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1 IntroductionThe problem of control constraints appears in most practical control systems. Due totechnological and safety reasons, the actuators cannot drive an unlimited energy to thecontrolled plant. This fact can be translated into bounds on control and state variables.Control systems are often linearly designed. The modern theory of linear control providese�cient methods for computing control laws that guarantee stability and some perfor-mance requirements with respect to the linear closed-loop system. In general, this kind ofdesign does not directly consider amplitude limitations on the control inputs. Then, thepresence of input bounds can be source of parasitic equilibrium points and limit cycles,or can even lead the closed-loop system to an unstable behavior. In past years, this facthas motivated study of both analysis and design techniques taking control bounds intoaccount, see [1, 7, 24] and references therein.Control limitation may be handled implicitly, or a posteriori, through the so-called anti-windup strategies [14]. Alternatively, input constraints may be handled explicitly, or apriori, pursuing one of the two following approaches:� Saturation avoidance methods { They consist in preventing input saturation. Theclosed-loop system therefore stays in a region of linear behavior. On the one hand, aninteresting approach developed in the literature consists in determining a feedbackcontrol law that ensures positive invariance of a set included in a region of closed-looplinear behavior and including all admissible initial states. This positive invariant setis then considered as a linear local region of stability, see [11, 2] for comprehensiveoverviews. These methods may rely on the extended Farkas lemma [10], linearprogramming [25, 6], eigenstructure assignment [5, 6] or set-induced norms [22]. Onthe other hand, a more general convex programming approach can also be pursued[3]. It relies upon the Youla-Ku�cera parametrization of all stabilizing controllers[15, 26] and has been extended to handle H2 or H1 performance criteria usingstate-space arguments [23].� Saturation allowance methods { They consist in letting the saturation occur. Theclosed-loop system is therefore non-linear. In this sense, signi�cant results havelately emerged in the scope of global stabilization [21, 20] and semi-global stabiliza-tion [18]. They inherently require stability of the open-loop system. Relaxing thisstability assumption, results addressing the local stabilization problem have alsobeen obtained [24, 13, 12, 8, 9].In this paper, we focus on a saturation avoidance method mixing some of the abovementioned techniques. On the one hand, we use the Youla-Ku�cera parametrization ofall stabilizing controllers in the context of the polynomial approach to control systems[16, 17]. On the other hand, we use the extended Farkas lemma, traditionally invokedwhenstudying positive invariance, to come up with a convex programming formulation of theconstrained stabilization problem, as in [3]. To the authors knowledge, our developmentis the �rst application of the polynomial approach to the control of linear systems subject2



to input constraints. Moreover, as a natural outcome, we can guarantee that we describethe whole set of stabilizing controllers under input constraints.This paper, as the �rst of a series of two, is intended to be of tutorial nature. We delib-erately restricted the study to SISO plants and stabilization within a given polyhedronof the state-space. As a consequence, the arguments used throughout the paper are keptrelatively simple and the resulting convex programming problem turns out to reduce toa mere linear programming problem. In the second paper of the series, more involvedtopics will be touched on, such as simultaneous computation of the control law and thestabilization domain, or maximization of the size of the stabilization domain for MIMOplants.The outline of the paper is as follows. In Section 2, the problem to be solved is stated.Some preliminarymaterial is described in Section 3 that will be instrumental to the deriva-tion in Section 4 of a linear programming formulation of the problem. Two illustrativeexamples are eventually proposed in Section 5.2 Problem StatementConsider a single-input single-output observable discrete-time linear system�k+1 = F�k +Gukzk = H�k (1)where �k 2 Rn, uk 2 R, zk 2 R stand for the state vector, input and output signals,respectively. System input uk is subject to hard constraints�u� � uk � u+ (2)where u�, u+ are given positive scalars. Moreover, initial system state �0 is supposed tobelong to a given polyhedron. It holds�0 2 PN = f� : N� � �g (3)where N is a given matrix and � is a given vector.Performing z-transform, linear system (1) can equivalently be written in a transfer func-tion setting as z(d) = b(d)a(d)u(d) + c(d)a(d)�0 (4)where d stands for the usual backward shift operator [16]. Polynomials a(d), b(d) andpolynomial vector c(d) verifyb(d)a(d) = H(I� Fd)�1Gd c(d)a(d) = H(I � Fd)�1:System (4) should have no unstable hidden modes, so couples a(d), b(d) and a(d), c(d)are assumed to be coprime for jdj � 1. System (4) is to be driven by a dynamic controlleru(d) = �y(d)x(d)z(d) (5)3



where x(d), y(d) are polynomials.With these notations, the problem to be solved in this paper is as follows.Problem 1 Find dynamic controller (5) such that linear system (4) subject to inputconstraints (2) is stabilized when initialized within polyhedron (3).3 PreliminariesFirst, we need to recall two well-known and widely used results of linear system controltheory, namely the Youla-Ku�cera parametrization of all stabilizing controllers [15, 26] andthe extended Farkas lemma [10].Lemma 1 (Youla-Ku�cera parametrization) Let x̂(d), ŷ(d) denote a particular solu-tion to the polynomial B�ezout equationa(d)x(d) + b(d)y(d) = 1 (6)where a(d), b(d) are given coprime polynomials. Then all linear controllersu(d) = �y(d)x(d)z(d)that stabilize the linear system z(d) = b(d)a(d)u(d)are parametrized by x(d) = x̂(d) + b(d)q(d)y(d) = ŷ(d)� a(d)q(d) (7)where q(d) is an arbitrary stable rational function, or converging in�nite sequence.Lemma 2 (Extended Farkas lemma) Polyhedron PN = f� : N� � �g is includedwithin polyhedron PM = f� : M� � �g if and only if there exists a matrix P with non-negative entries such that PN = MP� � �:4 Linear Programming FormulationWe now proceed toward a linear programming solution to the problem stated in Section2, using the results of Section 3. 4



From equations (4), (5) and Lemma 1, the system input readsu(d) = � y(d)c(d)a(d)x(d) + b(d)y(d)�0 = [a(d)q(d)c(d)� ŷ(d)c(d)]�0 (8)where ŷ(d) is a particular solution to B�ezout equation (6) and q(d) is an arbitrary stablerational function. We denote sequences u(d), q(d) asu(d) = u0 + u1d+ u2d2 + � � �q(d) = q0 + q1d+ q2d2 + � � �and de�ne v(d) = a(d)c(d) = v0 + v1d+ v2d2 + � � �w(d) = �ŷ(d)c(d) = w0 + w1d+ w2d2 + � � � (9)From the above relations, upon equating coe�cients at like powers of the indeterminated in relation (8) it follows that ui = �Mi(q)�0 (10)where �Mi(q) = wi + Xk=0;1;2;::: qkvi�k (11)is a row-vector parametrized by scalars qk for k = 0; 1; 2 : : :Recall that input sequence u(d) is subject to constraints (2). In view of relation (10),initial state vector �0 is also constrained. This is captured by the following lemma.Lemma 3 Input u(d) satis�es constraints (2) if and only if�0 2 PM = f� :M(q)� � �g (12)where M(q) = 2666664 �M0(q)� �M0(q)�M1(q)� �M1(q)... 3777775 � = 2666664 u+u�u+u�... 3777775 : (13)Recalling the statement of Problem 1, vector �0 is assumed to belong to polyhedron PN .Hence polyhedron PN must be included within polyhedron PM . Using Lemmas 2 and 3,we can now write necessary and su�cient conditions for Problem 1 to be solved.Theorem 1 Problem 1 is solved if and only if there exists P with non-negative entriesand q such that PN = M(q)P� � �: (14)A stabilizing controller is then retrieved from parameter q.5



Several remarks are in order.Remark 1 (Polynomial Youla-Ku�cera parameter) In general, sequence q(d) can beexpressed as an in�nite stable Laurent series. However, for practical purpose, we onlyconsider polynomial, or �nite-impulse-response q(d) in the sequel.Remark 2 (Linear programming problem) When q(d) is a polynomial, relations(14) become a �nite-dimensional linear programming problem that must be solved for anon-negative matrix P and scalar coe�cients q0, q1, : : : If deg p stands for the degree ofa polynomial p(d), it follows from relation (8) thatdeg u � maxfdeg a+ deg q + deg c;deg ŷ + deg cg:In linear programming problem (14), matrix M(q) features 2(deg u + 1) rows and ncolumns.Remark 3 (Controller order) As in Remark 2, we deduce from relation (7) thatdeg x � maxfdeg x̂;deg b+ deg qgdeg y � maxfdeg ŷ;deg a+ deg qg:Consequently, the order of stabilizing controller (5) directly depends on deg q, the degreeof Youla-Ku�cera parameter q(d). Contrary to most state-space-based constrained sta-bilization methods found in the literature, our approach is thus not restricted to staticcontrollers or dynamic output-feedback controllers of the same order than the controlledplant.Remark 4 (Positive invariance) As pointed out in the introduction, most of the ex-isting methods to deal with local stabilization of constrained input systems hinge uponthe concept of positive invariance: system trajectories, once initialized in some set, areguaranteed to stay within this set while converging to the origin. Our approach doesnot rely on positive invariance. That is to say, the above polyhedra PN or PM are notnecessarily positively invariant.5 Numerical ExamplesIn the following examples, numerical computations on polynomials were performed withthe Polynomial Toolbox Version 2.0 for Matlab [19]. Linear programming problemswere solved with the function lp of the Optimization Toolbox for Matlab [4].6



5.1 First ExampleAs a �rst illustrative example, we consider the discrete-time linear system studied in [25]�k+1 = � 0:8 0:5�0:4 1:2 � �k + � 01 �ukwhen only the �rst component of the state vector is available for feedback, i.e.,zk = [1 0]�k:System input is constrained to �7 � uk � 7and initial state vector �0 is assumed to belong to convex polyhedron PN = f� : N� � �gwhere N = 2664 1 2�1 �2�1:5 21:5 �2 3775 � = 2664 551010 3775 :We aim at �nding a stabilizing feedback controller for the above system.First, it is easily found thata(d) = 0:8621 � 1:7241d + d2b(d) = 0:4310d2c(d) = [0:8621 � 1:0345d 0:4310d2]in transfer function setting (4). A particular solution to B�ezout equation (6) is thenx̂(d) = 1:1600 + 2:3200dŷ(d) = 6:5888 � 5:3824d:Recalling Remark 1, we assume that q(d) is a polynomial of degree �. Using Theorem 1,we �nd that the lowest degree for which linear programming problem (14) turns out tobe feasible is � = 3. Matrices of the linear programming problem readP = 266666666666666666666664
0 0:4667 0:4667 00:4667 0 0 0:46670:3076 0:1060 0 0:49320 0:2015 0:5462 0:05300:0192 0 0 0:13380 0:0192 0:1338 00:4116 0 0 0:49420 0:4116 0:4942 00:1891 0 0 00 0:1891 0 00 0 0:2742 00 0 0 0:27420 0:2986 0:5247 00:2986 0 0 0:5247

377777777777777777777775 M(q) = 266666666666666666666664
�1:1667 01:1667 00:9414 �0:5833�0:9414 0:58330:2199 �0:2293�0:2199 0:22931:1529 �0:1653�1:1529 0:16530:1891 0:3781�0:1891 �0:3781�0:4112 0:54830:4112 �0:5483�1:0857 0:45241:0857 �0:4524

3777777777777777777777757



for polynomial q(d) = 6:0731 + 5:2855d + 3:0815d2 + 1:0495d3and a vector � whose entries are all equal to 7. Reporting q(d) into relations (7), astabilizing output controller in transfer function setting (5) is given by polynomialsx(d) = 1:1600 + 2:3200d + 2:6177d2 + 2:2783d3 + 1:3282d4 + 0:4524d5y(d) = 1:3533 + 0:5320d + 0:3834d2 � 0:8773d3 � 1:2721d4 � 1:0495d5:
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Figure 1 { System input.The resulting closed-loop system is guaranteed to be stable for any initial condition chosenwithin polyhedron PN . The system input is represented in Figure 1 when the system stateis initialized to �0 = � 6�0:5 � 2 PN :
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Figure 2 { Polyhedra PM and PN with system state �k.For comparison, Figure 2 shows the requested polyhedron of stabilizable initial conditionsPN together with the actual polyhedron of stabilizable initial conditions PM correspondingto the controller found above. In contrast to the results achieved in [25], our approachdoes not require that polyhedron PN be positively invariant. Indeed, system stability isensured by the mere inclusion of polyhedron PN into polyhedron PM . Another signi�cantadvantage of our approach with respect to that proposed in [25] is that we can designdynamic output feedback controllers. On the other hand, we may come up with controllersof relatively high order.5.2 Second ExampleWe now illustrate on a very simple numerical example that the choice of polynomial q(d)may in
uence the size of the polyhedron of stabilizable initial conditions.Consider the unstable discrete-time system�k+1 = 2�k + ukzk = �kwhere system input is constrained to �1 � uk � 1:9



Assume that the polyhedron of admissible initial conditions is given byPN = f� : �1=� � � � 1=�gwhere � is a positive scalar.The system polynomials are readily computed as a(d) = 1 � 2d, b(d) = 1 and c(d) = 1.A particular solution to B�ezout equation (6) is x̂(d) = 0 and ŷ(d) = 1.Then, we successively build linear programming problem (14) for increasing values of �,the degree of polynomial q(d). We can easily �nd parameters qi such that the threshold �is minimized and hence the size of polyhedron PN is maximized. In Table 3, we reportedvalues of the qis and the minimum achievable � for increasing values of �. When degree� tends to in�nity, q(d) tends to a converging in�nite sequence and threshold � tendsto a �nite value, namely 1. This is not surprising since it is well-known that in generalstabilization of an open-loop unstable system with a bounded control can be achievedonly locally.� � q0 q1 q2 q3 q4 q5{ 2 0 0 0 0 0 00 4/3 2/3 0 0 0 0 01 8/7 6/7 4/7 0 0 0 02 16/15 14/15 4/15 8/15 0 0 03 32/31 30/31 28/31 24/31 16/31 0 04 64/63 62/63 60/63 56/63 48/63 32/63 05 128/127 126/127 124/127 120/127 112/127 96/127 64/127Table 3 { Threshold � and parameters qi for increasing values of degree �.The example clearly illustrates the fact that the size of the domain of stabilizable initialconditions can be enlarged using the degrees of freedom inherent to the approach. Thistopic is further developed in the second paper of the series.6 ConclusionWe have provided a simple solution to the di�cult problem of locally stabilizing a SISOdiscrete-time linear system subject to hard input constraints. Under the assumption thatthe domain of stabilizable initial conditions is a given polyhedron of the state-space, ourtechnique results in an output feedback controller of given order straightforwardly derivedupon solving a linear programming problem.The ideas proposed in this paper are conceptually simple, for they rely on well-knownresults of control theory such as the Youla-Ku�cera parametrization and the extendedFarkas lemma. Most importantly, they can be extended to the more general setting of10
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