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Abstract

The ”layered image model” [13] represents an image sequence as a compo-
sition of 2D layers where each layer corresponds to a different object. A
layer is described by its appearance and its transparency mask. The trans-
parency masks are used to combine the layers. In this paper we present a
probabilistic layered model that uses the ”logistic principal component anal-
ysis (PCA)” to describe the masks. The Gaussian based factor analysis was
used previously but it does not consider the constraints imposed on the trans-
parency values. The ”logistic PCA” models the transparency values that are
between 0 and 1 more naturally using Bernoulli distributions. The presented
model can be used to automatically extract low dimensional representation
of the transparency maps of the moving objects from a video sequences more
efficiently.

1 Introduction
In the layered representation [13] a video sequence of a 3D scene is decomposed into a
set of 2D layers where each layer corresponds to a different moving object. This is a po-
tentially very effective representation for automatically analyzing video sequences since
the representation greatly simplifies the geometry but still accounts for the occlusions
between the layers [8].

A generative probabilistic layered image model is presented by Jojic and Frey [8] and
further extended by a number of authors. Each layer in the layered model is described by
its appearance and its transparency mask. The sprite appearances are combined using the
transparency masks. Various appearance models were proposed: Gaussian per pixel [8],
factor analysis [6], index maps [7], Gaussian with local image deformations [9] etc. Var-
ious models were also proposed for the transparency maps: Gaussian [8], factor analysis
[6], binary mask with local image deformations [9] etc.

Principal component analysis (PCA) and factor analysis (FA) are often used for mod-
elling image data [12, 1]. Both techniques try to find a low dimensional representation
of the data by linear projection. Layered model presented by Frey et. al. [6] is using
factor analysis for layer appearance and the transparency map. The model can be used to
automatically extract low dimensional representation of the moving objects from a video
sequence. For example, images of a person walking can be mapped to a 1-dimensional
manifold that measures the phase of the persons gait. The FA can be applied to find the
low dimensional representation of both the layer transparency masks and the layer ap-
pearance. However, the Gaussian based factor analysis does not consider the constraints



imposed on the transparency values. Furthermore, a number of authors noted that more
efficient and robust inference can be achieved by using Bernoulli distribution instead of
Gaussian for the transparency masks [14, 9].

The relation between the low dimensional representations of the mask and the ap-
pearance is complex in general. For example a single-colored object might change its
transparency mask, 2D shape, while the appearance remains the same. Therefore in this
paper we leave the choice of the appearance model free and focus on the low dimen-
sional representation of the transparency masks. Natural model for the masks is to use
the Bernoulli distribution [14, 9]. The ”logistic PCA” using Bernoulli distributions was
proposed in the machine learning community [11, 10]. The recent study [16] shows that
the ”binary PCA” is much more accurate than the standard PCA in representing binary
image data and probability maps. In this paper we will present a layered model where the
”logistic PCA” is used for the transparency masks. The presented model can be used to
automatically extract low dimensional representation of the moving objects transparency
mask (shape) from a video sequence more efficiently and robustly.

This paper is organized as follows. In Section 2 we describe the layered image model.
In Section 3 the model is extended by including the ”logistic PCA” transparency masks.
In Sections 4 we explain a generalized expectation maximization (EM) inference scheme
for the model. In Section 5 we present experimental results, and in Section 6 we list our
conclusions and some topics for further research.

2 Layered image model
In the layered model an image x is decomposed into a set of L layers corresponding to
objects that occlude each other. Each layer is described by its appearance parameters Λl
and the transparency mask ml .

The transparency mask describes which part of the image is covered by the object.
The mask value for the l-th layer and d-th pixel will be denoted by mdl ∈ {0,1}. A
natural way to model the mask data is using Bernoulli distributions:

p(mdl |αl) = αdl
mdl ᾱm̄dl

dl (1)

where αdl is the probability that mdl = 1, m̄dl = 1−mdl and ᾱdl = 1−αdl .
The appearance model describes the pixel values. The probability of the d-th image

pixel value xd for the l-th layer is given by p(xd ;Λl). The pixel value xd is for example the
3 dimensional RGB value. In this paper we will use a simple appearance model, similar
to [8], consisting of a Gaussian per pixel

p(xd ;Λl) = N (xd ; µdl ,ΨdlI) (2)

where the covariance matrix is isotropic ΨdlI and I is a 3×3 identity matrix.
Assuming the pixel values to be independent an image is described by:

∏
d

p(xd ,md1, ...,mdL|Ω) (3)

where Ω = {Λ1, ...,ΛL,α1, ...,αL} are the parameters of the model. The unobserved mask
variables md1, ..mdL determine which pixels belong to which objects/layers as described
further.



To alow the objects to switch between layers an additional discrete labelling variable
c needs to be included which assigns objects to different layers, see [8]. For simplicity
here we will assume that each object stays always in the same layer.

The layered model per pixel p(xd ,md1, ...,mdL|Ω) can be written using recursive
equation:

p(xd ,mdl , ...,mdL,odl) = p(xd ;Λl)
mdlodl p(xd ,mdl+1, ...,mdL,odl+1)p(mdl |αl)

odl (4)

where odl = ∏l−1
1 m̄dl is the occlusion of the d-th pixel by the previous layers closer to the

camera. The equation describes stacking the layers on top of each other with background
layer l = L at the bottom. In other words a pixel value xd can be explained by the l-
th layer appearance model p(xd ;Λl) if it is not occluded and already modelled by the
previous layers 1, ..., l−1, i.e. odl = 0, and if the current layer mask mdl = 1. If the pixel
value is not described by the current and the previous layers, i.e. odl = 0 and mdl = 0, than
it is described by the layers that lie below p(xd ,mdl+1, ...,mdL,odl). For simplicity the
background layer l = L will be without the mask p(xd ,mdL,odl) = p(xd ;ΛL)odL . For the
top layer there are no occlusions p(xd ,mdl , ...,mdL|Ω) = p(xd ,md1, ...,mdL,odl−1 ≡ 0).

A common extension is to include unknown layer transformation function Ttl , for
example translation, rotation, scaling etc. The transformation Ttl transforms the layer l
before it is combined with other images. We will denote the transformed appearance pa-
rameters by TtlΛl and the transformed mask parameters as Ttlαl . The recursive equation
per pixel and per layer becomes:

p(xd ,mdl , ...,mdL,odl) =

p(xd ;TtlΛl)
mdlodl p(xd ,mdl+1, ...,mdL,odl+1)p(mdl |Ttlαl)

odl p(Ttl) (5)

where Tt1, ...,TtL are additional unobserved variables. As in [8] we consider a discrete set
of transformations Ttl ∈ {T1, ...,TT} and the prior distribution over the transformations
is denoted as p(Ttl) = ptl .

3 Logistic PCA masks
We would like to design a layered image model to automatically extract low dimensional
representation of the moving objects transparency masks. For example, images of a per-
son walking can be mapped to a 1-dimensional manifold that measures the phase of the
persons gait, see Figure 1. Principal component analysis (PCA) commonly used to find
a low dimensional representation of the data by linear projection. We describe here a
similar model but for Bernoulli distributions, the so called ”logistic PCA”, to describe
the transparency masks of the layered model from the previous section. As in [10] in-
stead of the αdl in (1) for the Bernoulli mask model we will use the log-odds parameter
Θdl = log(αdl/(1−αdl)) and the logistic function σ(Θdl) = (1 + e−Θdl )−1. The mask
model can be written equivalently as:

p(mdl |Θdl) = σ(Θdl)
mdl σ(−Θdl)

m̄dl (6)

Logistic PCA assumes that the log-odds mask parameter Θl is given by the so called
”mean” log-odds mask parameter ∆l plus a linear combination of S � D basis vectors
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Figure 1: The parameters of the layered model learned automatically from the image
sequence of two people walking in opposite directions and occluding each other.

(images) contained in the rows of the S×D matrix Wl . The linear combination is obtained
through the coefficients contained in Ul :

Θdl = ∆dl +∑
s

UslWsdl . (7)

The ∆l ,Wl and Ul are the parameters of the logistic PCA.

4 Learning model parameters
The layered image model with the binary PCA for a set of N independent images can be
written as:

∏
nd

p(xnd ,mnd1, ...,mndL,Tnt1, ...,TntL|Ω) (8)

where the masks mnd1, ..mndL and the transformations Tnt1, ...,TntL are the unobserved
variables and Ω = {Λ1, ...,ΛL,∆l , ...,∆L,W1, ...,WL,U1, ...,UL, ptl} are the parameters of
the model. The index n indicates that there is each layer can have a different appearance
mask mndl and a different transformation Tntl for each image. The log-likelihood of a
given set of N images is given by:

L (Ω) = ∑
nd

ln p(xnd |Ω) (9)

where the unknown masks and transformations are integrated out:

p(xnd |Ω) = ∑
all masks and transf.

p(xnd ,mnd1, ...,mndL,Tnt1, ...,TntL|Ω) (10)

The goal is to find the parameters Ω that maximize the log-likelihood (9).



4.1 Approximate inference
The log-likelihood is a complex function. The EM algorithm [3] presents an iterative
solution but computing it would be intractable for such a model [8]. Therefore as in
[8] we use a variational approximate method. We will denote the hidden variables by h,
layer masks and hidden transformations in our case. Variational techniques replace the
intractable computation of the posterior distribution p(h|x) with a search for a simplified
distribution q(h), that is made close to p(h|x) by minimizing the ”free energy” function:

F =
∫

h
q(h)

p(h)

ln p(x,h|Ω)
≥−L (Ω) (11)

Minimizing F w.r.t. q(h) minimizes the relative entropy between q(h) and p(h|x). Min-
imizing F w.r.t. q(h) and the model parameters Ω minimizes an upper bound on the
negative log-likelihood of the data L (Ω) [5].

Similar to [8] we will use the following simplified factorized distribution:

q(h) = ∏
ndl

rndl
mndl r̄m̄ndl

ndl qntl (12)

The parameter estimation is then performed iteratively using a generalized EM algorithm
steps:

E step: Minimizing F w.r.t. the variational (13)
parameters rndl and qntl . (14)

M step: Minimizing F w.r.t. Ω. (15)

These two steps are repeated iteratively until convergence. See [5] for a tutorial.

4.2 Updating mask parameters
The update equations for the E and M steps above are already given in the various exten-
sions [6, 9] of the initial work by Jojic and Frey [8]. An extensive tutorial can be found
also in [5]. Therefore, and because of the limited space, we will not repeat all the update
equations. Instead we will focus on the extension proposed in this paper: the logistic PCA
model applied to the transparency masks and the update equations for the logistic PCA
parameters ∆, W and U .

The variational parameters are updated in the E-step. The layer appearance parameters
are updated in the M-step. In the M step we need also to minimize the free energy function
F w.r.t. the logistic PCA parameters ∆, W and U . It can be shown, see (5) and (12), that
the only part of the function F that depends on the layer l mask parameters is given by:

∑
n,t,d

qntl(wdlrndl log(Tntlαdl)+

wdl r̄ndl log(Tntlᾱdl)) (16)

where wdl = ∏l−1
1 r̄ndl . So in order to minimize the free energy function F w.r.t. the

logistic PCA parameters ∆, W and U for each layer we need to consider only these terms.



For simplicity as previously in the similar models [4] we assume the transformation
Tntl to be a permutation matrix that rearranges the pixels. For example, to account for
all translations in a J × J image, Tntl can take on J2 values the permutation matrices
that account for all discrete translations. The discrete 2D image translation is a common
transformation to align images. Furthermore, an efficient solution for the E step is avail-
able [4]. Furthermore, note that by transforming an image to log-polar coordinates, shifts
correspond to rotations and scalings [15]. Let T

−1
ntl denote the inverse transformation.

The terms above (16) can be rewritten in the following form:

∑
n,t,d

qntl(T
−1

ntl wdlrndl log(αdl)+

T
−1

ntl wdl r̄ndl log(ᾱdl)) (17)

After integrating over all possible transformations we get:

∑
n,d

ŵrndl log(αdl)+ ŵr̄dl log(ᾱdl) (18)

where:

ŵrndl = ∑
t

qntlT
−1

ntl wdlrndl (19)

ŵr̄dl = ∑
t

qntlT
−1

ntl wdl r̄ndl . (20)

Finally this can be written using the log-odds parameters Θdl = log(αdl/(1−αdl)) as:

ωndl(M̂ndlΘndl + logσ(−Θndl)) (21)

where

ωndl = (ŵrndl + ŵr̄dl) and (22)

M̂ndl = ŵrndl/ωndl . (23)

Note that M̂ndl ∈ [0,1]. If we consider M̂ndl as data then (21) presents log-likelihood
under Bernoulli model with the log-odds parameters Θndl . Additionally each data point is
weighted by its weight ωndl . The goal in the M-step is to find the logistic PCA parameters
∆l , Wl and Ul that maximize the weighted log-likelihood (21). The maximum can not
be found in closed form. There exist an efficient iterative procedure for the logistic PCA
[10]. The procedure can be extended for the weighted case (21). For completeness of the
text the iterative update equations for the weighted logistic PCA are given in Appendix
A.

4.3 Practical algorithm
For the sake of clarity we summarize the practical algorithm:

Initialization: In case of a static background the background layer appearance pa-
rameters can be initialized by the mean value and the variance of each pixel for the whole
sequence. The other layer appearances can be initialized by arbitrary mean and some



large variance. For the masks we initialize the logistic parameter ∆l by some small ran-
dom values around zero. Within first few iterations it is useful to update the parameters
for each layer separately starting from the background layer and going upwards. This is
similar to the greedy layer estimation presented in [14]. Furthermore, for the first few
iterations we keep the basis vectors of the logistic PCA W and the coefficients U to zero
and then initialize them by some small random values, for example sampled from a zero
mean Gaussian distribution with the standard deviation 0.001.

1: For each image calculate the approximation of the posterior distribution by maxi-
mizing F w.r.t. the variational parameters rndl and qntl , see [5].

2: For each image calculate ωndl and M̂ndl .
3: Update the appearance parameters Λl and if required pt .
4: Update the logistic PCA mask parameter estimates ∆l , Wl and Ul using the update

equations from Appendix A. The updated ∆l , Wl and Ul will not maximize the free energy
function F but they will increase its value. This can be seen as a ”generalized M step”
[5].

5: Stop if increase of the free energy function F is below some threshold, otherwise
go to 1.

There is often not enough data to estimate pt reliably and we will use in this paper a
uniform prior distribution over the transformations: pt = 1/D [8].

5 Experiments

5.1 Extracting low dimensional representations
To demonstrate how the layered model can automatically extract low dimensional rep-
resentation of the transparency maps of the moving objects from a video sequences we
recorded a 55 frame sequence of two people walking into opposite directions and oc-
cluding each other during the sequence. In Figure 1 we present the model parameters
automatically learned from the sequence. Note that U nicely captures the cyclical walk-
ing motion while W models the corresponding deformations.

5.2 Reconstructing transparency maps
In order to compare the quality of the Gaussian and Bernoulli based models we conducted
the following experiments. We used a sequence captured by a surveillance camera. The
camera was observing people walking in front of a static background. The sequence con-
tains 400 frames. There were 5 people present in the sequence. Only single person was
present per frame. Therefore we constructed a model consisting of 2 layers. The ap-
pearance of the front layer was modelled by a Gaussian mixture with 5 components to
accommodate for the 5 different people. The transparency mask is modelled by 5 com-
ponent logistic PCA. The parameters learned from the sequence are presented in Figure
2. The learned Gaussian mixture components nicely correspond to the 5 different people
present in the video. The components of the logistic PCA presented at the bottom row
in Figure 2 seem to capture the walking deformations and also the different walking di-
rections. The first 2 people were observed walking in both directions and this is clearly
visible in their appearance parameters.
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Figure 2: The parameters of the model learned from a 400 frames sequence containing
5 walking people. Only single person was present per frame. The appearances of the 5
people and the static background are presented at the top rows. The first 2 people were
observed walking in both directions. At the bottom we present the parameters of the
logistic PCA (S = 5 components) that is used to model the transparency maps segmenting
the people from the background. The mean and the 5 basis images are shown.

Once the model is constructed we used additional 50 images to test the quality of
the model. The ground truth segmentation of the 50 additional images is obtained by
manually segmenting the persons from the background. Using the model, we compress
the images to the PCA scores for the transparency masks. We use then the model to
project the PCA scores back to mask images. Finally, we use most likely transformation
argmax(qntl) to shift the reconstructed mask to the proper position. The mask recon-
structed by the layered model will be denoted X̂n. See some examples in Table 5.2. We
then measure the difference between the manually segmented image and the segmenta-
tion using the layered model. We measured the error in three ways. (i) Quadratic loss:
the sum of the squared differences per pixel value, e2 = (1/D)∑d(Xnd − X̂nd)

2. (ii)logistic
loss: the sum of the log-likelihood of the ground truth masks given the reconstructions,
elog = 1/D∑d Xnd ln X̂nd +(1−Xnd) ln(1− X̂nd). As the reconstruction from the Gaussian
model can be outside (0,1), we first map values outside this interval to ε = 10−6 and
1− epsilon respectively.(iii) Zero-one loss: first we threshold the segmentation by the
model at X̂nd > 1/2 to get a binary reconstruction X̂01

n , then we measure the number of
pixels that differ from the ground truth, e01 = (1/D)∑d |Xnd − X̂01

nd |.
The results for S = 5 components are reported in Table 5.2. We also constructed a

layered model similar to [6] where we used the Gaussian probabilistic PCA to model the
transparency masks. Clearly, the layered model using logistic PCA leads to big improve-
ments. This is also visible in Figure 5.2.

Since the camera was static, in Table 5.2 we also show the results obtained using stan-
dard background subtraction scheme [2] which builds a model only for the background
layer. The layered model which considers all layers leads to much better results, see Table
5.2. Another common technique to improve segmentation results after background sub-
traction is to apply some morphological operators on the segmentation results. We used
image closing operator with a 3×3 element. The results improve slightly but the layered
model is still superior. When a larger template is used for image closing of when image
opening is performed, the results get only worse.



original

manual

background subtraction [2]

background subtraction + image closing

layered model + normal PCA

layered model + logistic PCA

Table 1: Segmentation examples for various approaches.
e2 e01 elog

layered model + logistic PCA
(S = 5 components)

0.023 (0.006) 0.03 (0.01) 0.086 (0.023)

layered model + norm. PCA
(S = 5 components)

0.029 (0.006) 0.04 (0.01) 0.098 (0.023)

background subtraction + image
closing

0.052 (0.017) 0.052 (0.017) 0.64 (0.23)

background subtraction 0.059 (0.024) 0.059 (0.024) 0.66 (0.28)

Table 2: Segmentation error w.r.t. manually segmented images of the walking people
sequence. The mean error per pixel over 50 hand-segmented images is reported. The
standard deviation over images is reported within the brackets.

6 Conclusions
The generative probabilistic layered image model presented by Jojic and Frey [8] was
further extended by a number of authors. We focus here on modelling the transparency
masks. The natural way to model the masks is to use Bernoulli distributions. We presented
probabilistic layered image model that models the masks using Bernoulli distributions and
extracts the low dimensional representation of the transparency masks using the ”logistic
PCA” [10]. Gaussian component and factor analysis as in [6] does not take into account
that the transparency mask has values limited between [0,1]. The logistic PCA describes
the mask more naturally and leads to crisper masks and better segmentation results as we
demonstrated.

A disadvantage of the logistic PCA is that it requires solving two S×S linear systems
for each data point (see Appendix) which might be prohibitive if the number of compo-
nents S is large. Furthermore, projecting data to the low-dimensional PCA space requires
iterations in the case of logistic PCA, while for normal PCA the projection is linear.
Finally, the logistic PCA used here is not a full generative model as there is no prior dis-
tribution on the low-dimensional coefficient matrix U . A computationally slightly more
expensive model which incorporates Gaussian priors on U is described in [11].



Appendix I: Weighted Binary PCA update equations
U-update: First intermediate quantities are computed:

Hnd = ωndΘ−1
nd tanh(Θnd/2) , Anss′ = ΣdHndWsdWs′d and (24)

Bns = Σd(2ωndM̂nd −1−Hnd µd)Wsd (25)

Row n of U is computed by solving linear system: Σs′Anss′Uns′ = Bns.
W-update: First intermediate quantities are computed:

Adss′ = ΣnHndUnsUns′ and Bds = Σn(2ωndM̂nd −1−Hnd µd)Uns (26)

Column d of W is computed by solving the linear system Σs′Adss′Ws′d = Bdl .

∆−update :∆nd = (ΣnHnd)
−1Σn(2ωndM̂nd −1−Hnd(UV )nd) (27)

References
[1] M. Black and A. Jepson. EigenTracking: Robust matching and tracking of articulated objects

using a view-based representation. Int. Journal of Computer Vision, 26(1):63–84, 1998.
[2] C.Stauffer and W.Grimson. Adaptive background mixture models for real-time tracking. In

Proc. of the Conf. on Computer Vision and Pattern Recognition, 1999.
[3] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM

algorithm. Journal of the Royal Stat. Society, Series B (Methodological), 1(39):1–38, 1977.
[4] B. Frey and N. Jojic. Transformation-invariant clustering using the EM algorithm. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 25:1–17, 2003.
[5] B. Frey and N. Jojic. A comparison of algorithms for inference and learning in probabilistic

graphical models. IEEE Trans. on Pattern Analysis and Machine Intel., 27(9), 2005.
[6] B. Frey, N. Jojic, and A. Kannan. Layered density models and unsupervised video analysis.

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2003.
[7] N. Jojic and Y. Caspi. Capturing image structure with probabilistic index maps. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition, 2004.
[8] N. Jojic and B. Frey. Learning flexible sprites in video layers. In Proc. IEEE Conf. on Com-

puter Vision and Pattern Recognition, 2001.
[9] A. Kannan, N. Jojic, and B. Frey. Layers of appearance and deformation. 10th Int. Workshop

on Artificial Intelligence and Statistics (AISTATS), 2005.
[10] A. Schein, L. Saul, and L. Ungar. A generalized linear model for principal component analysis

of binary data. In Proc. Int. Workshop on Art. Intel. and Statistics, pages 14–21, 2003.
[11] M. Tipping. Probabilistic visualisation of high-dimensional binary data. In Advances in Neu-

ral Information Processing Systems (NIPS), 1999.
[12] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience,

3:71–86, 1991.
[13] J. Wang and E. Adelson. Layered representation for motion analysis. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, pages 361–366, 1993.
[14] C. Williams and M. Titsias. Learning about multiple objects in images: Factorial learning

without factorial search. In Advances in Neural Information Processing Systems (NIPS), 2003.
[15] G. Wolberg and S. Zokai. Robust image registration using log-polar transform. In Proc. IEEE

Int. Conf. image processing, vol. 1, pages 493–496, 2000.
[16] Z.Zivkovic and J. Verbeek. Transformation invariant component analysis for binary images.

In Proc.IEEE Conference on Computer Vision and Pattern Recognition, 2006.


