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FINITE DIRECT SUMS OF CS-MODULES 

ABDULLAH HARMANCI AND PATRICK F. SMITH 

Let R be a ring and let M = M• © M2 be a right R-module which is 
the direct sum of submodules M•, M2. We are interested in conditions on 
M•, M2 which make M a CS-module. If M is a CS-module it is well-known 
that M• and M2 are both CS-modules. In this paper, we prove that if M• 
and M2 are relatively injective CS-modules then M is a CS-module. In 
consequence, we give simple proofs to show that M is (quasi-) continuous 
if and only if M1, M2 are relatively injective (quasi-) continuous modules. 

Throughout we shall suppose that all rings have identities and all 
modules are unital right modules. 

Let R be a ring and let M be an R-module. A submodule K of M is 
called a complement (in M) if K has no proper essential extension in M. The 
module M is called a CS-module if every complement is a direct summand. 
CS-modules have attracted considerable attention in recent years (see, for 
example, [1], [21,[4], [5]-[7], [9]-[11], [14]). Kamal and Miiller [9] (see also 
[11, p. 19]) have classified which Z-modules are CS. In particular, for any 
prime p, the Z-modules (Z/Zp)•)(Z/Zp 2) and Z(p•)© Z are both CS, but 
the Z-modules (Z/Zp) © (Z/Zp a) and (Z/Zp) ©Q are both not CS. In this 
note we shall consider when the direct sum of two CS-modules is CS. 

In [9, Theorem 11], Kamal and Milllet showed that for a commutative 
domain R, a torsion-free reduced R-module M is CS if and only M = 
U1 ½... © U• is a finite direct sum of uniform modules Ui (1 _< i _< n) such 
that Ui © Uj is a CS-module for all 1 _< i _< j <_ n. This motivated our first 
theorem. In the proof of this theorem and elsewhere in this paper we make 
use of the following result of Chatters and Hajarnavis [2, Proposition 2.2]. 

Lemma 1. Let M be any moduJe and K C_ L submoduJes of M such 
that K is a complement in L and L is a complement in M. Then tf is a 
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complement in M. 

Corollary 2. Any direct summand of a CS-module is a CS-module. 

Proof. Clear by Lemma 1. 

We now give a characterisation of CS-modules with finite Goldie di- 
mension. (For the definition of Goldie dimension, see [3, p.S]). 

Theorem 3. Let R be any ring. An R-module M is a CS-module with 
finite Goldie dimension ff and on/y ff 

(i) M is a finite direct sum of uniform submodules, and 
(ii) every direct summand of M of uniform dimension 2 is a CS-module. 

Proof. Suppose M is a CS-module with finite non-zero Goldie dimension. 
Let U be a maximal uniform submodule of M. (Note that U is a complement 
in M.) By hypothesis, M = U •) U • for some submodule U • of M. By 
induction on Goldie dimension and Corollary 2, U • is a finite direct sum of 
uniform submodules. This proves (i). Also, Corollary 2 proves (ii). 

Conversely, suppose M satisfies (i), (ii). Let M = U• •)...•)U,,, where 
n is a positive integer and Ui a uniform module for each 1 _< i _< n. Let V be 
a maximal uniform submodule of M. Suppose V •: M. Then V Cl Ui - 0 for 
some 1 _< i _< n (see [3, proof of Lemma 1.9]). Without loss of generality, 
i -- 1. Let U • = U2 •)... •) U,,. There exists a complement K in M such that 
V 0) U• is essential in K. Note that K = U• •) (K 91 U•), by the Modular 
Li•w. 

Clearly K 91 U • is a complement in K, and hence also in M (Lemma 
1). Thus K 91 U • is a complement in U •. By induction on Goldie dimension, 
K Cl U • is a direct summand of U •. This implies at once that K is direct 
summand of M. Clearly K has Goldie dimension 2 (see [3, Lemma 1.9]), so 
that, by hypothesis, K is a CS-module. Hence V is a direct summand of 
K, and hence also of M. 

Now let L be any complement in M. Let W be a maximal uniform 
submodule of L. By Lemma 1, W is a complement in M, and by the above 
argument W is a direct summand of M. Thus M - W •) M • for some 
submodule Mt. Now L = W •) (L 91 M •) and L 91 M • is a complement in M 
(Lemma 1). By induction on the Goldie dimension of L, L 91 M • is a direct 
summand of M, and hence also of M'. Thus L is a direct summand of M. 
It follows that M is a CS-module. 
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Two remarks can be made at this point. If A is a free Abelian group 
then the Z-module A is a direct sum of uniform Z-modules and every direct 
summand of A of Goldie dimension 2 is a CS-module. However A is a 

CS-module if and only if A has finite rank (see [9, Theorem 5] or [11, 
p.19]). Thus Theorem 3 is not true (as it stands) for modules with infinite 
Goldie dimension. The second remark is that Theorem 3 raises the following 
natural question: let M = U1 • ... Un be a finite direct sum of uniform 
modules Ui (1 _< i <_ n) such that Ui •) Uj is a CS-module for all 1 _< i <_ 
j <_ n; is M a CS-module? (Compare [9, Theorem 11].) 

Our second theorem is also motivated by a result of Kamal and Mfiller. 
Let M be a module. Let Z(M) denote the singular submodule of M (i.e. 
Z(M) is the set of elements m in M such that mE = 0 for some essential 
right ideal E of R), and let Z2(M) denote the second singular submodule 
of M (i.e. Z2(M)/Z(M) = Z(M/Z2(M))). Kamal and M/iller [9, Theorem 
1] proved that a module M is a CS-module if and only if M = Z2(M)•)M t 
for some submodule Mt, Z2(M) and M t are CS-modules and Z2(M) is 
Mt-injective. We shall prove the following result. 

Theorem 4. Let R be any ring. Let M be a R-module such that M = 
M1 • M2, where M1 and M2 are CS-modules. Suppose further that M• is 
nonsingular and M2 is Ml-injective. Then M is a CS-module. 

In order to prove Theorem 4, we require a result of Kamal and Milllet 
[10, Lemma 17], which is (i) :=• (ii) of the next lemma. The proof of both 
implications is given for completeness. 

Lemma 5. Let a module M = M1 • M2 be a direct sum of submodules 
M•, M2. Then then the following statements are equivalent. 

(i) M2 is Ml-injective. 
(ii) For eac/• submodule N ot' M with N r3 M2 = 0, t/•ere ex/sts a sub- 

module M t o1' M suct• ttmt M = M' •) M2 and N C_ Mt. 

Proof. (i) =• (ii). For i - 1,2, let •i ' M -• Mi denote the projection 
mapping. Consider the following diagram 

0 • N • • Mx exact 

M2 
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where a - •r• IN and fi - •r2 IN . By (i), there exists a homomorphism 
•b' M• -• M2 such that •ba - fl. Let M'- {x q- •o(x) ß x e M1}. It is easy 
to check that M -- M ' © M• and N C_ M •. 

(ii) --• (i). Let K be a submodule of M, and 0 ß K -• M2 a homo- 
morphism. Let L = {y-0(y) ß y E K}. Then L is asubmodule of M 
•nd L rq M2 --- 0. By (ii), M = L' © M2 for some submodule L • such that 
L _< L •. Let •r ß M --• M2 denote the canonical projection (for the direct 
sum M = L • © M2). Then X = •r IMp' M1 --• M2 and, for any y in K, 

x(y) = O(y) + O(y)} = O(y). 

It follows that X lifts 0 to M1. Thus M2 is Ml-injective. 

Equipped with this lemma, we now prove Theorem 4. 

Proof of Theorem 6. Because M2 is a CS-module, [8, Theorem 1] gives 
M2 -- Z2(M2) © M • for some nonsingular submodule M • of M2 such that 
Z2(M2) and M' are CS-modules and Z2(M2) is M'-injective. Note that 
Z2(M) = Z2(M2) (because Z(M1) = 0) and Z2(M) is Ml-injective. Thus 
M = Z2(M) © (M1 © M'), where Z2(M) is a CS-module, Z2(M) is (M1 © 
M')-injective, M1 and M' are CS-modules and M' is Ml-injective. By [9, 
Theorem 1], M is a CS-module if M1 © M • is a CS-module. Thus we can 
suppose without loss of generality that M2 is nonsingular, and hence M is 
nonsingular. 

Let K be a complement in M. Because M2 is a CS-module, there exist 
submodules L1, L2 of M2 such that M2 = L1 © L2 and K rq M2 is essential 
in L1. We claim that K is essential in K + L1. For, let 0 • x E K + L1. 
Then x = y + z for some y • K,z • L1. Because K rq M2 is essential in 
L1, there exists an essential right ideal E of R such that zE C_ K. Then M 
nonsingular gives 

0 • xE = (y+ z)E C_ xR 91K. 

It follows that K is essential in K q- L, and hence L1 C_ K. 
Now M -- M• © M2 = M1 © L• © L2 and, by the Modular Law, 

K = L• ©K ' where K • = K91(M1 ©L2). By Lemma 1, K • is a complement 
in M1 © L2. Note further that 

K' FI L2 C_ K FI M2 FI L2 C_ L1 FI L2 = O. 
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By Lemma 5, M1 • L2 = M" © L2 for some submodule M" with 
K' C_ M". Clearly M" ------ M1, so that M" is a CS-module, and K' is a 
complement in M". Thus K' is a direct summand of M", and K = Li © K' 
is a direct summand of M. It follows that M is a CS-module. 

Theorem 4 has also been proved by Tercan [16, Corollary 2.3.10]. Fol- 
lowing Utumi [17] and Jeremy [8], Mohamed and M/iller [11, p.18] consider 
the following condition for a module M ß 

(C3)K © L is a direct summand of M whenever K and L are direct 
summands of M with K Cl L = 0. 

Then they define a module M to be quasi-continuous if M is a CS-module 
satisfying (C3). (In [8], [10], the CS condition is denoted by (C1).) Compare 
the next result with Lemma 5. 

Lemma 6. The following statements are equivalent for a module M. 

(i) M satisfies (C3). 
(ii) For a11 direct summantis P, Q of M with P 91 Q = 0, there exists a 

submodule P' of M such that M = P © P' and Q C_ P'. 

Proof. (i) =• (ii). Let P and Q be a direct summands of M with PC•Q = O. 
Then P©Q is a direct summand of M, by (i), and hence M = P©Q©Q" for 
some submodule Q" of M. Thus P• = Q © Q" has the requisite properties. 

(ii) • (i). Let K,L be direct summands of M such that K C• L = 0. 
By (ii), M = K © K' for some submodule K' such that L C_ K'. But 
M = L © L' for some submodule L', and hence K' = L (• (K' Cl L'). Thus 
M = K © L © (K' Cl L'), and K © L is a direct summand of M. 

Proposition 7. A CS-module M is quasi-continuous if and only if when- 
ever M = M1 •) M2 is a direct sum of submodules M•, M2, then M2 is 
Ml-injective. 

Proof. Suppose that M is quasi-continuous. Suppose M = M1 • M2. Let 
N be a submodule of M with N r3 M2 = 0. Because M is a CS-module, 
there exists a direct summand N • of M such that N is essential N •. Clearly 
N' 91 M2 = 0. By Lemma 6, M = M t © M2 for some submodule M' such 
that N' C_ Air'. Note that N C_ M'. By Lemma 5, M2 is M•-injective. 

Conversely, suppose M2 is Ml-injective whenever M = M1 © M2. By 
Lemmas 5 and 6, M satisfies (C3). Thus M is quasi-continuous. 
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The necessity part of Proposition 7 is a well-known result of Jermey [8, 
Theorem 4.2] (see also [11, Proposition 2.10]). Let n be a positive integer. 
Modules M•,... , M, are called relatively injectire if Mi is Mj-injective for 
all I _< i • j <_ n. Our main result is the following theorem. 

Theorem 8. Let R be a ring and M an R-module such that M = M• © 
...©M, is a finite direct sum oœrelatively injective modules Mi (1 _< i _< n). 
Then M is a CS-module iœand only iœMi is a CS-module œor each I _< i _< n. 

Proof. Corollary 2 gives the necessity immediately. Conversely suppose 
that Mi is a CS-module (1 _< i _< n). We prove that M is a CS-module 
by induction on n. It is clearly sufficient to prove the case n - 2. Suppose 
M = M• © M2. Let K be a complement in M. By Zorn's Lemma there 
exists a submodule L of K maximal with respect to the property L n M• - 
L n (K n M•) - 0. Clearly L is a complement in K, and hence also in M 
(Lemma 1). Because M• is M2-injective, there exists a submodule M • of 
M such that M = M• © M • and L C_ M • (Lemma 5). Note that M • --- M2, 
so that without loss of generality M • - M2, and hence L C_ M2. Now L is a 
complement in M2 (which is a CS-module), so that M2 - L © L • for some 
submodule L •. 

Note that M= M•(DM2 = M•©L©L • and K = L©K •, where 
Kt= Kn(M• ©L t) is a complement in M1 •)L t (Lemma 1). We now claim 
that K • • M1 is essential in K •. It is well-known (and easy to check) that 
L © (K n M•) is essential in K. Hence [L © (K • M1)] • K t is essential in 
K • C- K. But clearly K • • M• = K • M•, and hence 

[/_,G(KnM•)]nK'---[/_,G(K'nM•)]nK' - (/_,nK')G(K'nM•) = K'nM•. 

Thus K • n is essential in K •. But clearly 

(K' nM)n(K' nL') C nL' = 0, 

so that K • nL' = 0. By hypothesis, L • is Ml-injective and hence, by Lemma 
5, M• © L • = M"© L • for some submodule M" with K • C_ M". Clearly 
M" • M• (which is a CS-module) and K • is a complement in M". Thus 
K • is a direct summand of M• © L •, and K is a direct summand of M. It 
follows that M is a CS-module. 

In view of Lemmas 5 and 6 it is interesting to note that a module 
M = Mi(DM2 need not be a CS-module even if M• and M2 are CS-modules, 
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M2 is Mi-injective and M satisfies (Cs). For example, for any prime p, the 
Z-module M - (Z/Sp)ZQ has - (S/Sp)ZO, M2 -- 0ZQ both u-form 
(thus CS), M2 is Mx-injective and M satisfies (Cs) because its only direct 
summands are 0, M, Mi and M•. However, M is not a CS-module because 
Zp(1 + Zp, 1) is a complement which is not a direct summand, where Zp is 
the local ring (see [15, Example 10]). 

Note that [9, Theorem 1] is related to Theorem 8. Let M be a module 
such that M = Z•(M) • M' where Z•(M) and M' are CS-modules and 
Z•(M) is M'-injective. Immediately, M' is Z2(M)-injective, so that M is 
a CS-module by Theorem 8. 

Milllet and Rizvi [iS, Theorem 12] (see also [11, Theorem 2.13 and 
Corollary 2.14]) have given necessary and sufficient conditions for a (not 
necessarily finite) direct sum of modules to be quasi-continuous. We now 
give an alternative proof for the finite direct sum case. First we prove: 

Lemma 9. Let module M = Mx if)M2 be a direct sum of relatively injective 
submodules M•, M2 such that M2 is quasi-continuous. Let K, L be a direct 
summantis of M such that K fq L -- O. Suppose further that K fq Mi - O. 
Then K • L is a direct summand of M. 

Proof. By Lemma 5, we can suppose without loss of generality that K C 
M2. Then M2 = K • K' for some submodule K ' of M2. Note that K is 
K'-injective (Proposition 7). Therefore K is (M1 • K')-injective. Now 
M = K • (Mi • K t) and L tq K = 0 so that, again using Lemma 5, 
M -- K • K" for some submodule K" with L C K". Now L is a direct 
summand of M, hence also of K". Thus K • L is a direct summarid of M. 

Theorem 10. (See [11, Corollary 2.14]). Let R be a ring and M an R- 
module such that M = Mi 0.. ß if) Mn is a finite direct sum of submodules 
Mi (1 < i < n ). Then M is quasi-continuous if and only if M• , . . . , M• are 
relatively injective quasi-continuous modules. 

Proof. For the necessity see Proposition 7 and [11, Proposition 2.7]. Con- 
versely, suppose the Mi (1 _< i < n) are relatively injectire and quasi- 
continuous. By induction on n, it is sufficient to prove the case n - 2. 
Thus suppose M = Mi ½ M2. By Theorem 8, M is a CS-module. Let 
K, L be direct summarids of M with K tq L -- 0. Then K is a CS-module, 
by Lemma 1, and hence K = K1 ½ K2 for some submodules K1,K2, with 
K tq Mx essential in Kx. 
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Consider K2. Note that K2 N M1 - K• N (K • M1) - 0. By Lemma 9, 
K2•L is a direct summand of M. On the other hand, (K1NM2)f•(Kf•M1) - 
0 implies that K1 FI M2 = 0. Again using Lemma 9, K • L = K1 • (K2 • L) 
is a direct summand of M. It follows that M is quasi-continuous. 

Corollary 11. A t•nite direct sum M1 •... © Mn is quasi-continuous if 
and only if Mi • Mj Js quasi-continuous œor all I _• i < j _• n. 

Proof. By Proposition 7, Theorem 10 and [11, Proposition 2.7]. 

A module M is called continuous if M is a CS-module such that for 

every direct summand K of M and every monomorphism T ' K -• M, 
the submodule T(K) is also a direct summand of M. Note that continuous 
modules are quasi-continuous [11, Proposition 2.2]. We can now give an 
elementary proof of [12, Theorem 2] (see also [13, Theorem 13] and [11, 
Theorem 3.16]). 

Theorem 12. Let R be a ring and M an R-module such that M - M1 • 
... • M• is a finite direct sum oœ submodules Mi (1 _• i _• n). Then M 
is continuous iœ and ony iœ M1,... , Mn are relatively injectire continuous 
modules. 

Proof. The necessity follows by Proposition 7 and [11, Proposition 2.7]. 
Conversely suppose that M - M1 • ... • Mn where the M• (1 _• 

i _• n) are relatively injective continuous modules. By induction on n, it is 
sufficient to prove the result for the case n = 2. Suppose that n - 2. By 
Theorem 8, M = M1 • M• is a CS-module. Let K be a direct summarid 
of M and let T ß K -• M be a monomorphism. 

Case 1. K C_ M•, •(K) C_ M:•. 
Let N - T(K) C_ M•. Because M• is a CS-module there exists a direct 
summarid N' of M• such that N is essential in N'. Consider the diagram 

0 • N i N' ) exact 

K 

where i is the inclusion mapping. Because K is M2-injective, there exists a 
homomorphism 0 ß N' -• K such that 0 I•v = T-x. It is easy to check that, 
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because qo -• is an isomophism, N' - N © ker t•. Hence N - N', a direct 
summand of M. 

Case 2. K C_ M1, qo(K) fl M• -- 0. 
By Lemma 5, there exists a submodule M • of M such that M - M• © M • 
and qo(K) C_ M'. Clearly M' •- M2. Hence qo(K) is a direct summand of M, 
by Case 1. 

Case 3. K C- M•. 

Let L - (x e K ' qo(x) e M2}. Because K is a CS-module (Corollary 2), 
there exists a direct summand L' of K such that L is essential in L'. Note 

that qo(L) is essential in qo(L') and hence qo(L•)f3M• -0. Now K - L' •L •, 
for some submodule L • of K. Clearly qo(K) - qo(L •) • qo(L•). Because 
qo(L') fl M• - 0, Case 2 gives that qo(L') is a direct summand of M. On the 
other hand, qo(L") fl M2 - O. Now M is a CS-module, and hence 
is essential in a direct summand P of M. Note that P 91 M2 - 0. Let •r• ß 
M -• M• denote the canonical projection. Then •r• [p is a monomorphism. 
Hence •r•qo(L •) is essential in •rl(P). But M 1 is a continuous module, so 
that •r•qo(L •) is a direct summand of •rl(P). Thus •rlqO(L") - •rl(P), and 
hence qo(L •) - P, a direct summand of M. Thus qo(K) - qo(L') •) qo(L•), 
where both qo(L •) and qo(L •) are direct summands. By Theorem 10, qo(K) 
is a direct summand of M. 

Case J. General case. 

Let K be any direct summand of M. Recall that K is a CS-module by 
Corollary 2. There exist submodules K1, K•. of K such that K 91 M• is 
essential in K• and K -- K• © K•. Note that K• 91M• = 0 and K• 91M• - 0. 
By Lemma 5 and Case 3, both qo(K•) and qo(K•.) are direct summands of 
M. But qo(K) - qo(K•) • qo(K2). Hence, by Theorem 10, qo(K) is a direct 
summand of M. It follows that M is continuous. 

There is obvious analogue of Corollary 11 for continuous modules. 
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