
Detecting Anomalous and Unknown Intrusions Against Programs�Anup K. Ghosh, James Wanken, & Frank CharronReliable Software Technologies21515 Ridgetop Circle, Suite 250Sterling, VA 20166poc:aghosh@rstcorp.comwww.rstcorp.comAbstractThe ubiquity of the Internet connection to desk-tops has been both boon to business as well as causefor concern for the security of digital assets thatmay be unknowingly exposed. Firewalls have beenthe most commonly deployed solution to secure cor-porate assets against intrusions, but �rewalls are vul-nerable to errors in con�guration, ambiguous securitypolicies, data-driven attacks through allowed services,and insider attacks. The failure of �rewalls to ade-quately protect digital assets from computer-based at-tacks has been boon to commercial intrusion detectiontools. Two general approaches to detecting computersecurity intrusions in real-time are misuse detectionand anomaly detection. Misuse detection attemptsto detect known attacks against computer systems.Anomaly detection uses knowledge of users' normalbehavior to detect attempted attacks. The primary ad-vantage of anomaly detection over misuse detectionmethods is the ability to detect novel and unknown in-trusions. This paper presents a study in employingneural networks to detect the existence of anomalousand unknown intrusions against a software system us-ing the anomaly detection approach.1 IntroductionThe connectivity of the Internet to corporate, aca-demic, and home users' desktop machines has becomeubiquitous. The Internet has enabled nearly seamlessconnectivity of users via email and World Wide Webpages among other services. While the Internet hasenabled the boon of electronic commerce, it has also�This work was funded by the Defense Advanced ResearchProjects Agency (DARPA) under Contract DAAH01-97-C-R095. the views and conclusions contained in this doc-ument are those of the authors and should not be in-terpreted as representing the official policies, eitherexpressed or implied, of the defense advanced researchprojects agency or the u.s. government.

been an enabling medium for computer-based attacksagainst corporate and university assets exposed to theInternet.Firewalls were initially touted as the panacea tocomputer security problems. By restricting accessto computer systems through known ports, �rewallsserved to eliminate computer exploitation attacksthrough network services that run often unbeknownstto the host site. Now, it is commonly understood that�rewalls merely reduce exposure rather than eliminatevulnerabilities in computer systems. Computer-basedattacks can compromise digital assets in spite of �re-walls by exploiting errors in �rewall con�guration, ex-ploiting ambiguities in security policies, obtaining ac-cess around �rewalls through backdoors and computermodems, attacking network services allowed throughthe �rewall, and using insider privilege to gain unau-thorized access to sensitive assets. Furthermore, �re-walls often engender a false sense of security that re-sults in relaxed security at the individual host ma-chines. As a result, once a penetration through oraround a �rewall is successful, internal webs of trustbetween computers can be exploited to obtain increas-ing levels of access to sensitive assets.The failure of �rewalls to adequately secure com-puter systems has led to the growth of the intrusiondetection software industry. Intrusion detection soft-ware attempts to detect possible attacks against soft-ware systems in real time before critical assets arecompromised. While no one purports intrusion detec-tion software to be a silver bullet to computer securityproblems, combining intrusion detection with other se-curity mechanisms such as �rewalls, strong access con-trols, one-time passwords for remote authentication,secure shells, and regular auditing can provide defensein depth that can stymie the majority of computer-based attacks. Without the assistance of intrusiondetection systems, most organizations are not aware

of the number of attacks they experience on a dailybasis against their intrusion detection systems. Intru-sion detection systems often have two components: (1)detection of possible attacks, and (2) response to at-tacks. This paper addresses the �rst component, i.e.how to e�ectively detect attacks against computer sys-tems. The second component involves implementingan organization's policy for either blocking an attackin progress or entrapping the attacker in a snare.Intrusion detection techniques can be partitionedinto two main approaches: misuse detection andanomaly detection. Misuse detection methods at-tempt to model attacks on a system as speci�c pat-terns, then systematically scan the system for occur-rences of these patterns [Kumar and Spa�ord, 1996,Lunt, 1993,Garvey and Lunt, 1991, Porras and Kemmerer, 1992,Ilgun, 1992, Monrose and Rubin, 1997]. This processinvolves a speci�c encoding of previous behaviorsand actions that were deemed intrusive or malicious.Anomaly detection assumes that intrusions are highlycorrelated to abnormal behavior exhibited by eithera user or an application. The basic idea is to base-line normal behavior of the object being monitoredand then
ag behaviors that are signi�cantly di�erentfrom this baseline as abnormalities, or possible intru-sions. See [Lunt, 1993, Lunt and Jagannathan, 1988,Lunt, 1990, Lunt et al., 1992, D'haeseleer et al., 1996,Porras and Neumann, 1997] for sources on anomalydetection approaches.The most signi�cant disadvantage of misuse detec-tion approaches is that they will only detect the at-tacks for which they are trained to detect. Novel at-tacks or even variants of common attacks often go un-detected. In a time when new security vulnerabilitiesin software are discovered and exploited every day,the reactive approach embodied by misuse detectionmethods is not feasible for defeating malicious attacks.The main advantage of anomaly detection ap-proaches is the ability to detect novel attacks againstsoftware systems, variants of known attacks, and de-viations from normal usage of programs regardless ofwhether the source is a privileged internal user or anunauthorized external user. One drawback of anomalydetection approaches is that well-known attacks maynot be detected, particularly if they �t the establishedpro�le of the user. Once detected, it is often di�cultto characterize the nature of the attack for forensicpurposes. Another drawback of many anomaly detec-tion approaches is that a malicious user who knowshe or she is being pro�led can change his or her pro-�le slowly over time to essentially train the anomaly

detection method to learn his or her malicious behav-ior as normal. Finally, a high false positive rate mayresult for a narrowly trained detection algorithm, orconversely, a high false negative rate may result for abroadly trained anomaly detection approach.In this paper, a novel anomaly detection approachto intrusion detection is described. Because new vul-nerabilities in software are reported on a daily basis inforums such as Bugtraq1, the challenge of intrusion de-tection research is to create techniques that can detectnovel attacks against computer systems. The statusquo in commercial intrusion detection software is rep-resented by misuse detection approaches that scan forknown attacks. These techniques cannot detect novelattacks against computer systems, and often timesthey do not detect simple variations on known attacks.A key distinction of the work presented here isthat intrusion detection is performed on software pro-grams. Most intrusion detection systems analyze ei-ther network tra�c or host system logs. This workfocuses on system processes because attacks againstcomputer systems are in fact attacks against spe-ci�c software programs. By analyzing the usage ormis-usage of speci�c software programs, computer-based intrusions can be tracked at a �ner grainof resolution. The work of Forrest et al. alsoexamines system processes for anomalous behav-ior, however, their approach captures system callsfrom programs and uses a table look-up algorithmfor detecting potential intrusions [Forrest et al., 1997,D'haeseleer et al., 1996]. An application of machinelearning to intrusion detection has been developedelsewhere as well [Lane and Brodley, 1997]. Lane andBrodley's work is similar in that machine learning isused to distinguish between normal and anomalous be-havior. However, their work is di�erent in that theybuild user pro�les based on sequences of each indi-vidual's normal user commands and attempt to de-tect intruders based on deviations from the establisheduser pro�le. Rather than building pro�les on a per-user basis, our work builds pro�les of software behaviorand attempts to distinguish between normal softwarebehavior and malicious software behavior. The ad-vantages of our approach are that vagaries of individ-ual behavior are abstracted because program behaviorrather than individual usage is studied.The approach described here applies machine learn-ing techniques to learn the normal behavior of a par-ticular program in order to detect aberrations. Byproviding detection at the software process level, mul-1Bugtraq can be viewed on-line athttp://www.netspace.org/lsv-archive/bugtraq.html

tiple, diverse, and overlapping detectors can be em-bedded within the software infrastructure to providesystem-wide coverage.2 Employing Anomaly Detection Us-ing Neural NetworksDesiring the ability to detect novel or unknownintrusions, the anomaly detection approach was em-ployed in this research. Neural networks are used tolearn the normal behavior of the monitored processand to detect potential intrusions against the software.The de�ning aspect of this approach is that anomalydetection is performed at the software process levelusing machine learning techniques.Monitoring at the process level adds a layer of ab-straction such that abnormal process behavior canbe detected irrespective of individual users' behavior.This layer abstracts out users' individual behavior andallows anomaly detection against the set of all users'behavior. The approach taken in this research enablesboth observable external states such as program in-put/output as well as internal states that can be cap-tured via instrumentation to be employed in traininga neural network for detection of misuse. Thus, if thesource code of the monitored program is not readilyavailable, it does not preclude the use of neural net-works for intrusion detection. The advantage of theblack-box approach is that it can be used to detectmalicious attacks against commercial software wherethe source code is unavailable. The added advantageof using a white-box{capable approach is that it al-lows access to internal states of a program which pro-vides additional information in detecting anomalousprogram behavior. Di�erentiation between anomalousand normal behavior will occur by creating expecta-tions about a program's usage and behavior and thenattempting to detect deviations from the normal be-havior.Expectations of normal program behavior are cre-ated by dynamic analysis of the process under nor-mal operational conditions. This approach dif-fers from model-based approaches that specify eithercorrect usage or, conversely, misusage of programs[Kumar and Spa�ord, 1996].An architecture of the system for analyzing pro-grams for malicious behavior is shown in Figure 1.The system was designed to enable di�erent applica-tions, neural networks, and test vectors to be used in-terchangeably. Thus, the architecture was constructedsuch that any of these components can be extractedand replaced with a di�erent version without a�ectingthe other components.The approach begins with training neural networks

with supervision; i.e., feedback is applied to the net-work during training to indicate whether the inputis normal or anomalous. Training with supervision re-quires labeled input, so it is not feasible for on-line de-tection of intrusions. However, in cases where histori-cal or archival data exists, it can be useful for traininga network to learn normal behavior and in some casesfor recognizing non-normal behavior. This approachto anomaly detection permits programmatic detectionof intrusions based on deviations of normal behaviorwithout the need for a detailed speci�cation model ofcorrect behavior.During recall, or during the on-line operation modeof the tool, the neural network classi�es inputs and in-ternal states as either anomalous or normal. Anoma-lous inputs and anomalous internal states are assumeto be indicators of potentially dangerous behavior.The approach has proven to be easily modi�able tomonitor other processes than those already tested.One drawback of this approach is that the trainingperiod of the neural network may take on the order ofhours or days to complete. However, other approachesthat build up user pro�les su�er from this same prob-lem. Another pitfall to be aware of is that the net-work is only as good as the data on which it has beentrained. It not known what e�ect di�erent trainingsets would have on the results presented in this paper.The �nal drawback of our implementation is that ifnew data is added to the training set, the neural net-work has to be re-trained over the entire training set,instead of just the data that was added to the trainingset.2.1 Backpropagation networkThe backpropagation network, or backprop, isprobably the most commonly used neural network.The standard architecture consists of an input layer,at least one hidden layer (neurons that are not directlyconnected to the input or output nodes), and an out-put layer. Typically, there are no connections betweenneurons in the same layer or to a previous layer.Backprops have generalized capability. As such,they can produce nearly correct outputs for inputsthat were not used in the training set. In theory,no more than two hidden layers are needed in a neu-ral network since the network can generate arbitrarilycomplex regions in the state space [Lippmann, 1991].One of the backprop's main drawbacks, though, is thatit tends to be very computationally complex and istime consuming to train. Backprops are well-suited forapplications in classi�cation, function approximation,and prediction [Jain et al., 1996]. For the purposesof intrusion detection, the backprop is well-suited for

anomalous

Test Driver

Program Under
Analysis

Network
Neural

normal

Test Cases

input

output

normal/anomalous?

evaluate

performance

detect?

training/
recall

Figure 1: An architecture for analyzing programs for anomalous or malicious behavior using neural networks.classifying normal behavior and
agging anomalousbehavior.The training cycle of a backprop proceeds in twodistinct phases. First, the input is submitted to thenetwork and the activations for each level of neuronsare cascaded forward. In the training phase, the de-sired output is compared with the network's output.For instance, in training with supervision, the desiredoutput for anomalous data is an intrusion detection.If the vectors do not agree, the network updates theweights starting at the output neurons. Then, thechange in weights is calculated for the previous layer.This process continues to cascade through the layersof neurons toward the input neurons, hence the namebackpropagation.3 Neural Network ImplementationThe backprop implementation provided many ad-vantages in this work. Backprop networks are verygood at classifying complex relationships, which in thecase of anomaly detection, is useful for classifying nor-mal and anomalous states.The generalized backprop neural network is shownin Figure 2. The input layer of the network governs thenumber of inputs and internal states that the network

uses in classi�cation. Likewise, the output nodes gov-ern the total number of classes the network is classify-ing. The backprop is trained with supervision; thus,the desired outputs for each input pattern is suppliedto the network during the training phase.4 Experimental AnalysisThe objective of the experimentation described inthis section is to determine how e�ective the imple-mented neural network is at detecting misuse of pro-grams. The approach examines program inputs as wellas internal states to determine if the program is beingmis-used.The experiment was designed to detect potentialmisuse of system programs, such as lpr. The Linuxlpr program can be subverted on certain platformsusing a bu�er over
ow attack. It should also be notedthat this experiment was performed using both black-box as well as white-box analysis because access tothe source code for the lpr program was freely avail-able. This experiment was run repeatedly using di�er-ent initial weightings of the neural network in order toaccount for potential statistical out-liers in the results.

a
1

v
11

c
1

c
j

c
q

v
hp

11
w

1
i

Output
Layer

a
h

a
n

1
1

1

i i

b b b
pi

v

v
v

v

v
v

v
h1

n1
1i

hi

ni
1p

np

w

w
w

w

w
w

w w
i1

p1

1j

ij

pj

1q

iq
pq

1
o o

j
o

q

...

......

...

...

...

Layer

Layer

Hidden

Input

Figure 2: Topology of the elementary backpropagation network architecture with one hidden layer, n input nodes,and q output nodes.5 Linux lpr Exploitation ExperimentalResults5.1 IntroductionThis set of experiments explores the use of a neu-ral network to detect anomalous use of the standardLinux lpr program. The linux lpr program is knownto have a bu�er over
ow vulnerability which can beexploited through input. This exploit uses a bu�erover
ow attack on speci�c lpr
ags to enable the userto execute a root shell or perform other root-privilegedcommands. The goal of this experimentation is to de-termine how e�ective the neural network is in detect-ing anomalous use of system programs. To this end,the neural network was trained with malicious, nor-mal, and in some cases, random input. This set ofexperiments also examines the use of internal statesin the process of anomaly detection.5.2 General descriptionThe lpr program is exploited in the following man-ner. An auxiliary program was written which �lleda large character bu�er. At the end of this bu�er,speci�c character strings were added to overwrite thereturn address of the stack frame with the address of

a new instruction to be executed, which was placedelsewhere in the bu�er (this instruction was usually a/bin/sh). The program would then exec an lpr childprocess with this bu�er as one of the
ag arguments.During the experimentation, both this auxiliary pro-gram and the lpr program were modi�ed to write spe-ci�c inputs and internal states to a �le to be used asinputs to the neural network.The neural network's input patterns consisted of acombination of inputs from two distinct sources. The�rst source was the character bu�er passed to the lprprogram as a
ag argument. To encode the characterbu�er, only the last 75 positions were used. This wasdone in an attempt to reduce the di�erence between anormal
ag input, typically on the order of 10-30 char-acters, and an over
ow bu�er of approximately 4,000characters. Thus, for the over
ow attempts, only thelast 75 of the 4,096 characters were used as inputs,and for non-over
ow attempts, the entire string wasused (unless of course it exceeded 75 characters). Toencode these 75 input characters, they were given thevalue: (integer value of character) / 128.0, and 0.0 wasused to pad any of the unused inputs.The second source of input was the internal len

variable in the lpr card() function. The card() func-tion was chosen because most of the lpr
ag inputsare funneled through this particular procedure. Thelen variable is interesting because it represents thelength of the input parameter. The len variable fromcard() constituted an additional 8 inputs (since theprocedure could be executed multiple times), and wasencoded by: (len value)/1032, where 0.0 was used topad any of the unused inputs.5.3 Training setsThe input patterns for the neural networks' train-ing sets were constructed from the following sets: ma-licious inputs, normal lpr inputs, and random inputs.Malicious inputs were generated using the exploit pro-gram mentioned above. The malicious inputs did notnecessarily generate /bin/sh, but were generated tolook very similar. The normal lpr inputs were gener-ated by printing valid �les, with various
ag options.The random inputs were generated using the fuzz pro-gram [Miller et al., 1995] and were limited to a lengthof 80 (only 75 characters could be used).5.4 Recall setTo test the performance of each of the neural net-works trained below, one recall set was created for alllpr experiments. The recall set consisted of 150 nor-mal lpr inputs, 50 malicious inputs, and 50 randominputs. All of these input patterns were unique fromthose used in the training sets. The recall sets for thedi�erent networks were only modi�ed in the experi-ments to include the speci�c subset of input patternsthat were necessary for a particular network. Hence,if the internal state was not used to train the net-work, then the inputs corresponding to the len vari-able would also not be clamped to the network duringthe recall phase.5.5 ExperimentsThe neural network used in the lpr exploit exper-iments was a 3 layer backpropagation network whosearchitecture consisted of a hidden layer, an input layer,and an output layer. There were 125 nodes in the hid-den layer, 1 output node, and a variable number ofinput nodes.Table 1 summarizes the experimental setup for thesix experiments. The inputs to the neural network(NN) are distinguished between the experiments bywhether the inputs were external lpr inputs or in-ternal lpr states. External inputs represent standardinput to the lpr program. If the len variable wasused as an input to the neural network, then the in-ternal column is checked in the table. The number ofinput nodes, hidden nodes, and output nodes for eachof the neural network experiments is also given in the

table. The other distinguishing parameter betweenthe experiments is whether random input was used totrain the network. If random data was used in train-ing the network, then this column is checked in thetable. The neural network was trained to classify ran-dom data as anomalous, since the network attemptsto distinguish between normal use and anomalous useof a program. The goal of the experimentation is todetermine which of these parameters are most useful(or conversely least useful) for detection of misuse ofa program.5.5.1 Discussion of resultsTable 2 shows the results from all six experiments. Allexperiments were run 30 times using 30 di�erent ini-tial weights of the network. The performance of thenetwork is evaluated based on the percentage of the in-puts it classi�ed correctly, the percentage of false pos-itives, and the percentage of false negatives. A falsepositive is de�ned as a normal input that was classi-�ed as anomalous by the network. A false negative isde�ned as an anomalous input that was classi�ed asa normal by the network. Either of these two distinc-tions would constitute an error in classi�cation by thenetwork. The results are presented as averages, min-ima, and maxima over these runs in these categories.To summarize the results, the best results were ob-tained in Experiments 3 and 4 when the neural net-work was trained with random data generation. Re-call, that the neural network was trained to classifyrandom data as anomalous. Including the internalstate variable len in addition to the external lpr in-puts did not impact the results signi�cantly. In fact,in Experiments 5 and 6, where the neural networkwas trained and tested on the internal len variableexclusively, the results were the weakest. Arguably,training with the internal len variable exclusively wastoo narrow for detection of a range of anomalous andmalicious usage.The neural network in Experiment 6 did not con-verge to an acceptable mean squared error, so its re-sults were omitted. In Experiment 5, the error ratewas approximately 20%|exclusively false negatives.In none of the experiments were false positives de-tected. Since the training was heavily biased with nor-mal inputs, in no cases did the neural network incor-rectly classify a normal input as an anomalous input(the false positive case).As a simple benchmark for comparison, considera monkey instead of a neural network that is choos-ing whether a given input is normal or anomalous.The monkey uses a simple algorithm for determining

NN Inputs NN LayersNum external internal Inputs Hidden Outputs Random Data Included1 x 75 125 12 x x 83 125 13 x 75 125 1 x4 x x 83 125 1 x5 x 8 125 16 x 8 125 1 xTable 1: Experimental setup for detection of anomalous use of lpr program.whether the input is normal or anomalous|he
ips acoin. The likelihood that the monkey will classify aninput as normal is 50% as is the likelihood that an in-put will be classi�ed as anomalous. The actual inputssent to the program have the following prior proba-bilities: 40% were anomalous while 60% were normal.The probability that the monkey commits a false neg-ative is the probability that an anomalous input wassent to the program and that the monkey said it wasnormal. Since these are independent events, the falsenegative probability is 20%. The probability that themonkey commits a false positive is the probability thata normal input is sent and that the monkey said it wasanomalous. The false positive probability is calculatedsimilarly and is 30%. The results from using a neuralnetwork on the whole do better than the monkey. Nofalse positives were detected (compared to 30% for themonkey), while false negatives for the neural networkranged from 0.4% to 19.9% (compared to 20% for themonkey). For some experiments (e.g., Experiments1, 2, and 5), the neural network did as bad as themonkey for false negatives (these are explained in thediscussion below), while in others it did extremely wellcompared to the monkey (e.g., Experiments 3 and 4).In intrusion detection systems, reducing the falsepositive rate is perceived as a greater responsibilitythan reducing the false negative rate. The reasoningis that an excessive false positive rate can lead to a\cry wolf" syndrome where nobody pays attention tothe intrusion detection software after awhile. On theother hand, provided multiple, overlapping detectors,a small false negative rate is tolerable as missed at-tempts by one detection unit may be correctly classi-�ed by another. A discussion of the results from eachof the experiments is presented next.Experiment 1 This experiment can be consideredthe baseline for the lpr exploit experiments (see Ta-ble 1). It demonstrates how well the neural networkperformed when training only on the accessible lpr in-puts, a reasonably sized test set, and without training

randomly generated input. From Table 2 we see thatthe baseline error rate was 20%, exclusively composedof false negatives.Experiment 2 This experiment extends the base-line experiment, (Experiment 1), by not only usingthe accessible inputs to the lpr program, but also theinternal state (represented by the len variable in thecard() function). This experiment attempts to deter-mine if by using an internal program state whether theperformance of detection can be improved. The resultsdo not indicate any signi�cant impact, let alone im-provement. The results are too similar to Experiment1 to be statistically signi�cant.Experiment 3 The network was trained with ran-dom inputs to further diversify its notion of anomalousinputs. The idea is to expose the network to a num-ber of di�erent types of anomalous input, rather thenstrictly well-known intrusion attempts. Training withrandomly generated inputs may be one way of detect-ing novel intrusion attempts. The performance of thenetwork was excellent in this experiment. The averageerror rate for this experiment was only 0.9%. We canconclude that including randomly generated patternsin the training set vastly increased the performance ofthe network allowing the network to correctly classifya wide range of input patterns with a very high degreeof accuracy. The results indicates that an anomalydetection approach may be useful over misuse detec-tion in detecting novel, unknown intrusion attempts|especially when trained with random data classi�ed asanomalous.Experiment 4 This experiment extends Experi-ment 3, by including the internal state variable len.Once again, the goal is to determine if by adding ininternal state information, whether the performanceof the neural network will be improved. As seen fromthe Table 2, adding the internal variable once againdid not statistically impact the results.

Classi�ed Correct False Positive False NegativeNum Avg Min Max Avg Min Max Avg Min Max1 82.5% 80.1% 88.4% 0.0% 0.0% 0.0% 17.5% 11.6% 19.9%2 81.9% 80.1% 85.7% 0.0% 0.0% 0.0% 18.1% 14.3% 19.9%3 99.1% 98.0% 99.6% 0.0% 0.0% 0.0% 0.9% 0.4% 2.0%4 98.8% 97.6% 99.6% 0.0% 0.0% 0.0% 1.2% 0.4% 2.4%5 80.2% 80.2% 80.2% 0.0% 0.0% 0.0% 19.8% 19.8% 19.8%6 Table 2: Results of detection from anomalous use of lpr program.Experiment 5 This experiment uses the internalstate exclusively as the input to the neural networkduring training and recall. The results were the worstof all the experiments, but not signi�cantly worse thanexperiments 1 and 2. A closer look at the data revealedthat on recall, all the anomalous data randomly gen-erated were classi�ed as normal by the network (thefalse negative case). This contributed to the large falsenegative rate for this experiment. The reason is thatthe randomly generated data had a length approxi-mately close to that of the normal training set. Onthe other hand, the network did very well in correctlyclassifying all anomalous input that were bu�er over-
ows. Using strictly the len variable is e�ective atdetecting bu�er over
ows, but not in detecting otherpotential misuses of a program.The problem stems from the fact that the singleinternal variable chosen does not provide su�cient in-formation to classify the input patterns. Inspectingthe training set reveals that all of the anomalous in-put patterns are exactly the same, when one is onlylooking at the internal variable len. Thus, it is no sur-prise that the network converged to a state in whichonly this input vector was classi�ed as anomalous. Toalleviate this problem, a few steps can be taken. The�rst is that additional internal variables could be used.A second is to pair this internal state with inputs, aswas done in the earlier experiments. This experimentreveals one of the problematic areas encountered inthis research, namely, identifying which informationprovides maximum utility for detection of anomalousbehavior.Experiment 6 The neural network in Experiment 6did not converge to an acceptable mean squared error,so its results were omitted.6 ConclusionsThis paper describes novel work in using neural net-works for detecting misuse of programs. Two impor-tant observations result from this work. First, theresults demonstrate how misuse of programs can be

detected using neural networks. The results indicatethat training with randomly generated data lead to thebest performance in detection of possible novel misuseattempts|an area in which most misuse detection ap-proaches are weak. Furthermore, the results show thebene�t of applying anomaly detection at the processlevel such that abnormal process behavior can be de-tected irrespective of individual users' behavior. Thisapproach abstracts out users' individual behavior andallows anomaly detection against the set of all users'behavior.The experiments also raise an interesting discus-sion about using internal program states in trainingthe neural networks. Choosing useful internal statesis in general a very di�cult process. How a particularstate is identi�ed as being important is a time consum-ing task, usually relying heavily upon code inspection.The �nal experiment also provides a warning for notplacing too much emphasis on a particular internalstate, or a single input for that matter. The best ap-proach seems to be to take a broad, yet representativesample of inputs and internal states. Further researchwill attempt to identify important internal states foranomalous use of programs. These results may beimportant in not only detecting attempted misuse ofprograms, but also erroneous program behavior.References[D'haeseleer et al., 1996] D'haeseleer, P., Forrest, S.,and Helman, P. (1996). An immunological approachto change detection: Algorithms, analysis and im-plications. In IEEE Symposium on Security andPrivacy.[Forrest et al., 1997] Forrest, S., Hofmeyr, S., and So-mayaji, A. (1997). Computer immunology. Com-munications of the ACM, 40(10):88{96.[Garvey and Lunt, 1991] Garvey, T. and Lunt, T.(1991). Model-based intrusion detection. In Pro-ceedings of the 14th National Computer SecurityConference.

[Ilgun, 1992] Ilgun, K. (1992). Ustat: A real-time in-trusion detection system for unix. Master's thesis,Computer Science Dept, UCSB.[Jain et al., 1996] Jain, A., Mao, J., and Mohiuddin,K. M. (1996). Arti�cial neural networks: A tutorial.IEEE Computer, 29(3):31{33.[Kumar and Spa�ord, 1996] Kumar, S. and Spa�ord,E. (1996). A pattern matching model for misuseintrusion detection. The COAST Project, PurdueUniversity.[Lane and Brodley, 1997] Lane, T. and Brodley, C.(1997). An application of machine learning toanomaly detection. In Proceedings of the 20thNational Information Systems Security Conference,pages 366{377.[Lippmann, 1991] Lippmann, R. (1991). An Introduc-tion to Computing with Neural Nets, chapter Part 1,pages 5{23. IEEE Press, Piscataway, NJ. in NeuralNetworks Theoretical Foundations and Analysis.[Lunt, 1990] Lunt, T. (1990). Ides: an intelligent sys-tem for detecting intruders. In Proceedings of theSymposium: Computer Security, Threat and Coun-termeasures. Rome, Italy.[Lunt, 1993] Lunt, T. (1993). A survey of intru-sion detection techniques. Computers and Security,12:405{418.[Lunt and Jagannathan, 1988] Lunt, T. and Jagan-nathan, R. (1988). A prototype real-time intrusion-detection system. In Proceedings of the 1988 IEEESymposium on Security and Privacy.[Lunt et al., 1992] Lunt, T., Tamaru, A., Gilham, F.,Jagannthan, R., Jalali, C., Javitz, H., Valdos, A.,Neumann, P., and Garvey, T. (1992). A real-timeintrusion-detection expert system (ides). TechnicalReport, Computer Science Laboratory, SRI Inter-nationnal.[Miller et al., 1995] Miller, B., Koski, D., Lee, C., Ma-ganty, V., Murthy, R., Natarajan, A., and Steidl,J. (1995). Fuzz revisted: A re-examination of thereliability of unix utilities and services. Technicalreport, University of Wisconsin, Computer SciencesDept.[Monrose and Rubin, 1997] Monrose, F. and Rubin,A. (1997). Authentication via keystroke dynamics.In 4th ACM Conference on Computer and Commu-nications Security.

[Porras and Kemmerer, 1992] Porras, P. and Kem-merer, R. (1992). Penetration state transition anal-ysis - a rule-based intrusion detection approach.In Eighth Annual Computer Security ApplicationsConference, pages 220{229. IEEE Computer Soci-ety Press.[Porras and Neumann, 1997] Porras, P. and Neu-mann, P. (1997). Emerald: Event monitoring en-abling responses to anomalous live disturbances. InProceedings of the 20th National Information Sys-tems Security Conference, pages 353{365.

