
Scaling up logico-numerical strategy iteration
(extended version)?

David Monniaux1 and Peter Schrammel2

1 CNRS / VERIMAG
2 University of Oxford

Abstract. We introduce an efficient combination of polyhedral analy-
sis and predicate partitioning. Template polyhedral analysis abstracts
numerical variables inside a program by one polyhedron per control lo-
cation, with a priori fixed directions for the faces. The strongest induc-
tive invariant in such an abstract domain may be computed by upward
strategy iteration. If the transition relation includes disjunctions and ex-
istential quantifiers (a succinct representation for an exponential set of
paths), this invariant can be computed by a combination of strategy it-
eration and satisfiability modulo theory (SMT) solving. Unfortunately,
the above approaches lead to unacceptable space and time costs if ap-
plied to a program whose control states have been partitioned according
to predicates. We therefore propose a modification of the strategy itera-
tion algorithm where the strategies are stored succinctly, and the linear
programs to be solved at each iteration step are simplified according to
an equivalence relation. We have implemented the technique in a proto-
type tool and we demonstrate on a series of examples that the approach
performs significantly better than previous strategy iteration techniques.

Keywords: Static analysis, abstract interpretation, strategy iteration,
predicate abstraction

1 Introduction

Program verification for unbounded execution times generally relies on
finding inductive loop (or procedure) invariants. In the abstract interpre-
tation approach, loop invariants are automatically searched within a class
known as an abstract domain. When dealing with numerical variables, it
is common to search for invariants shaped as products of intervals (con-
straints l≤ x≤ u with the program variable x and bounds l, u), convex
polyhedra (constraint system Ax ≤ c with the matrix A, the vector of
program variables x, and the vector of bounds c), or restricted classes of
convex polyhedra such as octagons (constraints ±xi±xj≤c with program

? This work was partially funded by European Research Council (ERC) project “STA-
TOR” and the ARTEMIS VeTeSS project.

ar
X

iv
:1

40
3.

23
19

v1
 [

cs
.L

O
]

 1
0

M
ar

 2
01

4

http://stator.imag.fr/
http://stator.imag.fr/

variables xi, xj and a bound c). Intervals and octagons are instances of
template polyhedra: polyhedra where A is fixed a priori, whereas in the
general polyhedral approach, A is discovered. The restriction to fixed
A reduces the problem to finding suitable values for a fixed number of
bounds c, and even, for certain classes of transitions, minimizing these
bounds using strategy iteration [1] (also known as policy iteration) or
other techniques, thereby producing the least (or strongest) inductive in-
variant in the abstract domain. In contrast, for unknown A the number
of constraints (columns in the A matrix) may grow quickly and is most
often limited by widening heuristics [2].

One common weakness of all these abstract domains is that they rep-
resent only convex numerical properties; it is for instance impossible to
represent |x| ≥ 1 where |x| denotes the absolute value of x. An analyzer
running on

while(...) {
...

if (abs(x) >= 10) { assert(x != 0); ... }
}

will flag a warning on the assertion, because at this point the non-convex
property x ≤ −10 ∨ x ≥ 10 has been abstracted away. In order to relieve
this weakness, some recent approaches [1, 3, 4] advocate convex abstrac-
tions only at a cut-set of all program locations — a subset such that re-
moving all points in this subset cuts all cycles in the control-flow graph,
e.g. all loop heads within a structured program. In between such distin-
guished locations, program executions are exactly represented (or at least
represented more faithfully) as solutions to satisfiability modulo theory
(SMT) formulas. This is equivalent to replacing the original control flow
graph by a multigraph whose vertices are the distinguished nodes and the
edges are the simple paths between the distinguished nodes.

Variants on this basic idea include combinations with invariant in-
ference with widenings [3, 4] and with strategy iteration [1]. With such
approaches, the test if (abs(x) >= 10) is interpreted as the disjunction
x ≤ −10 ∨ x ≥ 10 and the code is analyzed in both contexts x ≤ −10
and x ≥ 10. If n tests are used in succession, the number of cases to
analyze may be 2n, but such methods eschew exhaustive enumeration for
as-needed consideration of paths inside the code through SMT-solving.

There still remains a difficulty: what if disjunctive invariants are needed
at the distinguished nodes? Assume for example, that predicate abstrac-
tion is used to handle programs that contain constructs other than lin-
ear arithmetic, for example, pointers, dynamic data stuctures, non-linear

arithmetic, etc. A similar situation arises in reactive programs for con-
trol applications, where a main loop updates global variables at each
iteration, including Booleans (or, more generally, variables belonging to
a finite enumerated type) encoding “modes” of operation. Such a system
has a single distinguished control point (the head of the main loop), yet,
one wants to distinguish invariants according to the mode of operation of
the system. Assuming modes are defined by the values of the n Boolean
variables, this can be achieved by splitting the loop head into 2n distinct
control nodes and computing one invariant for each of them.

Should we apply a max-strategy iteration modulo SMT algorithm [1]
to these 2n control nodes, its running time would be in the worst case
proportional to 2d2n where d is the number of disjuncts in the arithmetic
formula defining the semantics of the program. Worse, it would construct
linear programming problems with 2n` unknowns, where ` is the number
of rows in the A matrix. While high worst case complexity is not neces-
sarily an objection (many algorithms behave in practice better than their
worst case), constructing exponentially-sized linear programs at every it-
eration of the algorithm is certainly too costly. We thus previously left
this partitioning variant as an open problem [1, §9] [5, §3.5].

Contributions. The main contribution of this paper is an algorithm that
computes the same result as these prohibitively expensive methods pro-
posed in [1, 6], but limits the costs by computing on-the-fly a form of
equivalence between constraint bounds (of which there are exponentially
many) and constructing problems whose size depends on the number of
these equivalence classes. These equivalence classes, in intuitive terms,
distinguish Boolean variables with respect to the abstraction chosen (the
A matrix). This is a novel aspect that distinguishes our approach from
quotienting techniques (e.g. [7]). In contrast to [5] that uses approxima-
tions to scale, we aim at computing the strongest invariant. Finally, we
show the results of an experimental evaluation conducted with our proto-
type implementation that demonstrate the largely improved performance
in comparison to previous strategy iteration techniques.

2 Strategy Iteration Basics

Let us now recall the framework of strategy iteration over template linear
constraint domains [6], reformulating it to the setting of programs with
linear arithmetic and Boolean variables. As explained above, Boolean
variables may be introduced by predicate abstraction or by the encoding

of the control flow as in reactive systems. Similar to [1], this allows us to
represent an exponential number of paths as a single compact transition
formula. We then explain why previous algorithms [1,6] have unacceptable
complexity when instantiated on our exponential number of control nodes.

Notation. We shall often talk both about formal variables appearing in
logical formulas and about individual values they may take, particularly
those obtained as satisfying instances of formulas; if needed, we shall dis-
tinguish values by denoting them x̂, ŷ . . . as opposed to variables x, y,
Variables x1, . . . , xn are denoted collectively as a vector x. When dis-
cussing satisfaction of logical formulas, we shall note (x,y) |= F to mean
explicitly that x,y are free variables of F that should satisfy F .

2.1 Program Model and Abstract Domain

We model a program as a transition system with m rational variables
x = (x1, . . . , xm) ∈ Qm (the numeric state) and n Boolean variables
b = (b1, . . . , bn) ∈ Bn (the Boolean state), where B = {0, 1}. Let I =
(b01, . . . , b

0
n, x

0
1, . . . , x

0
m) = (b0,x0) be the initial state. The transition re-

lation τ is of the form ∃y1, . . . , yE ∈ Q, ∃p1, . . . , pd ∈ B. T where T is a
quantifier-free formula in negation normal form, whose atoms are either
propositional (bi, ¬bi, pi, ¬pi), linear (in)equalities (

∑
αixi +

∑
α′ix
′
i +∑

βiyi ./ c, where the αi, α
′
i, βi and c are rational constants) with ./ ∈

{≤, <,=}, and yi variables to encode nondeterminism;3 the free vari-
ables of τ are x1, . . . , xm, b1, . . . , bn, x

′
1, . . . , x

′
m, b

′
1, . . . , b

′
n where primed

(respectively, unprimed) variables denote the state after (respectively,
before) the transition. Furthermore, we add pi variables to each dis-
junction with non-propositional literals, i.e., x ≤ 3 ∨ x ≥ 6 becomes
(pi ∧ x ≤ 3)∨ (¬pi ∧ x ≥ 6). This encoding is necessary to uniquely iden-
tify each disjunct by a Boolean proposition and extract it from a SAT
model. The free variables of T are thus grouped into b, b′,x,x′,p,y where
(b,x) and (b′,x′) define respectively the departure and arrival states and
p,y stand for intermediate values and choices.

Example. We consider the following running example (a variant of the
classical thermostat model):

3 This limitation to linear (in)equalities may be lifted using, e.g., linearization tech-
niques [8]. For integer values, simple transformations should be performed, e.g.,
x < y to x ≤ y − 1. Floating-point operations may also be relaxed to nondetermin-
istic real operations [9, §4.5].

1 bool e r r o r = 0 , heat on = 1 ;
2 bool fan on = read button () ;
3 r e a l t = 1 6 ;
4 while (1) {
5 r e a l t e = read external temp () ;
6 assume(14<= t e && te <=19);
7 fan on = read button () ? ! fan on : fan on ;
8 i f (! e r r o r && (t<15 | | t >30)) e r r o r = 1 ;
9 e lse i f (! e r r o r && heat on && t >22) heat on = 0 ;

10 e lse i f (! e r r o r && heat on && t<=22) t = (15∗ t + t e)/16 + 1 ;
11 e lse i f (! heat on && t <18) heat on = 1 ;
12 e lse i f (! heat on && t>=18) t = (15∗ t + t e) / 1 6 ;
13 }

This program has the following transition relation T with n = 3
Boolean variables b = (e, h, f) (short for (error,heat on,fan on)), m = 1
numerical variables x = (t), d = 3 path choice variables p = (p0, p1, p2)),
y = (te), and initial states ¬e ∧ h ∧ t = 16:

¬p0 ∧ p1 ∧ p2 ∧ ¬e ∧ e ′ ∧ (h = h ′) ∧ t > 30 ∧ t′ = t ∨
¬p0 ∧ p1 ∧ ¬p2∧ ¬e ∧ e ′ ∧ (h = h ′) ∧ t < 15 ∧ t′ = t ∨
p0 ∧ p1 ∧ p2 ∧¬e ∧ h ∧ ¬e ′ ∧ ¬h ′ ∧ 22 < t ≤ 30 ∧ t′ = t ∨
p0 ∧ p1 ∧ ¬p2 ∧ ¬e ∧ h ∧ ¬e ′ ∧ h ′ ∧t ≤ 22 ∧ 14 ≤ te ≤ 19 ∧ t′ = 15t+te

16 + 1 ∨
p0 ∧ ¬p1 ∧ p2 ∧ ¬h ∧ h ′ ∧ (e = e ′) ∧ 15 ≤ t < 18 ∧ t′ = t ∨
p0 ∧ ¬p1 ∧ ¬p2∧¬h ∧ ¬h ′ ∧ (e = e ′)∧ t ≥ 18 ∧ 14 ≤ te ≤ 19 ∧ t′ = 15t+te

16

The disjuncts stem from lines 9 –13; line 9 produces two path choices.

Abstract Domain. Let A be a `×m rational matrix, with rows A1, . . . ,A`.
4

An element ρ of the abstract domain D] is a function Bn → Q`
with

Q = Q∪{−∞,+∞}. ρ(b) = c means that at a Boolean state b the vector
of numerical variables x is such that Ax≤ c coordinate-wise. Moreover,
we write ρ(b)=−∞ if any coordinate ci=−∞, meaning that the Boolean
state b is unreachable (because Ax≤c is false). We note γ(ρ) the set of
states (b,x) verifying this conditions. Q` is ordered by coordinate-wise
≤, inducing a point-wise ordering v on D]. γ is thus monotone w.r.t. v
and the inclusion ordering on sets of states; note that it is not injective in
general. We denote by ρ(i, b) the i-th coordinate of ρ(b). ρ is said to be
an inductive invariant if it contains the initial state (Ax0 ≤ ρ(b0)) and
it is stable by transitions:
∀b,x, b′,x′. (b,x) ∈ γ(ρ) ∧ (b,x, b′,x′) |= τ =⇒ (b′,x′) ∈ γ(ρ′),

4 One can also make A depend on b1, . . . , bn so as to apply a non-uniform abstraction,
adding minor complication to algorithms and proofs. We chose to describe uniform
abstraction for the sake of brevity and clarity.

otherwise said ∀b,x, b′,x′. ρ(b) 6= ⊥ ∧Ax ≤ ρ(b) ∧ (b,x, b′,x′) |= τ
=⇒ ρ(b′) 6= ⊥ ∧Ax′ ≤ ρ(b′).

The main contribution of this paper is an effective way to compute
the least inductive invariant ρ in this abstract domain with respect to
inclusion ordering.

2.2 Strategy Iteration

Recall that the original strategy iteration algorithm [6] applies to dis-
junctive systems of linear inequalities (of exponential size in d) induced
by the collecting semantics of the program over template polyhedra (see
Equ. (1)). Previous work [1] improves the algorithm by keeping the sys-
tem implicit, only extracting a linear size system at any given time using
SMT solving. Note that τ , after replacing each free Boolean variable by a
Boolean constant, is equivalent to a disjunction of (at most) 2d formulas
of the form ∃y.C where C is a conjunction of non-strict linear inequali-
ties, and d is the number of Boolean existential quantifiers in τ . In both
algorithms, a strategy5 selects one disjunct in C for each template row
i′. Hence, we can use these algorithms in our setting by selecting a dis-
junct for each template row and each Boolean valuation for (b′,p). This
motivates the following definition:

A strategy associates with each Boolean state b′ and each constraint
index 1≤ i′≤` either the special value ⊥, meaning that b′ is unreachable
and denoted by σ(i′, b′) = π(i′, b′) = ⊥, or a pair

(
σ(i′, b′), π(i′, b′)

)
where

σ(i′, b′) ∈ Bn is a Boolean state and π(i′, b′) ∈ Bd gives “path choices”.
Once π ∈ Bd is chosen, the result of substituting T [π/p] is a conjunction
of linear inequalities and a propositional formula (in the variables b, b′);
let Tπ denote the conjunction of these linear inequalities.6

Algorithm. Let us now see how the algorithm iterates until the least induc-
tive invariant is reached. The algorithm maintains, at iteration number
k, a current strategy (σk, πk). Initially, the abstract value ρ0 is ⊥ every-
where save at the initial Boolean state b0, where ρ(b0) = Ax0; σ0 and π0

are ⊥ everywhere. For k ≥ 0, the strategy yields ρk+1 as the least fixed
point µ≥ρkΨπ greater than ρk, Ψπ being an order-continuous operator on
the lattice (Bn × {1, . . . , `})→ Q defined as:

5 The word “strategy” (or “policy”) arises from an analogy between the system of
min-max + monotone affine linear equalities whose least solution yields the least
invariant in the domain [1,6] and the system of min-max + barycentric inequalities
whose least solution is the value of a two-player Markov game.

6 This conjunction corresponds to a merge-simple statement of [1] or to a path of [3,4].

Ψπ(ρ)
4
= (i′, b′) 7→ sup

{
Aix

′ | ∃x,y. Tπ(i′,b′) ∧ (Ax ≤ ρ(σ(i′, b′)))
}

(1)

We explain in §2.3 how to compute this fixed point; let us now see how
σk+1 and πk+1 are obtained from σk and πk, and how termination is
decided [1, §6.5]. Each iteration goes as follows: for all Boolean states

b̂′ ∈ Bn and all b̂ with ρk(b̂) 6= −∞:

1. construct formula T [b̂/b, b̂′/b′], that is, T where variables b and b′

have been replaced by Boolean values b̂ and b̂
′
;

2. conjoin it with constraints Ax ≤ ρk(b) and Aix > ρk(i, b
′), thus

obtaining

T [b̂/b, b̂′/b′] ∧Ax ≤ ρk(B̂) ∧Aix
′ > ρk(i, b̂

′) (2)

3. check whether this formula (in free variables x1, . . . , xm, x
′
1, . . . , x

′
m,

y1, . . . , yE , p1, . . . , pd) is satisfiable;
4. if this formula is satisfiable, ρk does not describe an inductive in-

variant: the satisfying instance describes a transition from a state
(b,x) to a state (b′,x′) such that (b,x) lies within the invariant but

(b′,x′) does not; this solution yields a new strategy πk+1(i, b̂′) = p̂

and σk+1(i, b̂′) = b̂, which improves on the preceding one [1, §6.3];

5. if πk+1(i, b̂′) and σk+1(i, b̂′) are not set by the preceding step, leave

them to the their previous values πk(i, b̂
′) and σk(i, b̂

′); if none have
been updated, this means ρk is the least inductive invariant, thus exit;

6. otherwise, compute ρk+1 = µ≥ρkΨπk+1
and continue iterations.

The main loop of this algorithm enumerates each of the 2(n+d)m2n strate-
gies at most once. Remark the important improvement condition: at every
iteration but the last, Ψπ(ρ) > ρ. Since there is a finite number of strate-
gies that may deem the ρ non-inductive and each of them is chosen at
most once, we are guaranteed to terminate with the least fixed point
(without using any widening) within a finite number of steps.

Example. Let us analyze our running example using the box template
(t,−t)T . Assume the current abstract value7 ρk(i, ēhf) = 16 for i ∈ {1, 2}.
To compute an improved strategy σk+1, πk+1, we have to check all values

of (b̂, b̂′), e.g., (ēhf , ē ′h ′f ′): instantiating Equ. 2 with these values (with
T from our running example and i = 1) gives(

p0 ∧ p1 ∧ ¬p2 ∧ t ≤ 22 ∧ 14 ≤ te ≤ 19 ∧ (t′ = 15t+te
16 + 1)

)
∧
(
t = 16

)
∧
(
t′ > 16

)
7 For better readability, we write, for example, ēhf for the value (0, 1, 1) of (e, h, f).

which is satisfied, for instance, by the model (x̂, x̂′, p̂) = (16, 17, (1, 1, 0)).
Hence, we update the strategy by setting σk+1(1, ēhf) = ēhf and πk+1(1, ēhf) =
(1, 1, 0), which induces

Tπk+1(1,ēhf) = (t ≤ 22 ∧ 14 ≤ te ≤ 19 ∧ (t′ = 15t+te
16 + 1)) .

After having checked all (b̂, b̂′), we can compute the strategy value,
i.e., the fixed point of Ψπk+1

, which updates ρk+1(1, ēhf) to 365
16 in this

case.8 The way this is computed is explained in the next section.

2.3 Computing the Strategy Value

We recall now how to compute the strategy fixed point µ≥ρΨπ [1, §6.4],
under the condition that Ψπ(ρ) ≥ ρ (which is always the case, because of
the way π is chosen).

The first step is to identify the Boolean states b “abstractly un-
reachable”: such b form the least set Z containing all b 6= b0 such that
π(i, b) = ⊥ and stable by: if b′ 6= b0 is such that σ(i, b′) ∈ Z then b′ ∈ Z;
for all b ∈ Z, set ρ(b) := −∞.

Construct a system of linear inequalities in the unknowns vi,b for
b ∈ Bn and 1≤ i≤m, plus fresh variables: for all b′ /∈ Z, for all 1 ≤ i′ ≤ m
such that ρ(i′, b′) < +∞, add the inequalities
•Ajx ≤ vj,σ(i′,b′) for all 1 ≤ j ≤ m (“in departure state invariant”)

•Ai′x
′ ≥ vi′,b′ (“in arrival state invariant”)

• those from the conjunction Tπ(i′,b′) (“obeys the transition relation”)

where variables x and y have been replaced by fresh variables (each dif-
ferent i, b′ has its own set of fresh replacements). ρ(i, b′) is obtained by
linear programming as the maximum of vi′,b′ satisfying this system. This
linear program has solutions, otherwise the strategy σ, π would not have
been chosen; if it has no optimal solution it means that ρ(i′, b′) = +∞.

Note that these O(2nm) linear programs have O((2m+E)2n) variables
and a system of inequalities of size O(2n|T |) where |T | is the size of
formula T . It is in fact possible to replace these O(2nm) linear programs
by two linear programs of size O((2m + E)2n): first, one using the ∞-
abstraction (see [10, §8,9]) to obtain which of the vi′,b′ go to +∞, then
another for maximizing

∑
vi′,b′ restricted to the vi′,b′ found not to be

+∞ by the ∞-abstraction.

8 By maximizing t for any te, we get 15·22+19
16

+ 1 = 365
16

.

3 Our Algorithm

Notice three difficulties in the preceding algorithm: there are, a priori, 22n

SMT-solving tests to be performed at each iteration; the linear programs
have exponential size; and there are at most 2(n+d)2n strategies, thus
a doubly exponential bound on the number of iterations. In intuitive
terms, the first two difficulties stem from the explicit expansion of the
exponential set of Boolean states, despite the implicit representation of
the exponential set of execution paths between any two control (Boolean)
states b and b′, a weakness that we shall now remedy.

3.1 Strategy Improvement Step

The first difficulty is the easiest to solve: the 22n SMT-tests, one for each
pair (b, b′) of control states, can be folded into one single test where the
b and b′ also are unknowns to be solved for.

Note that the structure of ρ, Bn → Q`
, can be viewed as {1, . . . , `} →

(Bn → Q). Hence, we need not store a 2n × ` array of rationals (or in-
finities), but we can implement it efficiently as an array (of size `) of
Mtbdds [11] with the bounds ci,j in the leaves. Assume for a given tem-
plate row i, we have si different bounds ci,j , and denote φi,j the propo-
sitional formula describing the set of Boolean states that map to bound
ci,j . Then, observe that φi,j for 1 ≤ j ≤ si form a partition of Bn (that
is,
∨si
j=1 φi,j is a tautology and each φi,j ∧ φi,k, j 6= k, is unsatisfiable).

We use the notation ρ(i) = {φi,1 → ci,1, . . . , φi,si → ci,si} to represent an
Mtbdd, and ρ(i, b) = ci,j to obtain the bound ci,j for state b for template
row i.

Strategy improvement condition. In Equ. 2, one may replace Ax ≤ ρ(b)
and Aix > ρ(i′, b′) respectively by ψ1 and ψ2:

ψ1
4
=
∧
i

si∨
j=1

φi,j(b) ∧Aix ≤ ci,j (3)

ψ2
4
=

si∨
j=1

φi′,j(b
′) ∧Aix

′ = ci′,j +∆ ∧∆ > 0 (4)

Remark that ψ =def ψ1 ∧ T ∧ ψ2 is satisfiable iff there is a transi-
tion from (b,x) inside the invariant defined by ρ to (b′,x′) outside of
it. The same applies if we replace T in ψ by a slicing or cone of in-
fluence Ti of T with respect to the value of Aix, that is, a formula

Ti such that (∃p1, . . . , pd ∈ B, ∃y1, . . . , yE ∈ Q. T) ∧ A′ix
′ ≥ v and

(∃p1, . . . , pd ∈ B, ∃y1, . . . , yE ∈ Q. Ti) ∧ A′ix
′ ≥ v are equivalent (w.r.t

b,x, b′, v). When T is compiled from a program, such a Ti may be ob-
tained using program slicing. The strategy iteration algorithm progresses
regardless of ∆ as long as ∆ > 0. It is however likely that maximizing
∆ leads to faster convergence [1, p. 26], because there is no backtrack-
ing in max-strategy iteration and hence a locally optimal, i.e., greedy,
strategy cannot be disadvantageous. Maximizing ∆ may be performed by
optimization modulo theory techniques [12–14].

Obtaining a solution b,x, b′,x′,y,p |= ψ enables us to improve the
strategy by setting σ(i, b′) := b and π(i, b′) := p, as in §2.2.

Example. Let us assume the following current abstract value in the anal-
ysis of our running example:

ρ(1) = {¬e ∧ h → 16, e ∨ ¬h → −∞}
ρ(2) = {¬e ∧ h → −16, e ∨ ¬h → −∞}

We build Equ. 2 using Equs. 3 and 4:

ψ = T ∧

(¬e ∧ h ∧ t ≤ 16 ∨ (e ∨ ¬h) ∧ t ≤ −∞
)
∧(

¬e ∧ h ∧ −t ≤ −16 ∨ (e ∨ ¬h) ∧ −t ≤ −∞
)
∧(

¬e ′ ∧ h ′ ∧ (t′ = 16 +∆) ∨ (e ′ ∨ ¬h ′) ∧ (−t′ = −∞+∆)
)
 ∧∆ > 0

This formula is satisfied, e.g., by the model (b̂, b̂′, x̂, x̂′, p̂) = (ēhf , ēhf ,
16, 17, (1, 1, 0)). Hence, we update σ(1, ēhf) := ēhf and π(1, ēhf) :=
(1, 1, 0). We have to repeat this check excluding the above solution to
find other models, e.g., (ēhf̄ , ēhf , 16, 17, (1, 1, 0)).

Improving the strategy this way would however be costly, since we

would have to do it one b̂
′

at a time (by naive model enumeration).

Model generalization. There is however a better way by generalizing from

an obtained model to a set of b̂
′

that can be updated at once: Notice
now that, fixing x̂ and ŷ arising from a solution, ψ[x̂/x, ŷ/y] becomes a
purely propositional formula, whose models also yield suitable solutions
for b, b′,p. Fix b̂ and p̂ from a solution, then the free variables are now

only the b′; then for any solution b̂′ of ψ[x̂/x, ŷ/y, b̂/b, p̂/p], we can set

π(b̂′, i) := p̂ and σ(b̂′, i) := b̂. We can thus improve strategies for whole

sets of b̂
′

at once in nondeterministic systems.

Our strategy improvement algorithm (procedure Improve, Alg. 1)
thus proceeds as follows: it maintains a set U of “already improved”
values of b′, and requests (b, b′,p) by SMT-solving as described above,
with the additional constraint that b′ /∈ U ; if no such solution is found,

Algorithm 1 Improve: Selecting the strategy improvement
1: stable := true
2: for i′ ∈ {1, . . . , `} do
3: U := false // U defines the set of b′ such that π(i′, b′) has been updated.

4: while ¬U ∧
(∧

i

∨si
j=1 φi,j(b) ∧Aix ≤ ci,j

)
∧ Ti′ ∧(∨si

j=1 φi,j(b
′) ∧Aix

′ = ci,j +∆
)
∧∆ > 0 is satisfiable do

5: 〈b̂, x̂, b̂′, x̂′, p̂, ŷ〉 := a model of the above formula (optionally of max. ∆)
6: F := Ti[x̂/x, ŷ/y] ∧ ¬U
7: stable := false
8: while F is satisfiable do
9: 〈b̂1, b̂′1, p̂1〉 := a model of F

10: G := F [b̂1/b, p̂1/p]
11: F := F ∧ ¬G
12: π[i′, G] := p̂ // π[i′, G] := p̂ means “in the mapping b′ 7→ π(i′, b′),
13: σ[i′, G] := b̂ // replace all images of b′ satisfying formula G
14: U := U ∨G // by p̂” (respectively for σ).
15: end while
16: end while
17: end for

Algorithm 2 Iterate: Main strategy iteration algorithm
for i ∈ {1, . . . , `} do
φ1,i := (b = b0); c1,i := Aix

0; φ2,i := (b 6= b0); c2,i := −∞
end for
stable := false
while ¬stable do

Improve
if ¬stable then

Compute-Strategy-Value (see §3.2)
end if

end while

it terminates, having done all improvements, otherwise it generalizes b′

to a whole set of solutions as described above, and improves the strategy
for all these b′. The strategy π, σ and the set U are stored in Bdds.

Example. Let us assume we have the current abstract value
ρ(1) = {¬e ∧ h → 365

16 , e ∨ ¬h → −∞}
ρ(2) = {¬e ∧ h → −16, e ∨ ¬h → −∞}.

Moreover, assume that we have obtained the model of ψ: (b̂, b̂′, x̂, x̂′, p̂) =
(ēhf , ē h̄f , 365

16 ,
365
16 , (1, 1, 1)). Substituting the values of this solution for x

and x′ in formula ψ, we get F = p0 ∧ p1 ∧ p2 ∧ ¬e ∧ h ∧ ¬e ′ ∧ ¬h ′.
Now, we substitute the above values for b and p in F , which gives us
G = ¬e ′ ∧ ¬h ′. We update the strategy σ, π for the whole set of states
satisfying G, i.e., {ē h̄f , ē h̄ f̄ } at once, and we add G to U . Then we

ask the SAT solver again for a model of the formula F ∧ ¬G, which
is unsatisfiable in this example. We continue enumerating the solutions
of ψ, but this time excluding U , i.e., we call the SMT solver with ψ ∧
¬U , which is unsatisfiable in our example. Hence, we have completed
strategy improvement for the first template row. For row 2, we proceed
similarly and obtain the same strategy update. The associated strategy
value computation yields the abstract value ρ:

ρ(1) = {¬e → 365
16 , e → −∞}

ρ(2) = {¬e ∧ h → −16, ¬e ∧ ¬h → −22, e → −∞}.

Lemma 1. Improve terminates in at most exponential time. At the end,
stable is false if and only if the strategy needed updating (otherwise said,
γ(ρk) was not an inductive invariant), in which case σ, π contain the next
strategy σk+1, πk+1.

Proof. Each iteration of the outer (resp. inner) loop removes at least one
solution for b′ from ¬U (resp. F), and there are 2n of them. The updates
to π and σ have been explained in the preceding paragraphs.

Theorem 1. Iterate (Alg. 2) terminates in at most 2(n+d)m2n itera-
tions, with the final ρ being equal to that computed by the algorithm of
§2.2, yielding the least inductive invariant in the domain.

Proof. The correctness of the result ensues from the correctness of the
path-focused strategy iteration approach [1], the correctness of the im-
provement strategy (Lemma 1) and the correctness of the strategy value
computation (proved in §3.2), with the remark that our new algorithm
can be considered an instance of the path-focused iteration scheme: the
difference with the instance described in §2.2 is that we store ρ in an
efficient way and the way we pick the improved strategy, neither of which
matters for correctness.

Strategy iteration terminates in at most as many iterations as there
are possible strategies: here, for each of the 2n states b′ and i-th constraint
(1 ≤ i ≤ m), there are 2n possible choices for σ(i, b′) and 2d choices for
π(i, b′), thus the bound.

3.2 Computing the Strategy Value with Fewer Unknowns

There remains the second difficulty: computing the value of a given strat-
egy, that is, computing ρ(b) for b ∈ Bn, thus solving linear programs with
at least m2n variables [1, §6.4]. We solve this difficulty by remarking that
ρ(i, b) is the same for all b in the same equivalence class with respect

to ∼i: b1 ∼i b2 ⇐⇒ π(i, b1) = π(i, b2) ∧ σ(i, b1) = σ(i, b2). Assuming
b 7→ σ(i, b) and b 7→ π(i, b) are stored as MtBdds (or, equivalently, n
ordinary Bdds for b 7→ σ(i, b) and d for b 7→ π(i, b), each containing a
bit of the image), the equivalence classes are obtained as Bdds using the
reverse images of these functions.

We then apply the algorithm from §2.3, but instead of the whole
set of ρ(i, b) unknowns for b ∈ Bn and 1 ≤ i ≤ m, we only pick one
unknown ci,j per equivalence class; these unknowns define ρ in the form
expected by the strategy improvement step of §3.1. Remark that, if the
equivalence classes are computed as Bdds, it is trivial to turn them into
logical formulas φi,j of linear size w.r.t. that of the Bdd. Notice that

also the∞-abstraction technique [10, §8,9] also applies. Let b̄
i

denote the
equivalence class of b with respect to ∼i; π directly maps from equivalence

classes as π(i, b̄
i
)
4
= π(i, b) (resp. for σ).

Example. Let us assume the current abstract value

ρ(1) = {¬e → 365
16 , e → −∞}

ρ(2) = {¬e ∧ h → −16, ¬e ∧ ¬h → −22, e → −∞}.
Moreover, assume that we have computed the following strategy for the
first template row: σ(1, ē h̄f) = σ(1, ē h̄ f̄) ∈ {ē h̄f , ē h̄ f̄ } and π(1, ē h̄f) =
π(1, ē h̄ f̄) = (1, 0, 0). Then the states ē h̄f and ē h̄ f̄ will be in the same
equivalence class, because both bounds will have the same value in the
strategy fixed point. Hence, we have to generate only one set of con-
straints for both states when solving the LP problem that characterizes
the strategy fixed point ρ.

We finally obtain9

{
ρ(1) = {¬e → 365

16 , e → −∞}
ρ(2) = {¬e ∧ h → −16, ¬e ∧ ¬h → −71

4 , e → −∞}.
This is actually the strongest inductive abstract invariant of our program:
¬e ∧ h ∧ 16 ≤ t ≤ 365

16 ∨ ¬e ∧ ¬h ∧ 71
4 ≤ t ≤

365
16 .

Theorem 2. Let ρ] be the result of the modified strategy evaluation and
ρk+1 = µ≥ρkΨπk+1

be the result of the original strategy evaluation. Then

for all i, b, ρ(i, b) = ρ](i, b̄
i
).

Proof. The original strategy evaluation computes ρk+1 = µ≥ρkΨπk+1
. Re-

mark that ρk+1 is thus the limit of the ascending sequence u0 = ρk,
uj+1 = Ψπk+1

(uj); furthermore, from the definition of Ψπk+1
and the form

of the equivalence classes, for any j ≥ 1, uj(i, b) does not depend on the
choice of b in an equivalence class of ∼i. It follows that the same limit

9 By maximizing −t for any te in t ≥ 18 ∧ 14 ≤ te ≤ 19 ∧ t′ = 15t+te
16

, we get
− 15·18+14

16
= − 71

4
.

is obtained by keeping for each j only one uj(i, b) per equivalence class.
This corresponds to iterating

Ψ]π(ρ)
4
= (i′, b̄′

i′
) 7→ sup

{
Aix

′ | ∃x,y. Tπ(i′,b′) ∧ (Ax ≤ ρ(i′, σ(b̄′
i′

)))
}

(5)

As in §2.3, the modified strategy evaluation computes the least fixed
point ρ] of Ψ]πk+1 greater than (i, b̄

i
) 7→ u1(i, b). But, from the remark

above, this implies that for all (i, b), ρk+1(i, b) = ρ](i, b̄
i
).

3.3 Abstraction Through Limitation of Partitioning

Even though we have taken precautions against unnecessarily large num-
bers of unknowns by grouping “equivalent” Boolean states together, it
is still possible that the number of equivalence classes to consider grows
too much as the algorithm proceeds. It is however possible to freeze them
permanently, for instance to their last sufficiently small value. Only small
modifications to the algorithms are necessary: The strategy value com-
putation (§3.2) remains the same except that the equivalence classes are
never recomputed. Let φi,1, . . . , φi,si denote the propositional formulas (in
b) defining the equivalence classes with respect to constraint number i.
In the strategy improvement step (§3.1) σ(i, j) ∈ Bn (resp. π(i, j)) is now
defined for the index 1 ≤ j ≤ si of an equivalence class with respect to
constraint i.

The correctness proofs stay the same, except that instead of com-
puting the least fixed point in ({1, . . . , `} × Bn) → Q we compute it in(⊔

1,...,`Ei

)
→ Q where Ei is the set of equivalence classes associated

with constraint i; the latter lattice is included in the former.

3.4 Combination with Predicate Abstraction

We have described so far a method for computing template polyhedral
invariants on each element of a partition of the state space according
to the value of Booleans b1, . . . , bn. These Booleans may be replaced by
arbitrary predicates χ1, . . . , χn: it suffices to replace T by T ∧

∧
i(bi ⇔ χi).

3.5 Strategy Iteration with Partitioning is EXPTIME-hard

In preceding work without partitioning [1,15], the single-exponential up-
per bound was shown to be reached by a contrived example program,
and the decision problem associated with the least invariant computation
(“given a template, a transition relation, an initial state and a bad state,

is there an inductive invariant that excludes the bad state”) was shown
to be Σp

2 -complete. We have an nexptime upper bound on the problem.
We will now prove exptime-hardness for the problem with partitioning.

Let Π be an exptime problem. Consider a Turing machine M de-
ciding Π, with a single tape over the alphabet {0, 1} with time bounded
by 2P (n) and finite state in Σ. Let x be an input of size n to M; we are
going to describe a program P of length proportional to P (n) such that
its execution would yield the same result as running M over x. P only
uses Boolean operations for discrete state, and affine linear operations for
continuous state.

LetMx be the Turing machineM where x has been substituted into
the input; |Mx| ' |M|+ |x|. The tape is modeled as a couple of natural
integers (l, r) with 2P (n) bits, where

– l represents the bits strictly to the left of the read-write head, the
2P (n) − 1-th bit representing the bit on the tape just left of the read-
write head, and the least order bit representing the bit on the tape
2P (n) positions left of the head;

– r represents the bits to the right of the read-write head, the 2P (n)−1-
th bit representing the bit on the tape under the read-write head, and
the least order bit representing the bit on the tape 2P (n)− 1 positions
right of the head.

l and r are initialized to 0 (empty tape).
A step of the Turing machine Mx is simulated as follows:

– the bit b under the read-write head is obtained by taking the 2P (n)−1-
th bit of r, by comparing r to K = 22P (n)−1;

– the bit w just to the left of the read-write head is similarly obtained
by comparing l to K;

– the bit b′ to be written to the tape under the head, the direction of
movement of the head and the next state are computed according to
the rules of M;

– if the tape is to be moved to the left, then a parallel update is made:
l := 2(l − wK) and r := r/2 + b′K

– if the tape is to be moved to the right, then a parallel update is made:
r := 2(l − bK) and l := l/2 + b′K

Since there are 2P (n) steps to be simulated, we loop over the simulated
step using a binary counter S with P (n) bits. This loop ends when the
Turing machine under simulation enters a final state.

Note that, in the program, l and r are always natural numbers. This
is because, when we execute l/2 (resp. r/2), the low-order bit of l (resp. r)

is necessarily 0, otherwise it would mean that M would be using more
than 2P (n) bits of tape. Also, the operations wK, bK, b′K are defined not
by non-linear multiplications, but by case analysis over the bits w, b and
b′. All resulting elementary operations are thus linear over the reals.

The last issue to solve is how to create K. We cannot write it as
a constant in the program, because it has 2P (n) bits — the program
would have exponential size. Instead, we prepend to the program K := 1
followed by a sequence of 2P (n) − 1 doublings (K := 2K), implemented
by a loop over binary counter S of length P (n).

We thus obtain a program of length O(P (n)+n) (because of the oper-
ations over binary counter S of length P (n)). It has P (n)+2dlog2 |Σ|e+3
bits of discrete storage (not counting control flow: 3 for b, b′, w, P (n) for
the binary counter S, 2 log2 |Σ|e for implementing the state transition).

Now note the execution of P is fully deterministic. In addition, along
an execution trace (p, S), where p is the control point in P and S the
binary counter, takes distinct values (S is incremented once per loop iter-
ation and p follows control inside the loop). Thus, an interval analysis that
has a different interval for l and r for each value of (p, S) will essentially
simulate the concrete execution of P and obtain an exact result. Such an
interval analysis can thus decide whether P terminates in “accepting” or
“rejecting” answers, and thus whether M accepts or rejects x.

Despite repeated attempts, we have not yet been able to narrow the
interval at proving nexptime-completeness. It is thus possible that worst-
case complexity is actually better.

4 Experiments

We have prototypically implemented the algorithm in the static analyzer
ReaVer [16] (written in OCaml and taking Lustre code as input) us-
ing the LP solver QSOpt Ex10, the SMT solver Yices11 and the BDD
package Cudd12. The implementation makes heavy use of incremental
SMT solving.

Tested variants of the algorithm. We implemented the following variants
of the algorithm to compare their performance:

(n) Naive model enumeration using SMT solving per template row as
explained in the first part of §3.1. This corresponds to updating π

10 version 2.5.6, http://www.dii.uchile.cl/~daespino/ESolver_doc/main.html
11 version 1.0.33, http://yices.csl.sri.com/
12 version 2.4.2, http://vlsi.colorado.edu/~fabio/CUDD/

http://www.dii.uchile.cl/~daespino/ESolver_doc/main.html
http://yices.csl.sri.com/
http://vlsi.colorado.edu/~fabio/CUDD/

and σ in Alg. 1 using the model obtained in line 5 (G = (b′ = b̂
′
))

without doing lines 6 to 11 and 15.
(t) Enhancement of (n) by trying to reapply successfully improving mod-

els to other template rows.
(s) Symbolic encoding of template rows and model enumeration over the

whole template at once, i.e., the loop in line 2 is omitted because the
template row i′ becomes part of the SMT formula to be solved for in
line 4, and is then retrieved from the model returned in line 5.

(g) Alg. 1 with generalization as described in §3.1, but without the inner
iterations (i.e., without lines 7 to 9 and 15) that search for models of
the purely propositional formula F . Hence, (g) obtains the models to
be generalized from the SMT formula in line 4 only.

(m) Alg. 1 as given.

All these variants reduce the number of unknowns in the LP problem using
equivalence classes (see §3.2). Furthermore, we used an implementation
of the original max-strategy algorithm [6] (GS07), and the improvements
using SMT solving proposed in [15] (GM11). Note that these latter two
algorithms need to enumerate O(2n) control states (where n is the num-
ber of Booleans in the recurrent state). The difference between GS07
and GM11 is essentially that, for each template row, the former tests all
strategies to find an improvement, whereas the latter asks the SMT solver
to find an improving strategy in the disjunction of available strategies.

It is important to note that all these variants of the algorithm return
the same invariants, i.e. the strongest invariants in the domain Bn → A
where A is a given template abstract domain. The only difference is the
way the strategy improvement is computed.

Comparisons. We performed two kinds of comparisons:13

1. We compared the efficiency of various variants of the max-strategy
improvement algorithm. This comparison was conducted on a set of
48 small benchmarks of increasing size derived from 1-, 2-, and 3-
dimensional array traversals by duplicating functionality and adding
Boolean variables. We ran these experiments with box and octagonal
templates and a timeout of 5 minutes.

2. We compared the max-strategy improvement algorithm with standard
forward analysis with widening and with abstract acceleration [17,18]
(both using widening after two iterations and applying two descending
iterations) on reactive system models (traffic lights [19], our thermo-

13 The examples and detailed experimental results can be found on http://www.cs.

ox.ac.uk/people/peter.schrammel/reaver/maxstrat/.

http://www.cs.ox.ac.uk/people/peter.schrammel/reaver/maxstrat/
http://www.cs.ox.ac.uk/people/peter.schrammel/reaver/maxstrat/

 0.01

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

a
n
a

ly
s
is

 t
im

e
 (

s
)

number of benchmarks

[GS07]
[GM11]

n
t
s
g
m

Fig. 1. Comparison of various variants of the max-strategy improvement algorithm.
All these algorithms compute the same invariant.

stat, car window controller [20], and drug pump [21]), again deriving
the more complex variants 2 and 3 by adding and duplicating function-
ality (e.g. branching multiple drug pumps to a patient and checking
the concentration in the blood).

Results. The first comparison (see Fig. 1) shows that the various variants
of the algorithm behave quite differently in terms of runtime: The GM11
improvement is on average 22% faster than the original algorithm. (t)
and (s) scale better than (n). It is interesting to observe that (t) and (s)
perform similarly although their algorithms are very different. The most
important optimization of the strategy improvement algorithm proposed
in this paper is the generalization step which makes it scale several orders
of magnitude better than the other variants, because it avoids naive model
enumeration. The results indicate that the full Alg. 1 (variant (m)) is
slower than the variant (g) without the innermost iterations. A possible
explanation for this is that as soon as all models have been enumerated,
(m) has to confirm unsatisfiability by checking both F ∧¬G and ψ∧¬U .

However, a broader evaluation is necessary to come to definite con-
clusions since the structure of the benchmarks is quite simple.

The results of the second comparison (see Table 1) indicate that max-
strategy iteration is able to compute better invariants than techniques
relying on widening in the same abstract domain. We emphasize again
that all four max-strategy iteration algorithms in Table 1 compute iden-
tical invariants. An open problem w.r.t. all template-based analysis tech-
niques is however the generation of good templates. For our experiments,
we have chosen the weakest of the standard templates (boxes, zones, oc-

size previous algorithms this paper std. abstr.
vars CFG GS07 [6] GM11 [15] g s analysis accel.

dom b n bi ni lc ed time p time p time p time p time p time p

Traffic 1 B 6 6 0 0 18 61 2.16 X 2.10 X 2.33 X 2.16 X 1.22 X 0.43 X
Traffic 2 Z 6 8 0 0 18 151 122 X 114 X 108 X 97.0 X 3.49 2.86*
Traffic 3 Z 8 8 1 0 50 619 674 X 640 X 357 X 329 X 22.1 19.2*
Thermostat 1 B 4 3 0 2 6 15 0.36 X 0.32 X 0.28 X 0.26 X 0.82 0.85
Thermostat 2 B 6 5 0 4 18 145 16.8 X 15.1 X 3.44 X 3.23 X 26.6 30.4
Thermostat 3 B 8 7 0 6 66 1357 720 X 715 X 66.5 X 61.9 X 674 908
Window 1 O 9 5 5 0 21 120 109 X 102 X 70.7 X 73.4 X 4.57 4.70
Window 2 O 11 5 6 0 45 452 394 X 372 X 189 X 286 X 18.57 23.5
Window 3 O 13 5 7 0 81 1388 1412 X 1220 X 242 X 697 X 70.2 93.5
DrugPump 1 B 4 10 4 1 6 231 92.6 X 90.3 X 6.05 X 4.55 X 210 120
DrugPump 2 B 7 12 8 1 34 11201 out of memory 149 X 95.5 X timeout > 1800
DrugPump 3 B 10 14 8 1 146 112561 out of memory 1019 X o.o.mem. timeout > 1800

Table 1. Comparison of max-strategy iteration with standard analysis approaches
(dom. . . domain used: boxes (B), zones (Z), octagons (O); number of variables: Boolean
(b), numerical (n), Boolean and numerical inputs (bi, ni); number of locations (lc) and
edges (ed) of the control flow graph (CFG); analysis time in seconds; property proved
(p); fastest in bold). (* computed with octagons, because zones are not available)

tagons) that can express the required invariant. Strategy iteration is in
general the more expensive technique, but due to our improvements the
performance is pushing forward into a reasonable range. These results
also show that variant (g) – although a bit slower than (s) in many cases
– seems to scale best.

5 Related Work

It has long been recognized that it is a good idea to distinguish states
according to Boolean variables or arbitrary predicates (as in predicate
abstraction). Yet, taking all Boolean variables into account tends to be
unbearably expensive: checking the reachability of a state for a purely
Boolean program is pspace-complete, in practice often solved by con-
structing a Bdd describing reachable states as the result of a least fixed
point computation, which may have exponential size.

While it is possible to encode finite-precision arithmetic into a Boolean
program, the large number of Boolean variables and the complicated tran-
sition structure generally result in poor performance, thus the incentive
to separate arithmetic from “true” Booleans and other small enumerated
types. Note that this may not be so obvious for languages such as C or in-
termediate representations such as LLVM bitcode, where such types may
be encoded as integers; a pre-analysis may be necessary [22].

Even if the number n of Boolean variables has been suitably reduced,
distinguishing all combinations may be too costly. Various heuristics have
therefore been proposed so as to partition Bn into a reasonably small num-
ber of subsets [23]. Relations between the Boolean and numerical states
are only kept w.r.t. these equivalence classes [5]. Combining the latter
technique with the method presented in this paper to limit partitioning
would certainly improve efficiency, however, to the detriment of precision
of the obtained invariant which strongly depends on the choice of a clever
partitioning heuristics.

Early work in compilation and verification of reactive systems [7] advo-
cated quotienting the Boolean state space according to some form of con-
crete bisimulation. In contrast, we compute coarser equivalences accord-
ing to per-constraint abstract semantics. In the industrial-strength ana-
lyzer Astrée, static heuristics determine reasonably small packs of “re-
lated” Booleans and numerical variables, such that the values of the nu-
merical variables are analyzed separately for each Boolean valuation [24,
§6.2.4] In contrast, our equivalence classes are computed dynamically and
per-constraint.

Disjunctive invariants are related to the partitioning approach; in
both cases the invariant is a disjunction C1 ∨ · · · ∨ Cd where Ci are sim-
pler invariants (typically, conjunctions of certain types of literals), but in
the disjunctive invariant approach the Ci may overlap (that is, not have
pairwise empty intersection). In such a system, union (as at control merge
points) may be implemented by simple concatenation of the disjunctions,
but this quickly leads to a blowup; instead a criterion could be used
to merge those Ci, e.g., of which the abstract union is actually exact;
a similar problem occurs with widening operators [25]. An alternative,
which bears some limited resemblance to our strategy-based approach,
is to build a map σ meaning that disjunct Ci flows through path π into
disjunct Cσ(i,π) [3].

The strategy iteration we have applied proceeds “upward”, by suc-
cessive under-approximations of the least inductive invariant inside the
domain converging to it in a finite number of iterations; strategies cor-
respond to paths inside the program, which map to “max” operators in
a high-level vision of the problem. There also exists “downward” strat-
egy iteration, where strategies correspond to “min” operators (tests in-
side the programs and internal reductions of the abstract domain): it-
erations produce successive over -approximations of the least inductive
invariant [26,27], to which convergence is ensured in some cases. A bonus
of such an approach is that each iteration produces an over-approximation

of the least inductive invariant inside the domain, which may be used to
prove safety properties without having to wait for convergence. Sadly, it
does not seem to be easily adapted to approaches based on SMT solv-
ing, since the SMT formulas would contain universal quantifiers, which
greatly complicates their solving.

Recently, a tool for optimization modulo theory was presented [14].
We plan to test the variant of our algorithm maximizing ∆ (see §3.1)
with the help of this tool.

6 Conclusion

We have proposed a method for computing strongest invariants in lin-
ear template domains when the control states are partitioned according
to n Booleans or arbitrary predicates, thereby producing a combination
of predicate abstraction and template polyhedral abstraction. In accor-
dance with preceding works [1, 3, 4], it traverses loop-free parts of the
control graph without need for intermediate abstraction, thus improving
the precision. Our method performs strategy iteration, and dynamically
partitions the states according to an equivalence relations depending both
on the current abstraction at each step. The final result is optimal in the
sense that it is the strongest invariant in the abstract domain, which
a naive algorithm would obtain in at least exponential time and space.
While an upper bound on the number of equivalence classes in our algo-
rithm is also exponential n, it can be limited arbitrarily, with some loss
of precision. The upper bound on the number of iterations is doubly ex-
ponential in n. We have shown experimental results that demonstrate the
significant performance impact of the various optimizations we have pro-
posed and the ability to compute more precise invariants in comparison
to widening-based techniques.

References

1. Gawlitza, T.M., Monniaux, D.: Invariant generation through strategy iteration in
succinctly represented control flow graphs. Logical Methods in Computer Science
(2012) Journal version of an article in ESOP 2011.

2. Halbwachs, N., Proy, Y.E., Roumanoff, P.: Verification of real-time systems using
linear relation analysis. Formal Methods in System Design 11 (1997) 157–185

3. Henry, J., Monniaux, D., Moy, M.: Succinct representations for abstract interpre-
tation. In: Static analysis (SAS). Volume 7460 of LNCS. (2012) 283–299

4. Monniaux, D., Gonnord, L.: Using bounded model checking to focus fixpoint
iterations. In: Static analysis (SAS). Volume 6887 of LNCS. (2011) 369–385

5. Schrammel, P., Subotic, P.: Logico-numerical max-strategy-iteration. In: VMCAI.
Volume 7737 of LNCS. (2013) 414–433

6. Gawlitza, T.M., Seidl, H.: Precise relational invariants through strategy iteration.
In: Computer Science Logic. Volume 4646 of LNCS. (2007) 23–40

7. Bouajjani, A., Fernandez, J.C., Halbwachs, N., Raymond, P.: Minimal state graph
generation. Sci. Comput. Program. 18 (1992) 247–269

8. Miné, A.: Weakly relational numerical abstract domains. PhD thesis, École Poly-
technique, Palaiseau, France (2004)

9. Monniaux, D.: Automatic modular abstractions for template numerical con-
straints. Logical Methods in Computer Science (2010)

10. Gawlitza, T.M., Seidl, H.: Solving systems of rational equations through strategy
iteration. ACM Trans. Program. Lang. Syst. 33 (2011) 11:1–11:48

11. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35 (1986) 677–691

12. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization prob-
lems. In Biere, A., Gomes, C.P., eds.: SAT. Volume 4121 of LNCS. (2006) 156–169

13. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) cost functions. In:
IJCAR. Volume 7364 of LNCS. (2012) 484–498

14. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with SMT solvers. In: POPL, ACM (2014) 607–618

15. Gawlitza, T.., Monniaux, D.: Improving strategies via SMT solving. In: ESOP.
Volume 6602 of LNCS. (2011) 236–255

16. Schrammel, P.: Logico-Numerical Verification Methods for Discrete and Hybrid
Systems. PhD thesis, Université de Grenoble (2012)

17. Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear rela-
tion analysis. In: Static analysis (SAS). Volume 4134 of LNCS. (2006) 144–160

18. Schrammel, P., Jeannet, B.: Applying abstract acceleration to (co-)reachability
analysis of reactive programs. J. of Symb. Comp. 47 (2012) 1512–1532

19. Bonakdarpour, B., Kulkarni, S.S., Arora, A.: Disassembling real-time fault-tolerant
programs. In: EMSOFT, ACM (2008) 169–178

20. Schrammel, P., Melham, T., Kroening, D.: Chaining test cases for reactive system
testing. In: ICTSS. Volume 8254 of LNCS. (2013) 133–148

21. Sankaranarayanan, S., Homaei, H., Lewis, C.: Model-based dependability analysis
of programmable drug infusion pumps. In: FORMATS. Volume 6919 of LNCS.
(2011) 317–334

22. Jeannet, B., Sotin, P.: Inferring effective types for static analysis of C programs.
Elec. Notes in Theoretical Comp. Sci. 288 (2012) 37–47

23. Schrammel, P., Jeannet, B.: Logico-numerical abstract acceleration and application
to the verification of data-flow programs. In: Static analysis (SAS). (2011) 233–248

24. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI, ACM
(2003) 196–207

25. Bagnara, R., Hill, P.M., Zaffanella, E.: Widening operators for powerset domains.
Int. J. on Software Tools for Technology Transfer 8 (2006) 449–466

26. Gaubert, S., Goubault, E., Taly, A., Zennou, S.: Static analysis by policy iteration
on relational domains. In Nicola, R.D., ed.: ESOP. Volume 4421 of LNCS. (2007)
237–252

27. Sotin, P., Jeannet, B., Védrine, F., Goubault, E.: Policy iteration within logico-
numerical abstract domains. In: ATVA. Volume 6996 of LNCS. (2011) 290–305

	Scaling up logico-numerical strategy iteration(extended version)

