAD)

 -6-

ba

ba

NN

NN
T


 1 (1)

where aN is the normal of the new triangle incident to the current front edge, bN is the normal of the tri-

angle connected to the other side of the current front edge. The change of Cost T is monotonic. When the

difference of aN and bN increases, T will become larger too. Therefore, when aN and bN are in the

same direction, which means the local surface is planar, T will be 0 (The minimum value of T); when

aN and bN are in the completely opposite direction, which means the local surface has the biggest shape

change (180 degree difference), T will be 2 (The maximum value of T).

--- ----

STEP 6: Tag accepted to the reference point and assign free to the other close points.

STEP 7: Repeat the loop until the edge heap is empty.

STEP 8: In case the mesh growing stops somewhere before the entire data set is processed. A multiple-starting-seed

strategy is designed here by restarting the initial process and mesh growing loop if there still have some

unmeshed point patches in the data set.

 (a) (b) (c) (d)

 Fig. 4. Rabbit I with 8171 points and 16300 faces.

For better understanding, an illustration of mesh growing proposed in this paper is given in Fig. 3. A real exam-

ple is given in Fig. 4 to illustrate the procedure of mesh growing. Fig. 4 (a) - (c) show three intermediate states of the

priority driven based mesh growing process. Fig. 4 (d) is the final result.

3.4. Selection of the Starting Triangle

In the priority driven based meshing method, we let the flat portions of the object have higher priority to be triangu-

lated than the places with sharp curvature changes. The proposed mesh growing method will start at a relative flat

place. To do so, we randomly choose m (a constant value) small patches of surface points from the surface data. For

each patch, several triangles are constructed. The new generated triangles do not need to obey the constraints dis-

cussed in Section 3.2, but their edge order must have the same direction (either clockwise or anticlockwise) to guar-

antee that their triangle normal has the same orientation (either outside or inside). For each patch, Eq. (2) to Eq. (5)

are applied in sequential order to compute its normal variance. Based on the fact that the smaller the variance value

the flatter the patch, the flattest patch among the m will be identified by Eq. (6) and selected as the place to start

mesh growing.

 21 iii VVN )(ni (2)

where 1iV and 2iV are two edges of the i
th

 triangle of the current patch.

i

i
i

N

N
N )(ni (3)

 




n

i

iN
n

N

1

1
 (4)

Submitted to Computer-Aided Design (JCAD)

 -7-

T

i

n

i

i NNNN
n

Var))((
1

1

 


 (5)

 }|min{ mjSS j  (6)

where n is the number of the selected triangles (in the range of 10 to 15 in our implementation), m is the number of

the selected patches (in the range of 5 to 10 in our implementation), jS is the j
th

 patch and S is the flattest patch

with the minimum variance.

After the flat-place selection, we still need to find a starting triangle in the selected patch to begin mesh growing.

Since a small and local surface area, especially a flat surface, can be reasonably approximated as a planar surface,

we can project the surface points of the selected patch onto a 2D plane and find three suitable points to construct the

starting triangle in 2D space. To do so, we first fit a 2D plane to the selected fattest patch with Least-square, and

then project all patch points onto the plane. We choose three points closed to each other and construct a triangle that

no free point falls in the triangle and identify its corresponding triangle in 3D space and begin mesh growing.

3.5. Triangulation

Triangulation in the priority driven based surface reconstruction can be defined as a process of finding a suitable

reference point for the current front edge and constructing a new triangle by linking the reference point and the end-

points of the current front edge with supporting of an appropriate topological operation. Most triangulation methods

discussed in the previous section have strict requirements and/or assumptions to the input data, such as uniform

sampling rate, closed surface, and/or noise-free sampling points. Another limitation of them is the processing speed

is not fast enough for practical applications. In this section, a fast, easy-to-implement, practical, and efficient trian-

gulation method is developed. The main idea of the proposed triangulation method is to define a 3D candidate re-

gion centered at the middle point of the current front edge and find all free and front points fallen in this region by

searching the nearest neighboring points through the already-created hash table. Then, all unsuitable candidate

points are removed to guarantee the mesh (triangle) quality and prevent any possible error which might occur during

the new triangulation generation process. To fast and efficiently identify the reference point from the candidate set,

priority driven strategy is used again by computing a priority cost for each candidate point and storing all the candi-

date points in a maximum priority queue. The details on how to compute the reference point p for the current front

edge, e, whose endpoints are defined as a and b are described as follows:

Step 1: Identify all candidate points near to e: Once a front edge, e, has been popped out from the edge heap, a

search region for identifying the reference point for e is defined. The search region is a ball in 3D space and

its center is the middle point of e. The radius R of the search region is a predefined value and equal to k ,

where  is the dense value of the surface point set and k is a constant value (In our research, k was set as

4). The nearest neighbors of the middle point of e are searched in the 3D ball through the already-created

hash table and all the found points are put into a candidate list. The distance of each candidate to the middle

point of e is also computed and recorded. If the candidate list is empty, the edge e will be thought as the

boundary of the surface and no meshing operation will be applied to the front edge. A new front edge will

be popped up from the edge heap to repeat the triangulation procedure.

Step 2: Remove all unsuitable points from the candidate list: The removal is completed by checking each candi-

date point with the following two rules:

Assume t is the current trial point and use ab to present the current front edge e.

Rule 1: Compute the angle of Line at and Line ab , and the angle of bt and ba . If any angle of the two is

larger than max , Point t will be removed from the candidate list. max is used for triangle quality con-

trol. If any angle of a generated triangle is larger than 120 , the triangle will be abandoned.

Rule 2: Calculate the angle between the normal of the triangle atb and the normal N of the triangle also

incident to the edge ab . If the angle is larger than max , Point t will be removed from the candidate list,

which means if the angle between the normal of a new constructed triangle and the normal of the triangle

on the other side of the current front edge is larger than max , the new triangle might be a wrong triangle

caused by a noisy point and needs to be abandoned.

Submitted to Computer-Aided Design (JCAD)

 -8-

Step 3: Create a priority queue for reference point selection : we first compute the cost (priority value) for each

candidate point and create a priority queue accordingly. Then, we choose the reference point based on the

priority queue. For each candidate point, its cost C is calculated by Eq. (7).

-- ---------------

 RtdistRttC /))(())(cos())(cos(  (7)

where C is the cost of the current trial point t . In Fig. 5, the dots represent the close points of the edge e,

N is the normal of abc , and o is the middle point of e. To make the new triangulation method robust to

noise, we consider one character of object surface, surface consistence (or called surface continuity), into

the cost calculation by defining)(t in the equation.)(t is the angle between the normal of atb and the

normal N , reflecting the normal deviation of the new constructed triangle and the triangle connected to the

other side of e. We use cosine function of)(t to support the character. For cosine function of)(t ,

smaller the normal variance is and larger the value. By doing this, we can force the mesh to grow along the

real surface of an object and make the triangulation insensitive to noise. In the equation, we also introduce

cosine function of)(t and)(tdistR  for triangle quality control.)(t is the angle of the line ot and the

plane od which is vertically to the edge e and passing through the center of e. Cosine function of)(t is

used to make the candidate points close to the plane od have higher priority during triangulation.)(tdist is

the Euclidian distance of Point t to the edge e .)(tdistR  (R is the radius of the search region) will ena-

ble the points close to e to have higher priority than the points far from e.)(tdist and)(tdistR  will make

the point close to e and near the center line of e has the highest priority to be the reference point. R is used

for normalize)(tdistR  . In some situations, un-equal weights for these three factors can achieve better re-

construction results. Therefore, Eq. (7) can be expressed as a weighted equation:

 RtdistRwtwtwC /))(())(cos())(cos(321   (8)

where w1, w2, and w3 are the weight of each factor.

-- -----

Fig. 5. Triangulation

Note that Fig. 5 is the top view of the local surface at the current front edge e, all free points and triangles

in the figure are not necessarily located on a 2D plane. In the 2D illustration, white dots break Rule 1 while

black dots satisfy Rule 1 and Rule 2, and thus are classified as candidates for reference point selection.

Among these candidates, Point t has the largest cost, and thus has the highest priority to be selected for ref-

erence point consideration.

Step 4: Select the reference point for triangle construction and verifying its correctness: Once we have com-

pleted the cost estimation for each candidate point, all candidate points are pushed into a maximum priority

queue sorted by their cost in a decreasing order, so-called point heap. The candidate points will be popped

out one by one for consideration. With the point heap, the points with larger cost will be considered with

Submitted to Computer-Aided Design (JCAD)

 -9-

higher priority. In most cases, the first popped point from the point heap will be the reference point, which

means usually the rest points in the point heap will not be processed, and thus it will save huge computa-

tional time on triangulation via point heap.

To identify if the current trial point is suitable to be the reference point, we will link the current trial

point and the endpoints of the current front edge to generate a new triangle. If the two edges of the new tri-

angle have no interaction with the other front edges (e.g. at and tb as shown in Fig. 5), the point will

thought as the reference point and the triangle will be a correct generation. If any new edge has intersection

with the other front edges, the trial point will be discarded and a new candidate will be popped out from the

point heap, and the verification process will keep repeating till the right reference point is found. In prac-

tice, it is very difficult to perform line-intersection check in 3D space. But, it is always easy to do this in 2D

space. Fortunately, in surface reconstruction a local surface of an object can be approximated as a planar

surface. Here, a 2D line-intersection check [32] is performed instead of having a 3D check.

3.6. Topological Operations
At each step of mesh growing, once the reference point p of the current front edge, named e , has been selected, a

new triangle will be constructed and added into a triangle list. A topological operation is needed to finalize the new

triangle construction and perform appropriate actions to maintain the advanced front (the edge heap). According to

the type (free or front) of the reference point and its situation to the advanced front, four topological operations (join,

fill, link, and glue), which can happen at each step of mesh growing, are carefully defined. In [17], only join and glue

were defined for surface reconstruction. To deal with more complex situations, two new operations (fill and link) are

defined here. The four topological operations illustrated in Fig. 6 are described as follows.

 (a) Join operation (b) Fill operation

 (c) Link operation (d) Glue operation

Fig. 6. Four topological operations

Let B present the set of front points and C present the set of close points. Given a triangle list used for registering

the new created triangle and the edge heap created for the purpose of priority driven, we have the following regula-

tion for the four topological operations.

● Join: If the reference point p is in C, we generate a new triangle, apb , and register the new triangle to the tri-

angle list, insert the edge)(ape and the edge)(pbe into the edge heap, and tag Point p as accepted.

● Fill: If the reference point p is in B and the two endpoints of the current front edge,)(abe , are connected to Point

p, we create a new triangle, apb , and register the new triangle to the triangle list. Then, we remove the edges,

)(ape and)(bpe , of apb from the edge heap.

Submitted to Computer-Aided Design (JCAD)

 -10-

● Link: If the reference Point p is in B and only one endpoint of the current front edge,)(abe , is connected with

Point p, we link Point a and Point p, place the edge)(ape into the edge heap, construct a new triangle, pba , and

register the new triangle to the triangle list. Then, we remove the edge)(bpe from the edge heap.

● Glue: If the reference point p is in B and no any endpoint of the current front edge,)(abe , is connected with

Point p, we link Point a and Point p, and link Point p and Point b to construct a new triangle, apb , and register

the new triangle to the triangle list. In this situation, four edges (two edges are in, and two edges are out) are incident

to

p, which will cause difficulties for future mesh growing at this place because two advanced fronts are intersected

at the point p and thus bring confusion to effectively maintaining the advanced front. To avoid this confusion, only

one input and one output front edge are permitted for a front point during mesh growing. Therefore, to solve this

confliction (four edges are incident to Point p), another new triangle, pqb , is constructed and registered to main-

tain this character. Two new edges,)(ape and)(qbe , are added into the edge heap, and the edge,)(qpe , is removed

from the edge heap.

During mesh growing, the advanced front of mesh area is always closed, but the number of the advanced front

might be not limited to one and not a constant number during the whole process. The front might be divided into two

or more independent fronts after one glue operation or might be eliminated after one fill operation as demonstrated

in Fig. 6(d) and 5(b) respectively. With the directional front, we can keep the normal consistence of the surface and

easily distinguish the outside and inside of the surface. According to the number of the advanced fronts after mesh

growing, we can get the number and the position of the holes on the constructed surface. Based on the information

of the holes, a water-tightness surface can be obtained by applying a hole-filling algorithm to these holes.

3.7. Algorithm Summary

For more clear description, the following pseudocodes summarize the implementation of the entire process of the

proposed algorithm wherein the triangle list is named as L , the edge heap is named as H , and the free point set is

named as F .

Surface Reconstruction Algorithm:

--

 1: H  Selection_of_starting_triangle(F)

 2: While (emptyH ) do

 3:))(,(eTe  Pop a front edge from H

 /* e is the current front edge and)(eT is the cost of e */

 4: p Triangulation(e , F)

 /* p is the reference point */

 5: switch(p) do

 /* classify p by the definition of the topological operations */

 6: case 1: Join_operation(p , H , L) and triangle registration

 7: case 2: Fill_operation(p , H , L) and triangle registration

 8: case 3: Link_operation(p , H , L) and triangle registration

 9: case 4: Glue_operation(p , H , L) and triangle registration

 10: others cases: can’t find reference point and continue the process

 11: end_switch

 12: end_while

 13: If (F still contains point patches), recalculate the dense value and jump to Line 1

 /*A multiple-starting-seed strategy for surface reconstruction */

 14: The isolated free points left in F (noisy points) are tagged as refused

 /* The noisy points are collected at the data acquisition stage */

--

Compared with the other methods, including the methods in the categories of the spatial subdivision based and

the surface distance function based, the proposed method has some salient advances on the aspects of processing

Submitted to Computer-Aided Design (JCAD)

 -11-

speed, robustness, and implementation. Like others, it also has its own limitations on surface reconstruction. The

major advantages and disadvantages of the proposed surface reconstruction algorithm are discussed as follows:

3.7.1. Advantages

A good surface reconstruction algorithm/system is always hoped to work robustly on the surface data (point cloud)

in all kinds of situations. The ideal system should have fewer assumptions/limitations on input data and can recover

surface details as many as possible. Some other important factors, such as processing speed, requirements/constrains

on input data and topological complexity of the object, and robustness to noise, have to be taken into account for

performance evaluation. Compared with the other surface construction methods, the proposed algorithm has the fol-

lowing advantages.

● Work well on non-uniform sampled data: In practice, due to the shape variance and surface smoothness of an

object, it almost impossible to keep a uniform sampling rate for an object, especially the object with complicated

surface. Therefore, if a surface reconstruction algorithm/system can work well on non-uniform sampled data is a

very important consideration when people evaluate its performance. Unlike the other incremental methods, such as

the method proposed by Gopi, et al. [16] and BPA proposed by Bernardini, et al. [17], which requires a uniform

sampling rate or several fixed sampling rates to input data, the proposed approach can work well on non-uniform

sampled data. In the proposed algorithm, all free points within the 3D search region to the current front edge will be

screened for triangulation, not only limited to the points with a fixed distance to the current front edge, such as in

[16] and [17]. In case the dense of a local surface becomes very sparse wherein the dense value is larger than the

predefined radius k , the proposed algorithm will automatically recalculate the dense value for this local surface

region and restart the triangulation process to this area. Or, K can be set to a larger value to deal with this situation,

but the trade-off thing is it would increase the computational cost of triangulation.

● Object with complicated topology and/or geometry: In the proposed algorithm, we consider the consistency of

the normal of the new triangle and its neighboring triangles already created, which is reflected by)(t in Eq. (7)

and Eq.(8). The triangle with similar normal to its neighboring triangles has a higher priority to be considered as a

correct triangle. Under this consideration, the proposed mesh growing prefers to grow along the local surface and

refuses the attraction of noisy points and the surface points of other regions of the object. Thus, the new triangula-

tion method can work correctly and efficiently to the surfaces with complicated geometry and /or topology as

demonstrated in Section 4.

● Object with sharp-varied surfaces: It is always difficult to guarantee meshing correctness of the sharp-varied

surface of an object. However, since the priority driven based method will process all ‘flat’ places first before pro-

cessing the sharp-varied surfaces, most difficult areas will be correctly reconstructed via the “flat”-to-“sharp” strate-

gy together with the newly developed triangulation method and topological operations. One example is given in Fig.

10.

● Robust to noise: Without any post-processing (e.g. filtering), it is almost impossible to avoid the case that the

input point set might contain some random noisy points which lie out of the object surface. The noise might be

caused by surface smoothness, projection rays, reflection surfaces, and other factors during surface data acquisition.

In the proposed method, due to the large distance and/or the big normal change of the noisy points to the current

front edge, the noisy points will either not be considered at all or has a very low probability to be considered for

triangulation as these noisy points will be located at the bottom of the priority queue during mesh growing even

when they are considered for triangulation. After surface reconstruction, all the noisy points will be left and tagged

as refused in the proposed algorithm. This advantage is already proven by many data sets with a variety of noise.

Some experimental results of the data sets with heavy noise are shown in Section 4.

● Fast processing speed: The important feature of the proposed surface reconstruction algorithm is it is pretty sim-

ple and easy to be implemented. Because of the low computational cost of the proposed algorithm, triangulation can

be done in real time at each step of mesh growing. More details of the discussion can be found in Section 4.6.

Another important advantage of using the proposed incremental mesh growing method can be very easy to be

implemented and executed parallel by a multi-threading method. Since the proposed algorithm maintains the inde-

Submitted to Computer-Aided Design (JCAD)

 -12-

pendency of the advanced front of a mesh area and support multiple advanced fronts for mesh growing, it can be

executed by multiple threads without any big modification to the method. Compared with its single-thread-execution

mode, the only changes for its multi-thread-execution mode include the sharing of triangle list, input data set and the

status of each surface point between multiple threads. As a result of using multi-threads, the processing speed of

object surface reconstruction will be improved significantly. Some experimental results on processing speed can be

found in Section 4.

3.7.2. Limitations

The proposed triangulation operation can run in real time, but the trade-off is it is not a Delaunay triangulation oper-

ation, which means the operation cannot guarantee every triangle is a Delaunay triangle. Therefore, the triangle

quality is not as good as that of using Delaunay-based methods. Actually, even for the Delaunay-based triangulation

methods, it is impossible to construct a Delaunay triangle at every where of a surface. Since triangle quality and

topology correctness of the proposed surface reconstruction method is guaranteed by triangulation criteria and topo-

logical operations, most generated triangles are Delaunay triangle or approximated Delaunay triangle. But, some

sliver-liked triangles are also created, especially for some non-uniform sampled data sets. To achieve high-quality

triangulation results, triangle optimization algorithms need to be called to re-triangulate some triangles after surface

reconstruction with our proposed algorithm. Another limitation of the proposed method is its limited ability on mul-

ti-resolution representation as the proposed method will use every input point as triangle vertex. To support multi-

resolution representation, the proposed algorithm has to be coupled with surface simplification methods as described

in the literature.

During triangulation, if a local region is very noisy or in a feature region, the proposed projection-based opera-

tion for reference selection might not work correctly all the time. Also, if all the surface of an object is very bumpy,

it might be difficult to find a flat region to start mesh growing automatically. In this situation, a manual selection is

needed to choose a flat region. In addition, the parameter settings of the proposed triangulation method affect trian-

gle quality and processing speed. Although the default settings work well for all testing data sets so far, better trian-

gle quality and less processing time can be achieved by tuning parameter settings for each input data set individual-

ly.

4. Experimental Results

The algorithm was implemented by C++ with OpenGL, and ran in MS Windows XP environment. Extensive exper-

iments were performed to validate the proposed algorithm. All tests were run on a PC with 2.6GHz P4 processor and

512MB RAM. The in-core memory consumption during the executing time is in the range of 50MB to 260 MB de-

pended on the size of input data. For performance evaluation, the proposed algorithm was tested for 3D objects with

different sampling rates (resolutions), complicated geometries and topologies, open and close surface, non-uniform

sampled, and noisy data sets. Its processing time was recorded and compared with three selected methods. The in-

vestigation on parallel implementation was also performed and summarized in this section.

4.1. Testing results of an object with different sampling rates/grids

The proposed method can work well on an object with different resolutions. In Fig. 7, the proposed algorithm was

employed on an object (rabbit) with different sampling rates (resolutions). Fig. 7 (a) and (c) show the constructed

surfaces. Fig. 7 (b) and (d) show the generated triangles on surface.

 (a) Rabbit I (b) Part of Rabbit I

Submitted to Computer-Aided Design (JCAD)

 -13-

 (c) Rabbit II (d) Part of Rabbit II

Fig. 7. Rabbit with different sampling rates

4.2. Testing results of the objects with different geometries and/or topologies

Fig. 8(a)-(c) and Fig. 9 demonstrate the robustness of the proposed algorithm in handling the various cases of

open/close surface, and unorganized point sets (non uniform sampled data). Fig. 8(d)-(f) show the constructed trian-

gles on surface to observe the quality of the generated triangles. Fig. 10 illustrates the proposed algorithm works fine

on the object with complicated topology and unorganized point set. The real challenge here is the distance of two

layers is very close to each other, and even less than the dense value  . But, with the proposed algorithm, the sur-

face of the object still can be reconstructed correctly.

 (a) Horse (b) Club (c) Head

 (d) Part of horse (e) Part of club (f) Part of head

Fig. 8. Horse, Club, and Head

Submitted to Computer-Aided Design (JCAD)

 -14-

 (a) Foot (b) Oilpmp (c) Hypersheet

Fig. 9. Foot, Oilpmp, and Hypersheet

Fig. 10. Knot with 10,000 points and 19,317 faces

4.3. Testing results of the complicated objects with dense sampling rate

To test the efficiency of the proposed algorithm on large data sets, some complicated objects with dense sampling

rate were chosen for surface reconstruction. Fig. 11, Fig. 12, and Fig. 13 show the proposed algorithm can work well

on large and dense data sets with complicated geometry and/or topology.

 (a) Original data (b) Reconstructed Result

Fig. 11 Fan-blade with 441,477 points and 866,137 faces

Submitted to Computer-Aided Design (JCAD)

 -15-

 (a) Original data (b) Reconstructed Result

Fig. 12. Dragon with 437,645 points and 774,141 faces

 (a) Original data (b) Reconstructed Result: Face view (c) Side view I (d) Side view II

Fig. 13. Buddha with 543,652 points and 981,595 faces
4.4. Testing results of the objects with noise

A number of outliers, expressed as a percentage of the number of input samples, were added in order to produce

noisy data sets. In our performance investigation, noisy points in the range of 20% to 40% of the total number of an

input data set were added in. Since the proposed approach is insensitive to noise disruption, object surface can be

reconstructed successfully for the noisy data sets. In the investigation, all testing data sets with noise were correctly

reconstructed through the proposed algorithm without changing the default parameter-settings. Two test results are

selected to show in Fig. 14 and Fig. 16. In Fig. 14, near two-thousand noisy points were added into the original in-

put, the proposed algorithm reconstructed the surface accurately and resisted noise disturbances without any parame-

ter tuning. In Fig. 16, a foot’s surface was reconstructed successfully even with a higher noise percentage (totally

four-thousand noisy points were added in). If we increase the weight of)(t in the proposed triangulation operation

to enhance its resistance to noise, more accurate results can be obtained.

To compare the performance of the proposed method with other conventional methods, three well-known surface

reconstruction algorithms were selected. We implemented the BPA algorithm proposed by Bernardini, et al. [17]

and the GKS method proposed by Gopi, Krishnan, and Silva [16], and used the binary codes of the Cocone algo-

rithm devised by Prof. Dey [11, 12] to repeat the tests described in this subsection. Since Cocone is sensitive to

noise, the tests to the noisy data sets shown in Fig. 14 (a) and Fig. 16 (a) are all failed. GKS and BPA can work on

the data set shown in Fig. 14 (a) and their reconstruction results are shown in Fig. 15. But, they both failed to con-

Submitted to Computer-Aided Design (JCAD)

 -16-

struct a surface for the data sets with 40% noise shown in Fig. 16 (a). Note that the holes on the surfaces shown in

Fig. 15 are either caused by the failure of surface reconstruction at these places or misjudged the surface points in

these places as noisy points.

(a) Original data

 (b) Reconstructed result

 (c) Close-up view

Fig. 14 Rabbit with 20% noise

 (a) Reconstructed result by GKS (b) Reconstructed result by BPA

Fig. 15 Comparison results of Rabbit with 20% noise

 (a) Original data

 (b) Reconstructed result

 (c) Close-up view

Fig. 16 Foot with 40% noise

Submitted to Computer-Aided Design (JCAD)

 -17-

From the tests given in Section 4.1 to 4.4, we can draw the conclusion that the proposed algorithm can work effi-

ciently on the objects with different sampling rates, geometries, topologies including open/close surface, and unor-

ganized point sets (non uniform sampled data), and also work well on noisy data sets. Note that the experiments

discussed in this paper use additional outliers. If all surface points are shifted a random amount, preprocessing (e.g.

Moving Least Square filter) is needed to smooth out such noise before performing surface reconstruction.

4.5. Error measurement

To investigate the topological difference between the reconstructed mesh and original object surface, we first down-

sampled the data set of Rabbit and Foot and used these down-sampled data sets for surface reconstruction. Then, we

measured the difference between the reconstructed surface and the original data set (the data before down-

sampling). More specifically, we selected the surface points, not included in the down-sampled data set, from the

original data set, and computed the volume of the tetrahedrons constructed by the surface points and their corre-

sponding mesh of the reconstructed surface. We summed all these volumes to perform error analysis. To make the

error measurement more clear, an accurate rate was computed to specifically evaluate the performance of recon-

struction accuracy of a surface reconstruction algorithm. The accurate rate is defined as:

 %100)1(1 




object

n

i
i

V

v

 (9)

where  denotes the accurate rate, objectV represents the estimated volume of the object, iv is the volume of a tetra-

hedron, and n is the number of the surface points not used for surface construction.

During error analysis, we first performed the error measurement tests to the down-sampled data sets (1/3 of the

original data size in our study) without any noise. The results show all algorithms (the proposed algorithm, GKS,

and BPA) have 99% accurate rate on surface reconstruction. Then, we added noise to the down-sampled data sets

with different noise levels (5%, 10%, 15%, 20%, 25%, and 30%), performed surface reconstruction with the pro-

posed algorithm, GKS, and BPA respectively, and calculated the accurate rate of the reconstructed results for error

measurement. The measurement results are shown in Fig. 17. From the figure, we can see that the proposed algo-

rithm has the best performance. Note that Cocone is not used for error measurement due to its sensitivity to noise.

 (a) Error measurement for Rabbit II (b) Error measurement for Foot

Fig. 17 Error measurement

4.6. Triangulation speed
Besides its efficiency and practice, another significant feature of the proposed algorithm is its fast processing speed.

Since the proposed algorithm is a one-pass operation for surface construction, its computational complexity for tri-

angulation operation is)(nO , where n is the number of input points. Because we apply priority queue during refer-

ence selection, the complexity of identifying a reference point for a front edge is)(logmO , where m is the average

number of the candidate points selected for reference selection. Therefore, the cost of the entire process of finding

candidate point during triangulation is)log(mnO . For BPA [17], its complexity for triangulation operation is

Submitted to Computer-Aided Design (JCAD)

 -18-

)(knO , where k is the loop number of applying BPA for non uniform sampled data. Its overall complexity on find-

ing reference for triangulation is)(kmnO , where m is the average number of the points on the pivoting ball. The

complexity of GKS [16] for triangulation operation is)(knO , where k is the loop number for non uniform sampled

data. Although the overall complexity of GKS on finding reference for triangulation is)(kmnO close to the com-

plexity of BPA, GKS spends longer time on finding Delaunay neighbors for each triangulation than our proposed

algorithm and BPA. The entire complexity of Cocone [11, 12] for triangulation operation is)log(nnO . The pro-

cessing time of Cocone on 3-D Voronoi diagrams or Delaunay tetrahedrizations for every triangulation operation is

much longer than that of the other methods. Among the four methods, the proposed algorithm is the simplest and

fastest one. Furthermore, several strategies are also incorporated into our proposed algorithm to reduce its computa-

tional cost further. For example, hash table is used to have the searching time of finding k-nearest-neighbor as a con-

stant time,)(kO . We also pre-build a lookup table in program to store the cosine values we often use.

For both small and medium surface data sets, the triangulation speed of using the proposed algorithm is in the

range of 39K to 52K triangles per second (a real-time processing speed) as shown in Table 1.Due to the high cost of

floating computation and huge memory occupation for the large-size data sets, such as fan-blade, dragon, and Bud-

dha, triangulation rate decreases from 45K to 30K triangles per second (still an acceptable processing speed). In

addition, Table 1 shows that the triangulation speed is also affected by the geometric and topological complexity of

an object. For comparison, BPA, GKS, and Cocone were applied to repeat the twelve tests listed in Table 1. The

comparable results are listed in Table 2. From the table, we can see that the proposed algorithm is faster than BPA,

and much faster than Cocone and GKS. The experimental results obtained from the multi-thread implementation are

listed in Table 3. The experimental results in Table 3 show that the processing speed can be improved significantly

by parallel implementation. In these tests, processing time is reduced by 30% averagely with a two-thread imple-

mentation, and 60% averagely with a four-thread implementation.

Table 1: Run-time performance of the priority driven algorithm
including I/O times on a PC with 2.6GHz processor

Model Input

(point)

Output

(face)

Time

(sec)

Rate

(k  /sec)

Rabbit I 8,171 16,300 0.33 49.4

Rabbit II 35,947 71,669 1.47 48.8

Horse 48,485 96,507 2.07 46.6

Club 16,864 33,617 0.64 52.5

Head 12,772 24,405 0.55 44.4

Foot 10,010 19,750 0.46 42.9

Oilpmp 30,937 61,617 1.31 47.4

Hypersheet 6,752 11,709 0.30 39.0

Knot 10,000 19,317 0.47 41.1

Fan-blade 441,477 866,137 31.35 27.6

Dragon 437,645 774,141 26.88 28.8

Buddha 543,652 981,595 43.82 22.4

Submitted to Computer-Aided Design (JCAD)

 -19-

Table 2: Performance comparison with other methods
(Cocone, GKS, and BPA algorithm)

Model

Priority Driven

(The proposed

method)

Cocone

GKS

BPA

Time

(sec)

Rate

(k  /sec)

Time

(sec)

Rate

(k  /sec)

Time

(sec)

Rate

(k  /sec)

Time

(sec)

Rate

(k  /sec)

Rabbit I 0.33 49.4 0.96 16.77 5.72 2.84 0.46 35.4

Rabbit II 1.47 48.8 2.94 24.22 27.01 2.65 1.88 41.0

Horse 2.07 46.6 4.58 20.94 41.62 2.31 2.54 37.8

Club 0.64 52.5 1.27 26.20 12.71 2.62 0.86 38.4

Head 0.55 44.4 1.12 21.44 9.11 2.66 0.97 24.7

Foot 0.46 42.9 0.86 22.83 7.23 2.73 0.63 30.2

Oilpmp 1.31 47.4 3.05 20.2 31.3 1.97 1.69 36.1

Hypersheet 0.30 39.0 0.62 18.32 4.92 2.39 0.43 25.6

Knot 0.47 41.1 0.86 22.26 9.89 1.98 0.74 25.7

Fan-blade 31.35 27.6 74.86 11.57 787.40 1.10 37.72 23.0

Dragon 26.88 28.8 59.23 13.02 664.27 1.16 31.73 24.4

Buddha 43.82 22.4 93.30 10.51 913.21 1.09 52.89 18.6

Table 3: Performance of applying multi-threads

Model

Single thread Two threads Four threads

Time

(sec)

Rate

(k  /sec)

Time

(sec)

Rate

(k  /sec)

Time

(sec)

Rate

(k  /sec)

Rabbit I 0.33 49.4 0.23 69.58 0.14 117.62

Rabbit II 1.47 48.8 1.06 67.78 0.63 113.49

Horse 2.07 46.6 1.43 67.54 0.85 113.66

Club 0.64 52.5 0.44 75.00 0.26 128.05

Head 0.55 44.4 0.39 60.82 0.23 105.71

Foot 0.46 42.9 0.34 60.09 0.18 110.00

Oilpmp 1.31 47.4 0.89 70.75 0.51 121.54

Hypersheet 0.30 39.0 0.21 56.52 0.12 97.50

Knot 0.47 41.1 0.33 58.71 0.19 100.24

Fan-blade 31.35 27.6 19.44 44.52 10.03 86.25

Dragon 26.88 28.8 16.93 45.71 8.87 87.27

Buddha 43.82 22.4 26.73 36.72 13.15 74.67

5. Conclusions

In this paper, a priority driven based algorithm for surface reconstruction is presented. As we develop a priority

driven strategy to force the mesh to grow in a reliable manner, and design efficient topological operations and trian-

gulation criteria for each step of mesh growing, the proposed algorithm can work efficiently for various data sets

with different sampling rates, complicated geometries and/or topologies. The experimental results demonstrate the

efficiency of the proposed algorithm. Future work includes continuous improvements of overall performance and the

possibility of high-speed processing with modern, programmable GPU hardware.

6. Acknowledgements

The authors would like to thank the computer graphics lab of Stanford University and the graphics and imaging lab

of the University of Washington for providing 3D surface data sets.

Submitted to Computer-Aided Design (JCAD)

 -20-

References

[1] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision, second edition, PWS, 1999.

[2] H. Edelsbrunner, Geometry and Topology for Grid Generation, Cambridge University Press, 2001.

[3] G. Turk and M. Levoy, “Zippered Polygon Meshes from Range Images,” ACM SIGGRAPH, pp. 311-318, 1994.

[4] W. E. Lorensen, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” ACM Trans. Computer

Graphics, Vol. 21(4), pp. 163-169, July, 1987.

[5] C. Bajaj, F. Bernardini, and G. Xu, “Reconstructing Surfaces and Functions on Surfaces from Unorganized 3D Data,” Jour-

nal of Algorithmica, Vol. (19), pp. 243-261, 1997.

[6] H. Edelsbrunner and E. Mucke, “Three Dimensional Alpha Shapes,” ACM Transaction on Graphics, Vol. 13(1), pp. 43-72,

1994.

[7] D. Attali, “r-regular Shape Reconstruction from Unorganized Points,” ACM Symposium on Computational Geometry, pp.

248-253, 1997.

[8] J. D. Boissonnat, “Geometric Structures for Three-dimensional Shape Representation,” ACM Transaction on Graphics, Vol.

3(4), pp. 266-286, 1984.

[9] R. C. Veltamp, “Boundaries through Scattered Points of Unknown Density,” Journal of Graphical Models and Image Pro-

ceeding, Vol. 57(6), pages 441-452, 1995.

[10] N. Amenta, M. Bern, and M. Kamvysselis, “A New Voronoi-based Surface Reconstruction Algorithm,” ACM SIGGRAPH,

pp. 415-421, 1998.

[11]T.K. Dey, J. Giesen, N. Leekha, and R. Wenger, “Detecting boundaries for surface reconstruction using co-cones,” Int’l

Journal of Computer Graphics and CAD/CAM, vol. 16, pp. 151-159, 2001.

[12] N. Amenta, S. Choi, T. K. Dey, and N. Leekha, “A simple algorithm for homemorphic surface reconstruction,” International

Journal of Comput. Geom. & Applications, Vol. 12, pp. 125-141, 2002.

[13] H. Hoppe, T. Derose, T. Duchamp, J. McDonald, and W. Stuetzle, “Surface Reconstruction from Unorganized Point

Clouds,” ACM SIGGRAPH, pp. 71-78, 1992.

[14] B. Curless and M. Levoy, “A Volumetric Method for Building Complex Models from Range Images,” ACM SIGGRAPH,

pp. 303-312, 1996.

[15] R. Mencl and H. Muller, “Interpolation and Approximation of Surfaces from Three-dimensional Scattered Data Points,”

State of the Art Reports, Eurographics, pp. 51-67, 1998.

[16] M. Gopi, S. Krishnan, and C. Silva, “Surface Reconstruction using Lower Dimensional Localized Delaunay Triangulation,”

Eurographics, Vol. 19(3), pp. 467-468, 2000.

[17] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, “The ball-pivoting algorithm for surface reconstruc-

tion,” IEEE Trans. on Visualization and Computer Graphics, Vol. 5(4), pp. 349-359, 1999.

[18] P. Crossno and E. Angel, “Isosurface Extraction using Particle Systems,” IEEE Proc. Visualization, pp. 495-498, 1997.

[19] J. A. Sethian, Level Set Methods and Fast Marching Methods, 2nd edition, Cambridge University Press, 1999.

[20] S. J. Osher and R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer Verlag, Nov., 2002.

[21] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best matches in logarithmic expected time,” ACM

Transactions on Mathematical Software, Vol. 3(3), pp. 209-226, 1977.

[22] S. Arya, D. M. Mount, N. Netanyahu, R. Silverman, and A. Y. Wu, “An optimal algorithm for approximate nearest neighbor

searching in fixed dimensions,” Proceeding of 5th ACM-SIAM symposium Discrete Algorithms, pp. 573-582, 1994.

[23] P. Cignoni, C. Montani, and R. Scopigno, “A comparison of mesh simplification algorithms,” Computers & Graphics, 22(1),

pp. 37-54, 1998.

[24] P. S. Heckbert and M. Garland, “Survey of polygonal surface simplification algorithms,” SIGGRPAH 97, Course Notes 25,

1997.

[25] M. Shafae and R. Pajarola, “DStrips: dynamic triangle strips for real-time mash simplification and rendering,” Proceeding of

Pacific Graphics 2003, IEEE, pp.271-280, 2003.

[26] H. Hoppe, “Progressive meshes,” Proceeding SIGGRAPH 96, ACM SIGGRAPH, pages 99-108, 1996.

[27] H. Hoppe, “View-dependent refinement of progressive meshes,” Proceeding SIGGRAPH 97, ACM SIGGRAPH, pp.189-198,

1997.

[28] J. Kim and S. Lee, “Truly selective refinement of progressive meshes,” Proceeding of Graphics Interface 2001, pp.101-110,

2001.

[29] R. Pajarola, C. DeCoro, “Efficient Implementation of Real-Time View-Dependent Multiresolution Meshing,” IEEE Trans.

on Visualization and Computer Graphics, Vol. 10, No. 3, pp. 353-368, 2004.

[30] B. Guo, J. Menon, and B. Willette, “Surface Reconstruction Using Alpha Shapes,” Computer Graphics Forum, Vol. 16, No.

4, pp.177-190, 1997.

[31] H.K.Zhao, S. Osher, and R. Fedkiw, “Fast Surface Reconstruction Using the Level Set Method,” Proceedings of IEEE

Workshop on Variational and Level Set Methods in Computer Vision (VLSM 2001), 2001.

[32] J. O’Rourke, Computational Geometry in C, Cambridge University Press, 1998.

[33] R. Chaine, “A geometric convection approach of 3-D reconstruction,” In Proc. Eurographics Symposium on Geometry Pro-

cessing, pp.218–229, 2003.

Submitted to Computer-Aided Design (JCAD)

 -21-

[34] H. Q. Dinh, G. Turk, and G. Slabaugh, “Reconstructing surfaces by volumetric regularization using radial basis functions,”

IEEE Trans. Pattern Anal. Machine Intell., pp.1358–1371, 2002.

[35] N. Kojekine, V. Savchenko, and I. Hagiwara, “Surface reconstruction based on compactly supported radial basis functions,”

In Geometric modeling: techniques, applications, systems and tools, pp.218–231. Kluwer Academic Publishers, 2004.

[36] B. S. Morse, T. S. Yoo, P. Rheingans, D. T. Chen, and K. R. Subramanian, “Interpolating implicit surfaces from scattered

surface data using compactly supported radial basis functions,” In Shape Modeling International, pp. 89–98, 2001.

[37] R. Kolluri, J. R. Shewchuk, and J. F. O’Brien, “Spectral surface reconstruction from noisy point clouds,” In Symposium on

Geometry Processing, pp.11–21, ACM Press, July 2004.

[38] A. C. Jalba and J. B. T. Roerdink, “Efficient surface reconstruction using generalized coulomb potentials,” IEEE Transac-

tions on Visualization and Computer Graphics, Vol. 13, No. 6, pp. 1512-1517, 2007.

[39] W. Saleem, O. Schall, G. Patane, A. Belyaev, and H. Seidel, “On stochastic methods for surface reconstruction,” The Visual

Computer: International Journal of Computer Graphics, Vol. 23, No. 6, pp. 381-395, 2007.

[40] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” Eurographics Symposium on Geometry Pro-

cessing, 2006.

[41] M. B. Vieira, P.P. Martins Jr., A.A. Araujo, M. Cord, and S. Philipp-Foliguet, “Smooth surface reconstruction using tensor

field as structuring elements,” Computer Graphics Forum, Vol. 23, No. 4, pp. 813-823, 2004.

[42] M. Yoon, Y. Lee, S. Lee, I. Ivrissimtzis, and H.-P Seidel, “Surface and normal ensembles for surface reconstruction,” Com-

puter-Aided Design, 39, pp. 408-420, 2007.

[43] C.-C Kuo and H.-T Yau, “A new combinatorial approach to surface reconstruction with sharp features,” IEEE Transactions

on Visualization and Computer Graphics, Vol. 12, No. 1, pp. 73-82, 2006.

[44] X. Yang, “Surface interpolation of meshes by geometric subdivision,” Computer Aided-Design, Vol. 37, pp. 497-508, 2005.

[45] S. Hahmann and GP. Bonneau, “Polynomial surface interpolating arbitrary triangulations,” IEEE Transactions on Visualiza-

tion and Computer Graphics, 9(1), pp. 99-109, 2003.

[46] N. Dyn, D. Levin, and D. Liu “Interpolatory convexity-preserving subdivision schemes for curves and surfaces,” Computer-

Aided Design, Vol. 24(4), pp.211-216, 1992.

[47] X. Li, C. Han, and W. G. Wee, “Surface Reconstruction of 3D Objects,” Int. Conf. on Computer Vision and Graphics

(ICCVG2004), pp. 642-647, 2004.

[48] J. Huang and CH. Menq, “Combinatorial manifold mesh reconstruction and optimization from unorganized points with arbi-

trary topology,” Computer-Aided Design, Vol.34, pp. 149-65, 2002.

[49] H. Lin, C. Tai, and G. Wang, “A Mesh Reconstruction Algorithm Driven by Intrinsic Property of Point Cloud,” Computer-

Aided Design, Vol. 36, pp. 1-9, 2004.

