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Abstract

At the heart of today’s information-explosion problems are issues involving semantics, mutual understanding,
concept matching, and interoperability. Ontologies and the Semantic Web are offered as a potential solution, but
creating ontologies for real-world knowledge is nontrivial. If we could automate the process, we could significantly
improve our chances of making the Semantic Web a reality. While understanding natural language is difficult,
tables and other structured information make it easier to interpret new items and relations. In this paper we
introduce an approach to generating ontologies based on table analysis. We thus call our approach TANGO (Table
ANalysis for Generating Ontologies). Based on conceptual modeling extraction techniques, TANGO attempts to
(i) understand a table’s structure and conceptual content; (ii) discover the constraints that hold between concepts
extracted from the table; (iii) match the recognized concepts with ones from a more general specification of related
concepts; and (iv) merge the resulting structure with other similar knowledge representations. TANGO is thus a
formalized method of processing the format and content of tables that can serve to incrementally build a relevant
reusable conceptual ontology.

Keywords: ontology, table understanding, ontology generation, semantic web

1. Introduction

The exponential increase in new knowledge that characterizes our modern age of infor-
mation technology precludes depending solely on individual effort to keep up with new
information. We must therefore develop new ways of “keeping up,” and we must develop
them quickly. The Semantic Web [3] offers a promise that we can “keep up” by allowing
software agents to roam in cyberspace in our behalf, where they can gather information of
interest and synergistically assist us in decision making and in negotiating for our wants
and desires. This ideal, however, relies on agents being able to find and manipulate useful
information, which, in turn, relies on having an abundance of ontologically annotated data.

Unfortunately, ontologically annotating information repositories is nontrivial. If we could
automate the process, or at least make the process semiautomatic, we could significantly
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improve our chances of making the Semantic Web a reality. In this vision paper, we propose
and describe a unified framework for ontology generation from tables grounded on previous
work that meets this challenge.

Motivated by our belief that inference about unknown objects and relations in a known
context can be automated, we describe an information gathering engine that assimilates and
organizes knowledge. While understanding context in a natural language setting is difficult,
structured information such as tables' makes it easier to interpret new items and relations.
We organize the new knowledge we gain from “understanding” tables as an ontology and
thus we call our information-gathering engine TANGO (Table ANalysis for Generating
Ontologies) [45].

Our approach to ontology generation can be considered as semiautomated, applied
“ontological engineering” [38]. However, instead of humans collaborating to design an
ontology, we enable tables to “collaborate” to design an ontology. In a sense, this is the
same because TANGO assembles information from specific instances of human-created
tables.

We present the details of our vision for TANGO as follows. In Section 2 we describe
the basics of our approach to automated knowledge gathering. For illustration we use the
domain of geopolitical facts and relations, where relevant empirical data is widely scattered
but often presented in the form of tables. Using this domain, we illustrate the specifics of
our ideas in: Section 3, where we show that most semi-structured, factual data is table-
equivalent; Section 4, where we show how to discover ontologies from tables; Section 5,
where we show how to discover mappings between ontologies; and Section 6, where we
investigate how to merge ontologies. Section 7 describes potential applications where the
results of this work could make a significant impact, particularly as related to the Semantic
Web. We make some concluding remarks in Section 8.

2. Ontology generation approach

Our table analysis approach to ontology generation addresses the principled creation of
ontologies based on the content of canonicalized tables. TANGO operates in four steps:

1. Recognize and canonicalize table information.

2. Construct mini-ontologies:> from canonicalized tables.

3. Discover inter-ontology mappings.

4. Merge mini-ontologies into a growing application ontology.

We will describe these steps in the following sections. First, though, some general remarks
on knowledge sources are necessary.

In support of these four steps TANGO relies on auxiliary information. This auxiliary
information includes dictionaries and lexical data (including WordNet [22], natural lan-
guage parsers, and data frames [14], which are similar in intent to the base knowledge for
ontologies proposed in [44].
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We are creating our own data frame library. In essence, each data frame in the library
encapsulates the essential properties of one of the common data formats in the real world
such as dates, currencies, numbers, percentages, weights, measures, and so forth. A data
frame extends an abstract data type to include not only an internal data representation and
applicable operations but also detailed representational and contextual information that
allows a string that appears in a text document to be classified as belonging to the data
frame. Data frames can be thought of as recognizers that help us associate unstructured data
with common concepts. Thus, for example, a data frame for a longitude/latitude location on
the earth’s surface has regular expressions that recognize all forms of longitude and latitude
values and regular expression recognizers for keywords such as “lon.”, “lat.”, “degrees
north”, “degrees east”, and “position”.

Given the data frame library and other auxiliary information mentioned above, we begin
with the first step: recognize and canonicalize table information. We illustrate this step in
the following section.

3. Table recognition and canonicalization

Although many consider the idea of a table to be simple, a careful study (e.g. [30]) reveals
that the question “What constitutes a table?” is indeed difficult to answer. As only two of
thousands of examples, does the information in Figure 1 constitute a table? What about the
information in Figure 2?

We have chosen to define a table indirectly through information canonicalization. Work-
ing backwards, we first consider relations in a relational database to be tables in a canonical
form. Using a standard, formal definition of a relational database table [32], we can define
a canonical table as follows. A schema for a canonical table is a finite set {L, ..., L,}
of label names or phrases, which are simply called /abels. Corresponding to each label L;,
1 <i < n,isasetD;, called the domain of L;. Let D = D, U ... U D,,. A canonical table
T with table schema S is a set of functions T = {1, ..., t,,} from S to D with the restriction
that for each functionr € T, t(L;) e D;, 1 <i <n.

World Population

ort by pulation
World Population 6,157,400,560 (July 2001 est)

Afganistan 26,813,057 (Juby 2001 est.] Religions: Sunni Muslim 345, Shi'a Muslim 15%, other 13

Albania 3,510,484 [July 2001 est.) Religions: Muslim 70%, Albanian Orthodox 20%, Roman Catholic 10%

Algeria 31,736,053 [July 2001 est.) Religions: Sunni Muslim (state religion) 99%, Christian and Jewish 1%

Angola 10,366,031 (July 2001 est.) Religions: indigenous beliefs 47%, Roman Catholic 38%, Protestant 15% (1993 ast.]
Argentina 37,384,816 [July 2001 est.) Religions: nominally Roman Catholic 52% (less than 20% practicing), Protestant 2%,
Jewish 2%, other 4%

Arrmanis 3 27 400 [ ks 20000 act | Balisians: Armanian Nrthaday QA%

-t

-

Figure 1.  Partial page of world religious populations [12].
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As is common for relational databases, we often display tables in two dimensions. When
we display a table two dimensionally, we fix the order of the labels in the schema for
each function and factor these labels to the top as column headers. Each row in the table
constitutes the domain values for the corresponding labels in the column headers. Thus, for
example, we can display the canonical table {{(4, 1), (B, 2), (C, 3)}, {(4, 4), (B, 5), (C,
6)}} as follows.

A B C
3
4 6

Displayed in this form, a canonicalized table is simply called a table. Whether the
original information should be called a “table” may be debatable. To avoid the argument,
whenever there may be doubt (e.g. Figures 1 and 2), we will refer to the information as
table-equivalent data.

When we canonicalize the table-equivalent data in Figure 1, we obtain Table 1.3 To
canonicalize the table-equivalent data in Figure 2 to obtain Table 2, we first recognize that
the data is split across many web pages; each page has the same data but for a different
country. Thus, each page is itself a function from the labels, which are phrases on the left
composed with the sub-label phrases on the right, to domain values, which are non-label

People Afghanistan

Population: (1] ] [
28,717,213 (July 2003 est.)
Age structure: [[] []
(0-14 years: 41 8% (male 6,123,971, female 5,868,013)

15-64 years: 55.4% (male 3,240,743; female 7,671,242)
6.5 years and over: 2.8% (male 427,710, female 385,534) (2003 est)

Median age: [ []

total: 18.9 years

wmale: 19.1 years

fermale: 18.7 years (2002)
Fopulation growth (1] []

rate:
3.38%

note: this rate does not take into consideration the recent war and its continung wopact
(2003 est)

Birth rate: (11 [7] (mn
40.63 births/1,000 population (2003 est.)

Deathrate: (11 7] Mmn
17 15 deaths/1,000 population (2003 est)

Natr miaratian 771 T

Figure 2.  Partial page from people in the 2003 CIA World Factbook [49].
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Table 1.  Partial canonicalized table for world religious populations [12].

Religion
Population Albanian Roman Shi’a Sunni
Country (July 2001 est.)  Orthodox Muslim Catholic Muslim Muslim  Other
Afghanistan 26,813,057 15% 84% 1%
Albania 3,510,484 20% 70% 10%

Table 2. Partial canonicalized table for people in the 2003 CIA World Factbook [49].

Median age (2002)
Population Population growth
Country (July 2001 est.) Total Male Female rate (2003 est.)
Afghanistan 28,717,213 18.9 years 19.1 years 18.7 years 3.38%x*
Albania 3,582,205 26.5 years 24.8 years 28.1 years 1.03%

*Note: this rate does not take into consideration the recent war and its continuing impact

values on the right. In addition, there are explanatory comments, which we can standardize
as footnotes.

So, how can we determine whether we have table-equivalent data, and how can we
turn table-like information into canonicalized tables? Since we have defined a table in-
directly and by construction, we only need to answer the second question. If we can
turn semi-structured information into a canonicalized table, we can declare that the
semi-structured information is table-equivalent data and that the canonicalized table is a
table.

There is a spectrum of cases to be considered. At the one extreme, we may already have
information presented as a canonicalized table. All relational database tables, for example,
are canonicalized tables, and many tables on the web appear essentially in canonicalized
form. Other web tables, however, pose problems such as tables displayed piecemeal, tables
spanning multiple pages, tables with no <tabel> tag, folded tables, tables with factored
rows, tables with linked subtables, and table rows with additional linked row values, all
of which we have worked with in previous research [20] related to data extraction from
tables.* Some tables, more difficult to interpret, include features such as tables nested
within table rows, folded table rows, and tables with both column and row headings. Table-
equivalent data that does not have a typical two-dimensional layout is more difficult, but
we have experimented with techniques to interpret them. Using ideas developed in [20],
for example, we can distinguish label text versus value text from the World Factbook in
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Table 3. Preliminary table generated from Figure 1.

Parenthesis Same char
Char string  Num string data string Combined data Combined data Combined data

Afghanistan 26,813,057 (July 2001 est.) Religions: Sunni Muslin ~ Shi’a Muslim 15% Other 1%
84%

Albania 3,510,484 (July 2001 est.) Religions: Muslim 70% Albanian Roman
Orthodox 20% Catholic 10%

Figure 2 by comparing the pages—the label text stays constant from page to page whereas
the value text changes.

As an example of how TANGO interprets tables, we describe the process it uses to
generate canonicalized Table 1 from Figure 1.

Segment Page: TANGO recognizes the different parts of the page. Simple analysis of the
document HTML source indicates that there are two main regions in the document. One is
the table data as indicated by <table> and </table> which encapsulate the records
for each of the countries. The second part is everything else. Though often indicative of a
table, we note that neither the presence nor absence of <table> and </table> tags
dictates the presence nor the absence of a table. It is possible, for example, to create the
same structure for Figure 1 using itemization tags such as <li> and </1i>.

Identify Columns: Analysis of patterns using techniques described in [11] leads TANGO
to the segmentation shown in Table 3. Recognizing that there are common patterns in
records, TANGO can extract different columns for this table. For instance, TANGO can
recognize that there is a character string (i.e. a country), followed by a number string (i.e. a
population), followed by a mixed character and number string in parentheses, followed by
the string “Religions:”, followed by a comma-separated combination of character strings
(i.e. areligion) and a value (i.e. a percentage).

Apply Data Frames: Using our data frames, TANGO recognizes that the strings in Column
1 are country names; thus TANGO names the first column “Country”. WordNet specifies
instances of country names as part of its database. In addition, there are other geopolitical
databases such as http://www.gazeteer.com/, which include names of countries. It is fairly
simple to create data frames that capture lexical information of this nature and then recognize
it as lexical instances of ontological concepts. In other words, the name of countries are
lexical in nature and therefore we use lexical sets in our data frames to recognize them
as instances of concepts in our ontology. We are making a trade off between conceptual
information and lexical information and it makes more sense to put lexical information in a
lexicon as opposed to the ontology. Our data frame based approach allows us to do this in a
simple, but powerful manner. Further TANGO recognizes percentages, which incidentally
add up to 100% in each record. Even in the absence of a data frame for recognizing religion
names, TANGO can detect the pattern that a string (often the same string) precedes each
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Table 4.  Second preliminary table generated from Table 3.

Albanian
Same char Ortho- Roman Shi’a Sunni
Country Num String Paren. data string dox Muslim Catholic Muslim Muslim other
Afghanistan 26,813,057  (July 2001 Religions: 15% 84% 1%

est.)

Albania 3,510,484 (July 2001 Religions: 20% 70% 10%
est.)

value, which leads to the inference that the character strings should be promoted as column
names. This process results in preliminary Table 4.

Apply WordNet heuristics: Table 4 can be further canonicalized by applying other tech-
niques. In this case TANGO recognizes that the 4th column consistently shows the same
item, namely “Religions:”. Using WordNet TANGO recognizes that the labels for Columns
5 through 10 are hyponyms of the Religion concept. This leads it to promote “Religions” to
a parent column for column labels that refer to religions. A similar situation occurs with the
string “(July 2001 est.)” in Column 3. WordNet, however, does not recognize “(July 2001
est.)” as a hypernym for the religion strings. Therefore, TANGO leaves it as is for now.

Apply other heuristics: Next TANGO recognizes, from the table label in Figure 1,
“World Population”, that the table is about population. Since the string “(July 2001 est.)”
also appears in the header of the table near “World Population”, TANGO infers that
“Population” refers to the numbers in Column 2 and that “(July 2001 est.)” is part of the
label as well. Table 1 shows the result from this and the previous steps.

In addition to the process described above, it should be noted that we not only canonicalize
the structure of the tables as explained, but we also use data frames to canonicalize the
values. Hence for each common data item we have all values in the same units, and we can
display values with the same (or different) precision, as desired. For example, we can use
meters rather than feet or yards, and we can display population values in (rounded) millions
if we wish.

Table 5.  Partial canonicalized table for geography in the 2003 CIA World Factbook [49].

Country Location description Geographic coordinates

Afghanistan Southern Asia, north and west of Pakistan, east of 3300N, 6500 E
Iran

Albania Southeastern Europe, bordering on the Adriatic Sea 41 00 N, 20 00 E
and Ionian Sea, between Greece and Serbia and
Montenegro
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In discussing the remaining three steps in the subsequent sections, we assume for these
examples that we have all the information from the partial tables in Tables 1 and 2, and
from the partial canonicalized tables’ in Tables 5-8.

4. Construction of mini-ontologies

We have chosen to use OSM [19] for the representation of our ontologies in TANGO
because of the richness this representation affords us.® OSM is an expressive object-
oriented model for system analysis, specification, design, implementation, and evolution
[15]. The structural components of OSM include object sets’ and relationship sets. OSM
supports the abstraction of generalization and specialization because an object set can be a
superset or subset of another object set. Relationship sets support n-ary relationships among
objects sets, whole/part aggregations, and set/member associations. A relationship set also
allows for the definition of cardinality constraints among object sets.

Figure 3 gives a graphical representation of mini-ontologies that capture the conceptual
model instances for our six sample canonicalized tables in Tables 1, 2, 5-8. We refer to a
table-specific ontology as a mini-ontology. It is an ontology because it captures concepts,
relationships, and constraints related to the table. It is a mini-ontology because it does not
expand its concepts beyond the context of the table, which is usually small compared to
typical ontologies.

In the OSM notation,? boxes represent object sets—dashed if displayable (e.g. Population
in Figure 3(b) and Longitude in Figure 3(e)) and not dashed if not displayable because their
objects are represented by object identifiers (e.g. Geopolitical Entity in Figure 3(d)). With
each object set we can associate a data frame to give it a rich description of its value
set. We represent actual objects by labeled dots (e.g. July 2001 in Figure 3(a)). Lines
connecting object sets or object sets and objects are relationship sets; these lines may
be hyperlines (hyperedges in hypergraphs) when they have more than two connections to
object sets (e.g. the relationship set among the attributes Country, Religion, and Percent in
Figure 3(a)). Optional or mandatory participation constraints respectively specify whether
objects in a connected relationship may or must participate in a relationship set (an “o” on a
connecting relationship-set line designates optional while the absence of an “0” designates
mandatory). Thus, for example, the mini-ontology in Figure 3(e) declares that a Place
must have a Name and may (but need not) have an Elevation. Arrowheads on lines specify
functional constraints—for n-ary relationship sets, n > 2, acute versus obtuse angles on
the origin of the arrows disambiguate situations where tuples of two or more tails or heads
form the domain or co-domain in the function. Thus, according to Figure 3(e), a Place has
a single USGS Quad, and Geographic Coordinates and the pair Longitude and Latitude
have a one-to-one correspondence. Open triangles denote generalization/specialization
hierarchies (ISA hierarchies, subset constraints, or inclusion dependencies), so that in
Figure 3(d) Continent, Country, and City are all specializations of Geopolitical Entity
and thus are each themselves geopolitical entities. We can constrain ISA hierarchies by
partition (&), union ( U), or mutual exclusion (4) among specializations or by intersection
( N) among generalizations. Filled-in triangles denote part/whole, part-of, or aggregation
hierarchies.
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July 2003
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Geographic Coordinates
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(e) ()

Figure 3. Mini-ontologies constructed from Tables 1, 2, 5-8.

Based on this representation for mini-ontologies, the construction of mini-ontologies
from tables becomes the process of reverse engineering the tables into conceptual models
(i.e., mini-ontologies). The literature describes many techniques for reverse engineering
relational databases and schemas into conceptual models and entity-relationship models
[9,25,35]. In [21], we introduced an interactive approach for reverse engineering, upon
which we expand further in this paper.

To construct mini-ontologies from tables, TANGO must discover what concepts (object
sets) are involved and how they are related (relationship sets). It must also determine the
constraints that hold over the relationship sets (functional, mandatory/optional participation,
aggregations) and among the object sets (generalization/specialization). It does so by mining
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the table values for constraints such as functional dependencies and inclusion dependencies
[27,34]; by observing mandatory and optional patterns in the data; by using lexicons to find
hypernyms/hyponyms and kind-of relationships among terms; and by using data frames to
recognize values in labels, tables with multiple concept values in a column, and tables with
columns whose values should be split into two or more concepts.

As an example, we obtain the mini-ontology in Figure 3(a) from Table 1 as follows.
Country is a key and appears in a leftmost column, strongly suggesting that it should be the
tail side of functional dependencies. Population depends on Country, but because July 2001
est. has been factored out as a value associated with the attribute of Population, Population
also depends on July 2001 est.. We anticipate the need to use abbreviation dictionaries
along with WordNet, to determine that est. is an adjective for the value July 2001 and drop
it. Thus, we obtain the functional dependency Country, July 2001 — Population and hence
the functional ternary relationship among these three as Table 1 shows. Knowledge from
the data frame library recognizes that the values in the Religion columns are Percent values.
The religions, which either could be object sets that hold percent values or could themselves
be values in a Religion object set, are values since there are many of them (our current
threshold is five). Given that religions are values, we therefore have a ternary relationship
among Country, Religion, and Percent. It is possible, using constraint mining as described
in [27,34], to determine that Country and Religion together functionally determine Percent.

Although creation of the remaining mini-ontologies is similar, there are several interesting
observations we can make.

(1) The features of Table 2 are very similar to the features in Table 1. We therefore process
them in the same way, obtaining the two functional ternaries depending on July 2003
and 2003. This time, however, the Median Age subcategories should be object sets
rather than values because there are fewer than five.

(2) For Figure 3(c), our data frame library helps us recognize the Longitude and Latitude
values and place them pairwise in a one-to-one correspondence with Geographic
Coordinates. Further, since both Country and Geographic Coordinates are keys, they
are in a one-to-one correspondence.

(3) For Figure 3(d), WordNet not only knows about continents, countries, and cities, it also
knows specific continents and some specific countries and cities. WordNet therefore
helps us realize that the unnamed column in Table 6 contains three categories, and it
gives us Object as a common hypernym for the name of the generalization. Further,
recognition that Object is a common hypernym for thousands of terms would prompt
an IDS (Issue/Default/Suggestion) statement [4] raising the Issue that the term Object
is likely to be far too general, stating that the Default is to do nothing, and making
a Suggestion that the user choose a more meaningful name. We assume that the user
follows the suggestion and chooses Geopolitical Entity as the name.

(4) For Figure 3(e), natural language processing helps us recognize that the column in
Table 7 with label Type contains instances that represent different concepts, namely
City|Town, Lake, Reservoir and Mine. Since each Place is one of these concepts,
each of which has a Name, we make Place a generalization of these concepts and
then factor out Name from each concept and associate it with Place. Our data frame
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&)

Table 6. Partial canonicalized table for
largest populations [48].

Population
Asia 3,674,000,000
Africa 778,000,000

New York City, New York 8,040,000
Los Angeles, California 3,700,000

Mumbai, India 12,150,000
Buenos Aires, Argentina 11,960,000

China 1,256,167,701*
India 1,017,645,163*

*January 15, 2000

Table 7. Partial canonicalized table for US topographical maps [46].

Place Type Elevationx USGS Quad Lat Lon
Bonnie Lake reservoir unknown Seivern 3372N 8142W
Bonnie Lake lake unknown Mirror Lake 4071 N 110 88 W
New York town/city unknown Jersey City 4071 N 7401 W
New York town/city 149 meters Leagueville 3217N 9567 W
New York mine unknown Heber City 4062 N 11149 W

*Elevation values in this table are approximate, and often subject to a large degree of error. If in doubt,
check the actual value on the map

library recognizes that Lat and Lon are Latitude and Longitude and that together
they are Geographic Coordinates. Table 7 indicates that the Geographic Coordinates
functionally determines Place and also that Place is unique (although Place does not
have unique names). Further, some of the Elevation values are unknown, which lets us
conclude that the Elevation can be optional.

For Figure 3(f), we can recognize and disregard the rank (Pos) numbers in Table 8.
Further, for Figure 3(f), we use natural language processing and WordNet to find
continents, countries, and regions as concepts that are all specializations of Where
Spoken. Further, they tell us that Major is not a noun and therefore not another object
or concept. Constraint mining [27,34] leads to an understanding that the relationship



272 TIJERINO ET AL.

Table 8.  Partial canonicalized table for most spoken languages [40].

Pos Language Speakers Where spoken (major)

1 Mandarin 885,000,000 China, Malaysia, Taiwan

2 Spanish 332,000,000 South America, Central
America, Spain

3 English 322,000,000 USA, UK, Australia, Canada,
New Zealand

from Language to Speakers is functional, that the relationship between Language and
Where Spoken is many-to-many, and that the relationship between Where Spoken and
the Name of each Continent, Region, and Country is one-to-one.

5. Discovery of inter-ontology mappings

Although data, schema and ontology integration has been explored in great depth by many
in the past [6,26,42], this is still an open area of research. Our approach to discovering
inter-ontology mappings is multifaceted, which means that we use all evidence at our
disposal to determine how to match concepts. In using this evidence we look not only for
direct matches as is common in most schema matching techniques [2,13,31,42], but also
for indirect matches [4,50]. Thus, for example, we are able to split or join columns to match
the single Geographic Coordinates column in Table 5 with the pair of columns, Lat and
Lon, in Table 7; we are also able to divide the values in the Place column in Table 7 into
several different object sets. We discuss relevant techniques in the following paragraphs.

Label matching. We have successfully experimented with machine-learned decision trees
over WordNet features such as synonyms,’ word senses, and hypernyms/hyponyms [18]. In
[8] we have also successfully experimented with modified soundex matching, Levenshtein
edit-distance, and longest common subsequence. These modified measures are particularly
useful when name matching is obscured by shortened mnemonic names, abbreviations, and
acronyms, which are sometimes found in table headers.

Value similarity. We [18] and others (e.g. [29]) have successfully used machine-learned
rules to match object sets based on value characteristics such as alphanumeric features
including length, alpha/numeric ratio, space/nonspace ratio and numeric features such as
mean and variance. Gaussian value matching and regression matching allow us to match
imprecise but highly correlated value sets such as population values and import/export
estimates.

Expected values. Using constant value recognizers in data frames, we have shown that
finding and matching expected values in value sets provides significant leverage in schema
matching [20]. Being able to recognize values such as latitudes, longitudes, distances,
dates, times, and percentages helps us match object sets. Data frame recognizers also help
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distinguish labels from values in tables, decompose or compose value strings for matching,
and determine whether value sets are unions or subsets of other value sets [20].

Constraints. In [4] we studied constraints in the context of schema matching. These
include keys in tables (as well as nonkeys), functional relationships, one-to-one correspon-
dences, subset/superset relationships, and optional and mandatory constraints involving
unknown and null values. Others have derived constraints from typed hierarchies [41] and
recurrent subpatterns [47].

Structure. We [50] and others [7,13,31,37] have developed matching algorithms based
on structural context. We have been able to use proximity, node importance as measured
by in/out-degree, and neighbor similarity to help match object sets.

As an illustration of mappings among mini-ontologies, we next describe candidate map-
pings between the mini-ontologies Figure 3.

For mini-ontologies 3(a) and (b), we discover label similarities between concepts in 3(a)
and (b). Indeed, the labels Country and Population in mini-ontology 3(a) match exactly the
same labels in mini-ontology 3(b). Further, examination of the data value characteristics
associated with those concepts in the tables results in reinforcement of the label matches. For
population values, Gaussian matching and regression matching apply nicely. In addition,
we discover that the data frames that match values for concepts in mini-ontology 3(a) are the
same data frames that match to values of corresponding object sets in mini-ontology 3(b),
including the data-frame matches recognizing both July 2001 and July 2003 as dates. These
mappings and matchings strongly suggest that the two ternary Population relationship sets
3(a) from [12] and 3(b) from [49] match. They also suggest an adjustment—replace the
two dates with a Date object set and let the two dates be objects in the object set rather than
individual objects connected to the relationship set.

It is common to find this kind of strong agreement between geopolitical information
sources. This is of interest to us, because when this does happen, it is common for the
information to be presented in different formats as is the case here (see Figures 1 and 2).
The fact that someone apparently took the trouble to reorganize the information in [12] in
a structure different from its source [49] is interesting. It supports the notion that although
we use tables to build ontologies, humans who build tables indirectly collaborate in ways
that TANGO ontologies approximate.

In looking at other mini-ontologies in Figure 3, we discover that the label Country also
matches labels in mini-ontologies 3(c), (d), and (f). We can perform a direct evaluation
of the match for the data associated with the label Country in the mini-ontology 3(c)
because its Country object set is displayable, but for 3(d) and (f) we must do something
different because their Country object sets are non-displayable. In both cases, the evaluation
involves searching for associated object sets that contain names of the non-displayable
object identifiers. In both 3(d) and (f) we find Name associated with a generalization. Further
analysis reveals that many values in the Name object sets match names in the Country object
set in 3(a). Thus we conclude that Country in 3(a) matches with the structural aggregation
through a generalization/specialization of Name and Country in Figures 3(d) and (f).

The label Population in the mini-ontology in Figure 3(a) matches with Population in
Figure 3(d). The date objects, July 2001 and January 15, 2001 | ?, also match in the sense
that the Date data frame recognizes them both. (The “?”, explicitly denoting the possibility
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of a null, is not problematic because when we consider the concept to be a Date, we can
simply make the connection optional.) In order to match the relationship sets in 3(a) and
(d) in which Population appears, however, we have to recognize that Country in 3(d) is a
specialization of Geopolitical Entity and that we can match the non-displayable Country
with the displayable Country using Name associated with Geopolitical Entity as described
above.

In examining potential concept mappings between mini-ontology 3(b) and other mini-
ontologies, we encounter situations between 3(b) and (d) identical to those between 3(a)
and (d). Thus, the resulting mappings are the same.

For mini-ontology 3(c), in addition to the previous matches discovered for the Country
concept with mini-ontologies 3(a), (b), (d) and (f), there is one additional match of interest.
The labels for Geographic Coordinates, Longitude and Latitude match with identical labels
in mini-ontology 3(e). Applying our multifaceted approach we are able to confirm these
matches.

Using similar analyses for mini-ontology 3(d), TANGO is able to recognize that not
only do Country and Population match with concepts in other mini-ontologies as described
above, but that Continent, Country, City, Name, and Geopolitical Entity also have potential
matching concepts in other mini-ontologies. The labels of the non-displayable concepts
Continent and Country match identically with the labels of non-displayable concepts in
mini-ontology 3(f). The label Citry matches partially with the label City|Town in mini-
ontology 3(e), both of which are also non-displayable concepts. The label for the displayable
concept Name matches in Figures 3(e) and (f). Close examination, however, reveals that the
data values for the data associated with the concept Name in these three mini-ontologies
do not have a strong correlation. Nevertheless, we also note that Name is associated with
an object set which is the parent concept of Continent, Country, and City and that, limited
to these associations, the data has a high correlation, especially for Continent and Country
between 3(d) and (f). This allows us to conclude that Continent in 3(d) and (f) match, that
Country in 3(d) and (f) match, and that City in 3(d) and City|Town are a likely match. Since
we have both Continent and Country matches between 3(d) and (f), which cover a large
majority of the possible matches between Geopolitical Entity in 3(d) and Where Spoken
(Major) in 3(f), TANGO also concludes that these two generalizations are a likely match.

Having tried all the combinations but one, TANGO attempts to discover additional
mappings between mini-ontology 3(e) and (f). But it finds none.

6. Ontology merge

Once TANGO has discovered mappings between mini-ontologies or between a mini-
ontology and the ontology we are building, it can begin the merging process. Sometimes
the match is such that we can directly fuse two ontologies by simply merging directly
corresponding nodes and edges of both. Often, however, merging induces conflicts that
must be resolved.

We use three basic approaches to conflict resolution: (1) automatic adjustment based
on constraint satisfaction, (2) synergistic adjustment based on IDS statements [4], and (3)
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Figure 4.  Growing ontology after merging the mini-ontologies in Figures 3(a) and (b).

multiple adjustments leading to multiple ontological views with mappings between them.
All three of these approaches rely on being able to determine plausible merges. Then, for
automatic adjustments, we can take the best among the plausible merges; for synergistic
adjustments, we can raise the important issues and make suggestions, letting an ontologist
make the final decisions. For multiple adjustments, can keep all plausible merges and later
eliminate those discarded in synergistic evaluations and those that no longer stand up to
new evidence gathered as the process continues.

To determine plausible merges based on discovered mappings, we consider constraint vi-
olations and congruency principles. Constraint violations include functional/non-functional
mismatches, optional/mandatory mismatches, displayable/non-displayable mismatches,
and subset/superset constraint violations. Congruency principles [10,24] attempt to en-
sure that all objects in an object set have the same properties; the objects in an object set
are congruent when this principle holds and are otherwise incongruent. Other similar prin-
ciples of formal ontology construction also apply [24], as well as related work on merging
ontologies (e.g. [36]) and comparing and aligning ontologies (e.g. [5]). We illustrate this
merging process by merging the mini-ontologies in Figure 3.

We look initially for mini-ontologies that exhibit the largest possible overlap (as measured
by the number of inter-ontology mappings) with respect to the size of the mini-ontologies.
Thereafter we select mini-ontologies that overlap the most with our growing ontology. In
our example, the overlap is much the same for all mini-ontologies that do overlap. Thus,
we just begin by merging the first two mini-ontologies 3(a) and (b).

1st Merge: Country matches Country and Population matches Population. Both July
2001 and July 2003 are date components associated with Population, and we merge them
as a Date object set. Figure 4 shows the resulting initial ontology.

2nd Merge: Building on the 1st Merge, we add the mini-ontology 3(d) and obtain the
emerging ontology in Figure 5. Here, we must reconcile the displayable/non-displayable
Country object sets, but this is straightforward based on the mappings we have already
discovered. Thus, we let Name be an inherited property for all continents, countries, and
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Figure 5. Growing ontology after merging the mini-ontologies in Figures 3(a), (b), and (d).

cities as Figure 5 shows. According to congruency principles, we also let Population be an
inherited property and thus omit it from the Country specialization. Congruency holds in
Figure 5 because the non-displayable concept Geopolitical Entity is a generalization of the
non-displayable concepts Continent, Country, and City, all of which—according to mini-
ontology 3(d)—mandatorily have Population and Country in mini-ontologies 3(a) and (b).
Notice that in the merged ontology in Figure 5 the concept Country is now non-displayable;
it inherits the Name property, which contains the names that initially were in the Country
object sets in mini-ontologies 3(a) and (b).

3rd Merge: Continuing, we merge the mini-ontology in Figure 3(f) with the growing
ontology in Figure 5 and obtain the ontology in Figure 6. Here, the mappings TANGO has
already generated indicate that the objects in the object sets Geopolitical Entity and Where
Spoken (Major) largely overlap and that both the Continent and Country object sets match.
When merging a mini-ontology into a growing ontology, TANGO uses, as its default, the
name it already has in the growing ontology (a user, of course, may change the name). Thus,
the generalization in the merged ontology in Figure 6 becomes Geopolitical Entity. After
the merge, there is insufficient evidence to maintain the mandatory participation constraints
for Population and Language, and TANGO thus changes them to be optional participation
constraints. There is sufficient evidence, however, to maintain the mandatory participation
constraint for Name.

4th Merge: We next merge mini-ontology 3(c), obtaining the ontology in Figure 7.
This merge is straightforward based on the already discovered mappings. The displayable
Country object set in 3(c) becomes non-displayable, and its values become part of the
Name object set inherited from Geopolitical Entity. The relationship sets attached to the
displayable Country object set in 3(c) are instead attached to the non-displayable Country
object set.

5th Merge: Finally, we add mini-ontology 3(e). We have already found mappings be-
tween the identically named object sets Geographic Coordinates, Longitude, and Latitude.
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This part of the merge is straightforward. The remaining part of the merge is more difficult,
not so much because it is structurally complex (TANGO can handle that part), but because
the evidence based on partially overlapping cities and the connection to the geographic
coordinates is not likely to be strong enough for TANGO to decide on its own what the re-
lationship between Place and Geopolitical Entity should be. It does, however, have enough
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evidence to be able to pose an intelligent IDS statement to a user. Observe that Geographic
Coordinates is a property of the concept Place in mini-ontology 3(e), while in the growing
ontology it is a property of the concept Geopolitical Entity. This leads TANGO to consider
that perhaps Place and Geopolitical Entity are the same concept. With further exploration,
TANGO can discover that although Place has a Name just like Geopolitical Entity does, the
more specialized concepts Elevation, USGS Quad, Lake, Reservoir and Mine are not the
kind of concepts found as specializations of Geopolitical Entity. The concept City|Town,
however, does resemble the concept City in the growing ontology. Thus, the two generaliza-
tion/specializations can potentially be merged. So TANGO can pose this possibility to a user.
We assume in the figure that the user replies that the generalization/specializations can be
merged with Place as a generalization of Geopolitical Entity and City|Town as a specializa-
tion of Geopolitical Entity. As for sorting out where the relationship sets should be attached,
TANGO’s default is to select the highest point in the generalization/specialization hierarchy.
It therefore associates Geographic Coordinates with Place but makes the association op-
tional because it now has evidence that not every place has geographic coordinates recorded
for it (in particular, continents, regions, and some cities do not have geographic coordi-
nates in our particular version of the growing ontology). The final result is the ontology in
Figure 8.
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Figure 8.  Growing ontology after merging all mini-ontologies.
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7. Applications

Semantics is a grand challenge for the current generation of computer technology, particu-
larly as it relates to the Semantic Web. It is the key for unlocking the door, for example, to
personal agents that can roam the Semantic Web and carry out sophisticated tasks for their
masters, to information exchange and negotiation in e-business, and to automated, large-
scale, in-silico experiments in e-science. We do not claim that TANGO will resolve this
challenge, but we do claim that it addresses related issues and that its successful realization
would help us move a step closer to a resolution. As specific research in this direction, we
offer the following observations about Semantic Web construction.

As the Semantic Web becomes more popular, a question of increasing importance will
be how to convert some of the interesting unstructured and semi-structured, data-rich
documents on the web as they now stand into Semantic Web documents. Others have
recognized the importance of this conversion and are working on research and commercial
efforts to address this particular issue [1,39,43]. Lixto [1] is a commercial effort in the
EU to develop commercial-grade tools for the construction and use of the Semantic Web.
MoA [39] is an effort sponsored by the Korean Ministry of Information to allow mapping
and merging of distributed OWL ontologies and content. SEWASIE [43] is an integrated
Semantic Web environment that allows advanced search capabilities for small and medium
enterprises in the EU.

In [8] we proposed a way to bridge the gap between the current web and the Semantic Web
by semiautomatically converting Resource Description Framework Schemas (RDFS’s) and
DAMLA+OIL ontologies into data extraction ontologies [ 16]. The prototype system we built
does this conversion. It extracts data and then converts it to RDFS, making it accessible to
Semantic Web agents. In addition, the prototype system superimposes the metadata of the
extracted information over the document for direct access to data in context, as suggested
in [33]. We believe that TANGO-constructed ontologies will work even better for this
application.

As part of making TANGO-generated ontologies compliant with the Semantic Web,
we need to be able to convert an OSM ontology into public ontologies such as RDFS,
DAMLA4-OIL and OWL. As an example, Figure 9 shows a partial listing of an OWL
ontology for the mini-ontology in Figure 3(a). It is not hard to convert an OSM ontology
into an OWL ontology. Each object set in the OSM ontology in Figure 3(a) maps to an
owl:Class object in the OWL ontology in Figure 9. Each binary relationship set in the OSM
ontology maps to an owl:ObjectProperty with a domain and range. We cannot, however,
directly transform relationship sets with higher arities, such as the ternary relationship
between Country, Religion, and Percent in Figure 3(a). To overcome this limitation without
loss of generality, we create an artificial object set to represent the ternary relationship
set and then decompose the ternary relationship set into three binary relationship sets.
Figure 9 shows the necessary artificial new class CRP. Then, we create a binary relation
specification between CRP and each of the three OWL classes, Country, Religion, and
Percent in Figure 9. Figure 9 shows the relation specification between CRP and Percent
in the new binary relationship set called atPercent. Inside the ObjectProperty of atPercent,
the rdf:type indicates that this is a functional property, and the rdfs:domain and rdfs:range
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<?xml version=""1.0"7>
<IDOCTYPE rdf:RDF |
<IENTITY dlbeck “http://www.deg.byu.edu/ontologies/dlbeck#” >
e >
<rdf:RDF xmlns = “http://www.deg.byu.edu/ontologies/dlbeck#”
>
<owl:Class rdf:ID=“Country” >
<rdfs:subClassOf> <owl:Restriction>
<owl:onProperty rdf:resource=“#hasReligionAtPercent” />
<owl:minCardinality rdf:datatype=“&xsd;nonNegativelnteger” >1< /owl:minCardinality>
</owl:Restriction> </rdfs:subClassOf>
<rdfs:subClassOf> <owl:Restriction>
<owl:onProperty rdf:resource=“#hasReligionAtPercent” />
<owl:allValuesFrom rdf:resource=“#CRP” />
</owl:Restriction> </rdfs:subClassOf>

< /owl:Class>
<owl:Class rdf:ID="“Religion” >
<rdfs:subClassOf> <owl:Restriction>
<owl:onProperty rdf:resource=“#Country AtPercent” />
<owl:minCardinality rdf:datatype=“&xsd;nonNegativelnteger” >1< /owl:minCardinality>
< /owl:Restriction> < /rdfs:subClassOf>
<rdfs:subClassOf> <owl:Restriction>
<owl:onProperty rdf:resource=“#Country AtPercent” />
<owl:allValuesFrom rdf:resource=“#CRP” />
< /owl:Restriction> < /rdfs:subClassOf>

< /owl:Class>
<owl:Class rdf:ID="“Percent” >
<rdfs:subClassOf> <owl:Restriction>
<owl:onProperty rdf:resource=“#CountryHasReligion” />
<owl:minCardinality rdf:datatype=“&xsd;nonNegativelnteger” >1< /owl:minCardinality>
< /owl:Restriction> < /rdfs:subClassOf>
<rdfs:subClassOf> <owl:Restriction>
<owl:onProperty rdf:resource=“#CountryHasReligion” />
<owl:allValuesFrom rdf:resource=“#CRP” />
< /owl:Restriction> < /rdfs:subClassOf>

< /owl:Class>
<owl:Class rdf:ID=“CRP” >
<rdfs:subClassOf> <owl:Restriction>
<owl:onProperty rdf:resource=“#atPercent” />
<owl:cardinality rdf:datatype=“&xsd;nonNegativelnteger” >1< /owl:cardinality>
< /owl:Restriction> < /rdfs:subClassOf>
<rdfs:subClassOf> <owl:Restriction>
<owl:onProperty rdf:resource=“#atPercent” />
<owl:allValuesFrom rdf:resource=“#Percent” />
< /owl:Restriction> < /rdfs:subClassOf>
<rdfs:subClassOf> <owl:Restriction>
<owl:onProperty rdf:resource=“#hasReligion” />
<owl:minCardinality rdf:datatype=“&xsd;nonNegativelnteger” >1< /owl:minCardinality>
< Jowl:Restriction> < /rdfs:subClassOf>

< /owl:Class>
<owl:ObjectProperty rdf:ID="“atPercent” >
<rdf:type rdf:resource=“&owl;FunctionalProperty” />
<rdfs:domain rdf:resource=“#CRP” />
<rdfs:range rdf:resource=“#Percent” />
< /owl:DatatypeProperty> <owl:ObjectProperty rdf:ID=“CountryHasReligion” >
<owl:inverseOf rdf:resource=“#atPercent” />
< /owl:ObjectProperty >

</rdf:RDF>

Figure 9. Partial OWL listing for the mini-ontology in Figure 3(a).
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indicate the direction of the functional property. The owl:inverseOf property shows that
the ObjectProperty for CountryHasReligion is an inverse of the ObjectProperty atPercent.
As for constraints Figure 9 indicates that the OWL ontology can directly represent OSM’s
min-max participation constraints using the tags owl:minCardinality, owl:maxCardinality,
or owl:cardinality. Thus, for example, the owl:cardinality in the class CRP for the relation
association in the atPercent property is exactly 1; whereas the relation associations in the
hasReligion property and the Country property (not shown in Figure 9) have a minimum
cardinality of 1 and no maximum cardinality. Although not shown in this example, it is also
straightforward to transform OSM’s generalization/specialization to an OWL ontology. To
accomplish this, we need to map the object sets onto OWL classes and then specialize using
the rdfs:subClassOf property to link the parent and child object sets.

Given that we can convert TANGO-generated ontologies to Semantic Web ontologies,
we are now able to annotate web pages associated with those ontologies with ontologies
that software agents can use to “understand” the tables in those web pages. Thus, we are
able to realize, at least partially, the goal of semi-automatically converting HTML pages
into Semantic Web pages.

8. Concluding remarks

We have presented our vision for TANGO—a way to generate ontologies from tables. Our
generation procedure has four steps.

1. Recognize and canonicalize table information. Based on the notion of table-equivalent
data, we use heuristics and resources such as data frames and WordNet to convert
semi-structured data to canonicalized table information.

2. Construct mini-ontologies from canonicalized tables. Each table represents a small part
of a larger ontology. Given a canonicalized table, we exploit the data and relationships
in the table to construct a conceptual model. We represent conceptual model instances
in OSM, which gives us a convenient and powerful way to represent ontological con-
cepts (as object sets) and ontological associations (as relationship sets) and a way to
represent ontological constraints (functional dependencies, cardinality relationships,
optional/mandatory requirements, and generalization/specialization).

3. Discover inter-ontology mappings. Based on previous work on schema mapping (both
our own and the work of others), we discover semantic mappings among mini-ontologies
and also between mini-ontologies and larger application ontologies. The approach is
multifaceted and thus depends on exploiting multiple auxiliary resources and multiple
self-contained clues about the data and metadata in a populated ontology.

4. Merge mini-ontologies into a growing application ontology. We automatically find
plausible ontology merges. When conflicts arise, we use alternative approaches to resolve
the conflicts: adjust based on constraint satisfaction, synergistically use interactive IDS
(Issue/Default/Suggestion) statements, and support multiple versions and allow delayed
resolution.
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As further motivation for TANGO, we have discussed its application to the Semantic
Web. We showed how to convert OSM ontologies into Semantic Web ontologies. This,
together with table understanding, provides an immediate way to generate annotated pages
that Semantic Web agents can understand and use.
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Notes

1. Tables have a particular spatial layout of material [47] that carries significant meaning. Lamke [28] describes
tables as “organizational resources to enable meaningful relations to be recovered from bare thematic items
in the absence of grammatical constructions,” and argues that there is always “an implied grammar” and a
recoverable textual sentence or paragraph for every table.”

2. Our ontologies fit the standard definition for an ontology as Tom Gruber describes them in [23] “An ontology
is a formal, explicit specification of a shared conceptualization.” Our ontologies are however small and thus
the name mini-ontology.

3. In this and other tables, “missing” values are null values, which we assume are elements of every domain.

4. Although we have spent much effort in understanding tables, our approach described in [20] was mainly to
understand tables based on an intermediate schema. In this work, we go one step beyond by transforming all
the tables into a common canonical form. We have also had some experience working with this more general
table transformation problem—indeed, we have been invited to write a survey of table-processing work [17].
The current state of research, however, still does not offer a general solution to the problem we seek to solve.

5. These canonicalized tables are subparts of actual tables found on the web—subparts in the same sense that
the table-equivalent data in Table 2 is a subpart of the table in Figure 2 (i.e. we have omitted some of
the information). A reference for each original table from which we drew the information appears in the
bibliography. We chose the subset presented here for the purpose of illustration.

6. For a complete description of OSM formal semantics, the reader should consult the appendix on [19].

7. Object sets are in essence what others refer to as concepts in the ontology literature, thus they are used
interchangeably in this paper and have the same meaning.

8. The particular notation we use to represent ontologies is not significant, but the concepts it represents are
significant. We choose it because: (1) it is fully formal in terms of first-order predicate calculus [19], (2) it
covers the typical ontological properties of interest—ISA hierarchies, part/whole hierarchies, relationships,
and concepts including lexical appearance, representation, and computational manipulation, and (3) it has
specialized tools for ontology creation and manipulation, ontological table understanding [20], ontological
data extraction, and ontological data integration [50].

9. Surprisingly, neither direct word match nor synonym match mattered in our machine-learned decision-tree rule
for matching labels. Instead, the number of common hypernym roots and the distances to common hypernyms
dominated the rule. Of course, identical words and synonyms have common hypernym roots at a minimal
distance from the words, which mitigates our surprise.
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