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Abstract The influence of peak-locking errors on
turbulence statistics computed from ensembles of PIV data
is considered. PIV measurements are made in the
streamwise–wall-normal plane of turbulent channel flow.
The PIV images are interrogated in three distinct ways,
generating ensembles of velocity fields with absolute,
moderate, and minimal peak locking. Turbulence statistics
computed for all three ensembles of data indicate a general
sensitivity to peak locking in the single-point statistics,
except for the mean velocity profile. Peak-locking errors
propagate into the fluctuations of velocity, rendering sin-
gle-point statistics inaccurate when severe peak locking is
present. Multi-point correlations of both streamwise and
wall-normal velocity are also found to be influenced by
severe levels of peak locking. The displacement range of
the measurement, defined by the PIV time delay, appears
to affect the influence of peak-locking errors on turbulence
statistics. Smaller displacement ranges, particularly those
that produce displacement fluctuations that are less than
one pixel in magnitude, yield inaccurate turbulence sta-
tistics in the presence of peak locking.

1
Introduction
Over the past few years, particle-image velocimetry (PIV)
has become the experimental tool of choice for the mea-
surement of velocity in both industry and academia.
Hence, PIV is increasingly used to study very complex flow
phenomena, including turbulent flows. One of the main
advantages of PIV compared to other velocimetry tech-

niques is that it allows the direct measurement of either
two- or three-dimensional instantaneous velocity vectors
over a planar domain. Therefore, PIV velocity ensembles
are ideal for computing multi-point spatial statistics,
quantities particularly crucial for understanding the
kinematics and dynamics of turbulent flows.

As with all measurement techniques, there are several
uncertainties that can, if not mitigated, degrade the quality
of a PIV experiment. Such uncertainties can generally
be classified as either random errors or bias errors
(Christensen and Adrian 2002). Random errors in PIV are
most often associated with electronic noise in the cameras,
shot noise (which is independent from pixel to pixel and in
time), and random errors associated with properly iden-
tifying the sub-pixel displacement. Certainly these errors
can play a crucial role in the accuracy of instantaneous
PIV results. However, due to the random nature of these
uncertainties, they can be rendered negligible when the
PIV fields are averaged in either space or time over a
suitably large ensemble. Therefore, random errors do not
degrade the accuracy of statistics derived from larger PIV
velocity ensembles and are not considered in the present
analysis. [A detailed discussion of PIV measurement
errors can be found in Westerweel (1997), Huang et al.
(1997), and Christensen and Adrian (2002)].

Bias errors, on the other hand, are certainly not random
in space and time and can therefore degrade not only the
accuracy of instantaneous PIV results but also any statistic
computed from biased PIV ensembles. Several bias errors
can exist in a PIV measurement, including uncertainties
associated with the fill ratio of the CCD camera and the
algorithm used to interrogate the images. However, one of
the most significant bias errors associated with a PIV
measurement is peak locking (also referred to as ‘‘pixel
locking’’ in the literature) –the biasing of particle dis-
placements toward integer pixel values. Peak locking is
attributable to both the choice of sub-pixel estimator and
under-resolved optical sampling of the particle images.
Westerweel (1997) showed that a Gaussian sub-pixel esti-
mator is superior to both centroid and quadratic fits in
terms of mitigating peak-locking effects. More recently,
Roesgen (2003) presented evidence that a ‘‘sinc’’ interpo-
lation kernel completely suppresses spurious spectral
sidelobes in the correlation, yielding minimal peak-locking
influences for adequately resolved particle images.

However, when the particle images are under-resolved
(ds/dpix<2), peak locking can be a significant bias error
that is independent of the choice of sub-pixel estimator. In
such cases, the resulting correlation peak is not adequately
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resolved and the sub-pixel estimator cannot faithfully de-
termine the sub-pixel displacement of the particles. In-
stead, the estimated displacements are ‘‘locked’’ toward
integer pixel values. For example, for a true mean particle
displacement of 14.35 pixels, the sub-pixel estimator will
‘‘lock’’ the estimated displacement closer to 14 pixels. On
the other hand, a true mean particle displacement of
14.65 pixels would be estimated closer to 15 pixels.
Therefore, true displacements that exist between integer
pixel values are inevitably pushed toward the nearest
integer pixel displacement, severely degrading the accu-
racy of the sub-pixel estimate. This effect can be seen
clearly in the ensemble-averaged probability density
function (pdf) of the displacement – peaks occur at integer
pixel displacements and troughs exist in between. Figure 1
illustrates such behavior.

In a PIV measurement of turbulence, the velocity
fluctuations imposed by the turbulence can be small. In
turbulent channel flow, the focus of the present effort, the
streamwise fluctuations are nearly 10% of the streamwise
mean flow, while the wall-normal fluctuations are roughly
5% of the mean flow. Hence, the displacement range
associated with the mean flow effectively defines the dis-
placement range of both the streamwise and wall-normal
fluctuations. For example, given a mean flow with an
average displacement of 10 pixels, the streamwise dis-
placement fluctuations would be nearly 1 pixel, while the
wall-normal fluctuations would be associated with dis-
placements approaching 0.5 pixels. Therefore, accurate
determination of these fluctuations hinges solely upon the
ability of the sub-pixel estimator to faithfully estimate the
sub-pixel displacement of the particle images. Since most
turbulence statistics of interest are formed from the fluc-
tuations of velocity, peak-locking bias errors may con-
tribute to inaccuracies in statistics computed from PIV
ensembles. This paper addresses such issues.

2
Experiment
The PIV experiments central to this study are performed
in nominally two-dimensional turbulent channel flow at a
bulk Reynolds number of Reh=Ubh/m=24,000, equivalently
a friction Reynolds number of Res=u*h/m=1,184. Two
separate experiments are performed, with the first having a
time delay half as large as the second. Two-thousand
realizations are acquired per experiment, facilitating

calculation of turbulence statistics with minimal influence
of statistical sampling errors. The channel-flow facility is
run continuously and the two experiments are performed
consecutively in order to minimize differences between the
two ensembles due to slightly different flow conditions
(specifically Reynolds number and atmospheric condi-
tions). A detailed discussion of the experimental meth-
odology is presented in this section.

2.1
Channel-flow facility
The channel-flow facility is a closed-circuit system, the
working fluid is air, and it is driven by a five-horsepower
cent-axial blower. Air passes through a flow-conditioning
section which includes honeycomb, a series of screens, and
a smooth contraction that guides the flow into the
50 mm·600 mm (2h·width, where h is the half-height of
the channel) channel cross-section. The flow is tripped
upon entrance into the channel with 36-grit sandpaper to
ensure fully developed turbulence at the test section. The
channel development length is 6.3 m (252 h), including a
1.3-m test section. The flow then returns to the blower
through a return section. The test section includes optical
access from all directions and static pressure taps are
mounted along the length of the channel allowing docu-
mentation of the streamwise pressure distribution.

2.2
Flow conditions
In wall-bounded turbulence, the primary velocity scale is
the friction velocity, u*=(sw/q)1/2. Therefore, determina-
tion of u* requires knowledge of the wall shear stress, sw.
The wall shear stress can be related to the streamwise
pressure gradient through the mean streamwise momen-
tum equation, yielding

sw ¼ �
dP

dx
h ð1Þ

for two-dimensional fully-developed channel flow.
Profiles of the streamwise pressure distribution are

measured via static pressure taps mounted along the length
of the channel development with an inclined manometer
having 0.0100 H20 resolution. The streamwise pressure dis-
tribution is linear for the Reynolds number presented here,
confirming fully developed two-dimensional flow in the
channel and facilitating an accurate estimate of the

Fig. 1. Ensemble-averaged probability den-
sity function of particle-image displacement
illustrating pixel-locking effects
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streamwise pressure gradient. From this estimate, the wall
shear stress is determined using Eq. 1.

The fluid density and viscosity are determined from
measurements of the fluid temperature, T, and the atmo-
spheric pressure, Patm. An ideal gas relation of the form

q ¼ Patm þ Pst

RT
ð2Þ

yields density, where Pst is the static pressure at the test
location and R=279.1 J/kg K. Sutherland’s correlation is
used to estimate the kinematic viscosity as

m ¼ 1:458� 10�6 T3=2

q T þ 110:4ð Þ : ð3Þ

Knowledge of the wall shear stress, in concert with the
fluid properties, allows estimation of the friction velocity,
u*, and the viscous length scale, y*=m/u*. All flow param-
eters are summarized in Table 1.

2.3
PIV details
Particle-image velocimetry (PIV) is used to measure
instantaneous two-dimensional velocity (u,v) fields in the
streamwise–wall-normal (x–y) plane along the channel’s
spanwise centerline. The air flow is seeded with nominally
1-lm olive oil droplets created by a Laskin nozzle. The
1.28h·0.93h (29.8 mm·23.3 mm; width by height) field of
view is illuminated with lightsheets formed from a pair of
New Wave Research Gemini Nd:Yag lasers. Each laser
pulse has a temporal width of 5 ns and 80 mJ of energy.
The nominal thickness of the lightsheets in the test section
is approximately 200 lm.

The scattered light from the seed particles is imaged
onto a 1280·1024 pixel (width by height) TSI PIVCAM
13-8 12-bit CCD camera with frame-straddle capabilities. A
105-mm focal length lens is used to image the particles
with an f-number of 8. The field of view is minimized to
29.8 mm·23.3 mm in order to maximize the particle-
image diameter, ds, relative to the pixel size, dpix, yielding
ds/dpix.2 in both experiments. Further minimization of
the field of view is not possible because the width of the
channel (600 mm) does not allow camera placement any
closer than 300 mm from the lightsheet.

Two distinct images are acquired per vector field with a
fixed time delay, facilitating two-frame cross-correlation
analysis of the images. As noted earlier, two distinct
experiments are performed. The first experiment is per-
formed with a time delay of 10 ls. (This experiment is
hereafter referred to as ‘‘experiment A’’.) The second
experiment is performed with a time delay of 20 ls. (The
second experiment is hereafter referred to as ‘‘experiment
B’’.) The second experiment is performed specifically to
study the influence of a larger displacement range on

peak-locked data and on the turbulence statistics com-
puted from such data.

The pairs of PIV images are interrogated using the PIV
Sleuth software (Christensen et al. 2000). The images are
subdivided into rectangular interrogation windows of size
26·20 pixels (width·height) in the first image and 32·24
in the second image. The interrogation windows are
zero-padded in 32·32 pixel buffers and the correlations
are calculated using FFT methods. A larger second window
is chosen to minimize the bias error associated with loss of
appropriate image pairs for the particle images defined by
the first interrogation window. The images are analyzed
with 50% overlap to satisfy Nyquist’s criterion and the
second window is offset in the mean flow direction by the
bulk displacement of the flow (7 pixels for experiment A
and 14 pixels for experiment B). These interrogation
parameters yield 9,408 vectors per velocity realization over
the 29.8 mm·23.3 mm field of view.

The instantaneous vector fields in each ensemble are
then validated using objective statistical methods (stan-
dard deviation and local magnitude difference compari-
sons) to remove any erroneous velocity vectors. Holes are
filled either with alternative velocity choices determined a
priori during interrogation or interpolated in regions
where at least 50% of neighbors are present. On average,
over 99% of the velocity vectors in a given field are found
to be valid prior to replacement and interpolation.
Therefore, the need for interpolation is minimal. Finally,
each vector field is low-pass filtered with a narrow
Gaussian filter to remove any noise associated with fre-
quencies larger than the sampling frequency of the inter-
rogation. Table 2 summarizes the resolution of the PIV
experiment.

3
Image ensembles
As noted in the introduction, two different effects can
contribute to the degree of peak locking present in a
PIV ensemble. The first influence is associated with
under-resolved optical sampling of the particle images.
As noted by Westerweel (1997), particle-image diameters
less than 1.5 pixels yield a certain level of peak locking,
owing to the inability of the sub-pixel estimator to
accurately estimate the sub-pixel displacement of the
particles. This effect can be exacerbated by the choice of
sub-pixel estimator, with quadratic estimators yielding
significantly more peak locking than Gaussian estimators
(Westerweel 1997). The net effect of both inadequate
resolution of the particle images and the choice of sub-
pixel estimator is a biasing of the particle displacements
toward integer pixel displacements. The field of view in
the present experiment is chosen to minimize the
influence of under-resolved optical sampling of the par-
ticle images. The mean particle-image diameter of the

Table 1. Summary of flow parameters

Res q
(kg/m3)

m
(m2/s)

d P/d x
(Pa/m)

sw

(Pa)
u*

(m/s)
y*
(lm)

1,184 1.016 1.800·10)5 )29.6 0.734 0.853 21.1

Table 2. Resolution of the PIV experiment

Dx(lm) Dx(lm) Dz (lm) ymin (lm)

304 (14.4y*) 234 (11.1y*) 200 (9.5y*) 398 (19.9y*)
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experiments discussed herein is ds/dpix=2, meaning
any peak locking evident in the velocity data can be
attributed to the choice of sub-pixel estimator.

The image data in each experiment is interrogated in
two ways, once with a quadratic sub-pixel estimator and
again with a Gaussian sub-pixel estimator. The former
(hereafter referred to as ‘‘case I’’) yields moderately
peak-locked velocity data, while the latter (hereafter
referred to as ‘‘case II’’) yields velocity data minimally
influenced by peak locking. A third ensemble of velocity
data in each experiment is created by rounding the dis-
placements in each Gaussian-interrogated velocity field to
the nearest integer. This case will hereafter be referred to
as ‘‘case 0’’ and is equivalent to using no sub-pixel esti-
mator during interrogation. Hence, case 0 simulates the
limiting case of absolute peak locking.

3.1
Experiment A
The ensemble- and area-averaged probability density
functions (pdf’s) of the streamwise displacement for all
three cases of experiment A (smaller displacement range)
are shown in Fig. 2a. The streamwise displacements in
experiment A span a range of 0 to 10 pixels. In case 0A, the
absolute peak-locking limit, displacements are completely
‘‘locked’’ onto integer pixel values. The pdf for case IA
(quadratic estimator) is certainly not as severe as case 0A;
however, it does show significant peak locking associated
with the choice in sub-pixel estimator: displacements are
consistently ‘‘locked’’ onto integer pixel displacements.
Between the integer-displacement peaks there exist
troughs, owing to the shifting of particle displacements
toward integer pixel values. Finally, case IIA (Gaussian
estimator) clearly illustrates the reduction in peak locking
associated with using a Gaussian estimator instead of a
quadratic estimator. Minimal peak locking is evident in
the case IIA pdf of streamwise displacement, validating

that the particle images have been properly resolved in the
present experiment.

The ensemble- and area-averaged pdf’s of the
wall-normal displacement in experiment A are shown in
Fig. 2b for all three cases. The dynamic range of the wall-
normal displacements for experiment A is 2 pixels, from
)1 to 1 pixel. Again, in the limit of absolute peak locking
(case 0A), all wall-normal displacements are completely
locked onto integer values of –1, 0, and 1. Additionally,
peak-locking effects are also noted in case IA (quadratic
estimator) near these same integer values, although they
are not as severe as in case 0A. Case IIA (Gaussian) shows
no influence from peak locking, just like the streamwise
displacement of case IIA. The most notable observation in
the pdf’s of wall-normal displacement for experiment A is
the biasing of displacements toward zero displacement.
The zero-displacement value of the case 0A pdf is six times
larger than case IIA, while the zero-displacement value of
case IA is twice as large as case IIA. This bias toward zero
displacement may lead to underestimation of statistics
involving the wall-normal velocity.

3.2
Experiment B
Figure 3a illustrates the ensemble- and area-averaged
streamwise displacement pdf’s computed from the data of
experiment B (larger displacement range) for all three
cases. The streamwise displacement dynamic range for
experiment B is 0 to 20 pixels. Case 0B illustrates the
absolute peak-locking limit, with displacements completely
locked onto integer values. As with case IA, case IB exhibits
moderate peak locking due to the quadratic sub-pixel
estimator. Case IIB shows minimal peak-locking influ-
ences. These peak-locking trends are consistent with the
behavior of the three cases associated with experiment A.

The pdf’s of wall-normal displacement for experiment B
are presented in Fig. 3b. The range of wall-normal

Fig. 2. Ensemble- and area-averaged
probability density functions of total
displacement from experiment A data
for a streamwise displacement (uMDt)
and b wall-normal displacement
(vMDt). —: Case 0A (limiting case of
absolute pixel locking); – – – : Case IA
(quadratic sub-pixel estimator); ÆÆÆ: Case
IIA (Gaussian sub-pixel estimator)
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displacements for experiment B is 4 pixels, from –2 to
2 pixels. The displacements in case 0B are completely
locked onto integer values, while the displacements in case
IB are also locked onto these integer displacements, but
with far fewer locked toward a magnitude of 2 pixels. Case
IIB exhibits no influence of peak locking in the wall-
normal displacements. Clearly, however, the wall-normal
displacements in experiment B span a broader pixel range
than do the wall-normal displacements in experiment A. In
particular, there are fewer displacements locked toward
zero. Therefore, wall-normal velocity statistics computed
from the experiment B data may not be as sensitive to peak
locking as statistics computed from the experiment A data.

Two questions still remain: How do peak-locking errors
affect turbulence statistics computed from PIV ensembles?
Does the dynamic range of the displacements play a role in
this effect? The first question is addressed in the next
section (Turbulence statistics for experiment A) by con-
sidering statistics computed from the velocity ensembles
of experiment A. Single- and multi-point statistics com-
puted from the three distinct cases of velocity data are
directly compared. The second question is addressed in
Sect. 5 (Influence of displacement dynamic range) by
comparing the statistics from experiment A to those
computed from experiment B.

4
Turbulence statistics for experiment A

4.1
Single-point statistics
We first present single-point statistics computed from the
three ensembles of velocity data associated with experi-
ment A: case 0A, case IA, and case IIA. The single-point
statistics for each case are computed by ensemble aver-
aging the instantaneous velocity fields followed by line

averaging in the streamwise direction since it is homoge-
neous. This averaging methodology yields profiles that are
only a function of wall-normal position (y). Since all three
ensembles constitute measurements of the same flow
events (they are derived from the same image ensemble),
any differences in the statistics computed for each case can
be interpreted as the influence of varying degrees of peak
locking.

4.1.1
Mean velocity
Figure 4 presents the mean velocity, U+=U/u*, as a func-
tion of wall-normal position. All three cases yield identical
mean velocity profiles, both close to the wall and in the
outer region of the flow. This consistency indicates that the
mean velocity is not affected by peak-locking errors, even
in the limiting case of absolute peak locking.

4.1.2
RMS velocities
Figure 5a, b illustrates the root-mean-square (RMS) of
the streamwise and wall-normal velocities, respectively.
The RMS velocities are a measure of the strength of the
underlying turbulent fluctuations and the displacements
associated with these fluctuations are on the order of 1 to
2 pixels. The RMS streamwise velocity, ru, exhibits some
sensitivity to peak-locking errors in cases 0A and IA as
compared to case IIA (no peak locking). Case 0A, in
particular, deviates significantly from case IIA for all
wall-normal locations. This deviation is certainly under-
standable given that case 0A represents absolute peak
locking. In contrast, case IA (quadratic estimator; mod-
erate peak locking) accurately follows case IIA for y<0.6h
despite a significant difference in the level of peak lock-
ing between the cases. Case IA slightly overestimates ru

for y>0.6h.

Fig. 3. Ensemble- and area-
averaged probability density
functions of total displacement
from experiment B data for a
streamwise displacement (uMDt)
and b wall-normal displacement
(vMDt). —: Case 0B; – – – :
Case IB; ÆÆÆ: Case IIB
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The RMS wall-normal velocity, rv, is also sensitive to
peak-locking errors. Case 0A overestimates rv for y<0.8h
and underestimates it for y>0.8h as compared to case IIA
(no peak locking). In contrast, case IA underestimates rv

at all wall-normal locations, with larger deviations for
y>0.5h.

Since the mean velocity is unaffected by peak locking,
the peak-locking errors present in the total velocity are
presumably passed on to the fluctuations of velocity.
Therefore, the deviations in ru and rv noted in Fig. 5 can
be explained by considering the magnitude of the fluctu-
ating displacements. Figure 6a presents ensemble- and
line-averaged pdf’s of fluctuating streamwise displace-
ments at y=0.25h. (These pdf’s differ from those shown in
Fig. 2 because the latter are ensemble- and area-averaged
and represent total, rather than fluctuating, displace-
ments.) The peaks in the pdf’s of fluctuating streamwise
displacement do not coincide with integer pixel displace-
ments since a non-integer mean has been removed by
Reynolds’ decomposition. At y=0.25h, fluctuating stream-
wise displacements range from 0 to 2 pixels in magnitude,
spanning a displacement range of 4 pixels. Most of the
displacements for cases IA and IIA rarely exceed 1.5 pixels
in magnitude; however, the streamwise displacements of
case 0A are locked toward values as large as 2 pixels in
magnitude. Therefore, it should be expected that case 0A
would overestimate ru in this region of the flow, as is
noted in the profiles of ru (Fig. 5a. Figure 6b illustrates
pdf’s of fluctuating streamwise displacement at y=0.9h. In
this region of the flow, the fluctuating streamwise dis-
placements have magnitudes between 0.5 and 1 pixel.
Therefore, peak-locking influences tend to ‘‘lock’’ these
displacements toward 1 pixel, causing overestimation of
ru in cases 0A and IA for y>0.6h.

Figure 7a presents ensemble- and line-averaged pdf’s
of fluctuating wall-normal displacements at y=0.25h.

Recall that in this region of the flow, case 0A severely
overestimates rv. At y=0.25h, the fluctuating wall-normal
displacements range, in magnitude, from 0 to 1 pixel. In
cases IA and IIA, the magnitude rarely exceeds
0.75 pixels, while in case 0A peak-locking influences
yield an order of magnitude larger number of dis-
placements locked onto either )1 or 1 pixel. Therefore,
these larger fluctuating wall-normal displacements,
attributable to peak locking, cause case 0A to overesti-
mate rv close to the wall. In contrast, near the center-
line, it was noted that both cases 0A and IA
underestimate rv. Figure 7b illustrates pdf’s of fluctuat-
ing wall-normal displacement at y=0.9h. In this region
of the flow, the wall-normal velocity fluctuations are
about half as large as they are near the wall, translating
into a significant number of fluctuating wall-normal
displacements with magnitudes between 0 and 0.5 pixels.
In cases 0A and IA, these smaller displacements are
‘‘locked’’ toward zero, yielding an underestimation of rv

as compared to case IIA.

Fig. 5a, b. Profiles of RMS velocity as a function of wall-normal
position. a rþu ; b rþv , ): Case 0A; h: Case IA; s: Case IIA.
(Every other data point is removed for clarity.)

Fig. 4. Inner scaling of mean velocity, U+, versus wall-normal
position, y+. ): Case 0A; h: Case IA; s: Case IIA. (Every other data
point is removed for clarity.)
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4.1.3
Reynolds stress
The Reynolds stress, )Æu¢v¢æ, as a function of wall-normal
position, is shown in Fig. 8. Case 0A (absolute peak
locking) severely underestimates the Reynolds stress
compared to cases IA and IIA. This underestimation is

attributable to the fact that the peak locking in u¢ is
uncorrelated to the peak locking in v¢, along with the fact
that a majority of the fluctuating wall-normal displace-
ments are locked toward zero in case 0A (see Figs. 6 and
7). The same underestimation is seen in case IA; however,
it is not as significant as case 0A since the wall-normal

Fig. 6. Ensemble-averaged
probability density functions
of fluctuating streamwise
displacement, u¢MDt,
computed from experiment A
data at a y=0.25 h and b
y=0.9 h. —: Case 0A; – – – :
Case IA; ÆÆÆ: Case IIA

Fig. 7. Ensemble-averaged
probability density functions
of fluctuating wall-normal
displacement, v¢MDt, com-
puted from experiment A data
at a y=0.25 h and b y=0.9 h.
—: Case 0A; – – – : Case IA; ÆÆÆ:
Case IIA
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displacement fluctuations are not as severely locked
toward zero displacement. Clearly, any ‘‘locking’’ of
displacements toward zero severely influences the quality
of the Reynolds stress, even more so than the RMS
velocities, because u¢ and v¢ at a given point must both be
locked toward non-zero integer displacements in order to
contribute to )Æu¢v¢æ.

4.1.4
Vorticity
Although the comparisons heretofore have been limited to
velocity statistics, PIV velocity fields certainly allow the

calculation of other important flow quantities, including
vorticity. In-plane vorticity, xz, is given by

wz ¼
@v

@x
� @u

@y
: ð4Þ

However, in order to avoid errors associated with differ-
entiating experimental data, in-plane vorticity is calculated
for the instantaneous velocity fields in each case using the
circulation method (Reuss et al. 1989). The resulting RMS
in-plane vorticity profiles as a function of wall-normal
position for all three cases are presented in Fig. 9. Clearly,
case 0A deviates significantly from the other two cases.
This deviation is due to the ‘‘locking’’ of wall-normal
displacements toward 0 and 1 pixel (Fig. 15), causing se-
vere discontinuities in v¢. These discontinuities yield a
significant overestimation of ¶v/¶x and hence rx. Case IA
actually yields an accurate RMS vorticity profile despite
suffering from a moderate level of peak locking. However,
the displacements in case IA are relatively smooth com-
pared to case 0A. Therefore, the gradients in velocity in
case IA are not tainted by gross overestimation due to
discontinuities and are more representative of the actual
flow.

4.2
Multi-point statistics
In this section, the influence of peak-locking errors on the
accuracy of multi-point statistics is considered. Multi-
point statistics play a central role in understanding the
kinematics and dynamics of turbulence because they can
reflect the influence of coherent vortical structures. For
example, the two-point correlation of streamwise velocity
in wall turbulence mimics the characteristics of large-scale
vortex organization in the outer layer both in terms of
inclination angle and streamwise extent (Christensen
2001). In addition, multi-point correlations play a crucial
role in development of subgrid-scale models for large-eddy
simulation of higher-Reynolds-number turbulence (Lang-
ford and Moser 1999).

Two-point velocity correlation coefficients of the form

qij rx; y; yrefð Þ ¼
u0i x; yrefð Þu0j xþ rx; yð Þ
D E

ri yrefð Þrj yð Þ ð5Þ

are computed from instantaneous fluctuating velocity
fields for all three cases. Figure 10a–c presents correlation
coefficients (quu, qvv, and quv, respectively) as a function of
rx for y=yref=0.1h. Cases IA and IIA yield nearly identical
results for all three correlations. However, quu and qvv

computed from case 0A data are underestimated for
rx „ 0. This deviation is attributable to the fact that the
correlation coefficients have been normalized by the
appropriate RMS velocities as defined in Eq. 5. Since case
0A overestimates both ru and rv at y=0.1h, normalization
by a larger RMS value yields a smaller correlation coeffi-
cient value. As a result, case 0A underestimates both quu

and qvv for rx „ 0.
Severe peak locking also underestimates the length

scales associated with quu and qvv. For a fixed correlation
coefficient value, the correlations associated with case 0A

Fig. 9. Profiles of RMS spanwise vorticity as a function of
wall-normal position. ): Case 0A; h: Case IA; s: Case IIA. (Every
other data point is removed for clarity.)

Fig. 8. Profiles of Reynolds stress, )<u¢+v¢+>, as a function of
wall-normal position. ): Case 0A; h: Case IA; s: Case IIA. (Every
other data point is removed for clarity.)
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have smaller widths than the correlations computed for
cases IA and IIA. In addition, near zero separation, the
curvature of quu and qvv is consistent between cases IA and
IIA, but markedly different for case 0A. Hence, any esti-
mates of the Taylor microscale, defined by this curvature
at zero separation, would be inaccurate when computed
from severely peak-locked data.

With regard to the cross-correlation, quv, case 0A
deviates significantly from cases IA and IIA for all values
of rx. In particular, the value near zero separation for case
0A is 30% smaller than cases IA and IIA. At zero separa-
tion, quv is given by

quv rx ¼ 0ð Þ ¼ u0v0 yð Þ
ru yð Þrv yð Þ ; ð6Þ

i.e., the Reynolds stress at y normalized by the RMS
velocities of u and v at y. Recall that case 0A severely
underestimates the Reynolds stress for all y values. This
underestimation, attributable to the fact that the
peak-locking errors between u and v are uncorrelated,
coupled with overestimation of ru and rv, explains the
underestimation of quv.

Deviations between the absolute peak-locking case 0A
and case IIA are also noted in the two-dimensional plots of
quu, qvv, and quv (Fig. 11). Here, the correlation coeffi-
cients are shown as a function of both rx and y, with the
correlation coefficients computed for case 0A shown in
grayscale and those for case IIA shown as line contours.
Clearly, the length scales associated with case 0A are
smaller than those of case IIA in both rx and y, reinforcing

Fig. 10a–c. A comparison of two-point
velocity correlation coefficients as a
function of rx for y=yref=0.1h computed
from experiment A data. a quu; b qvv; c
quv. ): Case 0A; h: Case IA; s: Case IIA
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the notion that severely peak-locked data can underesti-
mate two-point correlations significantly, even at larger
spatial separations.

5
Influence of displacement dynamic range
In this section, statistics computed from experiment B are
compared to those already introduced for experiment A.
As noted earlier, the only difference between the two
experiments is that the displacement range of B is twice as
large as the displacement range of A. Single- and
multi-point statistics are compared between the experi-
ments in order to explore the influence of displacement
range on statistics computed from peak-locked PIV data.

5.1
Mean velocity
Figure 12 presents the mean velocity profiles for cases 0B
(absolute peak locking), case IB (quadratic estimator;
moderate peak locking), and case IIB (Gaussian estimator;
minimal peak locking). All three profiles collapse with one
another and with case IIA (solid line), confirming the
insensitivity of the mean profiles to peak-locking influ-
ences as is noted in the experiment A data.

5.2
RMS velocities
Figure 13 illustrates the RMS streamwise and wall-normal
velocities as computed from the experiment B data. Cases

Fig. 11a–c. A comparison of
two-point velocity correlation
coefficients for yref=0.1h for
case 0A (grayscale contours)
and case IIA (line contours).
a quu; b qvv; c quv
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0A and IIA are shown as lines in this figure for compari-
son. Case 0B overestimates ru slightly, but not nearly as
much as case 0A (plotted as a dashed line). In contrast,
cases IB and IIB collapse with case IIA (solid line). The
RMS wall-normal velocity is overestimated by case 0B,
while cases IB and IIB collapse with IIA. The latter
observation is significant because in experiment A, cases I
and II deviate moderately in rv for y>0.5h. Therefore, it is
clear from this data that the influence of peak-locking
errors on the RMS velocities is reduced as the displace-
ment range of the data is increased. In particular, whereas
the quadratically estimated rv data in experiment A fails to
collapse with the case IIA data (no peak locking), the
quadratically estimated data from experiment B collapses
perfectly with IIB despite suffering from moderate levels of
peak locking. Additionally, the RMS velocities computed
from non-peak-locked data in experiments A and B (cases
IIA and IIB) collapse.

As before, the trends noted in the RMS velocities can be
understood by considering pdf’s of the fluctuating dis-
placements as a function of wall-normal position.
Figure 14 presents pdf’s of fluctuating streamwise dis-
placement at y=0.25h and y=0.9h for the experiment B
data. Comparing these pdf’s to those of experiment A
(Fig. 16) indicates that the fluctuating streamwise dis-
placements of experiment B span a displacement range
that is twice as large as in experiment A. This is to be
expected since the PIV time delay in experiment B is twice
as large as that in experiment A. In particular, the fluc-
tuating streamwise displacements in experiment B often
have magnitudes approaching and exceeding 2 pixels. The
magnitudes of fluctuating streamwise displacement rarely
exceed 2 pixels in cases IB and IIB; however, a significant
number of displacements are locked toward a magnitude
of 3 pixels in case 0B. This difference explains the slight
overestimation of ru for case 0B. However, case 0B is
certainly in much better agreement than case 0A, where

the displacements are half as large, yielding a severe
overestimation of ru. At y=0.9h, the fluctuating streamwise
displacements are smaller than they are closer to the wall,
rarely exceeding 1.5 pixels in cases IB and IIB, but still
spanning a broader displacement range than experiment
A. This larger range renders ru less sensitive to
peak-locking influences, yielding more accurate estimates
of the RMS streamwise velocity.

Figure 15 presents pdf’s of fluctuating wall-normal
displacement at y=0.25h and y=0.9h. As is the case with
the fluctuating streamwise displacements, the wall-normal
displacements of experiment B span a displacement range
that is twice as large as the range in experiment A (Fig. 7).
Here, the fluctuating wall-normal displacements exceed
1 pixel in magnitude close to the wall, yielding much
better estimates of rv. Near the centerline, the fluctuating
wall-normal displacements have magnitudes between
0.5 and 1 pixel. These displacements are locked toward
1 pixel in case 0B, causing an overestimation of rv in this
region of the flow.

Fig. 12. Inner scaling of mean velocity, U+, versus wall-normal
position, y+. Cases 0A and IIA are included for comparison.
): Case 0B; h: Case IB; s: Case IIB; – – – : Case 0A; —: Case IIA.
(Every other data point is removed for clarity.)

Fig. 13a,b. Profiles of RMS velocity as a function of wall-normal
position. Cases 0A and IIA are included for comparison. a rþu ;
b rþv . ): Case 0B; h: Case IB; s: Case IIB; – – – : Case 0A; —: Case IIA.
(Every other data point is removed for clarity.)
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From this analysis, it appears that the RMS velocities
are more accurately estimated when the displacement
range is larger than when it is smaller. This improvement
occurs because the fluctuating displacements are distrib-
uted over a larger range of pixel values, rendering the
statistics less sensitive to peak locking. In particular, for
experiment A (smaller time delay), many fluctuating
wall-normal displacements have magnitudes less than

0.5 pixels. These smaller displacements are ‘‘locked’’ to-
ward zero displacement, causing an underestimation of the
RMS wall-normal velocity. With a time delay twice as
large, the displacements with magnitudes less than
0.5 pixels are spread toward magnitudes closer to 1 pixel
in experiment B. This broader displacement range plays a
crucial role in the improved accuracy of the experiment B
data, especially the improved accuracy of the case I data

Fig. 14. Ensemble-averaged probability
density functions of fluctuating stream-
wise displacement, u¢MDt, computed from
experiment B data at
a y=0.25h and b y=0.9h. —: Case 0B;
– – –: Case IB; ÆÆÆ: Case IIB

Fig. 15. Ensemble-averaged
probability density functions
of fluctuating wall-normal
displacement, v¢MDt, com-
puted from experiment B data
at a y=0.25h and b y=0.9h.
—: Case 0B; – – –: Case IB; ÆÆÆ:
Case IIB
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(moderate peak locking) as compared to case II (no peak
locking). In particular, this broadening yields far fewer
displacements locked toward zero.

It should be noted, however, that for extremely long
time delays, the velocity fluctuations can be averaged
significantly. Therefore, a limit in the size of the dis-
placement dynamic range exists, beyond which the aver-
aging associated with an excessively long time delay will
degrade the quality of the measured fluctuations. Clearly
this limit is not reached in experiment B since the statistics
for cases IIA and IIB match identically.

5.3
Vorticity
Figure 16 illustrates wall-normal profiles of RMS spanwise
vorticity for all three cases in experiment B, along with the
results from cases 0A and IIA. Cases IB and IIB collapse on
one another (and with case IIA), while case 0B deviates
significantly. However, the deviation noted with case 0B is
not as severe as with case 0A. The improvement seen in the
absolute peak-locking case between experiments A and B
is again attributable to the broader displacement range in
B as compared to A.

5.4
Multi-point statistics
Two-point velocity correlation coefficients computed from
the experiment B data are shown in Fig. 17 for all three
cases. In addition, the results from cases 0A and IIA are
included for comparison. Cases IB and IIB collapse for all
three correlations, just as cases IA and IIA did. In addition,
the agreement between case 0B and cases IB and IIB is
substantially better than it is for case 0A compared to
cases IA and IIA (see Fig. 10). The broader displacement
range appears to reduce the sensitivity of the two-point
correlation coefficients to peak-locking errors. For exper-
iment A, it was found that quu and qvv are sensitive to
severe peak-locking errors, principally because ru and rv

are overestimated. Since ru and rv in experiment B are
more accurately estimated due to the larger displacement
range of the data, quu and qvv are also more accurate,
especially case 0B (absolute peak locking). The streamwise
length scales defined by the widths of the correlations in
Fig. 17 are also more accurately estimated in the absolute
peak-locking case 0B than they are for case 0A.

Deviation in quv is noted between case 0B and cases IB
and IIB. However, at zero separation this deviation is only
10%, compared with over 30% in experiment A. Therefore,
the broader displacement range of experiment B clearly
improves the accuracy of the two-point velocity correla-
tion coefficients, particularly quv.

6
Conclusions
The present study indicates that the mean velocity profile
is the only statistic that is insensitive to peak locking. All
other statistics are found to be sensitive to peak-locking
errors. In particular, since the mean velocity is unaffected
by these influences, the peak-locking errors present in the
total velocity are passed on to the measured turbulent
velocity fluctuations. Therefore, the RMS velocities, the
Reynolds stress, vorticity, and two-point velocity correla-
tion coefficients are all quite sensitive to peak locking,
especially in the most severe of circumstances.

It is clear from the analysis presented herein that the
strongest sensitivity of turbulence statistics to peak-
locking errors occurs when the fluctuating displacements
are small. In particular, it is found that fluctuating dis-
placements less than 0.5 pixels in magnitude are consis-
tently locked toward zero displacement, causing
underestimation of statistics formed from these displace-
ments. Broadening the displacement dynamic range by a
factor of two spreads these displacements closer to a
magnitude of 1 pixel, significantly improving the accuracy
of the statistics. This effect is most notable in statistics
involving the wall-normal velocity component. In wall
turbulence, the wall-normal velocity fluctuations are quite
small compared to the mean flow and a factor of two
smaller than the streamwise velocity fluctuations. The
wall-normal fluctuations are therefore most sensitive to
the influence of the displacement dynamic range.

Therefore, in situations where turbulent fluctuations
are to be measured, great care should be taken to ensure
that peak-locking influences are minimized. When peak
locking cannot be completely suppressed, due to experi-
mental limitations, for example, one should ensure that the
displacements associated with the turbulent fluctuations
are larger than 1 pixel in magnitude. This consideration
appears to be extremely important since data with mod-
erate peak locking (case IB) still yield accurate turbulence
statistics when the magnitude of the displacement fluctu-
ations exceed 1 pixel. However, care must be taken to limit
the size of the displacement range. An excessively large
displacement range produced by an extremely large time
delay can degrade the quality of the measured displace-
ment fluctuations. So, although peak-locking errors may
not affect the turbulence statistics, errors associated with
excessive averaging in the PIV interrogation due to a large
time delay will cause severe underestimation of the

Fig. 16. Profiles of RMS spanwise vorticity as a function of
wall-normal position. Cases 0A and IIA are included for
comparison. ): Case 0B; h: Case IB; s: Case IIB; – – –: Case 0A;
—: Case IIA. (Every other data point is removed for clarity.)
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turbulent fluctuations. Therefore, one must find a balance
between these two competing influences. Such a balance is
achieved between experiments A and B in the present work
since the statistics computed from cases IIA and IIB (no
peak locking) match identically despite a factor of two
difference in time delay.
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