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Abstract transceiver for a laptop can use more expensive compo-

A key aspect of the synthesis of embedded systems is th@ents that support more robust and efficient communica-
automatic integration of system components. This entails tion. ] ) ) o )
the derivation of both the hardware and software interfaces ~ To_help identify the possible optimizations, consider
that will bind these elements together and permit them to the video wrist-watch system shown in Fig. 1. It has a
communicate correctly and efficiently. Without the auto- grayscale video camera whose images are scaled to the size
matic synthesis of these interfaces, designers are not able0f the wrist-watch display (128x128 8-bit pixels), com-
to fully simulate and evaluate their systems. Frequently, pressed using pixel and frame differencing techniques, and
they are discouraged from exp|0ring the design space of dif- then_ transmitted OVG_)r the Omnl-d_lreCtlonal infrared link.
ferent hardware/software partitions because practical con- The images are received at the wrist-watch, decompressed,
cerns mandate minimizing changes late in the design cy- and rendered on a small LCD screen. These pieces have
cle, thus leading to more costly implementations than nec- @ wide range of implementation choices. For example, ei-
essary. This paper presents a set of techniques that formther the decompression algorithm or the display controller
the basis of a comprehensive solution to the synthesis ofcould be implemented in custom hardware, or on the mi-
hardware/software interfaces. Software drivers and glue croprocessor that will also be handling the reception of IR
logic are generated to connect processors to peripheral packets. On the camera end, the camera controller, scaler,
devices, hardware co-processors, or communication inter- and compressor could also be in hardware, software, or a
faces while meeting bandwidth and performance require- combination depending on the capabilities of the compo-
ments. We use as examples a set of devices that communinents used. )
cate over an infrared local communications network (high-  To decide on the lowest cost mix of components and fea-
lighting a video wrist-watch display) to explain our tech- ~ sibility, designers must iteratively map the device’s func-
niques and the need for design space exploration tools for tionality to a particular hardware/software partition and tar-

embedded systems. get architecturd fe., the processors and devices to be used).
) Every time the designer explores a different system archi-
1 Introduction tecture, the interfaces must be redesigned. For instance,

Designers of task-specific systems must deal withawide changing from a 16-bit processor to a 32-bit processor re-
collection of interfaces. Applications range from medical quires new glue logic and new device drivers. Alterna-
instrumentation to communication and networking devices tively, a slower processor may require additional interface
to controllers in automobiles. There are many optimiza- logic to meet the timing constraints of a fast peripheral
tion opportunities bcause these systems have narrower and device. Interfacing components requires managing many
more specialized operational requirements, and users placedetails in both hardware and software; however, no CAD
fewer restrictions on the components that constitute the sys- tools are currently available to help designers with these
tem. Optimizing the designs leads to an emphasis on designinterfacing issues. This is unfortunate as managing all of
space exploration and system integration. Designers needthese details is so time consuming that designers typically
to rapidly evaluate implementation options, that is, they cannot afford to evaluate many different implementations.
must consider different partitionings and mixes of compo- The tendency is to make incremental changes that keep in-
nents. The most common activity in this type of exploration terfaces and device drivers fixed. This leadsverdesign
is integration of the componenise., generating the inter-  that is, the building in of extra capacity to handle unfore-
faces between them. seen design changes, thereby increasing the cost.

As an example, consider the class of devices that can be  Automating the interface generation and system integra-
used with an infrared local-area network [10]. The types tion tasks is a critical part of the development of embedded
of possible devices range from transceivers connected to asystem synthesis tools. Designers are quite capable of con-
workstation or a laptop all the way to simple identification sidering different global partitionings of their designs but
tags for tracking people and objects. Each device must im- need help in evaluating them. Interfacing and integrating
plement the same communication protocol but within very system components are not only highly cumbersome and
different cost constraints. For instance, identification tags error-prone processes but also must be performed repeat-
must be small and inexpensive while a PC-Card (PCMCIA) edly. A tool that can manage these details and demonstrate
the efficacy of the partition on a particular target architec-
*This work was supported by ARPBAAH04-94-G-0272 ture is critical to enabling a more complete exploration of
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Fig. 1: The infrared video-wristwatch system. The camera _ )
unit transmits compressed video packets to a wrist-watch Fig. 2: SCSI controller along with access waveform and
display. corresponding SEQ.

the design space. After glue logic and partitioning decisions have been fi-
This paper presents various techniques for the synthe- nalized, the device-drivers must be updated to reflect the
sis of the interface between hardware and software com- binding of I/O resources and the introduction of the inter-
ponents in embedded systems. Section 2 describes theface hardware. In this section, we describe the representa-
representation and main algorithm for synthesizing the in- tion and the algorithm for interface synthesis.
terface uging) thSe pJ[_oces:s_:;)or’sdlléi)dresoggcet?1 (I/(ﬁ portt_s an?l 2.1 Representation
memory bus). Sections 3 an escribe the allocation o : . — e ~
/0 ports and address/data ports for performing direct 1/O. . T?]e geﬁlgner Wr(ljtle_s a ?]'gh level speuﬂ%anon_ dhescr||g
These techniques will introduce all of theaessary glue {zgets i sgd ?gl%a?emlesrtwst tthi psros(ftgfr'lsor'i'shaeninpﬁ?tpo ?rrlg af_"
logic and generalte device driver soitware. Section 5 de- orithm consists I(D)f descriptiongforth.e procespsors periph-
scribes the synthesis of the 1/ sequencers (FSMs) for Cases'gral devices, and computations (in the form of control flow
where direct 1/0 cannot meet the performance requirements raphs) The first two are stored in the processor and de-
of the device. The sequencer itself is in turn interfaced as graprs,). P

any other device. \élé:seclgaprggr?s, while the latter is derived from the behavioral
2 Hardware/Software Interface Synthesis 2.1.1 Processor Description

_ The main goal in hardware/software interface synthe-  Each processor’s I/0 resources and access routines are
sis is to generate a communication link using minimal glue described in the processor library. One resource is I/O ports
logic while respecting timing constraints. Automating the hich are listed with their directionality (input, output, or
hardware/software interface allows designers to focus on pjdirectional), the physical pins that constitute the logical
higher-level decisions. To accomplish this requires devel- port, and the different ways they can be addressed. For ex-
oping the appropriate abstractions for device interfaces so ample, the Intel 87¢51 microcontroller has four 8-bit bidi-
that device drivers can be generated automatically. The rectional I/O port$0, P1, P2 andP3, each of whichis also
description of the interface requirements must include de- pjt-addressable. Other processors, such as the Intel 960, do
tailed t|m|ng and bandwidth information for the tool to de- not have built-in I/0O ports' but may use external ones cre-
termine how the interface should be generated. The I/O ated with port expander chips. Templates for connecting

capabilities of processors must also be specified in a gen-these expander chips to the processor are also defined in
eral form. These include directly manipulable I/O pins, in- - the processor library.

terrupt mechanisms, and system bus interfaces. Giventhe  another resource that can be used for I/O is the mem-

two sides of the interface (device and processor), the tool ory pus, which consists of an address port and a data port.

should then be able to determine the best way to intercon- adgitionally, the library includes the I/O instructions and

nect them and generate the corresponding interface soft-g xiliary hardware needed to produce the waveforms for

ware and hardware. . e a memory transaction. The library also captures other I/O
The processor may use eitfdirect 1/O or indirect 1/O. resources such as a serial line controller (UART?@ bus

Direct 1/0 manipulates the interface directly without glue jntertace), or an A/D anverter which may be builtinto the
logic, resulting in minimum hardware cost. Indirect 1/O Processor.

means the processor communicates with the devices via i L
auxiliary hardware. This may beenessary for three main ~ 2-1.2 Device Description

reasons. First, if the processor does not have sufficient /O The device library contains for each device a descrip-
resources, then it requires multiplexing logic. Second, the tion of its ports, interface properties, and low-level access
processor is restricted to instruction cycle timing and may routines. A device port is said to lgeiardedif it is able to
require an I/O sequencer to guarantee intricate low-level isolate itself from a shared bus. A guarded port is not active
device signaling constraints such as latching requirements unless its associated control signals, catjeerds enable

and fast reaction times. Third, auxiliary hardware can be it. That is, the device does not sample or drive the guarded
used as co-processors for special purposes such as bit maports until the guard becomes true. The guards, by defini-
nipulation instructions, algorithmic computations, or even tion, are always active. As an example, the SCSI Controller
coarse-grained processes to reduce the load on the processhown in Fig. 2a has five ports that must be connected to a
Sor. processorDB (8-bitdata port)ADDR (4-bitaddress port),



CS (1-bit chip select)WR (1-bit write mode), andRD (1- f’f'{)‘gzi'ﬁg'rgfgigééﬁfr;xsgrﬁgw DeviceList ProcessorList
bit read mOde)- PoES guard@B’ ADDR’ WR, andRD. I/l generate 1/0 hardware and new software access routines

To communicate with a peripheral device, the processor Sequencerlist= SynthesizeSequenc@RGs v, CFGyr w);
must generate a sequence of signals that read and write the ,,'i?rvsf‘ii'zt:?sfgs'gib'_f}fos?,“r?:“er“st
deVIC_e,S po_rts. These Slgnf?ﬂ sequencings, CESlE@, are ConnéctedF?orts:AIIocIOPoFr)tsProcessqueviceLis);
atomic routines that comprise a low-level procedural inter- s connect remaining ports with MMIO
face to the device. The SEQs can be viewed as a textual if (MMIO(ProcessarDeviceList— ConnectedPortdOPrefix) == fai)
representation of the waveforms the processor will gener- G return g""f?tw _
ate. SEQs are derived from the timing diagrams for the de- ~ SeneraieSonware();
vice’s interfaces and are customized to the cdjs of ’
the processor in question [3]. SEQs are basic-block primi-
tives. All control constructs such as loops and conditionals
are expressed ihigher-level device driversAnother dif-

ference between SEQs and drivers is that only SEQs may

directly access device ports whereas drivers must access
. s : ~“CFGg w . The next step allocates 1/O resources for the de-
them via calls to SEQs. Timing constraints can be speci- vices controlled by direct 1/0, including the newly syn-

fied on signaling events within a SEQ as well as between thesized sequencers. The algorithm first attempts to use

tW%SEQS mvr?ked byaldrl\]{er.SE hat wri /0 ports if the processor has them. If there are any un-
onsider the example of a SEQ that writes a parameter o,nacted device ports remaining, then the algorithm con-
toan |nternal_reg|§ter in the SCSI Controller (see Fig. 2b). 1o.ts them using memory-mapped /0. Finally, the algo-
F||rst, éhe r?r?éfltgzgaad%rgsBs an? the datat_to Ibe évrlttendare rithm generates the device drivers by binding device ports
tphzécghi 0?5 selected agnablegorbs’srgtst(%ec Il\\llggt. W??C?sn ' in the SEQs to the I/O resources of the processors. In the
| dpt lock th é taint )th y hi Igzl' v the chip i next section, we summarize the port allocation algorithm
PUISEQ 1o clock the data Into the chip. Finally, the chip IS (described in detail in [1]) and present a preprocessing step

deselected. called port-width partitioning. Memory-mapped 1/0 and
2.1.3 Control Flow Graphs sequencer synthesis are described in sections 4 and 5.

At the high level, the behavioral description of the sys- 3 |nterface Synthesis using /O Ports
tem is parsed and transformed into control flow graphs  The I/O port allocation algorithm assigns processor 1/O
(CFGs) which call the device-drivers to perform I/O. By  ports for communication with peripheral devices. Interface
default, the CFGs are implemented in software. The de- synthesis using I/O ports has been described in [1] with an
signer may tag portions of the CFGs to be implemented in - 5,2 greedy sharing heuristic, whereis the number of
hardware. These will be synthesized by a behavioral syn- gevice ports. The algorithm assumes that oversized device
thesis tool after an interfacing mechanism to software is ports, if any, have been partitioned manually. In this sec-
added (e, an I/O sequencer for passing input and output tjon, we review this algorithm, introduce a néw automated
parameters). port partitioning technique, and illustrate their application
2.1.4 Output with an example.

The interface synthesizer outputs all the information 3.1 1/O Port Allocation _ _

necessary for the construction of the system. This includes  The algorithm considers the device ports in order of
a complete hardware netlist and software for the proces- decreasing size. This order maximizes sharing opportuni-
sors. In addition, the hardware output consists of inter- ties among device ports. The greedy sharing heuristic is
face glue logic modules described in structural Verilog tobe based on the observation that guarded ports from different
synthesized by a behavioral compiler. The software output devices cannot be simultaneously active and therefore may
consists of access routines for all of the peripheral devices share the same I/O port without multiplexing logic or a per-
and 1/0 sequencers. The access routines contain either I/Oformance penalty. Unguarded device ports, including all
port instructions or load/store instructions mapped to I/0 guard ports, are always active, and so the algorithm allo-
addresses. Using the output from the interface synthesizercates dedicated 1/O ports for them.

Fig. 3: Main algorithm for interface synthesis

along with the compiled control algorithms specified inthe ~ If there are not enough 1/O ports, the algorithm adds
behavioral description, a designer can construct and power- multiplexing logic to enable some unguarded device ports
up a fully functional system. to share 1/O resources with other device ports. Two tech-
. . niques for this aréorced sharingandencoding transforma-
2.2 Maln.AIgorlthm _ _ _ tion. Forced sharing adds a latch or a tristate, depending on
The main algorithm (Fig. 3) is called with four param-  the directionality of the device port, to free up a dedicated
eters: CFGgy, CFGgyw-, Devicelist and ProcessorlList I/O port, at the expense of a newly introduced guard sig-

CFGs w is the set of control flow graphs to be imple- nal. For single-bit device ports, such a scheme is actually a
mented in softwareCFGg y are the control flow graphs loss. Instead, encoding transformation adds a decoder or a
implemented in hardware and requiring /O sequencers.multiplexor to encode the address for a group of single-bit
DevicelListis the list of peripheral devices to be connected ports.

to the processors iRrocessorList Each device is con- After the device ports have been allocated I/O resources,
nected to one and only one processor and each processahe SEQs are customized to reflect the choice of processor
may control multiple devices. ports and any interface logic that has been introduced. The

The first step of the algorithm synthesizes hardware algorithm outputs assembly code constituting the I/O prim-
sequencers foCFGgw and their access routines from itives for the higher-level device drivers.
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Fig. 4: Automatic I/O Port Allocation and Port-Splitting for
connecting an 8-bit Microcontroller to a PC-Card Interface

3.2 Port-Width Partitioning

The main port allocation algorithm assumes that none
of the device ports are larger than the largest processor 1/0
port. If one is, then the preprocessing step described in this
subsection divides it into several smaller ones, by introduc-
ing an interface component if needed. Many microcon-
troller families include processor versions with very dif-
ferent 1/O port capabilities, hence, automating this task is
necessary to facilitate experimentation with different pro-
cessors.

A device portis calledplittableif it can be read or writ-
ten in pieces whout data consistency problems. For exam-
ple, a touchtone generator is a combinational device with
an input port that requires valid tone codes. Writing only
to a slice of the input port may cause an invalid tone to be
emitted. A register @ced in front of the tone generator can
act as a staging area for data delivered in slices. An output
port is splittable if its value remains stable while the guard
is true. Unguarded output ports are not splittaldeduse
the data values may change between sampling the differ-
ent slices. Bidirectional device ports can be split using a
register in each direction with complementary output en-
ables. The device library contains an attribute that indicates
whether a device port is splittable.

3.3 Example: 1/O Port Allocation after Device Port
Splitting

As an example where splitting ports isgessary con-
sider connecting an 8-bit microcontroller directly to a PC-
Card bus, which is treated as a peripheral device (see
Fig. 4). The PC-Card device has a 26-bit address portand a
16-bit bidirectional data port along with card enabB#s1,

CEZ2, and other control ports.

Either CE1 or CE2 guards the remaining PC-Card
ports. Therefore, the preprocessor partitions the address
portinto three 8-bit port$DDRO, ADDR1, ADDR2) and
one 2-bit port ADDR3). Thedata port is partitioned into
two 8-bit ports DATAO, DATA1). Note that, because ofthe
guards, thisis a logical partitioning and the ports require no
extra hardware to make them splittable.

The 1/O port allocation algorithm first attempts to dedi-
cate processor I/O portsto each of the 8-bit ports. Upon de-

MMIO(Processot, DeviceListL, ioPrefixI)
{

n :=0;
foreach(d € L) {
n = +1;
foreach(p € portList(d ))
if (quardedg )) continue;
if p can outpubr p used in reading seqs df
or allocateDataBits{ , p ) fails then
allocateAddressBitsl , p );
availDevSeledt ] :=addrWidth{c ) —#usedAddrBit&] )
m =min; ¢, (#availDevSelet]);
if (m > n )return one-hot-encode
if (m > [lg(n j|)return binary-encode
return Huffman-encode

¥

Fig. 5: Memory-Mapped 1/O Algorithm

pleting 1/O ports, the algorithm introduces interface hard-
ware to force some of the 8-bit ports to share the same pro-
cessor /O port. A multiplexor is used for reading single-
bit output ports. A registered decoder is used to assert one
control line at a time.

4 Memory-Mapped I/O

Memory-mapped /0 (MMIO) is attempted when 1/O
port allocation has failed due to the lack of I/O ports.
Memory-mapped devices are accessedubh the ad-
dress/data bus of the processor. This is more expensive
than using 1/O ports because it requires address matching
logic. Yet, MMIO is less flexible than I/O ports because all
accessing must be expressed in terms of load/store instruc-
tions, whereas I/O instructions allow for arbitrary sequenc-
ing. However, MMIO can be applied effectively to inter-
facing with a large class of devices when 1/O ports are not
available. This section presents a technique for memory-
mapped 1/O that introduces minimal address matching
logic by efficiently assigning the address bits to the devices.

4.1 Representation

Input to the MMIO algorithm consists of a hardware
template for the processor, a range of addresses reserved
for 1/0, and a list of devices to be connected. The output
contains the address matching logic, connections made to
the processor, and the updated SEQs for the devices.

Each processor in the library has a template for trans-
lating memory control signals into a waveform required by
the MMIO algorithm. It assumes that memory transactions
have an address cycle followed by a data cycle. The address
must be valid throughout both the address and data cycles.
A pulse during the data cycle causes data to be either read
or written.

Each device is assigned a range of addresses. If the cur-
rent memory transaction falls within its address range, then
it respondsaccording to itsmputs, which are connected to
the address bus and the data bus.

4.2 Memory-mapped I/O Algorithm

The MMIO algorithm has several steps (Fig. 5). First, it
ensures that every device port except the guards can share
the memory bus by applyinfprced sharing[1] if neces-
sary. Second, all guarded device ports are assigned bits in
the processor’s data port or the remaining bits in the ad-
dress port. Third, it allocates address bits to uniquely iden-
tify each device, and generates the address matching logic.
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The guard for each device i®nected to theata strobe
qualified by the output of its address matching bit. The
memory-mapped architecture is shown in Fig. 6. Finally,
the algorithm generates software from SEQs in terms of
load/store instructions.

The MMIO algorithm partitions the address word into
three fields:1/O prefix device-selectanddevice-contral
The I/O prefixfield distinguishes I/O addresses from data
memory addresses. Its width is fixed, possibly zero. The
device-seledlield identifies devices within the I/O address
space. Thelevice-controfield, together with the data port,
can be used to control the non-guard device pins.

The algorithm must decide whether to assign aamh-
guard device port to either thgevice-controffield or the
data port. If the device port can output, then it must be as-
signed data bits. If the device port is input only, and if it
is used in any SEQ that also reads any port from the de-
vice, then it must be assigned to ttevice-controffield.
This is because it must be itten to with a load instruction,
which reads from but cannot write to data pins. All other
device ports may be allocated either way. The algorithm
will attempt allocating data bits first in order to maximize
the availabledevice-selectield, whose size is bounded by
the remaining address bits after all other fields have been
assigned.

The device-selecfield is computed using one of three
schemes, from the least expensive to the most expensive
in terms of address matching logione-hot binary, and

Huffman encodinglf these schemes fail then the SEQs re-
quiring the largest device-control field is divided into mul-
tiple transfers, thereby freeing address bits needed for the
device-select field.

In one-hot encoding, each device is selected by one ad-
dress bit qualified by thBO prefix The advantage of this
technique is that it requires very simple address compara-
tor logic (an AND gate). A binary encoding technique of
thedevice-seledtield encodes devices with[log »] bits.
This technique free§: — [logn]) bits from one-hot encod-
ing by using a singl¢logn] input decoder to implememnt
address comparators.

If the two approaches above fail, then the algorithm
attempts Huffman encoding [4] of theevice-selecfield.
Huffman encoding uniquely identifies each device with a
variable number of address bits. It exploits situations where
the devices require different numbers of bits in tlewice-
controlfield. A device requiring mordevice-controbitsis
addressed by a shor@evice-selegbattern, andice versa

The widths of the availablelevice-controlfields are
used as the cost parameters to Huffman encoding (Fig.7).
If a device has more availabtievice-selecbits, then it is

guard Huffman-encode(DeviceLigD)
constm =rm; ¢ p (#availDevSelegs]);
Dev.1 L{ — Sinep 51)
foreach: €D
weigh{: ] :=#availDevSele¢t ] +m +i
insert; into L
while (L | >2)
{¢ , j } :=extractMin(L )
k:=makeTreg , j )
weigh({k ] :=weigh{: ]weighfj ]

insertt into L

foreach: €D

devSeledt ] :=pathLabel(head. ), )
1

Fig. 7: Huffman Encoding

assigned a smaller weight, which yields a longer Huffman
encoding.

If all three techniques fail to package the SEQs into sin-
gle load/store instructions, then a transformation step di-
vides the unpackageable SEQs into multiple memory in-
structions. This involves introducing registers and tristates
to hold values for a subset of the ports in the SEQ. The
remaining ports are accessed in subsequent load/store in-
structions. After all ports have been allocated, the MMIO
algorithm generates the driver software by replacing the
body of each SEQ with the appropriate memory opera-
tion(s).

4.3 Example:
Mapped I/O

We demonstrate the application of the MMIO algo-
rithm with a video display on a wristwatch via an infrared
link. The display is pieced together in quadrants using four
square LCDs, each withdx64 pixels. The peripherals in-
clude four LCDs and the IR receiving logic as well as an
external 16K data memory connected to a Motorola 68hc11
microcontroller. To illustrate the MMIO algorithm, only
the data and address ports of the microcontroller are con-
sidered.

Thel/O prefixis given as zero in address bit 15 so the
width of this field is one. The algorithm detects that the
LCD’s DB port is bidirectional and assigns it to the data
port (Fig. 8). TheRS andRW ports are input-only, used in
reading SEQs, and are npiiards Therefore, they are as-
signed address bits 1 and 0 in tthevice-controfield. The
E port is a guard and is therefore connected to the output
of the address comparator logic. Similarly for the receive
logic, thecontrol port is assigned address bits 5 through O
and theDB port is assigned the data port. The remaining
address bits are available for thevice-selecfield. The
one-hot test returns success because there are five memory-
mapped components and nine free bits. Fig. 9 shows how
the software is updated.

Wrist-watch Display by Memory

4.4 Electronic Rolodex by Memory-Mapped 1/0

This example demonstrates how the algorithm uses
Huffman encoding. It uses the 87c51 microcontroller with-
out the I/O ports, an LCD, a tone generator, a 16K external
RAM, a UART, and four individual switches. The UART
is mapped to the built-in function. The other devices are
memory-mapped.
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SEQ Lcd-write (data)

SEQ Lcd1-write (data)
INPUT [7:0] data;

INPUT [7:0] data;

address 0x2002
o D @

Timing Diagram of
Updated SEQ

Mem-Write(0x2002, data);
/'0x2000 selects Lcdl

Il s is assigned address<1>
Il rw is assigned address<0>

/I e will pulse automatically e

}

Original SEQ Updated SEQ

Fig. 9: Updated SEQ after memory-mapping.

First, the switches and the tone generator are not
sharable, so the forced-sharing transformation is applied to
make them sharable. Both one-hot and binary encodings
fail because there are seven external devices (including the
RAM) but only two address bits are available for the 1/0
prefix and the device-select fields. Therefore the Huffman
encoding technique is attempted.

To perform Huffman encoding, the devices are sorted
by the width of their device-control field. Note that the
switches and the tone generator require no bits in the
device-controlfield. A Huffman tree is created based onthe
widths of the device-control fields (see Fig. 10). This tree
represents the 1/O prefix and device-select fields. These ad-
dress bits are connected to the address comparator logic.

5 1/O Sequencer Generation

The chosen processor may not be able to satisfy all tim-
ing constraints by direct-1/0. At the low level (SEQs), the
constraints include minimum and maximum separation be-

1011 1010 1111
S1 S2 S3

1110 110 100

s4 TG LCD
(] @)

0

RAM
tE)

S4 1110

(23)

Fig. 10: Huffman tree created for electronic rolodex along
with the high order address bits required to select a device.

tween signaling events. At the higher level, there may be
response time and rate requirements. To meet these con-
straints, the designer or automated tools may move some
functionality from software to hardware by tagging partic-
ular CFGs. For example, the infrared transmission proto-
col has intricate fine-grained timing constraints on the order
of microseconds. Although it is possible to implement the
protocol in software, a slow processor would not be able to
service other devices at the same time. By creating a se-
guencer that implements the transmit protocol, the proces-
sor needs only to initiate a send command to the sequencer
and can proceed to other tasks. This section describes the
synthesis of this kind of hardware, which we refer to as I1/0
sequencers.

An I/O sequencer communicates with a peripheral on
behalf of the processor. In the simplest case, a sequencer
is a slave FSM that waits for the processor to pass in-
parameters, invokes one of the SEQs, and returns out-
parameters, if any. This requires that the processor initi-
ate every 1/O primitive. In the more sophisticated case, the
sequencer autonomously interacts with the peripheral de-
vices and the environment. The sequencer must in parallel
communicate with the device and the processor. An exam-
ple would be a sequencer that receives an infrared packet.
This sequencer autonomously decodes the packet header,
receives the specified number of bytes, calculates a check-
sum, and requests retransmission if necessary. After read-
ing in the packet, the sequencer notifies the processor that a
packet has arrived. After the I/0O sequencer is synthesized,
it is treated as a peripheral device to be connected to the
processor using I/O port allocation or MMIO.

The input to the I/O sequencer generator consists of
the control flow graphs to be implemented in software
(CFGs w) and hardwareGFGg ). The output is a syn-
thesizable description of the hardware sequencer, the con-

nection between the sequencer and the devices it controls,
and the software routines called BFGs y to access the
sequencer. In addition to meeting performance require-
ments, the algorithm attempts to minimize the amount of
hardware and the number of pins on the sequencer. We
divide the problem into processor/sequencer protocol syn-
thesis and finite state machine generation.

5.1 Algorithm for Sequencer Synthesis

The algorithm generates an I/O sequencer for each pe-
ripheral device that is accessed by a CFG tagged as hard-
ware. An assumption of the algorithm is that if a device is
accessed via a SEQ that must be implemented in hardware,
then all of that device’s SEQs must also be implemented in
hardware. The first step is to extract all entry points from
the software into the hardware to be synthesized. For each
peripheral device, the extracted entry points and the reach-
ableCFGg y form anentry cluster

The algorithm transforms each cluster into an I/O se-
quencer with customized access routines. Firspriverts
the hardware CFGs into FSMs using behavioral synthesis
and then connects the FSMs to the corresponding periph-
eral device ports. The algorithm next synthesizes the com-
munication protocol between the processor and the 1/O se-
quencer. The protocol involves selecting the appropriate
entry point, passing the parameters, and synchronization
between the processor and sequencer. Finally, the algo-
rithm connects the protocol engine and the FSM, and up-
dates the software entry points to reflect the synthesized
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Fig. 14: Example of Sequencer Synthesis: Video Camera
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parameter port. There are two things to considét, the
number of time steps for passing parameters&ritie size
of data to be transterred for each entrisee Fig. 13). The
width of theparameter port must allow all parameters to

be transferred within the allotted number of time steps. For-
mally, the inequality « P . > S . must hold for all entries

protocol.
5.2 Protocol Synthesis

Protocol synthesis generates new SEQs for the processor

to use to control the I/O sequencer as a peripheral device.
These SEQs represent the new entry points CR®y v .
Note that the 1/0O sequencer must implement all commu-
nication between the processor and the peripheral device.
Furthermore, it must also provide the processor with a
means of obtaining status information for the sequencer.

The template for a sequencer is shown in Fig. 12.
Each entry point is encoded on taemmand port. In-
parameters are passed in by selecting the appropriate entry
point and pulsing thstart signal. When invoking a call in
the sequencer, the parameters can be transmitted individu-
ally or in groups. A protocol FSM reads in the parameters.
The last parameter passed in kick-starts the selected entry’s
FSM. While the FSM is executing, tmeady bitis set false
to prevent reentrant calls to the sequencer. Upon comple-
tion, theready bit is set true. The processor can now read
the out-parameters in a similar manner.

The main problem in protocol synthesis is encoding the
entry points and determining how to pass and retrieve pa-
rameters from the sequencer. Encoding of entry points may
be done using techniques similar to encoding dbeice-
selectfield in memory-mapped 1/O (section 4.2). Un-
like memory-mapped 1/O, the parameters can be packaged
many different ways from sending each parameter bit seri-
ally to passing all parameters simultaneously. The choice
of a parameter passing protocolis influenced by timing con-
straints.

The algorithm’s objective is to minimize the number of
I/O sequencer pins required while still meeting timing con-
straints. The algorithm first determings, the size of the

e . Therefore, the algorithm choosgs such that:

W = max

S e
eecluster" Fe-‘ (1)

5.3 Example: Video Camera with Scaling

We illustrate the application of I/O sequencers with a
video camera which transmits images to a host via an in-
frared link. It digitizes a 256x256 8-bit grayscale image,
scales it down to 128x128 pixels, applies video compres-
sion using frame differencing, and then transmits the image
with the IR protocol. This system has many possible im-
plementations. We consider a partitioning where an I/O se-
guencer is introduced to perform scaling for the processor,
in addition to handling interfacing with the digitizer. This
partitioning allows the compression algorithm and the IR
transmission protocol to be implemented entirely in soft-
ware.

On input to the sequencer synthesizer, the control flow
graph for the scaler process has been tagged as hardware.
This CFG accesses the digitizer, therefore all of the dig-
itizer's SEQs must be implemented as hardware as well.
The first step of the algorithm forms the entry clusters by
extracting the entry points from software. The four entries
are initialization, enable-scaling, disable-scaling, and read-
pixel.

For each cluster, the algorithm first generates the FSM
for the CFGgy by calling behavioral synthesis on the

scaler process and the SEQs it invokes. The algorithm
connects this FSM to the peripheral device (the digitizer
in this case). Next, the algorithm encodes the commands
with the required parameters. Even though the digitizer’s



SEQs are also implemented in hardware, they are not ¢

P. Chou, R. B. Ortega, and G. Borriello. The Chinook Hard-

rectly invoked by software but rather through the sequencer ware/Software Co-Synthesis System. Rroc. ISSSSept.
and thus need not be encoded as separate commands. Theggs,

only way for software to invoke the digitizer’s functions is
through the four entry pointsinto the scaler’s 1/O sequencé?]
which are encoded using two bits in thbemmand field.
The initialization, enable-scaling, and disable-scaling com-
mands require no parameters, while the read-pixel comy
mand transmits an 8-bit pixel to the processor.
The state machine for handling parameter transmission
and interfacing with th€FGgy is generated next. It has [5]
three main states. The first state waits for the processor to
send a command. The next state sends the start signal to
the corresponding entry @FGgy: After the completion
of the invoked entry, the third state waits for the proces-
sor to read the pixel before making a transition back to the
first state. Finally, the algorithm generates the software to
initialize the sequencer and to read a pixel using this syn-
thesized protocol. The block diagram is shown in Fig. 14.

6 Conclusion
This paper presents a comprehensive set of techniques

for the synthesis of hardware-software interfaces for em- [8]
bedded systems. Embedded system designers are chal-
lenged with meeting performance constraints while mini-
mizing cost. Tools are needed to help designers explore the
design space of possible solutions while being freed from
the cumbersome tasks required for finalizing an implemen-
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tation. This is crucial as it enables proper evaluation of [10] M. Weiser. Some computer science issues in ubiquitous

design decisions early in the process.

Synthesis of the interfaces between systemmoments
is one of these cumbersome tasks. An interface synthe-
sis tool incorporating the techniques presented in this pa-
per produces the glue logic and device drivers needed to
connect processors to their peripheral devices. Hardware is
introduced only when necessary for handling intricate tim-
ing constraints and for multiplexing 1/O resources. Once
hardware decisions are finalized, device drivers are auto-
matically customized to reflect the 1/O resource bindings
and auxiliary hardware introduced. We presented 1/O port
allocation and memory-mapped /O for allocating 1/O re-
sources found on general purpose microprocessors. Fur-
thermore, we presented techniques for interfacing to ele-
ments of the system’s functionality that are implemented in
hardware. This requires the synthesis of a parameter pass-
ing protocol that achieves the communication in the time
allotted. These ideas have been validated with practical
examples used throughout the paper, including several em-
bedded systems that interact over an IR network.

The techniques and algorithms presented in this paper
are part of the Chinook co-synthesis tool for embedded
systems under development at the University of Washing-
ton [2]. Future work includes development of interfacing
techniques that permit sharing of communication resources
between processors and interprocessor communication and
synchronization mechanisms that will permit exploration
of software/software partitions.
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