Detecting Anomalous and Unknown Intrusions Against Programs

*

Anup K. Ghosh, James Wanken, & Frank Charron
Reliable Software Technologies
21515 Ridgetop Circle, Suite 250
Sterling, VA 20166
poc:aghosh@rstcorp.com
WWw.rstcorp.com

Abstract

The ubiquity of the Internet comnection to desk-
tops has been both boon to business as well as cause
for concern for the security of digital assets that
may be unknowingly exposed. Firewalls have been
the most commonly deployed solution to secure cor-
porate assets against intrusions, but firewalls are vul-
nerable to errors in configuration, ambiguous security
policies, data-driven attacks through allowed services,
and insider attacks. The failure of firewalls to ade-
quately protect digital assets from computer-based at-
tacks has been boon to commercial intrusion detection
tools. Two general approaches to detecting computer
security intrusions in real-time are misuse detection
and anomaly detection. Misuse detection attempts
to detect known attacks against computer systems.
Anomaly detection uses knowledge of users’ normal
behavior to detect attempted attacks. The primary ad-
vantage of anomaly detection over misuse detection
methods is the ability to detect novel and unknown in-
trustons. This paper presents a study in employing
neural networks to detect the existence of anomalous
and unknown intrusions against a software system us-
ing the anomaly detection approach.

1 Introduction

The connectivity of the Internet to corporate, aca-
demic, and home users’ desktop machines has become
ubiquitous. The Internet has enabled nearly seamless
connectivity of users via email and World Wide Web
pages among other services. While the Internet has
enabled the boon of electronic commerce, it has also

*This work was funded by the Defense Advanced Research
Projects Agency (DARPA) under Contract DAAHO01-97-C-
R095. THE VIEWS AND CONCLUSIONS CONTAINED IN THIS DOC-
UMENT ARE THOSE OF THE AUTHORS AND SHOULD NOT BE IN-
TERPRETED AS REPRESENTING THE OFFICIAL POLICIES, EITHER
EXPRESSED OR IMPLIED, OF THE DEFENSE ADVANCED RESEARCH
PROJECTS AGENCY OR THE U.S. GOVERNMENT.

been an enabling medium for computer-based attacks
against corporate and university assets exposed to the
Internet.

Firewalls were initially touted as the panacea to
computer security problems. By restricting access
to computer systems through known ports, firewalls
served to eliminate computer exploitation attacks
through network services that run often unbeknownst
to the host site. Now, it is commonly understood that
firewalls merely reduce exposure rather than eliminate
vulnerabilities in computer systems. Computer-based
attacks can compromise digital assets in spite of fire-
walls by exploiting errors in firewall configuration, ex-
ploiting ambiguities in security policies, obtaining ac-
cess around firewalls through backdoors and computer
modems, attacking network services allowed through
the firewall, and using insider privilege to gain unau-
thorized access to sensitive assets. Furthermore, fire-
walls often engender a false sense of security that re-
sults in relaxed security at the individual host ma-
chines. As a result, once a penetration through or
around a firewall is successful, internal webs of trust
between computers can be exploited to obtain increas-
ing levels of access to sensitive assets.

The failure of firewalls to adequately secure com-
puter systems has led to the growth of the intrusion
detection software industry. Intrusion detection soft-
ware attempts to detect possible attacks against soft-
ware systems in real time before critical assets are
compromised. While no one purports intrusion detec-
tion software to be a silver bullet to computer security
problems, combining intrusion detection with other se-
curity mechanisms such as firewalls, strong access con-
trols, one-time passwords for remote authentication,
secure shells, and regular auditing can provide defense
in depth that can stymie the majority of computer-
based attacks. Without the assistance of intrusion
detection systems, most organizations are not aware

of the number of attacks they experience on a daily
basis against their intrusion detection systems. Intru-
sion detection systems often have two components: (1)
detection of possible attacks, and (2) response to at-
tacks. This paper addresses the first component, i.e.
how to effectively detect attacks against computer sys-
tems. The second component involves implementing
an organization’s policy for either blocking an attack
in progress or entrapping the attacker in a snare.

Intrusion detection techniques can be partitioned

into two main approaches: misuse detection and
anomaly detection. Misuse detection methods at-
tempt to model attacks on a system as specific pat-
terns, then systematically scan the system for occur-
rences of these patterns [Kumar and Spafford, 1996,
Lunt, 1993,
Garvey and Lunt, 1991, Porras and Kemmerer, 1992,
Tlgun, 1992, Monrose and Rubin, 1997]. This process
involves a specific encoding of previous behaviors
and actions that were deemed intrusive or malicious.
Anomaly detection assumes that intrusions are highly
correlated to abnormal behavior exhibited by either
a user or an application. The basic idea is to base-
line normal behavior of the object being monitored
and then flag behaviors that are significantly different
from this baseline as abnormalities, or possible intru-
sions. See [Lunt, 1993, Lunt and Jagannathan, 1988,
Lunt, 1990, Lunt et al., 1992, D’haeseleer et al., 1996,
Porras and Neumann, 1997] for sources on anomaly
detection approaches.

The most significant disadvantage of misuse detec-
tion approaches is that they will only detect the at-
tacks for which they are trained to detect. Novel at-
tacks or even variants of common attacks often go un-
detected. In a time when new security vulnerabilities
in software are discovered and exploited every day,
the reactive approach embodied by misuse detection
methods is not feasible for defeating malicious attacks.

The main advantage of anomaly detection ap-
proaches is the ability to detect novel attacks against
software systems, variants of known attacks, and de-
viations from normal usage of programs regardless of
whether the source is a privileged internal user or an
unauthorized external user. One drawback of anomaly
detection approaches is that well-known attacks may
not be detected, particularly if they fit the established
profile of the user. Once detected, it is often difficult
to characterize the nature of the attack for forensic
purposes. Another drawback of many anomaly detec-
tion approaches is that a malicious user who knows
he or she is being profiled can change his or her pro-
file slowly over time to essentially train the anomaly

detection method to learn his or her malicious behav-
ior as normal. Finally, a high false positive rate may
result for a narrowly trained detection algorithm, or
conversely, a high false negative rate may result for a
broadly trained anomaly detection approach.

In this paper, a novel anomaly detection approach
to intrusion detection is described. Because new vul-
nerabilities in software are reported on a daily basis in
forums such as Bugtraq', the challenge of intrusion de-
tection research is to create techniques that can detect
novel attacks against computer systems. The status
quo in commercial intrusion detection software is rep-
resented by misuse detection approaches that scan for
known attacks. These techniques cannot detect novel
attacks against computer systems, and often times
they do not detect simple variations on known attacks.

A key distinction of the work presented here is
that intrusion detection is performed on software pro-
grams. Most intrusion detection systems analyze ei-
ther network traffic or host system logs. This work
focuses on system processes because attacks against
computer systems are in fact attacks against spe-
cific software programs. By analyzing the usage or
mis-usage of specific software programs, computer-
based intrusions can be tracked at a finer grain
of resolution. The work of Forrest et al. also
examines system processes for anomalous behav-
ior, however, their approach captures system calls
from programs and uses a table look-up algorithm
for detecting potential intrusions [Forrest et al., 1997,
D’haeseleer et al., 1996]. An application of machine
learning to intrusion detection has been developed
elsewhere as well [Lane and Brodley, 1997]. Lane and
Brodley’s work is similar in that machine learning is
used to distinguish between normal and anomalous be-
havior. However, their work is different in that they
build user profiles based on sequences of each indi-
vidual’s normal user commands and attempt to de-
tect intruders based on deviations from the established
user profile. Rather than building profiles on a per-
user basis, our work builds profiles of software behavior
and attempts to distinguish between normal software
behavior and malicious software behavior. The ad-
vantages of our approach are that vagaries of individ-
ual behavior are abstracted because program behavior
rather than individual usage is studied.

The approach described here applies machine learn-
ing techniques to learn the normal behavior of a par-
ticular program in order to detect aberrations. By
providing detection at the software process level, mul-

!Bugtrag can be viewed on-line at
http://www.netspace.org/lsv-archive/bugtraq.html

tiple, diverse, and overlapping detectors can be em-
bedded within the software infrastructure to provide
system-wide coverage.

2 Employing Anomaly Detection Us-
ing Neural Networks

Desiring the ability to detect novel or unknown
intrusions, the anomaly detection approach was em-
ployed in this research. Neural networks are used to
learn the normal behavior of the monitored process
and to detect potential intrusions against the software.
The defining aspect of this approach is that anomaly
detection is performed at the software process level
using machine learning techniques.

Monitoring at the process level adds a layer of ab-
straction such that abnormal process behavior can
be detected irrespective of individual users’ behavior.
This layer abstracts out users’ individual behavior and
allows anomaly detection against the set of all users’
behavior. The approach taken in this research enables
both observable external states such as program in-
put/output as well as internal states that can be cap-
tured via instrumentation to be employed in training
a neural network for detection of misuse. Thus, if the
source code of the monitored program is not readily
available, it does not preclude the use of neural net-
works for intrusion detection. The advantage of the
black-box approach is that it can be used to detect
malicious attacks against commercial software where
the source code is unavailable. The added advantage
of using a white-box capable approach is that it al-
lows access to internal states of a program which pro-
vides additional information in detecting anomalous
program behavior. Differentiation between anomalous
and normal behavior will occur by creating expecta-
tions about a program'’s usage and behavior and then
attempting to detect deviations from the normal be-
havior.

Expectations of normal program behavior are cre-
ated by dynamic analysis of the process under nor-
mal operational conditions. This approach dif-
fers from model-based approaches that specify either
correct usage or, conversely, misusage of programs
[Kumar and Spafford, 1996].

An architecture of the system for analyzing pro-
grams for malicious behavior is shown in Figure 1.
The system was designed to enable different applica-
tions, neural networks, and test vectors to be used in-
terchangeably. Thus, the architecture was constructed
such that any of these components can be extracted
and replaced with a different version without affecting
the other components.

The approach begins with training neural networks

with supervision; i.e., feedback is applied to the net-
work during training to indicate whether the input
is normal or anomalous. Training with supervision re-
quires labeled input, so it is not feasible for on-line de-
tection of intrusions. However, in cases where histori-
cal or archival data exists, it can be useful for training
a network to learn normal behavior and in some cases
for recognizing non-normal behavior. This approach
to anomaly detection permits programmatic detection
of intrusions based on deviations of normal behavior
without the need for a detailed specification model of
correct behavior.

During recall, or during the on-line operation mode
of the tool, the neural network classifies inputs and in-
ternal states as either anomalous or normal. Anoma-
lous inputs and anomalous internal states are assume
to be indicators of potentially dangerous behavior.
The approach has proven to be easily modifiable to
monitor other processes than those already tested.

One drawback of this approach is that the training
period of the neural network may take on the order of
hours or days to complete. However, other approaches
that build up user profiles suffer from this same prob-
lem. Another pitfall to be aware of is that the net-
work is only as good as the data on which it has been
trained. It not known what effect different training
sets would have on the results presented in this paper.
The final drawback of our implementation is that if
new data is added to the training set, the neural net-
work has to be re-trained over the entire training set,
instead of just the data that was added to the training
set.

2.1 Backpropagation network

The backpropagation network, or backprop, is
probably the most commonly used neural network.
The standard architecture consists of an input layer,
at least one hidden layer (neurons that are not directly
connected to the input or output nodes), and an out-
put layer. Typically, there are no connections between
neurons in the same layer or to a previous layer.

Backprops have generalized capability. As such,
they can produce nearly correct outputs for inputs
that were not used in the training set. In theory,
no more than two hidden layers are needed in a neu-
ral network since the network can generate arbitrarily
complex regions in the state space [Lippmann, 1991].
One of the backprop’s main drawbacks, though, is that
it tends to be very computationally complex and is
time consuming to train. Backprops are well-suited for
applications in classification, function approximation,
and prediction [Jain et al., 1996]. For the purposes
of intrusion detection, the backprop is well-suited for

Test Driver

normal/anomalous?

Test Cases

anomalous

input

training/
recall

L

Program Under

Analysis
output Neural
Network
detect?
evaluate
%
performance

Figure 1: An architecture for analyzing programs for anomalous or malicious behavior using neural networks.

classifying normal behavior and flagging anomalous
behavior.

The training cycle of a backprop proceeds in two
distinct phases. First, the input is submitted to the
network and the activations for each level of neurons
are cascaded forward. In the training phase, the de-
sired output is compared with the network’s output.
For instance, in training with supervision, the desired
output for anomalous data is an intrusion detection.
If the vectors do not agree, the network updates the
weights starting at the output neurons. Then, the
change in weights is calculated for the previous layer.
This process continues to cascade through the layers
of neurons toward the input neurons, hence the name
backpropagation.

3 Neural Network Implementation

The backprop implementation provided many ad-
vantages in this work. Backprop networks are very
good at classifying complex relationships, which in the
case of anomaly detection, is useful for classifying nor-
mal and anomalous states.

The generalized backprop neural network is shown
in Figure 2. The input layer of the network governs the
number of inputs and internal states that the network

uses in classification. Likewise, the output nodes gov-
ern the total number of classes the network is classify-
ing. The backprop is trained with supervision; thus,
the desired outputs for each input pattern is supplied
to the network during the training phase.

4 Experimental Analysis

The objective of the experimentation described in
this section is to determine how effective the imple-
mented neural network is at detecting misuse of pro-
grams. The approach examines program inputs as well
as internal states to determine if the program is being
mis-used.

The experiment was designed to detect potential
misuse of system programs, such as 1pr. The Linux
lpr program can be subverted on certain platforms
using a buffer overflow attack. It should also be noted
that this experiment was performed using both black-
box as well as white-box analysis because access to
the source code for the 1pr program was freely avail-
able. This experiment was run repeatedly using differ-
ent initial weightings of the neural network in order to
account for potential statistical out-liers in the results.

0

Output
Layer

Hidden
Layer

Input
Layer

Figure 2: Topology of the elementary backpropagation network architecture with one hidden layer, n input nodes,

and q output nodes.

5 Linux lpr Exploitation Experimental
Results
5.1 Introduction

This set of experiments explores the use of a neu-
ral network to detect anomalous use of the standard
Linux 1pr program. The linux lpr program is known
to have a buffer overflow vulnerability which can be
exploited through input. This exploit uses a buffer
overflow attack on specific 1pr flags to enable the user
to execute a root shell or perform other root-privileged
commands. The goal of this experimentation is to de-
termine how effective the neural network is in detect-
ing anomalous use of system programs. To this end,
the neural network was trained with malicious, nor-
mal, and in some cases, random input. This set of
experiments also examines the use of internal states
in the process of anomaly detection.

5.2 General description

The 1pr program is exploited in the following man-
ner. An auxiliary program was written which filled
a large character buffer. At the end of this buffer,
specific character strings were added to overwrite the
return address of the stack frame with the address of

a new instruction to be executed, which was placed
elsewhere in the buffer (this instruction was usually a
/bin/sh). The program would then exec an lpr child
process with this buffer as one of the flag arguments.
During the experimentation, both this auxiliary pro-
gram and the 1pr program were modified to write spe-
cific inputs and internal states to a file to be used as
inputs to the neural network.

The neural network’s input patterns consisted of a
combination of inputs from two distinct sources. The
first source was the character buffer passed to the 1pr
program as a flag argument. To encode the character
buffer, only the last 75 positions were used. This was
done in an attempt to reduce the difference between a
normal flag input, typically on the order of 10-30 char-
acters, and an overflow buffer of approximately 4,000
characters. Thus, for the overflow attempts, only the
last 75 of the 4,096 characters were used as inputs,
and for non-overflow attempts, the entire string was
used (unless of course it exceeded 75 characters). To
encode these 75 input characters, they were given the
value: (integer value of character) / 128.0, and 0.0 was
used to pad any of the unused inputs.

The second source of input was the internal len

variable in the 1pr card () function. The card () func-
tion was chosen because most of the 1pr flag inputs
are funneled through this particular procedure. The
len variable is interesting because it represents the
length of the input parameter. The len variable from
card() constituted an additional 8 inputs (since the
procedure could be executed multiple times), and was
encoded by: (len value)/1032, where 0.0 was used to
pad any of the unused inputs.

5.3 Training sets

The input patterns for the neural networks’ train-
ing sets were constructed from the following sets: ma-
licious inputs, normal 1pr inputs, and random inputs.
Malicious inputs were generated using the exploit pro-
gram mentioned above. The malicious inputs did not
necessarily generate /bin/sh, but were generated to
look very similar. The normal lpr inputs were gener-
ated by printing valid files, with various flag options.
The random inputs were generated using the fuzz pro-
gram [Miller et al., 1995] and were limited to a length
of 80 (only 75 characters could be used).

5.4 Recall set

To test the performance of each of the neural net-
works trained below, one recall set was created for all
lpr experiments. The recall set consisted of 150 nor-
mal lpr inputs, 50 malicious inputs, and 50 random
inputs. All of these input patterns were unique from
those used in the training sets. The recall sets for the
different networks were only modified in the experi-
ments to include the specific subset of input patterns
that were necessary for a particular network. Hence,
if the internal state was not used to train the net-
work, then the inputs corresponding to the len vari-
able would also not be clamped to the network during
the recall phase.

5.5 Experiments

The neural network used in the 1pr exploit exper-
iments was a 3 layer backpropagation network whose
architecture consisted of a hidden layer, an input layer,
and an output layer. There were 125 nodes in the hid-
den layer, 1 output node, and a variable number of
input nodes.

Table 1 summarizes the experimental setup for the
six experiments. The inputs to the neural network
(NN) are distinguished between the experiments by
whether the inputs were external lpr inputs or in-
ternal 1pr states. External inputs represent standard
input to the lpr program. If the len variable was
used as an input to the neural network, then the in-
ternal column is checked in the table. The number of
input nodes, hidden nodes, and output nodes for each
of the neural network experiments is also given in the

table. The other distinguishing parameter between
the experiments is whether random input was used to
train the network. If random data was used in train-
ing the network, then this column is checked in the
table. The neural network was trained to classify ran-
dom data as anomalous, since the network attempts
to distinguish between normal use and anomalous use
of a program. The goal of the experimentation is to
determine which of these parameters are most useful
(or conversely least useful) for detection of misuse of
a program.

5.5.1 Discussion of results

Table 2 shows the results from all six experiments. All
experiments were run 30 times using 30 different ini-
tial weights of the network. The performance of the
network is evaluated based on the percentage of the in-
puts it classified correctly, the percentage of false pos-
itives, and the percentage of false negatives. A false
positive is defined as a normal input that was classi-
fied as anomalous by the network. A false negative is
defined as an anomalous input that was classified as
a normal by the network. Either of these two distinc-
tions would constitute an error in classification by the
network. The results are presented as averages, min-
ima, and maxima over these runs in these categories.

To summarize the results, the best results were ob-
tained in Experiments 3 and 4 when the neural net-
work was trained with random data generation. Re-
call, that the neural network was trained to classify
random data as anomalous. Including the internal
state variable len in addition to the external 1lpr in-
puts did not impact the results significantly. In fact,
in Experiments 5 and 6, where the neural network
was trained and tested on the internal len variable
exclusively, the results were the weakest. Arguably,
training with the internal len variable exclusively was
too narrow for detection of a range of anomalous and
malicious usage.

The neural network in Experiment 6 did not con-
verge to an acceptable mean squared error, so its re-
sults were omitted. In Experiment 5, the error rate
was approximately 20% exclusively false negatives.
In none of the experiments were false positives de-
tected. Since the training was heavily biased with nor-
mal inputs, in no cases did the neural network incor-
rectly classify a normal input as an anomalous input
(the false positive case).

As a simple benchmark for comparison, consider
a monkey instead of a neural network that is choos-
ing whether a given input is normal or anomalous.
The monkey uses a simple algorithm for determining

NN Inputs NN Layers
Num | external | internal | Inputs | Hidden | Outputs | Random Data Included
1 b'd 75 125 1
2 b'd X 83 125 1
3 X 75 125 1 X
4 X X 83 125 1 X
5 X 8 125 1
6 X 8 125 1 X

Table 1: Experimental setup for detection of anomalous use of 1pr program.

whether the input is normal or anomalous—he flips a
coin. The likelihood that the monkey will classify an
input as normal is 50% as is the likelihood that an in-
put will be classified as anomalous. The actual inputs
sent to the program have the following prior proba-
bilities: 40% were anomalous while 60% were normal.
The probability that the monkey commits a false neg-
ative is the probability that an anomalous input was
sent to the program and that the monkey said it was
normal. Since these are independent events, the false
negative probability is 20%. The probability that the
monkey commits a false positive is the probability that
a normal input is sent and that the monkey said it was
anomalous. The false positive probability is calculated
similarly and is 30%. The results from using a neural
network on the whole do better than the monkey. No
false positives were detected (compared to 30% for the
monkey), while false negatives for the neural network
ranged from 0.4% to 19.9% (compared to 20% for the
monkey). For some experiments (e.g., Experiments
1, 2, and 5), the neural network did as bad as the
monkey for false negatives (these are explained in the
discussion below), while in others it did extremely well
compared to the monkey (e.g., Experiments 3 and 4).

In intrusion detection systems, reducing the false
positive rate is perceived as a greater responsibility
than reducing the false negative rate. The reasoning
is that an excessive false positive rate can lead to a
“cry wolf” syndrome where nobody pays attention to
the intrusion detection software after awhile. On the
other hand, provided multiple, overlapping detectors,
a small false negative rate is tolerable as missed at-
tempts by one detection unit may be correctly classi-
fied by another. A discussion of the results from each
of the experiments is presented next.

Experiment 1 This experiment can be considered
the baseline for the 1pr exploit experiments (see Ta-
ble 1). It demonstrates how well the neural network
performed when training only on the accessible 1pr in-
puts, a reasonably sized test set, and without training

randomly generated input. From Table 2 we see that
the baseline error rate was 20%, exclusively composed
of false negatives.

Experiment 2 This experiment extends the base-
line experiment, (Experiment 1), by not only using
the accessible inputs to the 1pr program, but also the
internal state (represented by the len variable in the
card () function). This experiment attempts to deter-
mine if by using an internal program state whether the
performance of detection can be improved. The results
do not indicate any significant impact, let alone im-
provement. The results are too similar to Experiment
1 to be statistically significant.

Experiment 3 The network was trained with ran-
dom inputs to further diversify its notion of anomalous
inputs. The idea is to expose the network to a num-
ber of different types of anomalous input, rather then
strictly well-known intrusion attempts. Training with
randomly generated inputs may be one way of detect-
ing novel intrusion attempts. The performance of the
network was excellent in this experiment. The average
error rate for this experiment was only 0.9%. We can
conclude that including randomly generated patterns
in the training set vastly increased the performance of
the network allowing the network to correctly classify
a wide range of input patterns with a very high degree
of accuracy. The results indicates that an anomaly
detection approach may be useful over misuse detec-
tion in detecting novel, unknown intrusion attempts
especially when trained with random data classified as
anomalous.

Experiment 4 This experiment extends Experi-
ment 3, by including the internal state variable len.
Once again, the goal is to determine if by adding in
internal state information, whether the performance
of the neural network will be improved. As seen from
the Table 2, adding the internal variable once again
did not statistically impact the results.

Classified Correct False Positive False Negative

Num | Avg Min Max | Avg | Min | Max | Avg Min Max
1 82.5% | 80.1% | 88.4% | 0.0% | 0.0% | 0.0% | 17.5% | 11.6% | 19.9%
2 81.9% | 80.1% | 85.7% | 0.0% | 0.0% | 0.0% | 18.1% | 14.3% | 19.9%
3 99.1% | 98.0% | 99.6% | 0.0% | 0.0% | 0.0% | 0.9% 0.4% 2.0%
4 98.8% | 97.6% | 99.6% | 0.0% | 0.0% | 0.0% | 1.2% 0.4% 2.4%
5 80.2% | 80.2% | 80.2% | 0.0% | 0.0% | 0.0% | 19.8% | 19.8% | 19.8%
6

Table 2: Results of detection from anomalous use of 1pr program.

Experiment 5 This experiment uses the internal
state exclusively as the input to the neural network
during training and recall. The results were the worst
of all the experiments, but not significantly worse than
experiments 1 and 2. A closer look at the data revealed
that on recall, all the anomalous data randomly gen-
erated were classified as normal by the network (the
false negative case). This contributed to the large false
negative rate for this experiment. The reason is that
the randomly generated data had a length approxi-
mately close to that of the normal training set. On
the other hand, the network did very well in correctly
classifying all anomalous input that were buffer over-
flows. Using strictly the len variable is effective at
detecting buffer overflows, but not in detecting other
potential misuses of a program.

The problem stems from the fact that the single
internal variable chosen does not provide sufficient in-
formation to classify the input patterns. Inspecting
the training set reveals that all of the anomalous in-
put patterns are exactly the same, when one is only
looking at the internal variable len. Thus, it is no sur-
prise that the network converged to a state in which
only this input vector was classified as anomalous. To
alleviate this problem, a few steps can be taken. The
first is that additional internal variables could be used.
A second is to pair this internal state with inputs, as
was done in the earlier experiments. This experiment
reveals one of the problematic areas encountered in
this research, namely, identifying which information
provides maximum utility for detection of anomalous
behavior.

Experiment 6 The neural network in Experiment 6
did not converge to an acceptable mean squared error,
so its results were omitted.

6 Conclusions

This paper describes novel work in using neural net-
works for detecting misuse of programs. Two impor-
tant observations result from this work. First, the
results demonstrate how misuse of programs can be

detected using neural networks. The results indicate
that training with randomly generated data lead to the
best performance in detection of possible novel misuse
attempts an area in which most misuse detection ap-
proaches are weak. Furthermore, the results show the
benefit of applying anomaly detection at the process
level such that abnormal process behavior can be de-
tected irrespective of individual users’ behavior. This
approach abstracts out users’ individual behavior and
allows anomaly detection against the set of all users’
behavior.

The experiments also raise an interesting discus-
sion about using internal program states in training
the neural networks. Choosing useful internal states
is in general a very difficult process. How a particular
state is identified as being important is a time consum-
ing task, usually relying heavily upon code inspection.
The final experiment also provides a warning for not
placing too much emphasis on a particular internal
state, or a single input for that matter. The best ap-
proach seems to be to take a broad, yet representative
sample of inputs and internal states. Further research
will attempt to identify important internal states for
anomalous use of programs. These results may be
important in not only detecting attempted misuse of
programs, but also erroneous program behavior.

References

[D’haeseleer et al., 1996] D’haeseleer, P., Forrest, S.,
and Helman, P. (1996). An immunological approach
to change detection: Algorithms, analysis and im-
plications. In IEEE Symposium on Security and
Privacy.

[Forrest et al., 1997] Forrest, S., Hofmeyr, S., and So-
mayaji, A. (1997). Computer immunology. Com-
munications of the ACM, 40(10):88 96.

[Garvey and Lunt, 1991] Garvey, T. and Lunt, T.
(1991). Model-based intrusion detection. In Pro-
ceedings of the 14th National Computer Security
Conference.

[Mlgun, 1992] Tlgun, K. (1992). Ustat: A real-time in-
trusion detection system for unix. Master’s thesis,
Computer Science Dept, UCSB.

[Jain et al., 1996] Jain, A., Mao, J., and Mohiuddin,
K. M. (1996). Artificial neural networks: A tutorial.
IEEE Computer, 29(3):31 33.

[Kumar and Spafford, 1996] Kumar, S. and Spafford,
E. (1996). A pattern matching model for misuse
intrusion detection. The COAST Project, Purdue
University.

[Lane and Brodley, 1997] Lane, T. and Brodley, C.
(1997). An application of machine learning to
anomaly detection. In Proceedings of the 20th
National Information Systems Security Conference,
pages 366-377.

[Lippmann, 1991] Lippmann, R. (1991). An Introduc-
tion to Computing with Neural Nets, chapter Part 1,
pages 5 23. IEEE Press, Piscataway, NJ. in Neural
Networks Theoretical Foundations and Analysis.

[Lunt, 1990] Lunt, T. (1990). Ides: an intelligent sys-
tem for detecting intruders. In Proceedings of the
Symposium: Computer Security, Threat and Coun-
termeasures. Rome, Italy.

[Lunt, 1993] Lunt, T. (1993). A survey of intru-
sion detection techniques. Computers and Security,
12:405 418.

[Lunt and Jagannathan, 1988] Lunt, T. and Jagan-
nathan, R. (1988). A prototype real-time intrusion-
detection system. In Proceedings of the 1988 IEEFE
Symposium on Security and Privacy.

[Lunt et al., 1992] Lunt, T., Tamaru, A., Gilham, F.,
Jagannthan, R., Jalali, C., Javitz, H., Valdos, A.,
Neumann, P., and Garvey, T. (1992). A real-time
intrusion-detection expert system (ides). Technical
Report, Computer Science Laboratory, SRI Inter-
nationnal.

[Miller et al., 1995] Miller, B., Koski, D., Lee, C., Ma-
ganty, V., Murthy, R., Natarajan, A., and Steidl,
J. (1995). Fuzz revisted: A re-examination of the
reliability of UNIX utilities and services. Technical
report, University of Wisconsin, Computer Sciences
Dept.

[Monrose and Rubin, 1997] Monrose, F. and Rubin,
A. (1997). Authentication via keystroke dynamics.
In Jth ACM Conference on Computer and Commu-
nications Security.

[Porras and Kemmerer, 1992] Porras, P. and Kem-
merer, R. (1992). Penetration state transition anal-
ysis - a rule-based intrusion detection approach.
In Eighth Annual Computer Security Applications
Conference, pages 220 229. IEEE Computer Soci-
ety Press.

[Porras and Neumann, 1997] Porras, P. and Neu-
mann, P. (1997). Emerald: Event monitoring en-
abling responses to anomalous live disturbances. In
Proceedings of the 20th National Information Sys-
tems Security Conference, pages 353 365.

