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Abstract

A polynomial approach is pursued for locally stabilizing discrete-time linear
systems subject to input constraints. Using the Youla-Kucera parametrization and
the extended Farkas lemma, the problem of guaranteeing closed-loop stability for
any initial condition chosen in a given polyhedron of the state-space is formulated
as a linear programming feasibility problem. This paper, as the first of a series
of two, collects introductory material and may be regarded as tutorial. For the
sake of clarity, only SISO plants and stabilization in given polyhedral regions are
considered.
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1 Introduction

The problem of control constraints appears in most practical control systems. Due to
technological and safety reasons, the actuators cannot drive an unlimited energy to the
controlled plant. This fact can be translated into bounds on control and state variables.

Control systems are often linearly designed. The modern theory of linear control provides
efficient methods for computing control laws that guarantee stability and some perfor-
mance requirements with respect to the linear closed-loop system. In general, this kind of
design does not directly consider amplitude limitations on the control inputs. Then, the
presence of input bounds can be source of parasitic equilibrium points and limit cycles,
or can even lead the closed-loop system to an unstable behavior. In past years, this fact
has motivated study of both analysis and design techniques taking control bounds into
account, see [1, 7, 24] and references therein.

Control limitation may be handled implicitly, or a posteriori, through the so-called anti-
windup strategies [14]. Alternatively, input constraints may be handled explicitly, or a
priori, pursuing one of the two following approaches:

e Saturation avoidance methods — They consist in preventing input saturation. The
closed-loop system therefore stays in a region of linear behavior. On the one hand, an
interesting approach developed in the literature consists in determining a feedback
control law that ensures positive invariance of a set included in a region of closed-loop
linear behavior and including all admissible initial states. This positive invariant set
is then considered as a linear local region of stability, see [11, 2] for comprehensive
overviews. These methods may rely on the extended Farkas lemma [10], linear
programming [25, 6], eigenstructure assignment [5, 6] or set-induced norms [22]. On
the other hand, a more general convex programming approach can also be pursued
[3]. It relies upon the Youla-Kué¢era parametrization of all stabilizing controllers
[15, 26] and has been extended to handle Hy or H., performance criteria using
state-space arguments [23].

e Saturation allowance methods — They consist in letting the saturation occur. The
closed-loop system is therefore non-linear. In this sense, significant results have
lately emerged in the scope of global stabilization [21, 20] and semi-global stabiliza-
tion [18]. They inherently require stability of the open-loop system. Relaxing this
stability assumption, results addressing the local stabilization problem have also

been obtained [24, 13, 12, 8, 9].

In this paper, we focus on a saturation avoidance method mixing some of the above
mentioned techniques. On the one hand, we use the Youla-Kucera parametrization of
all stabilizing controllers in the context of the polynomial approach to control systems
[16, 17]. On the other hand, we use the extended Farkas lemma, traditionally invoked when
studying positive invariance, to come up with a convex programming formulation of the
constrained stabilization problem, as in [3]. To the authors knowledge, our development
is the first application of the polynomial approach to the control of linear systems subject



to input constraints. Moreover, as a natural outcome, we can guarantee that we describe
the whole set of stabilizing controllers under input constraints.

This paper, as the first of a series of two, is intended to be of tutorial nature. We delib-
erately restricted the study to SISO plants and stabilization within a given polyhedron
of the state-space. As a consequence, the arguments used throughout the paper are kept
relatively simple and the resulting convex programming problem turns out to reduce to
a mere linear programming problem. In the second paper of the series, more involved
topics will be touched on, such as simultaneous computation of the control law and the
stabilization domain, or maximization of the size of the stabilization domain for MIMO
plants.

The outline of the paper is as follows. In Section 2, the problem to be solved is stated.
Some preliminary material is described in Section 3 that will be instrumental to the deriva-
tion in Section 4 of a linear programming formulation of the problem. Two illustrative
examples are eventually proposed in Section 5.

2 Problem Statement

Consider a single-input single-output observable discrete-time linear system

2 = H¢
where & € R™ ur € R, 2z € R stand for the state vector, input and output signals,
respectively. System input wuy is subject to hard constraints

—uT < <ut (2)
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where u™, u™ are given positive scalars. Moreover, initial system state &, is supposed to

Y

belong to a given polyhedron. It holds
fo€ Py ={: NE< v} (3)

where N is a given matrix and v is a given vector.

Performing z-transform, linear system (1) can equivalently be written in a transfer func-
c(d)

4

+ al d)fo (4)

where d stands for the usual backward shift operator [16]. Polynomials a(d), b(d) and
polynomial vector ¢(d) verify

b(d) _ -1 c(d) _ _ -1
a(d)_H(I Fd)™'Gad o() H(I—-Fa)™.

System (4) should have no unstable hidden modes, so couples a(d), b(d) and a(d), ¢(d)
are assumed to be coprime for |d| < 1. System (4) is to be driven by a dynamic controller

ufa) = ~ 19 a) (5)

x(d)

tion setting as
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where x(d), y(d) are polynomials.

With these notations, the problem to be solved in this paper is as follows.

Problem 1 Find dynamic controller (5) such that linear system (4) subject to input
constraints (2) is stabilized when initialized within polyhedron (3).

3 Preliminaries

First, we need to recall two well-known and widely used results of linear system control
theory, namely the Youla-Kuc¢era parametrization of all stabilizing controllers [15, 26] and
the extended Farkas lemma [10].

Lemma 1 (Youla-Kucera parametrization) Let @(d), y(d) denote a particular solu-
tion to the polynomial Bézout equation

a(d)z(d) + b(d)y(d) = 1 (6)

where a(d), b(d) are given coprime polynomials. Then all linear controllers

d)=— d
ula) =~ 48x(a)
that stabilize the linear system

b(d)
d) = d
@) = )

are parametrized by
z(d) = #(d)+b(d)q(a) (7)
y(d) = 9(d) — a(d)q(d)

where ¢(d) is an arbitrary stable rational function, or converging infinite sequence.

Lemma 2 (Extended Farkas lemma) Polyhedron Py = {€ : N¢ < v} is included
within polyhedron Py = {€ : ME < u} if and only if there exists a matriz P with non-
negative entries such that

PN

M
Pv L

IA I

4 Linear Programming Formulation

We now proceed toward a linear programming solution to the problem stated in Section
2, using the results of Section 3.



From equations (4), (5) and Lemma 1, the system input reads

el
) = — st = [a(@g(@)e() ~ Qe )

where ¢(d) is a particular solution to Bézout equation (6) and ¢(d) is an arbitrary stable
rational function. We denote sequences u(d), ¢(d) as

u(d) = wo+urd+ ugd®+---
q(d) = qo+qd+qd+---
and define
v(d) = a(d)e(d) = vy +vidFvyd® -
5 ) (9)
w(d) = —gy(d)e(d) = wo+ wid + wyd? + - -

From the above relations, upon equating coefficients at like powers of the indeterminate
d in relation (8) it follows that

ui = Mi(q)éo (10)
where )
M;(q) = w; + Z qrVi—k (11)
k=0,1,2,...

is a row-vector parametrized by scalars g for £ =0,1,2...

Recall that input sequence u(d) is subject to constraints (2). In view of relation (10),
initial state vector & is also constrained. This is captured by the following lemma.

Lemma 3 Input u(d) satisfies constraints (2) if and only if

o € Pu ={&: M(q)¢ < p} (12)
where - _ ~ _
Mo(q) ut
—Mo(q) U
Mg =| M) | | (13)
—M(q) u”

Recalling the statement of Problem 1, vector &, is assumed to belong to polyhedron Py.
Hence polyhedron Py must be included within polyhedron Py;. Using Lemmas 2 and 3,
we can now write necessary and sufficient conditions for Problem 1 to be solved.

Theorem 1 Problem 1 is solved if and only if there exists P with non-negative entries
and q such that
PN

M
b p (q) (14)

IA I

A stabilizing controller is then retrieved from parameter q.

[



Several remarks are in order.

Remark 1 (Polynomial Youla-Kuéera parameter) In general, sequence ¢(d) can be
expressed as an infinite stable Laurent series. However, for practical purpose, we only
consider polynomial, or finite-impulse-response ¢(d) in the sequel.

Remark 2 (Linear programming problem) When ¢(d) is a polynomial, relations
(14) become a finite-dimensional linear programming problem that must be solved for a
non-negative matrix P and scalar coefficients qo, ¢1, ... If degp stands for the degree of
a polynomial p(d), it follows from relation (8) that

degu < max{deg a + deg g + deg ¢, deg § + deg c}.

In linear programming problem (14), matrix M(q) features 2(degu + 1) rows and n
columns.

Remark 3 (Controller order) As in Remark 2, we deduce from relation (7) that

degax < max{deg,degb+ degq}
degy < max{degy,dega + degq}.

Consequently, the order of stabilizing controller (5) directly depends on deg ¢, the degree
of Youla-Kuc¢era parameter ¢(d). Contrary to most state-space-based constrained sta-
bilization methods found in the literature, our approach is thus not restricted to static
controllers or dynamic output-feedback controllers of the same order than the controlled
plant.

Remark 4 (Positive invariance) As pointed out in the introduction, most of the ex-
isting methods to deal with local stabilization of constrained input systems hinge upon
the concept of positive invariance: system trajectories, once initialized in some set, are
guaranteed to stay within this set while converging to the origin. Our approach does
not rely on positive invariance. That is to say, the above polyhedra Py or Py; are not
necessarily positively invariant.

5 Numerical Examples

In the following examples, numerical computations on polynomials were performed with
the Polynomial Toolbox Version 2.0 for MATLAB [19]. Linear programming problems
were solved with the function 1p of the Optimization Toolbox for MATLAB [4].



5.1 First Example

As a first illustrative example, we consider the discrete-time linear system studied in [25]

do=| oy Va e+ | ]

when only the first component of the state vector is available for feedback, i.e.,

System input is constrained to
and initial state vector & is assumed to belong to convex polyhedron Py = {£: N¢ < v}
where
2 5
-1 =2 5
N=1_15 2| "0
1.5 =2 10

We aim at finding a stabilizing feedback controller for the above system.

First, it is easily found that

a(d) = 0.8621 — 1.7241d + ¢*
b(d) = 0.43104*
c(d) = [0.8621 —1.0345d 0.43104?]

in transfer function setting (4). A particular solution to Bézout equation (6) is then

#(d) = 1.1600 + 2.3200d
j(d) = 6.5888 — 5.3824d.

Recalling Remark 1, we assume that ¢(d) is a polynomial of degree §. Using Theorem 1,
we find that the lowest degree for which linear programming problem (14) turns out to
be feasible is 6 = 3. Matrices of the linear programming problem read

0 0.4667 0.4667 0 [ —1.1667 0
0.4667 0 0 0.4667 1.1667 0
0.3076 0.1060 0 0.4932 0.9414 —0.5833

0 0.2015 0.5462 0.0530 —0.9414  0.5833
0.0192 0 0 0.1338 0.2199 —0.2293

0 0.0192 0.1338 0 —0.2199  0.2293

p_ 0.4116 0 0 0.4942 M(q) = 1.1529 —0.1653

0 04116 0.4942 0 —1.1529  0.1653
0.1891 0 0 0 0.1891  0.3781

0 0.1891 0 0 —0.1891 —0.3781

0 0 0.2742 0 —0.4112  0.5483

0 0 0 0.2742 0.4112 —0.5483

0 0.2986 0.5247 0 —1.0857  0.4524

| 0.2986 0 0 0.5247 | 1.0857 —0.4524
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for polynomial

q(d) = 6.0731 + 5.2855d + 3.0815d* + 1.0495d”

and a vector p whose entries are all equal to 7. Reporting ¢(d) into relations (7), a
stabilizing output controller in transfer function setting (5) is given by polynomials

z(d) = 1.1600 4 2.3200d + 2.6177d% 4 2.2783d° + 1.3282d* + 0.4524d°
y(d) = 1.3533 +0.5320d + 0.3834d* — 0.8773d% — 1.2721d* — 1.0495d°.

0 1 2 3 4 5 6 7 8 9 10

Figure 1 — System input.

The resulting closed-loop system is guaranteed to be stable for any initial condition chosen
within polyhedron Py. The system input is represented in Figure 1 when the system state
is initialized to

§o = |: _g5:| € Pn.
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Figure 2 — Polyhedra Pj; and Py with system state &.

For comparison, Figure 2 shows the requested polyhedron of stabilizable initial conditions
P together with the actual polyhedron of stabilizable initial conditions Pys corresponding
to the controller found above. In contrast to the results achieved in [25], our approach
does not require that polyhedron Py be positively invariant. Indeed, system stability is
ensured by the mere inclusion of polyhedron Py into polyhedron Pys. Another significant
advantage of our approach with respect to that proposed in [25] is that we can design
dynamic output feedback controllers. On the other hand, we may come up with controllers
of relatively high order.

5.2 Second Example

We now illustrate on a very simple numerical example that the choice of polynomial ¢(d)
may influence the size of the polyhedron of stabilizable initial conditions.

Consider the unstable discrete-time system

Cbr1 = 26+ uy
2y = &

where system input is constrained to

—1<uk§1.



Assume that the polyhedron of admissible initial conditions is given by
Py ={¢:-l/a<{<1/a}

where « is a positive scalar.

The system polynomials are readily computed as a(d) = 1 — 2d, b(d) = 1 and ¢(d) = 1.
A particular solution to Bézout equation (6) is #(d) = 0 and g(d) = 1.

Then, we successively build linear programming problem (14) for increasing values of 4,
the degree of polynomial ¢(d). We can easily find parameters ¢; such that the threshold «
is minimized and hence the size of polyhedron Py is maximized. In Table 3, we reported
values of the ¢;s and the minimum achievable « for increasing values of 4. When degree
d tends to infinity, ¢(d) tends to a converging infinite sequence and threshold o tends
to a finite value, namely 1. This is not surprising since it is well-known that in general
stabilization of an open-loop unstable system with a bounded control can be achieved
only locally.

o)

a qo0 q1 q2 q3 qa qs
— 2 0 0 0 0 0 0
0 4/3 2/3 0 0 0 0 0
1 8/7 6/7 4/7 0 0 0 0
2 16/15 14/15 4/15 8/15 0 0 0
3| 32/31 30/31 28/31 24/31 16/31 0 0
4 64/63 62/63 60/63 56/63 48/63 32/63 0
5| 128/127 | 126/127 124/127 120/127 112/127 96/127 64/127

Table 3 — Threshold « and parameters ¢; for increasing values of degree ¢.

The example clearly illustrates the fact that the size of the domain of stabilizable initial
conditions can be enlarged using the degrees of freedom inherent to the approach. This
topic is further developed in the second paper of the series.

6 Conclusion

We have provided a simple solution to the difficult problem of locally stabilizing a SISO
discrete-time linear system subject to hard input constraints. Under the assumption that
the domain of stabilizable initial conditions is a given polyhedron of the state-space, our
technique results in an output feedback controller of given order straightforwardly derived
upon solving a linear programming problem.

The ideas proposed in this paper are conceptually simple, for they rely on well-known

results of control theory such as the Youla-Kucera parametrization and the extended
Farkas lemma. Most importantly, they can be extended to the more general setting of

10



MIMO systems with an unknown, not necessarily polyhedral domain of stabilizable initial
conditions. Such extensions will be covered in considerable detail in the second paper of

the series.
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