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Abstract
A key aspect of the synthesis of embedded systems is the

automatic integration of system components. This entails
the derivation of both the hardware and software interfaces
that will bind these elements together and permit them to
communicate correctly and efficiently. Without the auto-
matic synthesis of these interfaces, designers are not able
to fully simulate and evaluate their systems. Frequently,
they are discouraged from exploring the design space of dif-
ferent hardware/software partitions because practical con-
cerns mandate minimizing changes late in the design cy-
cle, thus leading to more costly implementations than nec-
essary. This paper presents a set of techniques that form
the basis of a comprehensive solution to the synthesis of
hardware/software interfaces. Software drivers and glue
logic are generated to connect processors to peripheral
devices, hardware co-processors, or communication inter-
faces while meeting bandwidth and performance require-
ments. We use as examples a set of devices that communi-
cate over an infrared local communications network (high-
lighting a video wrist-watch display) to explain our tech-
niques and the need for design space exploration tools for
embedded systems.

1 Introduction
Designers of task-specific systems must deal with a wide

collection of interfaces. Applications range from medical
instrumentation to communication and networking devices
to controllers in automobiles. There are many optimiza-
tion opportunities because these systems have narrower and
more specialized operational requirements, and users place
fewer restrictions on the components that constitute the sys-
tem. Optimizing the designs leads to an emphasis on design
space exploration and system integration. Designers need
to rapidly evaluate implementation options, that is, they
must consider different partitionings and mixes of compo-
nents. The most common activity in this typeof exploration
is integration of the components,i.e., generating the inter-
faces between them.

As an example, consider the class of devices that can be
used with an infrared local-area network [10]. The types
of possible devices range from transceivers connected to a
workstation or a laptop all the way to simple identification
tags for tracking people and objects. Each device must im-
plement the same communication protocol but within very
different cost constraints. For instance, identification tags
must be small and inexpensive while a PC-Card (PCMCIA)
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transceiver for a laptop can use more expensive compo-
nents that support more robust and efficient communica-
tion.

To help identify the possible optimizations, consider
the video wrist-watch system shown in Fig. 1. It has a
grayscale video camera whose images are scaled to the size
of the wrist-watch display (128x128 8-bit pixels), com-
pressed using pixel and frame differencing techniques, and
then transmitted over the omni-directional infrared link.
The images are received at the wrist-watch, decompressed,
and rendered on a small LCD screen. These pieces have
a wide range of implementation choices. For example, ei-
ther the decompression algorithm or the display controller
could be implemented in custom hardware, or on the mi-
croprocessor that will also be handling the reception of IR
packets. On the camera end, the camera controller, scaler,
and compressor could also be in hardware, software, or a
combination depending on the capabilities of the compo-
nents used.

To decide on the lowest cost mix of components and fea-
sibility, designers must iteratively map the device’s func-
tionality to a particular hardware/software partition and tar-
get architecture (i.e., the processors and devices to be used).
Every time the designer explores a different system archi-
tecture, the interfaces must be redesigned. For instance,
changing from a 16-bit processor to a 32-bit processor re-
quires new glue logic and new device drivers. Alterna-
tively, a slower processor may require additional interface
logic to meet the timing constraints of a fast peripheral
device. Interfacing components requires managing many
details in both hardware and software; however, no CAD
tools are currently available to help designers with these
interfacing issues. This is unfortunate as managing all of
these details is so time consuming that designers typically
cannot afford to evaluate many different implementations.
The tendency is to make incremental changes that keep in-
terfaces and device drivers fixed. This leads tooverdesign,
that is, the building in of extra capacity to handle unfore-
seen design changes, thereby increasing the cost.

Automating the interface generation and system integra-
tion tasks is a critical part of the development of embedded
system synthesis tools. Designers are quite capable of con-
sidering different global partitionings of their designs but
need help in evaluating them. Interfacing and integrating
system components are not only highly cumbersome and
error-prone processes but also must be performed repeat-
edly. A tool that can manage these details and demonstrate
the efficacy of the partition on a particular target architec-
ture is critical to enabling a more complete exploration of
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Fig. 1: The infrared video-wristwatch system. The camera
unit transmits compressed video packets to a wrist-watch
display.

the design space.
This paper presents various techniques for the synthe-

sis of the interface between hardware and software com-
ponents in embedded systems. Section 2 describes the
representation and main algorithm for synthesizing the in-
terface using the processor’s I/O resources (I/O ports and
memory bus). Sections 3 and 4 describe the allocation of
I/O ports and address/data ports for performing direct I/O.
These techniques will introduce all of the necessary glue
logic and generate device driver software. Section 5 de-
scribes the synthesis of the I/O sequencers (FSMs) for cases
where direct I/O cannot meet theperformance requirements
of the device. The sequencer itself is in turn interfaced as
any other device.

2 Hardware/Software Interface Synthesis
The main goal in hardware/software interface synthe-

sis is to generate a communication link using minimal glue
logic while respecting timing constraints. Automating the
hardware/software interface allows designers to focus on
higher-level decisions. To accomplish this requires devel-
oping the appropriate abstractions for device interfaces so
that device drivers can be generated automatically. The
description of the interface requirements must include de-
tailed timing and bandwidth information for the tool to de-
termine how the interface should be generated. The I/O
capabilities of processors must also be specified in a gen-
eral form. These include directly manipulable I/O pins, in-
terrupt mechanisms, and system bus interfaces. Given the
two sides of the interface (device and processor), the tool
should then be able to determine the best way to intercon-
nect them and generate the corresponding interface soft-
ware and hardware.

The processor may use eitherdirect I/Oor indirect I/O.
Direct I/O manipulates the interface directly without glue
logic, resulting in minimum hardware cost. Indirect I/O
means the processor communicates with the devices via
auxiliary hardware. This may be necessary for three main
reasons. First, if the processor does not have sufficient I/O
resources, then it requires multiplexing logic. Second, the
processor is restricted to instruction cycle timing and may
require an I/O sequencer to guarantee intricate low-level
device signaling constraints such as latching requirements
and fast reaction times. Third, auxiliary hardware can be
used as co-processors for special purposes such as bit ma-
nipulation instructions, algorithmic computations, or even
coarse-grained processes to reduce the load on the proces-
sor.
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par {
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}
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}
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Fig. 2: SCSI controller along with access waveform and
corresponding SEQ.

After glue logic and partitioning decisions have been fi-
nalized, the device-drivers must be updated to reflect the
binding of I/O resources and the introduction of the inter-
face hardware. In this section, we describe the representa-
tion and the algorithm for interface synthesis.

2.1 Representation
The designer writes a high-level specification describ-

ing the behavior and lists the processors and peripheral de-
vices used to implement the system. The input to the al-
gorithm consists of descriptions for the processors, periph-
eral devices, and computations (in the form of control flow
graphs). The first two are stored in the processor and de-
vice libraries, while the latter is derived from the behavioral
description.
2.1.1 Processor Description

Each processor’s I/O resources and access routines are
described in the processor library. One resource is I/O ports
which are listed with their directionality (input, output, or
bidirectional), the physical pins that constitute the logical
port, and the different ways they can be addressed. For ex-
ample, the Intel 87c51 microcontroller has four 8-bit bidi-
rectional I/O portsP0, P1, P2 andP3, each of which is also
bit-addressable. Other processors, such as the Intel i960, do
not have built-in I/O ports, but may use external ones cre-
ated with port expander chips. Templates for connecting
these expander chips to the processor are also defined in
the processor library.

Another resource that can be used for I/O is the mem-
ory bus, which consists of an address port and a data port.
Additionally, the library includes the I/O instructions and
auxiliary hardware needed to produce the waveforms for
a memory transaction. The library also captures other I/O
resources such as a serial line controller (UART or I2C bus
interface), or an A/D converter which may be built into the
processor.
2.1.2 Device Description

The device library contains for each device a descrip-
tion of its ports, interface properties, and low-level access
routines. A device port is said to beguardedif it is able to
isolate itself from a shared bus. A guarded port is not active
unless its associated control signals, calledguards, enable
it. That is, the device does not sample or drive the guarded
ports until the guard becomes true. The guards, by defini-
tion, are always active. As an example, the SCSI Controller
shown in Fig. 2a has five ports that must be connected to a
processor:DB (8-bit data port),ADDR (4-bit address port),



CS (1-bit chip select),WR (1-bit write mode), andRD (1-
bit read mode). PortCS guardsDB, ADDR, WR, andRD.

To communicate with a peripheral device, the processor
must generate a sequence of signals that read and write the
device’s ports. These signal sequencings, calledSEQs, are
atomic routines that comprise a low-level procedural inter-
face to the device. The SEQs can be viewed as a textual
representation of the waveforms the processor will gener-
ate. SEQs are derived from the timing diagrams for the de-
vice’s interfaces and are customized to the capabilities of
the processor in question [3]. SEQs are basic-block primi-
tives. All control constructs such as loops and conditionals
are expressed inhigher-level device drivers. Another dif-
ference between SEQs and drivers is that only SEQs may
directly access device ports whereas drivers must access
them via calls to SEQs. Timing constraints can be speci-
fied on signaling events within a SEQ as well as between
two SEQs invoked by a driver.

Consider the example of a SEQ that writes a parameter
to an internal register in the SCSI Controller (see Fig. 2b).
First, the register’s address and the data to be written are
placed on theADDR andDB ports, respectively. Second,
the chip is selected (enabled) by settingCS. Next,WR is
pulsed to clock the data into the chip. Finally, the chip is
deselected.
2.1.3 Control Flow Graphs

At the high level, the behavioral description of the sys-
tem is parsed and transformed into control flow graphs
(CFGs) which call the device-drivers to perform I/O. By
default, the CFGs are implemented in software. The de-
signer may tag portions of the CFGs to be implemented in
hardware. These will be synthesized by a behavioral syn-
thesis tool after an interfacing mechanism to software is
added (i.e., an I/O sequencer for passing input and output
parameters).
2.1.4 Output

The interface synthesizer outputs all the information
necessary for the construction of the system. This includes
a complete hardware netlist and software for the proces-
sors. In addition, the hardware output consists of inter-
face glue logicmodules described in structural Verilog to be
synthesized by a behavioral compiler. The software output
consists of access routines for all of the peripheral devices
and I/O sequencers. The access routines contain either I/O
port instructions or load/store instructions mapped to I/O
addresses. Using the output from the interface synthesizer
along with the compiled control algorithms specified in the
behavioral description, a designer can construct and power-
up a fully functional system.

2.2 Main Algorithm
The main algorithm (Fig. 3) is called with four param-

eters: CFGSW , CFGHW , DeviceList, andProcessorList.
CFGS W is the set of control flow graphs to be imple-
mented in software.CFGHW are the control flow graphs
implemented in hardware and requiring I/O sequencers.
DeviceListis the list of peripheral devices to be connected
to the processors inProcessorList. Each device is con-
nected to one and only one processor and each processor
may control multiple devices.

The first step of the algorithm synthesizes hardware
sequencers forCFGHW and their access routines from

SynthesizeInterface(CFGSW , CFGHW , DeviceList, ProcessorList)
f foreachProcessor2 ProcessorList

// generate I/O hardware and new software access routines
SequencerList:= SynthesizeSequencer(CFGS W , CFGHW );
DeviceList:=DeviceList[ SequencerList;

// First, use processor’s I/O ports
ConnectedPorts:=AllocIOPorts(Processor, DeviceList);

// Connect remaining ports with MMIO
if (MMIO(Processor, DeviceList� ConnectedPorts, IOPrefix) == fail)

return fail;
GenerateSoftware();
return success;

g

Fig. 3: Main algorithm for interface synthesis

CFGS W . The next step allocates I/O resources for the de-
vices controlled by direct I/O, including the newly syn-
thesized sequencers. The algorithm first attempts to use
I/O ports if the processor has them. If there are any un-
connected device ports remaining, then the algorithm con-
nects them using memory-mapped I/O. Finally, the algo-
rithm generates the device drivers by binding device ports
in the SEQs to the I/O resources of the processors. In the
next section, we summarize the port allocation algorithm
(described in detail in [1]) and present a preprocessing step
called port-width partitioning. Memory-mapped I/O and
sequencer synthesis are described in sections 4 and 5.

3 Interface Synthesis using I/O Ports
The I/O port allocation algorithm assigns processor I/O

ports for communication with peripheral devices. Interface
synthesis using I/O ports has been described in [1] with an
O(n2) greedy sharing heuristic, wheren is the number of
device ports. The algorithm assumes that oversized device
ports, if any, have been partitioned manually. In this sec-
tion, we review this algorithm, introduce a new automated
port partitioning technique, and illustrate their application
with an example.
3.1 I/O Port Allocation

The algorithm considers then device ports in order of
decreasing size. This order maximizes sharing opportuni-
ties among device ports. The greedy sharing heuristic is
based on the observation that guarded ports from different
devices cannot be simultaneously active and therefore may
share the same I/O port without multiplexing logic or a per-
formance penalty. Unguarded device ports, including all
guard ports, are always active, and so the algorithm allo-
cates dedicated I/O ports for them.

If there are not enough I/O ports, the algorithm adds
multiplexing logic to enable some unguarded device ports
to share I/O resources with other device ports. Two tech-
niques for this areforced sharingandencoding transforma-
tion. Forced sharing adds a latch or a tristate, depending on
the directionality of the device port, to free up a dedicated
I/O port, at the expense of a newly introduced guard sig-
nal. For single-bit device ports, such a scheme is actually a
loss. Instead, encoding transformation adds a decoder or a
multiplexor to encode the address for a group of single-bit
ports.

After the device ports have been allocated I/O resources,
the SEQs are customized to reflect the choice of processor
ports and any interface logic that has been introduced. The
algorithm outputs assembly code constituting the I/O prim-
itives for the higher-level device drivers.
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Fig. 4: Automatic I/O Port Allocationand Port-Splitting for
connecting an 8-bit Microcontroller to a PC-Card Interface

3.2 Port-Width Partitioning
The main port allocation algorithm assumes that none

of the device ports are larger than the largest processor I/O
port. If one is, then the preprocessing step described in this
subsection divides it into several smaller ones, by introduc-
ing an interface component if needed. Many microcon-
troller families include processor versions with very dif-
ferent I/O port capabilities, hence, automating this task is
necessary to facilitate experimentation with different pro-
cessors.

A device port is calledsplittableif it can be read or writ-
ten in pieces without data consistency problems. For exam-
ple, a touchtone generator is a combinational device with
an input port that requires valid tone codes. Writing only
to a slice of the input port may cause an invalid tone to be
emitted. A register placed in front of the tone generator can
act as a staging area for data delivered in slices. An output
port is splittable if its value remains stable while the guard
is true. Unguarded output ports are not splittable because
the data values may change between sampling the differ-
ent slices. Bidirectional device ports can be split using a
register in each direction with complementary output en-
ables. The device library contains an attribute that indicates
whether a device port is splittable.
3.3 Example: I/O Port Allocation after Device Port

Splitting
As an example where splitting ports is necessary con-

sider connecting an 8-bit microcontroller directly to a PC-
Card bus, which is treated as a peripheral device (see
Fig. 4). The PC-Card device has a 26-bit address port and a
16-bit bidirectional data port along with card enablesCE1,
CE2, and other control ports.

Either CE1 or CE2 guards the remaining PC-Card
ports. Therefore, the preprocessor partitions the address
port into three 8-bit ports (ADDR0, ADDR1, ADDR2) and
one 2-bit port (ADDR3). Thedata port is partitioned into
two 8-bit ports (DATA0, DATA1). Note that, because of the
guards, this is a logical partitioning and the ports require no
extra hardware to make them splittable.

The I/O port allocation algorithm first attempts to dedi-
cate processor I/O ports to each of the 8-bit ports. Upon de-

MMIO(Processorc, DeviceListL, ioPrefixI)
f

n :=0;
foreach (d 2L ) f

n :=n + 1;
foreach(p 2portList(d ))

if (guarded(p )) continue;
if p can outputor p used in reading seqs ofd

or allocateDataBits(d ; p ) fails then
allocateAddressBits(d ; p );

availDevSelect[d ] :=addrWidth(c )�#usedAddrBits(d )
m =mini2L(#availDevSelect[i]);

if (m � n )return one-hot-encode
if (m �dlg(n )e) return binary-encode

return Huffman-encode
g

Fig. 5: Memory-Mapped I/O Algorithm

pleting I/O ports, the algorithm introduces interface hard-
ware to force some of the 8-bit ports to share the same pro-
cessor I/O port. A multiplexor is used for reading single-
bit output ports. A registered decoder is used to assert one
control line at a time.

4 Memory-Mapped I/O
Memory-mapped I/O (MMIO) is attempted when I/O

port allocation has failed due to the lack of I/O ports.
Memory-mapped devices are accessed through the ad-
dress/data bus of the processor. This is more expensive
than using I/O ports because it requires address matching
logic. Yet, MMIO is less flexible than I/O ports because all
accessing must be expressed in terms of load/store instruc-
tions, whereas I/O instructions allow for arbitrary sequenc-
ing. However, MMIO can be applied effectively to inter-
facing with a large class of devices when I/O ports are not
available. This section presents a technique for memory-
mapped I/O that introduces minimal address matching
logicby efficiently assigning the address bits to the devices.
4.1 Representation

Input to the MMIO algorithm consists of a hardware
template for the processor, a range of addresses reserved
for I/O, and a list of devices to be connected. The output
contains the address matching logic, connections made to
the processor, and the updated SEQs for the devices.

Each processor in the library has a template for trans-
lating memory control signals into a waveform required by
the MMIO algorithm. It assumes that memory transactions
have an address cycle followed by a data cycle. The address
must be valid throughout both the address and data cycles.
A pulse during the data cycle causes data to be either read
or written.

Each device is assigned a range of addresses. If the cur-
rent memory transaction falls within its address range, then
it respondsaccording to its inputs, which are connected to
the address bus and the data bus.
4.2 Memory-mapped I/O Algorithm

The MMIO algorithm has several steps (Fig. 5). First, it
ensures that every device port except the guards can share
the memory bus by applyingforced sharing[1] if neces-
sary. Second, all guarded device ports are assigned bits in
the processor’s data port or the remaining bits in the ad-
dress port. Third, it allocates address bits to uniquely iden-
tify each device, and generates the address matching logic.
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The guard for each device is connected to thedata strobe
qualified by the output of its address matching bit. The
memory-mapped architecture is shown in Fig. 6. Finally,
the algorithm generates software from SEQs in terms of
load/store instructions.

The MMIO algorithm partitions the address word into
three fields:I/O prefix, device-select, anddevice-control.
The I/O prefix field distinguishes I/O addresses from data
memory addresses. Its width is fixed, possibly zero. The
device-selectfield identifies devices within the I/O address
space. Thedevice-controlfield, together with the data port,
can be used to control the non-guard device pins.

The algorithm must decide whether to assign eachnon-
guard device port to either thedevice-controlfield or the
data port. If the device port can output, then it must be as-
signed data bits. If the device port is input only, and if it
is used in any SEQ that also reads any port from the de-
vice, then it must be assigned to thedevice-controlfield.
This is because it must be written to with a load instruction,
which reads from but cannot write to data pins. All other
device ports may be allocated either way. The algorithm
will attempt allocating data bits first in order to maximize
the availabledevice-selectfield, whose size is bounded by
the remaining address bits after all other fields have been
assigned.

The device-selectfield is computed using one of three
schemes, from the least expensive to the most expensive
in terms of address matching logic:one-hot, binary, and
Huffman encoding. If these schemes fail then the SEQs re-
quiring the largest device-control field is divided into mul-
tiple transfers, thereby freeing address bits needed for the
device-select field.

In one-hot encoding, each device is selected by one ad-
dress bit qualified by theI/O prefix. The advantage of this
technique is that it requires very simple address compara-
tor logic (an AND gate). A binary encoding technique of
thedevice-selectfield encodesn devices withdlogne bits.
This technique frees(n�dlogne) bits from one-hot encod-
ing by using a singledlogne input decoder to implementn
address comparators.

If the two approaches above fail, then the algorithm
attempts Huffman encoding [4] of thedevice-selectfield.
Huffman encoding uniquely identifies each device with a
variable number of address bits. It exploitssituations where
the devices require different numbers of bits in thedevice-
controlfield. A device requiring moredevice-controlbits is
addressed by a shorterdevice-selectpattern, andvice versa.

The widths of the availabledevice-controlfields are
used as the cost parameters to Huffman encoding (Fig.7).
If a device has more availabledevice-selectbits, then it is

Huffman-encode(DeviceListD)
f constm =minj2D(#availDevSelect[j]);
L :=�;
foreachi 2D

weight[i ] :=�#availDevSelect[i ] +m +1;
inserti intoL

while (jL j �2)
fi ; j g :=extractMin(L )

k := makeTree(i ; j )
weight[k ] :=weight[i ]+weight[j ];

insertk intoL
foreachi 2D

devSelect[i ] :=pathLabel(head(L ); i )
g

Fig. 7: Huffman Encoding

assigned a smaller weight, which yields a longer Huffman
encoding.

If all three techniques fail to package the SEQs into sin-
gle load/store instructions, then a transformation step di-
vides the unpackageable SEQs into multiple memory in-
structions. This involves introducing registers and tristates
to hold values for a subset of the ports in the SEQ. The
remaining ports are accessed in subsequent load/store in-
structions. After all ports have been allocated, the MMIO
algorithm generates the driver software by replacing the
body of each SEQ with the appropriate memory opera-
tion(s).

4.3 Example: Wrist-watch Display by Memory
Mapped I/O

We demonstrate the application of the MMIO algo-
rithm with a video display on a wristwatch via an infrared
link. The display is pieced together in quadrants using four
square LCDs, each with64x64 pixels. The peripherals in-
clude four LCDs and the IR receiving logic as well as an
external 16K data memory connected to a Motorola 68hc11
microcontroller. To illustrate the MMIO algorithm, only
the data and address ports of the microcontroller are con-
sidered.

The I/O prefix is given as zero in address bit 15 so the
width of this field is one. The algorithm detects that the
LCD’s DB port is bidirectional and assigns it to the data
port (Fig. 8). TheRS andRW ports are input-only, used in
reading SEQs, and are notguards. Therefore, they are as-
signed address bits 1 and 0 in thedevice-controlfield. The
E port is a guard and is therefore connected to the output
of the address comparator logic. Similarly for the receive
logic, thecontrol port is assigned address bits 5 through 0
and theDB port is assigned the data port. The remaining
address bits are available for thedevice-selectfield. The
one-hot test returns success because there are five memory-
mapped components and nine free bits. Fig. 9 shows how
the software is updated.

4.4 Electronic Rolodex by Memory-Mapped I/O
This example demonstrates how the algorithm uses

Huffman encoding. It uses the 87c51 microcontroller with-
out the I/O ports, an LCD, a tone generator, a 16K external
RAM, a UART, and four individual switches. The UART
is mapped to the built-in function. The other devices are
memory-mapped.
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SEQ Lcd−write (data)
     INPUT [7:0] data;
{
          PAR {
               rs := 1;
               rw := 0;
               db := data;
           }
          e := 1;
          e := 0;
}

address

data

e

Original SEQ Updated SEQ

0x2002

Timing Diagram of
Updated SEQ

SEQ Lcd1−write (data)
     INPUT [7:0] data;
{
         Mem−Write(0x2002, data);
          // 0x2000 selects Lcd1
          // rs is assigned address<1>
          // rw is assigned address<0>
          // e will pulse automatically
}

Fig. 9: Updated SEQ after memory-mapping.

First, the switches and the tone generator are not
sharable, so the forced-sharing transformation is applied to
make them sharable. Both one-hot and binary encodings
fail because there are seven external devices (including the
RAM) but only two address bits are available for the I/O
prefix and the device-select fields. Therefore the Huffman
encoding technique is attempted.

To perform Huffman encoding, the devices are sorted
by the width of their device-control field. Note that the
switches and the tone generator require no bits in the
device-control field. A Huffman tree is created based on the
widths of the device-control fields (see Fig. 10). This tree
represents the I/O prefix and device-select fields. These ad-
dress bits are connected to the address comparator logic.

5 I/O Sequencer Generation
The chosen processor may not be able to satisfy all tim-

ing constraints by direct-I/O. At the low level (SEQs), the
constraints include minimum and maximum separation be-
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Fig. 10: Huffman tree created for electronic rolodex along
with the high order address bits required to select a device.

tween signaling events. At the higher level, there may be
response time and rate requirements. To meet these con-
straints, the designer or automated tools may move some
functionality from software to hardware by tagging partic-
ular CFGs. For example, the infrared transmission proto-
col has intricate fine-grained timing constraints on the order
of microseconds. Although it is possible to implement the
protocol in software, a slow processor would not be able to
service other devices at the same time. By creating a se-
quencer that implements the transmit protocol, the proces-
sor needs only to initiate a send command to the sequencer
and can proceed to other tasks. This section describes the
synthesis of this kind of hardware, which we refer to as I/O
sequencers.

An I/O sequencer communicates with a peripheral on
behalf of the processor. In the simplest case, a sequencer
is a slave FSM that waits for the processor to pass in-
parameters, invokes one of the SEQs, and returns out-
parameters, if any. This requires that the processor initi-
ate every I/O primitive. In the more sophisticated case, the
sequencer autonomously interacts with the peripheral de-
vices and the environment. The sequencer must in parallel
communicate with the device and the processor. An exam-
ple would be a sequencer that receives an infrared packet.
This sequencer autonomously decodes the packet header,
receives the specified number of bytes, calculates a check-
sum, and requests retransmission if necessary. After read-
ing in the packet, the sequencer notifies the processor that a
packet has arrived. After the I/O sequencer is synthesized,
it is treated as a peripheral device to be connected to the
processor using I/O port allocation or MMIO.

The input to the I/O sequencer generator consists of
the control flow graphs to be implemented in software
(CFGS W ) and hardware (CFGHW ). The output is a syn-
thesizable description of the hardware sequencer, the con-
nection between the sequencer and the devices it controls,
and the software routines called byCFGS W to access the
sequencer. In addition to meeting performance require-
ments, the algorithm attempts to minimize the amount of
hardware and the number of pins on the sequencer. We
divide the problem into processor/sequencer protocol syn-
thesis and finite state machine generation.
5.1 Algorithm for Sequencer Synthesis

The algorithm generates an I/O sequencer for each pe-
ripheral device that is accessed by a CFG tagged as hard-
ware. An assumption of the algorithm is that if a device is
accessed via a SEQ that must be implemented in hardware,
then all of that device’s SEQs must also be implemented in
hardware. The first step is to extract all entry points from
the software into the hardware to be synthesized. For each
peripheral device, the extracted entry points and the reach-
ableCFGHW form anentry cluster.

The algorithm transforms each cluster into an I/O se-
quencer with customized access routines. First, it converts
the hardware CFGs into FSMs using behavioral synthesis
and then connects the FSMs to the corresponding periph-
eral device ports. The algorithm next synthesizes the com-
munication protocol between the processor and the I/O se-
quencer. The protocol involves selecting the appropriate
entry point, passing the parameters, and synchronization
between the processor and sequencer. Finally, the algo-
rithm connects the protocol engine and the FSM, and up-
dates the software entry points to reflect the synthesized
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protocol.

5.2 Protocol Synthesis
Protocol synthesis generates new SEQs for the processor

to use to control the I/O sequencer as a peripheral device.
These SEQs represent the new entry points intoCFGHW .
Note that the I/O sequencer must implement all commu-
nication between the processor and the peripheral device.
Furthermore, it must also provide the processor with a
means of obtaining status information for the sequencer.

The template for a sequencer is shown in Fig. 12.
Each entry point is encoded on thecommand port. In-
parameters are passed in by selecting the appropriate entry
point and pulsing thestart signal. When invoking a call in
the sequencer, the parameters can be transmitted individu-
ally or in groups. A protocol FSM reads in the parameters.
The last parameter passed in kick-starts the selected entry’s
FSM. While the FSM is executing, theready bit is set false
to prevent reentrant calls to the sequencer. Upon comple-
tion, theready bit is set true. The processor can now read
the out-parameters in a similar manner.

The main problem in protocol synthesis is encoding the
entry points and determining how to pass and retrieve pa-
rameters from the sequencer. Encoding of entry points may
be done using techniques similar to encoding thedevice-
select field in memory-mapped I/O (section 4.2). Un-
like memory-mapped I/O, the parameters can be packaged
many different ways from sending each parameter bit seri-
ally to passing all parameters simultaneously. The choice
of a parameter passing protocol is influenced by timingcon-
straints.

The algorithm’s objective is to minimize the number of
I/O sequencer pins required while still meeting timing con-
straints. The algorithm first determinesW , the size of the
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Fig. 13: Determining the number of pins required for pa-
rameter passing
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Fig. 14: Example of Sequencer Synthesis: Video Camera
Scaler/Compressor with IR Transmitter

parameter port. There are two things to consider,Pe the
number of time steps for passing parameters andSe the size
of data to be transferred for each entrye (see Fig. 13). The
width of theparameter port must allow all parameters to
be transferred within theallotted number of time steps. For-
mally, the inequalityW �P e � S e must hold for all entries
e . Therefore, the algorithm choosesW such that:

W = max
e2cluster

�
S e

P e

�
(1)

5.3 Example: Video Camera with Scaling
We illustrate the application of I/O sequencers with a

video camera which transmits images to a host via an in-
frared link. It digitizes a 256x256 8-bit grayscale image,
scales it down to 128x128 pixels, applies video compres-
sion using frame differencing, and then transmits the image
with the IR protocol. This system has many possible im-
plementations. We consider a partitioning where an I/O se-
quencer is introduced to perform scaling for the processor,
in addition to handling interfacing with the digitizer. This
partitioning allows the compression algorithm and the IR
transmission protocol to be implemented entirely in soft-
ware.

On input to the sequencer synthesizer, the control flow
graph for the scaler process has been tagged as hardware.
This CFG accesses the digitizer, therefore all of the dig-
itizer’s SEQs must be implemented as hardware as well.
The first step of the algorithm forms the entry clusters by
extracting the entry points from software. The four entries
are initialization, enable-scaling, disable-scaling, and read-
pixel.

For each cluster, the algorithm first generates the FSM
for the CFGHW by calling behavioral synthesis on the

scaler process and the SEQs it invokes. The algorithm
connects this FSM to the peripheral device (the digitizer
in this case). Next, the algorithm encodes the commands
with the required parameters. Even though the digitizer’s



SEQs are also implemented in hardware, they are not di-
rectly invoked by software but rather through the sequencer
and thus need not be encoded as separate commands. The
only way for software to invoke the digitizer’s functions is
through the four entry points into the scaler’s I/O sequencer
which are encoded using two bits in thecommand field.
The initialization, enable-scaling, and disable-scaling com-
mands require no parameters, while the read-pixel com-
mand transmits an 8-bit pixel to the processor.

The state machine for handling parameter transmission
and interfacing with theCFGHW is generated next. It has

three main states. The first state waits for the processor to
send a command. The next state sends the start signal to
the corresponding entry inCFGHW. After the completion

of the invoked entry, the third state waits for the proces-
sor to read the pixel before making a transition back to the
first state. Finally, the algorithm generates the software to
initialize the sequencer and to read a pixel using this syn-
thesized protocol. The block diagram is shown in Fig. 14.
6 Conclusion

This paper presents a comprehensive set of techniques
for the synthesis of hardware-software interfaces for em-
bedded systems. Embedded system designers are chal-
lenged with meeting performance constraints while mini-
mizing cost. Tools are needed to help designers explore the
design space of possible solutions while being freed from
the cumbersome tasks required for finalizing an implemen-
tation. This is crucial as it enables proper evaluation of
design decisions early in the process.

Synthesis of the interfaces between system components
is one of these cumbersome tasks. An interface synthe-
sis tool incorporating the techniques presented in this pa-
per produces the glue logic and device drivers needed to
connect processors to their peripheral devices. Hardware is
introduced only when necessary for handling intricate tim-
ing constraints and for multiplexing I/O resources. Once
hardware decisions are finalized, device drivers are auto-
matically customized to reflect the I/O resource bindings
and auxiliary hardware introduced. We presented I/O port
allocation and memory-mapped I/O for allocating I/O re-
sources found on general purpose microprocessors. Fur-
thermore, we presented techniques for interfacing to ele-
ments of the system’s functionality that are implemented in
hardware. This requires the synthesis of a parameter pass-
ing protocol that achieves the communication in the time
allotted. These ideas have been validated with practical
examples used throughout the paper, including several em-
bedded systems that interact over an IR network.

The techniques and algorithms presented in this paper
are part of the Chinook co-synthesis tool for embedded
systems under development at the University of Washing-
ton [2]. Future work includes development of interfacing
techniques that permit sharing of communication resources
between processors and interprocessor communication and
synchronization mechanisms that will permit exploration
of software/software partitions.
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