LINEAR TIME AND MEMORY-EFFICIENT COMPUTATION

KENNETH W. REGAN*

Abstract. A realistic model of computation called the Block Move (BM) model is developed.
The BM regards computation as a sequence of finite transductions in memory, and operations are
timed according to a memory cost parameter p. Unlike previous memory-cost models, the BM
provides a rich theory of linear time, and in contrast to what is known for Turing machines, the BM
is proved to be highly robust for linear time. Under a wide range of p parameters, many forms of
the BM model, ranging from a fixed-wordsize RAM down to a single finite automaton iterating itself
on a single tape, are shown to simulate each other up to constant factors in running time. The BM
is proved to enjoy efficient universal simulation, and to have a tight deterministic time hierarchy.
Relationships among BM and TM time complexity classes are studied.
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1. Introduction. This paper develops a new theory of linear-time computation.
The Block Move (BM) model introduced here extends ideas and formalism from
the Block Transfer (BT) model of Aggarwal, Chandra, and Snir [2]. The BT is a
random access machine (RAM) with a special block transfer operation, together with
a parameter ¢ : N — N called a memory access cost function. The RAM’s registers
are indexed 0,1,2,..., and p(a) denotes the cost of accessing register a. A block
transfer has the form

copy [ay ...by] into [az...by],

and is valid if these intervals have the same size m and do not overlap. With regard
to a particular p, the charge for the block transfer is m 4 p(c) time units, where
¢ = max{ ay, by, az,by }. The idea is that after the initial charge of u(a) for accessing
the two blocks, a line of consecutive registers can be read or written at unit time
per item. This is a reasonable reflection of how pipelining can hide memory latency,
and accords with the behavior of physical memory devices (see [3], p1117, or [34],
p 214). An earlier paper [1] studied a model called HMM which lacked the block-
transfer construct. The main memory cost functions treated in these papers are
tog(a) 1= [logy(a + 1)], which reflects the time required to write down the memory
address a, and the functions pg(a) := [a'/?] with d = 1,2,3,..., which model the
asymptotic increase in communication time for memory laid out on a d-dimensional
grid. (The cited papers write f in place of y and « for 1/d.) The two-level /0
complexity model of Aggarwal and Vitter [3] has fixed block-size and a fixed cost
for accessing the outer level, while the Uniform Memory Hierarchy (UMH) model of
Alpern, Carter, and Feig [5] scales block-size and memory access cost upward in steps
at higher levels.

The BM makes the following changes to the BT. First, the BM fixes the wordsize
of the underlying machine, so that registers are essentially the same as cells on a
Turing tape. Second, the BM provides native means of shuffling and reversing blocks.
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Third and most important, the BM allows other finite transductions S besides copy
to be applied to the data in a block operation. A block move has the form

S [al...bl] nto [ag...bg].

If @ is the string formed by the symbols in cells @y through by, this means that S(z)
is written to the tape beginning at cell ay in the direction of by, with the proviso that
a blank B appearing in the output S(z) leaves the previous content of the target cell
unchanged. This proviso implements shuffle, while reverse is handled by allowing
by < ay and/or by < ag. The block move is valid if the two intervals are disjoint, and
meets the strict boundary condition if S(z) neither overflows nor underflows [a; . .. by).
The work performed in the block move is defined to be the number |z| of bits read,
while the memory access charge is again p(c), ¢ = max{ a1, by, az, b2 }. The p-time is
the sum of these two numbers. Adopting terms from [5], we call a BM M memory-
efficient if the total memory access charges stay within a constant factor (depending
only on M) of the work performed, and parsimonious if the ratio of access charges
to work approaches 0 as the input length n increases.

In the BT model, Aggarwal, Chandra, and Snir [2] proved tight nonlinear lower
bounds of O[nlogn] with u = uy, O[nloglogn] with p = pg, d > 1, and O[nlog™ n]
with g = 1104, for the so-called “Touch Problem” of executing a sequence of operations
during which every value in registers Ry ... R, is copied at least once to Rg. Since
any access to R, is charged the same as copying R, to Ry, this gives lower bounds
on the time for any BT computation that involves all of the input. In the BM model,
however, the other finite transductions can glean information about the input in a
way that copy cannot. Even under the highest cost function gy that we consider,
many interesting nonregular languages and functions are computable in linear time.

Previous models. It has long been realized that the standard unit-cost RAM
model [21, 31, 18] is too powerful for many practical purposes. Feldman and Shapiro
[22] contend that realistic models M, both sequential and parallel, should have a
property they call “polynomial vicinity” which we state as follows: Let (' be a data
configuration, and let H¢ stand for the finite set of memory locations [or data items]
designated as “scanned” in C. For all ¢ > 0, let I; denote the set of locations [or
items] 7 such that there exists an M-program that, when started in configuration ',
scans ¢ within ¢ time units. Then the model M has vicinity v(t) if for all C' and ¢,
|I;|/|Hc| < v(t). In 3D space, real machines “should have” at most cubic vicinity.
The RAM model, however, has exponential vicinity even under the log-cost criterion
advocated by Cook and Reckhow [18]. So do the random-access Turing machine
(RAM-TM) forms described in [30, 26, 7, 14, 64], and TMs with tree-structured tapes
(see [57, 63, 51, 52]). Turing machines with d-dimensional tapes (see [31, 60, 50]) have
vicinity O(t?), regardless of the number of such tapes or number of heads on each
tape, even with head-to-head jumps allowed. The standard TM model, with d = 1,
has linear vicinity. The “RAM with polynomially compact memory” of Grandjean
and Robson [29] limits integers ¢ that can be stored and registers a that can be used
to a polynomial in the running time 7. This is not quite the same as polynomial
vicinity—if ¢ <« T, the machine within ¢ steps could still address a number of registers
that is exponential in t. The BM has polynomial vicinity under p4 (though not under
Mg ), because any access outside the first t? cells costs more than ¢ time units. The
theorem of [56] that deterministic linear time on the standard TM (DLIN) is properly
contained in nondeterministic TM linear time (NLIN) is not known to carry over to
any model of super-linear vicinity.



Practical motivations. The BM attempts to capture, with a minimum of
added notation, several important properties of computations on real machines that
the previous models neglect or treat too coarsely. The motivations are largely the
same as those for the BT and UMH: As calibrated by p, memory falls into a hierarchy
ranging from relatively small amounts of low-indexed fast memory up through to large
amounts of slow external storage. An algorithm that enjoys good temporal locality of
reference, meaning that long stretches of its operation use relatively few different data
items, can be implemented as a BM program that first copies the needed items to low
memory (figuratively, to a cache), and is rewarded by a lower sum of memory-access
charges. Good spatial locality of reference, meaning that needed data items are stored
in neighboring locations in approximately the order of their need, is rewarded by the
possibility of batching or pipelining a sequence of operations in the same block move.
However, the BM appears to emphasize the sequencing of data items within a block
more than the BT and UMH do, and we speak more specifically of good serial access
rather than spatial locality of reference. The BM breaks sequential computation into
phases in which access is serial and the operation is a finite transduction, and allows
“random” access only between phases. Both p-time(n) and the count R(n) of block
moves provide ways to quantify random access as a resource. The latter also serves
as a measure of parallel time, since finite transductions can be computed by parallel
prefix sum. Indeed, the BM is similar to the Pratt-Stockmeyer vector machine [61],
and can also be regarded as a fixed-wordsize analogue of Blelloch’s “scan” model [11].

Results. The first main theorem is that the BM is a very robust model. Many
diverse forms of the machine simulate each other up to constant factors in p-time,
under a wide range of cost functions p. Allowing multiple tapes or heads, expanding
or limiting the means of tape access, allowing invalid block moves, making block
boundaries pre-set or data-dependent in a block move, even reducing the model down
to a single finite automaton that iterates itself on a single tape, makes no or little
difference. We claim that this is the first sweeping linear-time robustness result for a
natural model of computation. A “linear speed-up” theorem, similar to the familiar
one for Turing machines, makes the constant factors on these simulations as small as
desired. All of this gives the complexity measure p-time a good degree of machine-
independence. Some of the simulations preserve the work (w) and memory-access
charges (u-acc) separately, while others trade w off against p-acc to preserve their
sum.

Section 2 defines the basic BM model and also the reduced form. Section 3
defines all the richer forms, and Section 4 proves their equivalence. The linear speed-
up theorem and some results on memory-efficiency are in Section 5. The second main
result of this paper, in Section 6, shows that like the RAM but unlike what is known
for the standard multitape Turing machine model (see [36, 24]), the BM carries only a
constant factor overhead for universal simulation. The universal BM given is efficient
under any pq, while separate constructions work for fi,e. In consequence, for any
fixed p = pgq or pog, the BM complexity classes DuTIME[t] form a tight deterministic
time hierarchy as the order of the time function ¢ increases. Whether there is any
hierarchy at all when p rather than ¢ varies is shown in Section 7 to tie back to older
questions of determinism versus nondeterminism. This section also compares the
BM to standard TM and RAM models, and studies BM complexity classes. Section
8 describes open problems, and Section 9 presents conclusions.
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Fia. 1. BM with allowed head motions in a pass

2. The Block Move Model. We use A for the empty string and B for the
blank character. N stands for {0,1,2,3,...}. Characters in a string z of length m
are numbered zgzy -+ -2,,—1. We modify the generalized sequential machine (GSM)
of [36] so that it can exit without reading all of its input.

DEFINITION 2.1. A generalized sequential transducer (GST) is a machine S with
components (Q,1',8,p,s, '), where I' C () is the set of terminal states, s € Q) \ F'is
the start state, § : (Q\ F)xI' — @Q is the transition function, and p: (Q\ F)xI' — I'*
is the output function. The 1/O alphabet ' may contain the blank B.

A sequence (qo, %0, ¢1, 15+ -+, §m—1>Lm—1,¢m ) is a halting trajectory of S on in-
put z if ¢o = s, ¢, € F, zox1...25_1 i1 an initial substring of z, and for 0 <
i < m-—1, 8(qi,x;) = qgit+1. The output S(x) is then defined to be p(qo,z0) -
plar,@1) - p(qm-1, Tm—1)-

By common abuse of notation we also write S(-) for the partial function computed by
S. Except briefly in Section 8, all finite state machines we consider are deterministic.
A symbol ¢ is an endmarker for a GST 5 if every transition on ¢ sends 5 to a terminal
state. Without loss of generality, B is an endmarker for all GSTs.

The intuitive picture of our model is a “circuit board” with GST “chips,” each of
which can process streams of data drawn from a single tape. The formalism is fairly
close to that for Turing machines in [36].

DEFINITION 2.2. A Block Machine (BM) is denoted by M = (Q,%,T',46, B, So, F),
where:

Q is a finite set consisting of G\STs, move states, and halt states.

F is the set of halt states.

Every GST has one of the four labels Ra, La, 0R, or 0L.

Move states are labeled either |a/2], 2a, or 2a+1.

Y. is the I/O alphabet of M, while the work alphabet T" is used by all GSTs.
The start state Sy is a GST with label Ra.

The transition function 6 is a mapping from (Q \ F') x I' to Q.

We find it useful to regard GSTs as “states” in a BM machine diagram, reading
the machine in terms of the specific functions they perform, and submerging the
individual states of the GSTs onto a lower level. M has two tape heads, called the
“cell-0 head” and the “cell-a head,” which work as follows in a GST pass (Figure 1).
Let o[¢] stand for the symbol in tape cell i, and for ¢,j € N with j < 7 allowed, let
o[i...j] denote the string formed by the symbols from cell i to cell j.

DEFINITION 2.3. A pass by a GST 5 in a BM works as follows, with reference to the
current address a and each of the four modes Ra, La,0R,0L:
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(Ra) S reads the tape moving rightward from cell a. Since B is an endmarker for
S, there is a cell b > a in which § exits. Let 2 := ofa...b] and y := S(z). If
y = A, the pass ends with no change in the tape. For y # A, let ¢ := |y| — 1.
Then y is written into cells [0...c], except that if y; = B, cell 7 is left
unchanged. This completes the pass.

(La) S reads the tape moving leftward from cell a. Unless S runs off the left end
of the tape (causing a “crash”), let b < a be the cell in which 5 exits. As
before let z := ola...b], y := S(z), and if y # A, ¢ := |y| — 1. Then formally,
for 0 <i <c¢,if y; # B then o[i] := y;, while if y; = B then o[¢] is unchanged.

(OR) S reads from cell 0, necessarily moving right. Let ¢ be the cell in which 5
halts. Let z := ¢[0...c], y := S(«), and b := a + |y| — 1. Then y is written
rightward from a into cells [a...b], with the same convention about B as

above.
(0L) Same as OR, except that b := a — |y| + 1, and y is written leftward from «a
into [a...b].

Here a, b, and ¢ are the access points of the pass. Each of the four kinds of pass is
valid if either (i) y = A, (i) a,b,c < 1, or (74) ¢ < min{a,b}. The case y = A is
called an empty pass, while if |z| = 1, then it is called a unit pass.

In terms of Section 1, Ra and La execute the block move S[a...b] into [0...c],
except that the boundaries b and ¢ are not set in advance and can depend on the data
z. Similarly OR and 0L execute S[0...c] into [a...b]. We make the distinction is
that in a pass the read and write boundaries may depend on the data, while in a block
move (formalized in the next section) they are set beforehand. The tape is regarded
as linear for passes or block moves, but as a binary tree for addressing. The root of the
tree is cell 1, while cell 0 is an extra cell above the root. The validity condition says
that the intervals [a...b] and [0...c] must not overlap, with a technically convenient
exception in case the whole pass is done in cells 0 and 1. If a pass is invalid, M is
considered to “crash.” A pass of type Ra or La figuratively “pulls” data to the left
end of the tape, and we refer to it as a pull; similarly we call a pass of type OR or
0L a put. Furthering the analogy to internal memory or to a processor cache, these
pass types might be called a fetch and writeback, respectively. An La or 0L pass can
reverse a string on the tape.

DEFINITION 2.4. A valid computation & by aBM M = (Q,%,1',6, B, So, I') is defined
as follows. Initially @ = 0, the tape contains z in cells 0...|2|—1 with all other cells
blank, and 5o makes the first pass. When a pass by a GST S ends, let ¢ be the
character read on the transition in which 5 exited. Then control passes to 6(.9, ¢).
In a move state ¢, the new current address @’ equals |a/2], 2a, or 2a+1 according
to the label of ¢, and letting d be the character in cell a’, control passes to state
6(q,d). All passes must be valid, and a valid computation ends when control passes
to a halting state. Then the output, denoted by M (z), is defined to be ¢[0...m—1],
where o[m] is the leftmost non-¥ character on the tape. If M is regarded as an
acceptor, then the language of strings accepted by M is denoted by L(M) := {x €
Y*|M(x) halts and outputs 1 }.

The convention on output is needed since a BM cannot erase, i.e. write B. Alter-
natively, for an acceptor, I’ could be partitioned into states labeled AccEpT and
REeJECT.

DEFINITION 2.5. A memory cost function is any function p : N — N with the
properties (a) 1(0) =0, (b) (Va)u(a) < a, and (¢) (VN > 1)(Va)u(Na) < Np(a).
5
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Fia. 2. A BM that makes a fresh track

Our results will only require the property (¢’): (VN > 1)(AN' > 1) (V°a) p(Na) <
N'p(a). While property (c) can be named by saying that u is “sub-linear,” we do
not know a standard mathematical name for (¢’), and we prefer to call either (c¢) or
(c') the tracking property for the following reason:

ExamprLe 2.1. Tracking. Figure 2 diagrams a multichip BM routine that changes the
input @ = xgry - 2,_1 to 2@ @- -2, _oQx, @F, where @ acts as a “surrogate
blank,” and only @ or B appears to the right of the $. This divides the tape into
two tracks of odd and even cells. A BM can write a string y to the second track by
pulling it as ByoBy1 - - - BYm—1 By, since the blanks B leave the contents of the first
track undisturbed. Two strings can also be shuffled this way. Since pu(2a) < 2u(a),
the tracking no more than doubles the memory access charges.

The principal memory cost functions we consider in this paper are the log-cost
Junction peg(a) := [logy(a+1)], and for all d > 1, the d-dimensional layout function
pa(a) := [a'/?]. These have the tracking property.

DEFINITION 2.6. For any memory cost function u, the p-time of a valid pass that
reads z and operates the cell-a head in the interval [a .. .b]is given by u(a)+|z|+u(b).
The work of the pass is |z|, and the memory access charge is p(a) 4+ p(b). A move
state that changes a to @’ performs 1 unit of work and has a memory access charge
of p(a) + p(a’). The sum of the work over all passes in a valid computation ¢ is
denoted by w(¢), the total memory access charges by p-ace(é), and the total u-time
by w(€) := w(é) + p-ace(é).

Intuitively, the charge for a pass is p(a) time units to access cell a, plus |z| time units
for reading or writing the block, plus p(b) to communicate to the CPU that the pass
has ended and to re-set the heads. We did not write max{ p(a), u(b) } because b is
not known until after the time to access a has already been spent; this makes no
difference up to a factor of two. Replacing |z| by |z| 4 |5(z)| or by max{ |z|,|5(z)| },
or adding p(c) to u(a) 4+ u(b), also make no difference in defining w or p-ace, this
time up to a constant factor that may depend on M.

DErINITION 2.7. For any input z on which a BM M has halting computation &, we
define the complexity measures

Work: w(M,z) = w(c).

Memory access: p-ace(M,z) := p-ace(T).

p-time: p-time(M,z) == w(M,z) + p-ace(M, z).

Space: s(M,z) := the maximum of a for all access points a in ¢.
Pass count: R(M,z) := the total number of passes in ¢.

M is dropped when it is understood, and the above are extended in the usual manner
to functions w(n), p-acc(n), p-time(n), s(n), and R(n) by taking the maximum over
6



all inputs z of length n. A measure of space closer to the standard TM space measure
could be defined in the extended BM models of the next section by placing the input
x on a separate read-only input tape, but we do not pursue space complexity further
in this paper. The pass count appears to be sandwiched between two measures of
reversals for multitape Turing machines, namely the now-standard one of [59, 35, 16],
and the stricter notion of [43] which essentially counts keeping a TM head stationary
as a reversal.

DErINITION 2.8. For any memory cost function g and recursive function ¢ : N — N,
DuTIME[t] stands for the class of languages accepted by BMs M that run in time
t(n), i.e. such that for all z, p-time(M, z) < t(|z|). TLIN stands for Dy TIME[O(n)].

We also write DuTIME[¢] and TLIN for the corresponding function classes. Section
7 shows that TLIN is contained in the TM linear-time class DLIN. We argue that
languages and functions in TLIN have true linear-time behavior even under the most
constrained implementations.

We do not separate out the work performed from the total memory access charges
in defining BM complexity classes, but do so in adapting the following notions and
terms from [5] to the BM model.

DEFINITION 2.9. (a) A BM M is memory efficient, under a given memory cost
function g, if there is a constant K such that for all z, p-time(M,z) <
K-w(M,z).

(b) M is parsimonious under p if p-time(M,z)/w(M,z) — 1 as |z| — oc.

Equivalently, M is memory efficient under p if p-acc(M, z) = O(w), and parsimonious
under p if p-ace(M,z) = o(w), where the asymptotics are as || — oo. The intuition,
also expressed in [5], is that efficient or parsimonious programs make good use of a
memory cache.

Definition 2.9 does not imply that the given BM M is optimal for the function f
it computes. Indeed, from Blum’s speed-up theorem [12] and the fact that p-time is
a complexity measure, there exist computable functions with no p-time optimal pro-
grams at all. To apply the concepts of memory efficiency and parsimony to languages
and functions, we use the following relative criterion:

DEFINITION 2.10. (a) A function f is inherently p-efficient if for every BM My
that computes f, there is a BM My which computes f and a constant K > 0
such that for all @, u-time(My,z) < K-w(Moy, ).

(b) f is inherently p-parsimonious if for every BM My computing f there is a
BM M; computing f such that lim supj,_, pi-time(My, z)/w(Mo,v) < 1.

By definition p-parsimony = p-efficiency, and if f is inherently efficient (resp.
parsimonious) under gy, then f is inherently efficient (resp. parsimonious) under
every memory cost function p < pq.

Just for the next three examples, we drop the validity condition on rightward
pulls; that is, we allow the tape intervals [a...b] and [0...c] to overlap in an Ra
move. This is intuitively reasonable so long as the cell-0 head does not overtake the
cell-a head and write over a cell that the latter hasn’t read yet. Theorem 4.1 will
allow us to drop the validity condition with impunity, but the proof of Theorem 2.1
below requires that it be in force.

ExaMmPLE 2.2. Balanced Parentheses. Let Dy stand for the language of balanced
parenthesis strings over ¥ := {(,) }. Let the GST S work as follows on any z € ¥*:
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BA

:

Accept Reject BA Exit and Restart

Fia. 3. Reduced-form BM for the language of balanced parentheses

If 2 = A, 5 goes to a terminal state marked AccEPT; if & begins with )", S goes to
REJECT. Else S erases the leading ‘(” and thereafter takes bits in twos, translating

(1) ((—=( ) =) (=2 )= A

If 2 ends in ‘(" or |z| is odd, S also signals REJECT. Then S has the property that for
any z # A that it doesn’t immediately reject, z € D1 <= S(z) € Dy. Furthermore,
|S(2)| < |z|/2. We can think of D; as being self-reducible in a particularly sharp
sense.

Figure 3 shows the corresponding BM in the “reduced form” defined below. The
‘$” endmarker is written on the first pass, and prevents leftover “garbage” on the tape
from interfering with later passes. We take this for granted in some later descriptions
of BMs. For any memory cost function u, the running time of M is bounded by

logan

(2) > p(0)+ 2"+ p(2),
=0
which is O(n) even for u = p1. Hence the language Dy belongs to TLIN.

ExamPLE 2.3. Counting. Let ¥ := {a,b}. We can build a GST S with alphabet
I' = {a,b,0,1,%, B} that runs as follows on inputs of the form z’ = zu$ with
z € {a,b}* and u € {0,1}* S erases bits xq, 23, 24,... of z and remembers |z|
modulo 2. S then copies u, and on reading the final § (or on the first pass, B), 9
outputs 0% if |z| was even, 1§ if |z| was odd. S is also coded so that if z = A, 5 goes
to Harr. Let M be the BM which iterates S on input z. Then M(z) halts with ||
in binary notation on its tape (followed by ‘$” and “garbage”). The p-time for this
iteration is likewise O(n) even for p = 1.

ExampLE 2.4. Simulating a TM. Let T := (Q, %, 1,6, B, qo, ') be a single-tape TM
in the notation of [36]. Define the ID alphabet of T to be Ty := (@ x T)UTU{A,$},
where A, $ ¢ T'. The simulating BM M on an input = ¢ - - - 2,—1 makes a rightward
pull that lays down the delimited initial ID A(qo, zo)z122 - - 2,19 of T'(x). The finite
control of T is turned into a single GST § with alphabet I'y that produces successive
IDs in the computation with each pass. Whenever T writes a blank, M writes @.
Let T be programmed to move its head to cell 0 before halting. Then the final pass
by M removes the A and $ and leaves exactly the output y := T'(2) on the tape.
Actually, because a BM cannot erase tape cells, ¥ would be followed by some number
of symbols @, but Definition 2.4 still makes y the output of M. Hence the BM is a
universal model of computation.



The machines in Examples 2.2-2.4 only make rightward pulls from cell 0. Each is
really a GST that iterates on its own output, a form generally known as a “cascading
finite automaton” (CFA). Up to small technical differences, CFAs are comparable to
the one-way “sweeping automata” studied by Ibarra et.al. [39, 41, 40, 37, 38, 15].
These papers characterize both one-way and two-way arrays of identical finite-state
machines in terms of these and other automata and language classes. The following
shows that the BM can be regarded as a generalization of these arrays, insofar as a
BM can dynamically change its origin point a and direction of operation.

DEeriNiTION 2.11. The reduced form of the BM model consists of a single GST S
whose terminal states ¢ have labels l1(¢) € {a,|a/2],2a,2a+1,HAavT } and l3(q) €
{ Ra,La,0R,0L }. The initial pass has mode Ra with ¢ = 0. Whenever a pass by
S exits in some state ¢ with [(¢) # Havr, the labels [;(q) and [3(¢) determine the
address and mode for the next pass. Computations and complexity measures are

defined as before.

THEOREM 2.1. Fvery BM M is equivalent to a BM M' in reduced form, up to
constant factors in all five measures of Definition 2.7.

Proof. The idea is to combine all the GSTs of M into a single GST S and save
the current state of M in cells 0 and 1. FEach pass of M is simulated by at most six
passes of M’ except for a “staircase” of O(logn) moves at the end which is amortized
into the constant factors. This simulation expands the alphabet but does not make
any new tracks. The details are somewhat delicate, owing to the lack of internal
memory when a pass by M’ ends, and require the validity condition on passes. The
full proofis in the Appendix. O

In both directions, the tape cells used by M and M’ are almost exactly the same;
i.e., M is simulated “in place.” Hence we consider the BM and the reduced form to
be essentially identical. The idea of gathering all GSTs into one works with even less
technical difficulty for the extended models in the next section.

3. Extensions of the BM. We consider five natural ways of varying the BM
model: (1) Remove or circumvent the validity restriction on passes. (2) Provide
“random addressing” rather than “tree access” in move states. (3) Provide delimiters
ay, by, ag, by for block moves S [ay ...by] into [ay...by], where the cell by in which S
exits is determined or calculated in advance. (4) Require that for every such block
move, by is such that S(z) exactly fills [ag...b2]. (5) Provide multiple main tapes
and GSTs that can read from and write to k-many tapes at once. These extensions
can be combined. We define them in greater detail, and in the next section, prove
equivalences among them and the basic model.

DeriNtTION 3.1. A BM with buffer mechanism has a new tape called the buffer tape,

and GST chips S with the following six labels and functions:

(RaB) The GST S reads  from the main tape beginning in cell ¢ and writes S(2) to
the buffer tape. The output S(z) must have no blanks in it, and it completely
replaces any previous content of the buffer. Taking b to be the cell in which
S exits, the p-time is p(a) + |z| 4+ p(b) as before.

(LaB) As for RaB, but reading leftward from cell a.



(BaR) Here S draws its input « from the buffer, and S(z) is written on the main
tape starting in cell . Blanks in S(z) are allowed and treated as before.
When S exits, even if it has not read all of the buffer tape, the buffer is
flushed. With b the destination of the last output bit (or b = a if none), the
p-time is likewise p(a) + |z + p(b).

(Bal) As for BaR, but writing S(z) leftward from cell a.

(0B)  Asfor RaB, but using the cell-0 head to read the input, and g-time |z|+p(c).

(B0)  As for BaR, but using the cell-0 head to write the output; likewise u-time
|| + p(e).

All six types of pass are automatically valid. Further details of computations and

complexity measures are the same as before. A BM with limited buffer mechanism

has no GST's with labels B0 or 0B, and consequently has no cell-0 head.

The original BM’s moves of type Ra or La can now be simulated directly by RaB
or LaB followed by B0, while OR or 0L is simulated by 0B followed by BaR or Bal.
For the limited buffer mechanism the simulation is trickier, but for p = pg we will
show that it can be done efficiently. The next extension allows “random access.”

DErINITION 3.2. The address mechanism adds an address tape and new load moves
labeled RaA, LaA, and 0A. These behave and are timed like the buffer moves RaB,
LaB, and 0B respectively, but direct their output to the address tape instead. As
with the buffer, the output completely replaces the previous content of the address
tape. Addresses are written in binary notation with the least significant bit leftmost
on the tape. The output @’ of a load becomes the new current address. Move states
may be discarded without loss of generality.

ExaMPLE 3.1. Palindromes. Let Pal denote the language of palindromes over a
given alphabet 3. We sketch a BM M with address mechanism that accepts Pal. On
input x, M makes a fresh track on its tape via Example 2.1, and runs the procedure
of Example 2.3 to leave n := |z| in binary notation on this track. In running this
procedure, we either exempt rightward pulls from the validity condition or give M
the buffer mechanism as well. The fresh-track cell which divides the right half of z
from the left half has address n’ := 2|n/2] + 1. A single 0A move can read n but
copy the first bit as 1 to load the address n’. M then pokes a $ into cell n’. Another
load prepends a ‘0’ so as to address cell 2n, and M then executes a leftward pull that
interleaves the left half of x with the right half. A bit-by-bit compare from cell 0
finishes the job. M also runs in linear uq-time.

The address mechanism provides for indirect addressing via a succession of loads,
and makes it easy to implement pointers, linked lists, trees, and other data structures
and common features of memory management on a BM, subject to charges for the
number and size of the references.

Thus far, all models have allowed data-dependent block boundaries. We call
any of the above kinds of BM M self-delimiting if there is a sub-alphabet I'. of
endmarkers such that all GSTs in M terminate precisely on reading an endmarker.
(If we weaken this property slightly to allow a GST 5 to exit on a non-endmarker on
its second transition, then it is preserved in the proof of Theorem 2.1.) The remaining
extensions pre-set the read block [ay...b] and the write block [as...bs], and this
is when we speak of a block move rather than a pass. Having by fixed would let us
use the original GSM model from [36]. However, the machines that follow are always
able to drop an endmarker into cell b; and force a GST $ to read all of [ay...by].
Hence we may ignore the distinction and retain ‘GST’ for consistency.
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DEFINITION 3.3. A block move is denoted by S [a; ...b1] into [ag...bs] and has this
effect on the tape: Let z := o[ay...b;]. Then S(2z) is written to the tape beginning
at az and proceeding in the direction of by, with the proviso that each blank in S(x)
leaves the target cell unchanged, as in Definition 2.3. The block move is valid so
long as the intervals [ay...by] and [ag...by] are disjoint. It underflows if |5(x)| <
|by — az| + 1, and overflows if |5(x)| > |by — az| + 1.

By default we tolerate underflows and overflows in block moves. We draw an analogy
between the next form of the BM and a text editor in which the user may mark
a source and destination block and perform an operation on them. One important
point is that the BM does not allow insertions and deletions of the familiar “cut-and-
paste” kind; instead, the output flows over the destination block and overwrites or
lets stand according to the use of B in Definition 2.3. Willard [69] describes a model
of a file system that lacks insertion and deletion, and gives fairly eflicient algorithms
for simulating them. Many text processors allow the user to define and move markers
for points of immediate access in a file. Usually the maximum number of markers
allowed is fixed to some number m. Adopting a term from data structures, we give
the machine four fingers, with labels aq, by, a2, by, which can be assigned among the
m markers and which delimit the source and destination blocks in any block move.
Finger a; may be thought of as the “cursor.” The dual use of “a;” as the fixed
label of a finger and as the number of the cell its assigned marker currently occupies
may cause some confusion, but we try to keep the meanings clear below. The same
applies to ag, by, and by, and to later usage of these labels to name four special
“address tapes.”

DEFINITION 3.4. A finger BM has four fingers labeled ay, b1, as, bz, and some number
m > 4 of markers. Initially one marker is on the last bit of the input, while all
other markers and all four fingers are on the first bit in cell 0. An invocation of
a GST S executes the block move S[ay...b1] into [ag...b3]. The work performed
by the block move is |by — aq| + 1, while the memory-access charge is p(c), where
¢ = max{ ay, by, as, by }. In a move state, each marker on some cell ¢ may be moved to
cell |a/2], 2a, or 2a+1 (or kept where it is), and the four fingers may be redistributed
arbitrarily among the markers. The cost of a move state is the maximum of u(a) over
all addresses a involved in finger or marker movements; those remaining stationary
are not charged.

One classical difference between “fingers” and “pointers” is that there is no fixed
limit on the number of pointers a program can create. Rather than define a form of the
BM analogous to the pointer machines of Schénhage and others [45, 66, 67, 49, 10], we
move straight to a model that uses “random-access addressing,” a mechanism usually
considered stronger than pointers (for in-depth comparisons, see [9, 10] and also [68]).
The following BM form is based on a random-access Turing machine (RAM-TM; cf.
“RTM” in [30] and “indexing TM” in [14, 64, 8]), and is closest to the BT.

DErINITION 3.5. A RAM-BM has one main tape, four address tapes labeled
a1,by,as,by and given their own heads, and a finite control comprised of RAM-TM
states and GST states. In a RAM-TM state, the current main-tape address a is given
by the content of tape a;. The machine may read and change both the character in
cell @ and those scanned on the address tapes, and move each address tape head one
cell left or right. In a GST state S, the address tapes give the block boundaries for
the block move S [ay ...b1] into [az...b3] as described above, and control passes to
some RAM-TM state. A RAM-TM step performs work 1 and incurs a memory-access
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charge of max{ p(a), u(b) }, where b is the rightmost extent of an address tape head.
Block moves are timed as above. Both a RAM-TM step and a block move add 1 to
the pass count R(n). Other details of computations are the same as for the basic BM
model.

A fixed-wordsize analogue of the original BT model of [2] can now be had by making
copy the only GST allowed in block moves. A RAM-BM with address loading can
use block moves rather than RAM-TM steps to write addresses.

DErFINITION 3.6. A finger BM or a RAM-BM obeys the strict boundary condition if
in every block move S [ay...b1] into [az...ba], |S(2)| equals |by — ag| + 1.

This constraint is notable when S is such that |S(z)| varies widely for different 2 of
the same length. The next is a catch-all for further extensions.

DeriNtTION 3.7. For k > 2, a k-input GST has k-many input tapes and one output
tape, with ¢ : (Q\ F)xT* — @ and p: (Q\ F)xT'* — I'*. Each input head advances
one cell at each step.

DErINITION 3.8. A multitape BM has some number & > 2 of main tapes, each
possibly equipped with its own address and/or buffer tapes, and uses k-input GSTs
in passes or block moves.

Further details of computations and complexity measures for multitape BMs can
be inferred from foregoing definitions, and various validity and boundary conditions
can be formulated. The proofs in the next section will make the workings of these
machines clear.

Finally, given two machines M and M’ of any kind and a cost function pu, we
say M’ simulates M linearly in p if p-time(M’,2) = O(p-time(M, z)) + O(|z]). The
extra ‘O(n)’ is stated because like the RAM-TM, several BM variants give a sensible
notion of computing in sub-linear time, while all the simulations to come involve an
O(n)-time preprocessing phase to set up tracks on the main tape. Now we can state:

MAIN RoBUSTNESS THEOREM 3.1. For any rational d > 1, all forms of the BM
defined above simulate each other linearly in pq-time.

If we adapted a standard convention for Turing machines to state that every BM on
a given input z takes time at least |z| 4+ 1 (cf. [36]), then we could say that all the
simulations have constant-factor overheads in pg-time.

4. Proof of the Main Robustness Theorem. The main problems solved in
the proof are: (1) how to avoid overlaps in reading and writing by “tape-folding”
(Theorem 4.1), (2) how to simulate random access with one read head whose move-
ments are limited (Lemma 4.6), and (3) how to precompute block boundaries without
losing efficiency (Lemma 4.11 through Theorem 4.15). Analogues of these problems
are known in other areas of computation, but solving them with only a constant factor
overhead in p-time requires some care. Some of the simulations give constant factor
overheads in both w and p-acc, but others trade off the work against the memory
access charges. We also state bounds on w’ and p-ace’ for the simulating machine
M’ individually, and on the number R’ of passes M’ requires, in or after proofs. The
space s'(n) is always O(s(n)).
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4.1. Simulations for data-dependent block boundaries. The first simula-
tion uses the tracking property u(Na) < Np(a) from Definition 2.5, and does not
give constant-factor overheads in all measures. We give full details in this proof, in
order to take reasonable shortcuts later.

TuroREM 4.1. For every BM M with buffer there is a BM M’ such that for
every u, M’ simulates M linearly in u-time.

Proof. Let M have the buffer mechanism. Let C' be the largest number of symbols
output in any transition of any GST in M. Let K := [logy(2C 4 6)] and N := 2.
The BM M’ first makes N-many tracks by iterating the procedure of Example 2.1.
The track comprising cells 0, N,2N_ 3N, ... represents the main tape of M, while
the two tracks flanking it are “marker tracks.” The track through cells 2, N + 2,...
represents the buffer tape. The other tracks are an “extension track,” a “holding
track,” C-many “pull bays,” and C-many “put bays.” M’ uses the symbol @ to
reserve free space in tracks, and uses A and $ to mark places in the tape. A § also
delimits the buffer track so that leftover “garbage” does not interfere. Two invariants
are that before every simulated pass by M with current address a, the current address
a' of M' equals Na, and the tracks apart from the main and buffer tracks contain
only blanks and @ symbols.

The move a := 2a by M is simulated directly by a’ := 2a’ in M’. The move
a := 2a+1 is simulated by effecting @’ := [¢//2] K-many times, then o' := 24’41,
and then @' := 24’ K-many times. The move a := |a/2] is simulated by effecting
a' := |d'/2] (K +1)-many times, and then o’ := 2¢ K-many times. Since K is a
constant, the overhead in p-acc for each move is constant. Henceforth we refer to
“cell @ on the main track” in place of a’.

We need only describe how M’ simulates each of the six kinds of pass by M.
Since M has the 0B and B0 instructions, we may assume that the current address a
for the other four kinds is always > 1. For each state q of a GST S of M, M’ has a
GST S; which simulates S starting in state ¢, and which exits only on the endmarker
$. We write just S’ when ¢ = s or ¢ is understood.

(a) RaB. M' chooses ay := 2a, pokes A to the left of cell a, and pokes § to the
left of cell a;. M’ then pulls y; := S'[a...a;—1] to the C-many pull bays. By the
choice of C', |y1| < Ca, and so the pull is valid.

If the cell b in which S exits falls in the interval [a...a;—1], then 5" likewise exits
in cell b. Since the exit character has no $, the transition out of S’ communicates that
S has exited. M’ then makes (/K +1)-many moves a := 2a so that M’ now addresses
cell Na; on the main track, which is cell N?a; overall. M’ puts y := y; onto the
extension track and then pulls y onto the buffer track. One more put then overwrites
the used portion of the extension track with @ symbols. M’ then effects a := |a/2]
(K +1)-many times so that it addresses the original cell a again, and re-simulates 5
in order to overwrite the copy of ¥ on the pull bays by @ symbols. All of these passes
are valid. M’ finally removes the A and $ markers at cells @ and a;. The original
time charge to M was u(a)+ m+ (b), where m = b — a+ 1. The time charged to M’
in this case is bounded by:

wNa) +2+pu(Na— 1)+ pu(Nay) + 24+ p(Nag — 1) (poke A and $)
+ (Na)+ Nm+ u(Nb) (simulate 5)
+ 2K u(N2aq) (move to cell Nay)
+ 3u(N2ay) 4+ 3N?*m + 3u(N?%ay + N?*(m — 1)) (put and pull y)
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+ 2Ku(N2ay) + p(Na) + Nm+ p(Nb)+ 2u(Na) + 4+ 2u(Nay) (clean up)
< (14N +8N2K + 12N pu(a) + (3N2 + 2N)m + 2Npu(b)+ 4.  (m—1<a)

So far both the work w’ and the memory access charges u-acc’ to M’ are within a
constant factor of the corresponding charges to M.

If S does not exit in [a...a;—1], 5" exits on the § marker. This tells M’ to do a
dummy pull to save the state ¢ that S was in when S’ hit the $, and then to execute
a put that copies y; from the pull bays to the put bays rightward from cell a. M’
then effects @ := 2a so now a = ay, lets ay := 2a;, pokes another $ to the left of cell
ag, pulls yo := Silay ...az—1] to the pull bays, and then puts y, into the put bays
rightward of cell ay. Since the $ endmarker is in cell Nay—1, this move is valid; nor
does yy overlap y;. If 5 didn’t halt in [ay ...az—1], M’ saves the state ¢’ that S was in
when S’ hit cell aq, setting things up for the next stage with a3 := 2as. The process
is iterated until S finally exits in some cell b in some interval [a;_1 ...a;—1]. Then
Y = 1Yz ---y; equals Sfa...b]. M’ moves to cell Na;, puts y onto the extension
track rightward of cell Naj, pulls y to the buffer track, and “cleans up” the extension
track as before. M’ then takes (K 41)-many steps backward to cell a;_; and cleans
up the pull and put bays with a pull and a put. Finally M’ effects a := [a/2] until it
finds the A originally placed at cell a, meanwhile removing all of the $ markers, and
then removes the A. This completes the simulated pull by 5.

Let 7 be such that a; < b < aj4q. Then the number m of symbols read by S is at
least a; — a. An induction on j shows that the running totals of both w’ and p-acc’
stay bounded by Dm, where D is a constant that depends only on M, not on a or j.
Hence the p-time for the simulation by M’ is within 2D times the y-time charged to
M for the pass. (However, when j > 0, p-acc’/u-ace may no longer be bounded by
a constant.)

(b) 0B. M’ first runs S on cell 0 only and stores the output yo on the first cells
of the C-many put bays. M’ then follows the procedure for RaB with « = 1. The
analysis is essentially the same.

(¢) LaB. M’ first pokes a A to the left of cell @ and § to the left of cell [a/2].
The A allows M’ to detect whether a is even or odd; i.e., whether it needs to simulate
a:= 2aq or a := 2a+1 to recover cell a. M’ then pulls y; := Sla...|a/2]] to the
pull bays. Note that cell |a/2] is included; M’ avoids a crash by remembering the
first 2C-many symbols of y; in its finite control. If S didn’t exit in [a...|a/2]], M’
remembers the state ¢ that S would have gone to after processing cell |a/2]. M’
then copies cells [0...|a/2] —1] of the main track into cells [[a/2|+1...a] of the
holding track, and does a leftward pull by 5} to finish the work by 5, stashing its
output g2 on the put bays. If Sé does not exit before hitting the $, then S ran off
the left end of the tape and M crashed. Let y := yyy2. Since |y| < C'a, M’ can copy
y to the buffer via cell Na of the extension track by means similar to before, and
“clean up” the pull and put bays and holding and extension tracks before returning
control to cell a. Here both w’ and p-ace’ stay within a fixed constant factor of the
corresponding charges to M for the pass.

(d) BaR. M’ marks cell a on the left with a §, and does a dummy simulation of .5
on cells [0...a—1] of the buffer track. If S exits in that interval, M’ puts S[0...a—1]
directly onto the main track, and this completes the simulated pass. If not, M’ puts
Yo := S[0...a—1] onto the holding track rightward of cell a, and remembers the
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state ¢ in which S’ hits the $. M’ then follows the procedure for simulating RaB
beginning with S;, except that it copies @*ypy; - - - y; to the extension track via cell
Naj. The final pull then goes to the main track but translates @ by B so that the
output written by M lines up with cell @ of the main track. There is no need to
“clean up” the read portion of the buffer tape since all writes to it are delimited. A
calculation similar to that for RaB yields a constant bound on the u-time and work
for the simulated pass, though possibly not on the p-access charges.

(e) BO. Under the simulation, this is the same as 0B with the roles of the main
track and buffer track reversed, and @ translated to B.

(f) BaL. M' marks cell a on the left with § and puts y; := S[0...a—1] rightward
from cell @ of the holding track. If S exits in that interval of the buffer tape, M’ then
pulls y; to the left end of the holding track. Note that if |y1] > ¢+1 then M was
about to crash. M’ remembers the first symbol ¢’ of 3 in its finite control to keep
this last pull valid just in case |y1] = a+1. Then M’ puts ¢’ into cell a, pokes a $ to
the left of cell |a/2], and executes a “delay-1 copy” of the holding track up to the $
into the main track leftward from cell a. If a B or @ is found on the holding track
before the $, meaning that |y;| < |a/2], the copy stops there and the simulated Bal
move is finished. If not, i.e., if |y;| > |a/2], then the delay allows the character ¢
in cell |a/2]—1 of the holding track to be suppressed when the § is hit, so that the
copy is valid. Since |y;| > |a/2], M’ can now afford to do the following: poke a $ to
the right of cell a, effect a := 2a, and do a leftward pull of cells [2a...a+1] of the
holding track into cells [0...a—1] of the main track, translating @ as well as B by
B to leave previous contents of the main track undisturbed. This stitches the rest
of y; beginning with ¢” correctly into place. M’ also cleans up cells [0...2a] of the
holding track by methods seen before, and removes the $ signs.

If S does not exit in [0...a—1], M’ executes a single Ra move starting S from
cell a, once again holding back the first character of this output g, just in case y;
was empty and |yz| = a+1. If this pull is invalid then likewise |y3| > a+1 and M
crashed anyway. M’ then concatenates y; to the string 3; kept on the holding track
to form y, and does the above with y. As in LaB, the overhead in both w and p-acc
is constant. This completes the proof. O

The converse simulation of a BM by a BM with buffer is clear and has constant-
factor overheads in all measures, by remarks following Definition 3.1. It is interesting
to ask whether the above can be extended to a linear simulation of a concatenable
buffer (cf. [46]), but this appears to run into problems related to the nonlinear
lower bounds for the Touch Problem in [2]. The proof gives w'(n) = O(w(n) + n)
and R'(n) = O(R(n)logs(n)). For p-acc’, the charges in the rightward moves are
bounded by a constant times Ziozgob u(b/27). For p = pg this sum is bounded by
2dpq(b), and this gives a constant-factor overhead on pg-acc. However, for p = piog

there is an extra factor of logb.

COROLLARY 4.2. A BM that violates the validity conditions on passes can be
stmulated linearly by a BM that observes the restrictions. O

We digress briefly to show that allowing simultaneous read and overwrite on the
main tape does not alter the power of the model, and that the convention on B gives
no power other than shuffle. A two-input Mealy Machine (2MM) is essentially the
same as a 2-input GST with p: (Q \ F) x I'? — T'*.
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ProrosiTiON 4.3. Let M be a BM with the following extension to the buffer
mechanism: in a put step, M may invoke any 2MM S that takes one input from the
buffer and the other from the main tape, writes to the main tape, and halts when
the buffer is exhausted. Then M can be simulated by a BM M’ with buffer at a
constant-factor overhead in all measures, for all u.

Proof. To simulate the put by a 2MM S, M’ copies the buffer to a separate track
50 as to interleave characters with the segment of the main tape of M concerned. Then
M’ invokes a GST S’ that takes input symbols in twos and simulates 5. Finally M’
copies the output of S" from its own buffer over the main tape segment of M. O

PropPOSITION 4.4. At a constant-factor overhead in all measures, for all u, a BM
M can be simulated by a BM M’ that lacks B but has the following implementation
of shuffle: M’ has the above buffer extension, but restricted to the fized 2MM which

interleaves the symbols of its two input strings.

Proof. Let 1" consist of I' together with all ordered pairs of characters from T’
then the fixed 2MM can be regarded as mapping I x I'* onto I''*. Now consider
any GST S of M that can output blanks. Let S’ write a dummy character @ in
place of B, and let M’ shuffle the output of S’ with the content of the target block
of the main tape. Finally M’ executes a pass which, for all ¢1,¢5 € T with ¢; # @,
translates (¢1, @) to ¢ and (e1,¢2) to cp. O

Besides the tracking property, our further simulations require something which,
again for want of a standard mathematical name, we call the following;:

DEFINITION 4.1. A memory access cost function p has the tape compression property
if (Ve > 0)(36 > 0)(Va) pu([éa]) < ep(a).

LEMMA 4.5. For any d > 1, the memory cost function pg has the tape compres-
sion property. In consequence, 21»0:%’ ’ pa([6/2°]) = O(pa(b)).

Proof. Take 6 < ¢l If ¢ of the form 1/2* satisfies (a) for ¢ := 1/2, then by
elementary calculation, for all but finitely many b, Zi»ozgg ’ u([6/2°]) < 2ku(b). O

Lemma 4.5 promises a constant-factor overhead on the memory-access charges
for “staircases” under 14, whereas an extra log factor can arise under pog. The
simulation of random access by tree access in the next lemma is the lone obstacle
to extending the results that follow to punee. Since any function p(m) with the tape
compression property must be Q[m*] for some ¢ > 0, this pretty much narrows the
field to the functions pg. To picture the tree we write Up, DowN LEFT, and DowN
RIGHT in place of the moves |a/2], 2a, and 2a+1 by M’.

LEMMA 4.6. For every BM M with address mechanism, there is a basic BM M’
such that for all d > 1, M’ simulates M linearly under pug.

Proof. We need to show how M’ simulates a load step of M that loads an
address ay from cells [ag...bg] of the main tape. Let m := |ag — bo| + 1. M’ makes
one spare track for operations on addresses. M’ first pulls a; in binary to the left
end of this track. By Theorem 4.1 we may suppose that this pull is valid. The cost is
proportional to the charge of p(ag)+m+ pu(bg) to M for the load. By our convention
on addresses, the least significant bit of aq is leftmost. In this pull, M’ replaces the
most significant ‘1’ bit of @y by a ‘8" endmarker. M’ then moves Up until its cell-a
head reaches cell 1. With k& := [log, ag|, the total memory access charges so far
are proportional to S5 1(2%), which is bounded by a fixed constant times ju(ag) by
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Lemma 4.5. Since the number of bits in ay is bounded by C'm, where ' depends
only on M, the work done by M’ is bounded by 2C'm + k. Since k < p(ap), we can
ignore k. Hence the u-time charged so far to M’ is bounded by a fixed constant of
that charged to M for the load.

M’ now executes a rightward pull that copies all but the bit b before the $
endmarker, b being the second most significant bit of a;. This pull is not valid owing
to an overlap on the fresh track, but by Corollary 4.2 we may suppose that it is
valid. If b = 0 M’ moves DowN LEFT, while if b = 1, M’ moves DowN RiGHT. M’
then executes a put that copies the remainder of a; (plus the §) rightward from the
new location a. M’ iterates this process until all bits of a; are exhausted. At the
end, a = a;. Because of the tracking, M’ moves DOwN LEFT once more so that it
scans cell 2a, which is cell ¢ of the main track. This completes the simulated load.
Recalling |aq1| < C'm, and taking [ := [logy(ay)], the p-time for this second part is
bounded by a constant times

I
3) S22+ 2m = i) 4 2+ 2m = i),

By Lemma 4.5, the total memory access charges in this sum are bounded by a fixed
constant times pu(aq). The work to simulate the load is proportional to m - [, that is,
to (logay)?, which causes an extra log factor over the work by M in the load. The
key point, however, is that since M loaded the address aq, M will be charged pq(ay)
on the next pass, which is asymptotically greater than (loga;)?. Hence the pg-time
of M’ stays proportional to the ug4-time of M. O

COROLLARY 4.7. For every BM M with both the address and buffer mechanism,
we can find a basic BM M', and a BM M" with the limited buffer mechanism, such
that for any d > 1, M’ and M" simulate M linearly under p .

Proof. The constructions of Lemma 4.6 and Theorem 4.1 yield M’. For M", we
may first suppose that M is modified so that whenever M loads an address a, it first
stores a spare copy of a at the left end of a special track. Now consider a pass of type
B0 or 0B made by M. M" invokes a GST that remembers cell 0 and writes 1 to the
address tape. Then with ¢’ = 1, M" simulates the pass by a Ba’R or Ra’B move. M"
then recovers the original address a by loading it from the track. Thus far M" is a
BM with address and buffer that doesn’t use its cell 0 head. The method of Lemma
4.6 then removes the address mechanism in a way unaffected by the presence of the
buffer. O

We remark that Lemma 4.6 and Theorem 4.1 apply to different kinds of pass
by M, with two exceptions: First, pulling 1 to the left end of the track in the proof
of Lemma 4.6 may require simulating a buffer. However, this can be accounted
against the cost to M for the load. Second, the buffer is needed for overlaps in
the further processing of a;. However, this is needed for at most O(loglog(ay))-
many passes, each of which involves O(logay) work, and these costs are dominated
by the time to process a; itself. Hence in Corollary 4.7 the bounds from Lemma
4.6 and Theorem 4.1 are additive rather than compounded, and with p = ug we
obtain for M’, pg-acc’(n) = O(pg-ace(n)), phog-acc’(n) = O(pog-acc(n)logs(n)),
w'(n) = O(w(n)+ n + R(n)logs(n)), and R'(n) = O(R(n)logs(n)).

LEMMA 4.8. For every RAM-BM M, we can find a BM M’ with the address
and buffer mechanisms, such that for any memory cost function p that is Q(logn),
M’ simulates M linearly under pu.
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Proof. Tirst, M' makes separate tracks for the address tapes and worktapes of
M, and also for storing the locations of the heads on these tapes of M. Whenever
M begins a block move S [ay...b1] into [ag...bs], M’ first computes the signs of
by — aq and by — ay, and remembers them in its finite control. A’ then loads the
true address of cell ¢; on the main tape, and pulls the data through a copy of 5
labeled RaB or LaB—depending on sign—to the buffer. Then M’ loads 0 to access
as, loads ag itself, and finally copies the buffer right or left from cell ay. Since p is
Q(logn), the p-time charged to M’ is bounded by a fixed constant times the charge
of 1+ |by — a1| + max{ p(ay), p(az), u(b1), p(bz) } incurred by M. Similarly the p-acc
charge to M’ has the same order as that to M, though if |by — a1| < log(by), this may
not be true of the work.

If M executes a standard RAM-TM transition, the cost to M is 14 p(ay) 4 p(c),
where ay is the cell addressed on the main tape and ¢ is the greatest extent of an
address tape or worktape head of M. M’ first loads a; and writes the symbol written
by M into location ay with a unit put. Then M’ loads each of the addresses for the
other tapes of M in turn, updates each one with a unit pull and a unit put, remembers
the head movement on that tape, and increments or decrements the corresponding
address accordingly. The time charge for updating the other tapes stays within a
fixed constant factor of p(c). D

Remark: It would be nice to have the last simulation work when the charge to
M for a RAM-TM transition is just 1 + p(aq). The difficulty is that even though
|a1| < ay, it need not hold that ¢ < aq, since M might be using a lot of space on its
worktapes. The issue appears to come down to whether a multitape TM running in
time ¢ can be simulated by a BM in p-time O(t). We discuss related open problems
in Section 8.

LeMMA 4.9. A finger BM can be simulated by a BM with address and buffer
mechanisms, with the same bounds as in Lemma 4.8.

Proof. M’ stores and updates the finitely-many markers on separate tracks in
a similar manner to the last proof. The extra work per block move simulated to
write or load these addresses is O(logs(n)) as before. Both here and in Lemma 4.8,

R'(n) = O(R(n)). D

THEOREM 4.10. Let M be a RAM-BM, a finger BM, or a BM with the address
and/or buffer mechanisms. Then we can find a BM M’ that simulates M linearly
under any pq.

Proof. This follows by concatenating the constructions of the last two lemmas
with that of Corollary 4.7. Since R'(n) = O(R(n)) in the former, the bounds on
work and pass count remain w'(n) = O(w(n) + n + R(n)logs(n)) and R'(n) =
O(R(n)logs(n)). D

This completes the simulation of most of the richer forms of the model by the
basic BM, with a constant factor overhead in pg4-time. By similar means, one can
reduce the number of markers in a finger BM all the way to four. In going up to
the richer forms, we encounter the problem that the finger BM and RAM-BM have
pre-set block boundaries for input, and if the strict boundary condition is enforced,
also for output.
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4.2. Simulations for pre-set block boundaries. The simulation in Theorem
4.1 does not make M’ self-delimiting because it does not predetermine the cell b €
[ag...a1] in which its own simulating GST 5’ will exit. We could try forcing 5’ to
read all of [ag...a1], but part (a) of the proof of Theorem 4.1 had a; := 2ag, and if
e.g. p(ag) = /ap and b — a is small, M’ would do much more work than it should.
However, if one chooses the initial increment e to be too small in trying ay := ag + €,
as 1= ag + 2e, a3 := ag + 4de. .., the sum of the p-access charges may outstrip the
work. To balance the charges we take e := u(ag). This requires M’ to calculate p(a)
dynamically during its computation, and involves a concept of “time-constructible
function” similar to that defined for Turing machines in [36].

DEFINITION 4.2. Let g be a memory cost function, and let ¢ : N — N be any
function. Then ¢ is p-time constructible if {(n) is computable in binary notation by
a BM M in p-time O(¢(n)).

Note that the time is in terms of n, not the length of n. We use this definition for
t = p itself, in saying that g is u-time constructible. The following takes d to be
rational because there are real numbers d > 1 such that no computable function
whatever gives [m!/4] to within a factor of 2 for all m. In this section it would suffice
to estimate [m'/?] by some binary number of bit-length |m|/d, but we need the proof
idea of incrementing fingers and the exact calculation of pg(m) for later reference.

LeMMA 4.11. For any rational d > 1, the memory cost function pg is pgq-time
constructible by a finger BM that observes the strict boundary condition.

Proof. For any rational d > 1, the function [ml/d} is computable in polynomial
time, hence in time (log m)o(l) by a single-tape TM T'. The finger BM M simulates
the tape of T beginning in cell 2, and tracks the head of T with its “main marker”
my. M also uses a character @ which is combined into others like so: if T scans some
character ¢ in cell a, M scans (¢,@). M then uses two unit block moves Sfa...q]
into [0...0] and S[0...0] into [a...a] to read and write what 7" does. It remains to
simulate the head moves by T'.

To picture a tree we again say UpP, DowN LEFT, and DOWN RIGHT in place of
moves from a to |a/2], 2a, or 2a+1. M can test whether a is a left or right child by
moving Up and DOWN LEFT and seeing whether the character scanned contains the
@. If T moves right and a is a left child, M then intersperses moves Up and DOWN
RiGHT with unit block moves to and from cell 0 to change (¢, @) back to ¢ and place
@ into cell a+1. If instead «a is a right child, M introduces a new marker mj5 into cell
1, and writes A there. M moves ms DOwWN LEFT to count how far Up m4 has to go
until it reaches either a left child or the root (i.e., cell 1). By unit block moves, M
carries @ along with mq, and by assigning a finger to marker mg, can test whether
mg is on cell 1. If my reaches a left child, M moves it Up, DoOwN RIGHT, and then
DownN LEFT until ms comes back to the A. Then mq is in cell a+1. If mq hits the
root marked by A, then a had the form 2F — 1, and so M moves m; DowN LEFT k
times. The procedure for decrementing my when T moves left is similar, with RIGHT
and LEFT reversed.

For each step by T, the work by M is proportional to loga. By Lemma 4.5 for
ltd, the total memory-access charge for incrementing or decrementing a finger in cell
a is O(pq(a)). Since a < (logm)®(M) the total ug-time for the simulation is still a
polynomial in logm, and hence is o(pq(m)). D

This procedure can also be carried out on one of 2%-many tracks in a larger
machine, computing @+ 2% instead of a + 1 to follow head moves by T.. The counting
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idea of the next lemma resembles the linear-size circuits constructed for 0-1 sorting
in [55].

LEmMA 4.12. The function #a(x), which gives the number of occurrences of ‘a’
in a string x € {a,b}*, is computable in linear py-time by a BM that observes the
strict boundary condition.

Proof. The BM M operates two GSTs 57 and 55 that read bits of z in pairs.
Each records the parity p of the number of pairs ‘ab’ or ‘ba’ it has seen thus far, and
if |z| is odd, each behaves as though the input were b. 57 outputs the final value of
p to a second track. S, makes the following translations

aa — a bb +— b ab,ba +— {2

to form a string 2’ such that || = [|z|/2]. Then #a(x) = 2#a(2’) + p. This is
iterated until no a’s are left in x, at which point the bits p combine to form #a(x) in
binary notation with the least significant bit first.

M begins with one marker mq in cell n—1. We first note that even setting up the
two tracks requires a trick to get two more markers to cell n—1. M starts a marker
ms in cell 1 and moves it DowN LEFT or DOwN RIGHT according to whether my is
on a left or right child. When mq reaches cell 1, ms records n—1 in reverse binary
notation. Then M starts moving ms back up while ferrying ms, ms along with m;.
Then M places mq and ms into cells 2n and 4n—1, and with reference to Example 2.1,
executes (¢ — c@)[0...n—1] into [2n ...4n—1] and copy[2n ...4n—1] into [0...2n—1].
This also uses one increment and decrement of a marker as in the proof of Lemma
4.11.

M uses a new marker mg to locate where the next bit p will go, incrementing
mg after running S7. In running So, always [Sq(2)| = [|2'|/2], and by appropriate
parity tests using its markers my, mq, and ms, M can place its fingers so that all
these moves are valid and meet the strict boundary condition. For the kth iteration
by S, these three markers are all on cells with addresses lower than n/2%72, and
even if each needs to be incremented by 1 with the help of ms, the puy charges for
simulating the iteration still total less than a fixed constant times n/2%~2. This also
subsumes the O(log? n) charge for updating mg. Hence the sum over all iterations is

still O(n). O

THEOREM 4.13. For every BM M and rational d > 1, we can find a finger BM
M’ that simulates M linearly under pug and observes the strict boundary condition.

Proof. Asin the proof of Theorem 4.1, let ' be the maximum number of charac-
ters output in any GST transition of M, and let K := log,(2C' 4 6). M’ first makes
N := 2K tracks, by using the last proof’s modification of the procedure of Example
2.1. Besides 2C'-many tracks for handling the output of passes and one track for the
main tape of M, M’ uses one track to record the current address a of M with the
least significant bit rightmost, one to compute and store e := py(a) via Lemma 4.11,
one to store addresses a; below, two for Lemma 4.12, and one for other arithmetic on
addresses. M’ uses eight markers. Marker my occupies cell Na to record the current
address a of M. A move to |a/2| by M is handled by moving my Up K41 times and
Down LErT K times, and other moves are handled similarly. Meanwhile, marker mg
stays on the last bit of the stored address a, and updating a requires only one marker
increment or decrement and O(loglog a) work overall. From here on we suppress the
distinction between a and Na and other details that are the same as in Theorem 4.1.
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First consider a rightward pull by M that starts a GST § from cell ag on its
main tape. M’ has already stored ag in binary, and computes e := pg(ag). Since
palag) < ag, e fits to the left of marker mg in cell |a|. M’ then places mg into cell
la|+1 and my4 into cell 2|a|+ 1, and executes two block moves from [|a|...0] and
[0...]a|]] into [|a|+1...2]a|+1] that shuffle ¢y and e on their respective tracks with
the least significant bits aligned and leftmost. M’ then executes add [|a|+1...2|a|+1]
into [|a|...0] to produce ay. A final carry that would make |ay| > |ag| and cause a
crash can be caught and remembered in the finite control of M’ by running a “dummy
addition” first, and then marking cell 2|a|+1 to suppress its output by the GST add.
Then M’ “walks” marker mo out to cell a; by using ms to read the value of a; and
ms to increment ms.

Next M’ walks my4 out to cell e (i.e., Ne), and keeps mg in cell 0. Let S be
a copy of S which pads the output of each transition out to length exactly €', and
which sends its output z to the C-many tracks used as “pull bays.” S’ is also coded
so that if § exits, S’ records that fact and writes @ in each transition thereafter.
Then M’ can execute S'la; ...az] into [0...e] in compliance with the strict boundary
condition. Now M’ can calculate the number ¢ of non-@ symbols in z by the method
of Lemma 4.12. To write the true output y; = S[ag...a;] and ensure the block move
is valid, M’ must still use the pull bays to hold y;, so M’ calculates i’ := [¢/C]
(actually, i = N[i/C). Next M walks my4 out to cell 7/, and can finally simulate the
first segment of the pass by S by executing S[ay .. .az] into [0...7].

If S exited in [ag...a1], M’ need only transfer the output y; of the last pass onto
the left end of the main track. This can be done in two block moves after locating
markers into cells +/, C'i’, and 2C7'. Else, M’ transfers 3, instead to the put bays and
assigns a new marker my; to the “stitch point” in the put bays for the next segment
of y. The final marker mg goes to cell a; and is used for the left-end of the read
block in all succeeding segments. In three block moves, M’ can both double e to
2e and compute ay := ag + 2e using add as before. If and when the current value
of e has length greater than |ag|, M’ reassigns marker mg to the end of e rather
than ag, incrementing it each time e is doubled. Then M’ walks mq out to cell ag
and, remembering the state ¢ of S where the previous segment left off, produces
Y2 1= Syla1+1...az] by the same counting method as before. To stitch y, into place
on the put bays, M’ converts the current location of m7 into a numeric value k, adds
it to i := |y2], and finds cells ¢ + k and 2i + k for two block copies. In case S did not
exit in [ay ...as], mr is moved to cell i 4+ k, mg to ag, mg to as := ap + 4e, and the
process is repeated.

Let b be the actual cell in which ' exits, and let j > 0 be such that a; < b < a;4;.
Then the py-time charged to M for the pull is at least

() tj = palao) + palao +2'~e) + 277 e > 2 + 277 e,

(For j = 0, read “27~'” as zero.) By Lemma 4.5, the memory access charge for
walking a marker out to cell a; is bounded by a constant (depending only on d) times
pa(a;). The charges for the marker arithmetic come to a polynomial in loga;, and
the charges for stitching segments y; into place stay bounded by the work performed
by M’. Hence the pg4-time charged to M’ is bounded by a constant times

J j—1
(5) wj = pg(ag) + Z,Md(ao +2'e)+ e+ Z 2'e.
=0 =0

Then u; < e+ ZLO ,ud(QH'lao) + 276 < 2012 4 2ie < 10¢;.
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For a leftward pull step by M, M’ uses the same choice of e := pg(ag). If
e > ag/2, then M’ just splits [0...ag] into halves as in the (LaB) part of the proof of
Theorem 4.1. Else, M’ proceeds as before with a;11 := ag — 27¢, and checks at each
stage whether a;41 > ag/2 so that the next simulated pull will be valid. If not, then
the amount of work done by M thus far, namely 2/"'e, is at least ag/4. Thus M’
can copy all of [a;...0] to another part of the tape and finish it off while remaining
within a constant factor of the charge to M. The remaining bounds are much the
same as those for a rightward pull above.

For a rightward or leftward put, marker mq is kept at the current address a, cell
0 is remembered in the finite control, and the procedure for a rightward pull is begun
with ag = 1 and mg assigned there. Here e = 1, and the rest is a combination of the
(BaR) or (Bal) parts of the proof of Theorem 4.1 to ensure validity, and the above
ways to meet the strict boundary condition in all block moves. O

Remarks: This simulation can be made uniform by providing d as a separate
input. It can also be done using 8 tracks rather than 2C + 6, though even taking
e := pq(ag)/C does not guarantee that the third stage of a rightward pull, which
reads [ag + 2¢, ap + 4e], will be valid. The fix is first to write the strings y; further
rightward on the tape, then assemble them at the left end. Theorem 4.13 preserves
w(n)+pq-acc(n) up to constant factors, but doesn’t do so for either w(n) or pg-ace(n)
separately. When d < 1, the case b = a gives a worst-case extra work of ¢/, while
the case of b = 2a gives a total memory access charge of roughly 2(loga)(d — 1)/d
times jig(a). This translates into w'(n) = O(w(n)+n+ R(n)s(n)"/?) and pg-acc'(n) =
O(pg-acc(n)log s(n)). However, when d = 1, both w and fi1-acc are preserved up to
a factor of 10N. Allowing that p4(ag) can be estimated to within a constant factor in
O(log ag) block moves, the pass count still carries R'(n) = O(R(n)log® s(n)) because
each movement in walking a marker to a; adds 1 to R’. The following shows some
technical improvements of having addressing instead of tree access.

THEOREM 4.14. Lel p = pnog or . = pq with d rational. Then every BM M can
be simulated linearly under p by a RAM-BM M’ with address loading that observes
the strict boundary condition.

Proof. For pg the simulation of the finger BM M’ from the last proof by a
RAM-BM is clear—the RAM-BM can even use RAM-TM steps for the address arith-
metic. For pueg, the point is that M’ can take e := |ag|, and we may presume e is
already stored. The calculated quantities a; can be loaded in one block move. (Us-
ing RAM-TM steps to write them would incur p,g access charges proportional to
log ag loglog ag.) The tradeoff argument of the proof of Theorem 4.13 works even for
Mg, and the above takes care of a constant-factor bound on the other steps in the

simulation. This also gives R'(n) = O(R(n)logs(n)). O

The tradeoff method of Theorem 4.13 seems also to be needed for the following
“tape-reduction theorem.”

THEOREM 4.15. For every rational d > 1, a multitape BM M can be simulated
linearly in pg-time by a one-tape BM M.

Proof. Suppose that M uses k tapes, each with its own buffer, and GSTs § that
produce k output strings as well as read k inputs. We first modify M to a machine M’
that has k£ main tracks, k& address tracks, one “input track,” and one “buffer track.”
For any pass by M with S, M’ will interleave the k inputs on the input track, do one
separate pull for each of the k outputs of 5, and interleave the outputs on its buffer
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track. When M subsequently invokes a k-input GST T to empty its buffers, M’ uses
a 1-tape GST that simulates T" on the buffer track, invoking it £ times to write each
of the k outputs of T" to their destinations on the main tracks.

It remains only to show how M’ marks the portions of the inputs to interleave.
As in the proof of Theorem 4.13, there is the difficulty of not knowing in advance
how long S will run on its k inputs. The solution is the same. M’ first calculates
the maximum a; of the addresses ay, ..., a; on its address tracks, and then calculates
e := pig(a;). For each 7,1 < ¢ <k, M’ drops an endmarker into cell a; £ e according
to the direction on main track 7. Then M’ copies only the marked-off portions of the
tracks, putting those on its input track, and simulates the one-tape version 57 of 5.
If 57 exits within that portion, then M’ continues as M’ does. If S; does not exit
within that portion, M’ tries again with a; & 2e, a; £ 4e, ... until it does. The same
calculation as in Theorem 4.13, plus the observation that if the direction on track j
is leftward then no track uses an address greater than 2a;, completes the proof. [

Finally we may restate the Main Robustness Theorem 3.1 in a somewhat stronger
form:

THEOREM 4.16. For any rational d > 1, all of the models defined in Section 3
are equivalent, linearly in pq-time, to a BM in reduced form that is self-delimiting
with ‘% as its only endmarker.

Proof. This is accomplished by Theorems 2.1 through 4.15. The procedures
of Lemmas 4.13 and 4.6 and Theorem 4.1 are self-delimiting, and need only one
endmarker §. The trick of writing $ on special tracks into the cell immediately left
or right of the addressed cell a allows $§ to survive the proof of Theorem 2.1 without
being “tupled” into the characters cg, ¢1, or ¢,. 0O

With all this said and verified, we feel justified in claiming that there is one
salient Block Machine model, and that the formulations given here are natural. The
basic BM is the tightest for investigating the structure of computations, and helps
the lower bound technique we suggest in Section 8. The richer forms make it easier
to show that certain functions do belong to Dy TIME[t(n)].

5. Linear Speed-Up and Efficiency. The following “linear speed-up” theo-
rem shrinks the constantsin all the above simulations, at the usual penalty in alphabet
size. First we give a precise definition:

DEFINITION 5.1. The linear speed-up property for a model of computation and mea-
sure of time complexity states that for every machine M with running time ¢(n), and
every € > 0, there is a machine M’ that simulates M and runs in time ¢-#(n)+ O(n).

In the corresponding definition for Turing machines in [36], the additive O(n) term
is n+1 and is used to read the input. For the DTM, time O(n) properly contains
time n+1, while for the NTM these are equal [13]. For the BM under cost function
i, the O(n) term is n + p(n).

THEOREM 5.1. With respect to any unbounded memory cost function p that has
the tape compression property, all of the BM variants described in Sections 2 and 3
have the linear speed-up property.

Proof. Let the BM M and ¢ > 0 be given. The BM M’ uses two tracks to
simulate the main tape of M. Let ¢ in the tape compression property be such that
for almost all n, p(én) < (¢/12C) - u(n). Here C'is a constant that depends only on
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M. Let k := [1/28], let ‘@’ stand for the blank in T', and let T := T*U{ B}. M’ uses
B only to handle its own two tracks. We describe M’ as though it has a buffer; the
constant C' absorbs the overhead for simulating one if M’ lacks the buffer mechanism.
On any input « of length n, M’ first spends O(n) time units on a pull step that writes
z into [n/k]-many characters over the compressed alphabet I” on the main track.
Thereafter, M’ simulates M with compressed tapes. In any pass by M that writes
output to the main tape, M’ writes the compressed output to the alternate track.
M’ then uses the pattern of @ symbols in each compressed output character to mask
the elements of each main track character that should not be overwritten, sending
the combined output to the buffer. One more pass writes the result back to the main
tape. If the cost to M for the pass was u(a)+ |b— a| 4 p(b), the cost to M’, allowing
for the tracking, is no more than

3[p(2[a/k]) + (2/d)[b — a + 2+ p(2[b/F])]
< (¢/2)pla) + (¢/2)[b— a| +6 + (¢/2)u(b).

The ‘+2’ and ‘46’ allow for an extra cell at either end of the compressed block. Since
p is unbounded, we have p(a) - (¢/2) + 6 < ¢ - p(a) for all but finitely many a. The
main technical difficulty of the standard proof for TMs is averted because p absorbs
any time that M might spend moving back and forth across block boundaries. The
compression by a factor of ¢ holds everywhere except for cells 1,...,m on the main
tape, where m is least such that u(m) > 12/¢, but M’ can keep the content of these
cells in its finite control. The remaining details are left to the reader. For BMs with
address tapes, we may suppose that the addresses are written in a machine-dependent
radix rather than in binary. O

COROLLARY 5.2. For all of the simulations in Theorems 2.1-4.15, and all ¢ > 0:

(a) If M runs in pg-time t(n) = w(n), then M’ can be constructed to run in
pa-time et(n) for all but finitely many n.

(b) If M runs in pg-time O(n), then M’ can be made to run in pig-time (1+ €)n.
O

Mostly because of Lemma 4.6 and Theorem 4.13, the above simulations do not guar-
antee constant factor overheads in either w or p-acc. They do, however, preserve
p-efficiency.

ProPosITION 5.3. For all of the simulations of a machine M by a machine M’
in Theorems 2.1-4.15, and memory cost functions p they hold for, if M is u-efficient
then M' is also p-efficient.

Proof. Let K be the constant from the simulation of M by M’, and let K5 come
from Definition 2.9(a) for M. Then for all but finitely many inputs z, we have

p-time(M',z) < Ki(p-time(M, ) + |z|) < K1(Ko(w(M,z) + |z|) < 2K Kow(M', z).
The last inequality follows because every simulation has w(M’,z) > w(M,z) and
w(M',z) > |z|. Hence M’ is p-efficient. O

So long as we adopt the convention that every function takes work at least n+1 to
compute, we can state:

COROLLARY 5.4. For any memory cost function pg, with d > 1 and rational, the
notion of a language or function being memory efficient under pg does not depend on
the choice among the above variants of the BM model. O
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We do not have analogous results for parsimony. However, the above allows us
to conclude that for d = 1,2,3,..., memory-efficiency under pg is a fundamental
property of languages or functions. Likewise we have a robust notion of the class
DpgTIME[t(n)] of functions computable in pg-time ¢(n), for any time bound #(n) > n.
The next section shows that for any fixed d, the classes DyuyTIME[¢(n)] form a tight
hierarchy as the time function ¢ varies.

6. Word Problems and Universal Simulation. We use a simple repre-
sentation of a list & := (21,22,...,2,) of nonempty strings in X* by the string
x1# .. Ha,#, where # ¢ 3. More precisely, we make the last symbol ¢ of each ele-
ment a pair (¢, #) so as to separate elements without adding space, and also use pair
characters (¢, @) or (¢, %) to mark selected elements. The size of the list is m, while
the bit-length of the list is n := 3" |a;|. We let r stand for max{ |z;|: 1 <¢<m}.
Following [16] we call the list normal if the strings x; all have length r. We number
lists beginning with x; to emphasize that the z; are not characters.

LEMMA 6.1.

(a) The function mark(Z,y), which marks all occurrences of the string y in the
normal list ¥, belongs to TLIN.

(b) The function shuffle(Z,y), which is defined for normal lists ¥ :=

(21, oy@m) and § = (Y1,...,Ym) of the same length and element size r
to be (x1,Y1,%2,Y2,+ - T, Ym), belongs to TLIN. Here r as well as m may
vary.

Remark: Even if the lists £ and ¢ are not normal, mark and shuffle can be computed
in linear yy-time so long as they are balanced in the sense that (3k)(Vi)2F 1 < |2 <
2% This is because a balanced list can be padded out to a normal list in linear
p1-time (we do not give the details here), and then the padding can be removed. To
normalize an unbalanced list may expand the bit-length quadratically, and we do not
know how to compute shuffle in linear pq-time for general lists.

Proof. (a) Let r be the element size of the normal list @. If |y| # r, then there is
nothing to do. Else, the BM M uses the idea of “recursive doubling” (cf. the section
on vector machines in [6]) to produce y*, where k = [logam]. This time is linear as a
function of n = rm. Then M interleaves # and y* on a separate track, and a single
pass that checks for matches between # signs marks all the occurrences of y in & (if
any).

(b) Suppose m is even. M first uses two passes to divide & into the “odd list”
21Q"23@" .. 2, 1@ and the “even list” Q"z,@"2,Q" ... @"x,,. Single passes then
convert these to 1@ 5@ .. ., 1@ and @¥"2,@% 2,@3 ... @%¢,,. A pull step
that writes the second over the first but translates @ to B then produces 7' :=
21@"2,@" x3@" ... @ x,,. If m is odd then the “odd list” is x;@"z3@" ...Q@"x,, and
the “even list” is @ 2,@"2,@" ... @ x,,_1@", but the final result ' is the same. By
a similar process M converts § to ¢’ := Q"y;@Q"y,...Q"y,, @". Writing ¢’ on top of
Z'" and translating @ to B then yields shuffle(Z, 7). This requires only a constant
number of passes. O

A monoid is a set H together with a binary operation o defined on H, such that
o is associative and H has an element that is both a right and a left identity for o.
We fix attention on the following representation of the monoid of transformations
Mg of a finite-state machine 5. Mg acts on the state set () of 5 and is generated
by the functions {g. : ¢ € ¥} defined by g.(q) = 6(q,c) for all ¢ € @, by letting
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o be composition of maps on ¢, and closing out the g. under o. Here we ignore
the output function p of 5, intending to use it once the trajectory of states .S enters
on an argument z is computed. We also remark that Mg need not contain the
identity mapping on ¢, though it does no harm for us to adjoin it. By using known
decomposition theorems for finite transducers [47, 32, 48], we could restrict attention
to the cases where each g. either is the identity on ) or identifies two states (a “reset
machine”) or each g. is a permutation of ¢ and Mg is a group (a “permutation
machine”; cf. [17]). These points do not matter here. We encode each state in )
as a binary string of some fixed length k, and encode each element ¢g of Mg by
the list ¢#g(q)# ... over all ¢ € Q. Without loss of generality we extend @ to
Q' :=1{0,...,2"~1} and make g the identity on elements ¢ > n.

The word problem for monoids is: given a list § := g,¢,-1 - - - g291 of elements of
the monoid, not necessarily distinct, compute the representation of ¢,0¢,_10...0¢90
g1. Let us call the following the trajectory problem: given § and some w € { 0,1},
compute the n-tuple (g1(w), g2(g1(w)), ..., (w)). The basic idea of the following is
that “parallel prefix sum” is pq-efficient on a BM.

LEMMA 6.2. There is a fited BM M that, for any size parameter k, solves the
word and trajectory problems for monoids acting on {0,1}* in py-time O(n - k2%).
In particular, these problems for any fized finite monoid belong to TLIN.

Proof. Let T be a TM which, for any k, composes two mappings hy,ho :
{0,1}* — {0,1}" using the above representation. For ease of visualization, we
make T a single-tape TM which on any input of the form ho#hi# uses only the
2k - 2% cells occupied by the input as workspace, and which outputs hy o hy# shuf-
fled with ‘@’ symbols so that the output has the same length as the input. We also
program 7' so that on input h#, T leaves h unchanged. The running time #(k) of 7'
depends only on k and is O(k2¥)%. As in Example 2.4, we can create a GST S whose
input alphabet is the ID alphabet of T, such that for any nonhalting ID [ of T', S([)
is the unique ID J such that I 7 J.

The BM M operates as follows on input § := g, #gu_1F - - Fga#g17F#. It first
saves ¢ in cells [(nk - 2% + 1)...(2nk - 2F)] of a separate storage track. We may
suppose that n is even; if n is odd, ¢, is left untouched by the current phase of
the recursion. M first sets up the initial ID of T on successive pairs of maps, viz.
ANGGnFFGn-1F N QoGn_2FGn_3F - - Aqog2Fg17#. Then M invokes 5 in repeated left-
to-right pulls, until all simulated computations by T have halted. Then M erases all
the @s, leaving (g, 0 gn—1)#(gn—20Ggn—3)# - - -(g2 0 g1)# on the tape. The number of
sweeps is just ¢(k), and hence the total p-time of this phase is < 2¢(k)-n = O(n).

M copies this output to cells [((n/2)k - 2* + 1)...(nk - 2%)] of the storage track,
and then repeats the process, until the last phase leaves h:= ¢, 0¢,_10...0¢20¢1
on the tape. Since the length of the input halves after each phase, the total pq-time
is still O(n). This finishes the word problem.

To solve the trajectory problem, M uses the stored intermediate results to re-
cover the path (w,g1(w), g2(g1(w)), ..., h(w)) =: (w, w1, ws,...,w,) of the given
w € {0,1}*. Arguing inductively from the base case (w,h(w)), we may suppose
that M has just finished computing the path (w,wsq, wy, ..., w,—z,w,). M shuffles
this with the string g1 #gs#gs# - . . #gn—1 and then simulates in the above manner a
TM 77 that given a g and a w computes g(w). All this takes p;-time O(n). O

The following presupposes that all BMs M are described in such a way that the
alphabet I'y; of M can be represented by a uniform code over { 0,1 }*. This code is
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extended to represent monoids M as described above.

THEOREM 6.3. There is a BM My and a computable function code such that for
any BM M and rational d > 1, there is a constant K such that for all inputs x to M,
My on input (code(M), code(x), d) simulates M (z) within pq-time K-pq-time( M, z).

Proof. My uses the alphabet T'yy := {0,1,@,$,(0,#),(1,#),(Q,#),A,B}. By
Theorem 2.1, we may suppose that M has a single GST S = (Q,'n, I'ar, 6, p, s0)-
Let k := [log, |T'az|], and let I be the least integer above log,|@| that is a multiple of
k. The code function on strings codes each ¢ € I'pr by a 0-1 string of length %, except
that the last bit of code(c) is combined with # and B is coded by @*~1(@, #).

The monoid M of transformations of .5 is encoded by a k-tuple of elements of the
form code(c)code(g.) over all ¢ € T'pr. Here code(g.) is as described before Lemma 6.2.
Dummy states are added to @ so that code(g.) has length exactly 2{-2%; then code(M)
has length exactly 2¥(k+2{2"). Let C' be the maximum number of symbols written in
any transition of M. The code of S includes a string code(p) that gives the output for
each transition in 8, padded out with @ symbols to length exactly C' (i.e., length C'k
under code). The rest of the code of M lists the mode-change information for each
terminal state of S. Finally, the input @ to M is represented by the string code(x) of
length ||2".

My has four tracks: one for the main tape of M, one for the code of M, one
for simulating passes by M, and one for scratchwork. My uses d to compute e :=
pa(a), and follows just the part of the proof of Theorem 4.13 that locates the cells
a; :=azx 2771e in order to drop $ characters there. This allows Mg to pull off from
its main track in cells [a...a;] the code of the first m := 2/~'e/4k characters of the
string = that M reads in the pass being simulated. (If this pass is a put rather than
a pull, then e = 1 and  is in cells [1...2/7'].) Then My changes code(2) to

2= (code(20)) - (code(z)) -+ (code(zm_1)),

where m := |2] and j := 2%(1 4 2(I/k)2!). This can be done in linear u;-time by
iterating the procedure for shuffle in Lemma 6.1(b). Now for each 7, 0 <¢ < m — 1,
the ith segment of 2’ has the same length as code(M). Next, M uses “recursive
doubling” to change code(M) to (code(M))™. This also takes only O(m) time.
Then the strings 2z’ and (code(M))™ are interlaced on the scratchwork track. A
single pass that matches the labels code(c) to segments of 2’ then pulls out the word
92 =9z "Gz """ Yzpp_q-

M evaluates this word by the procedure of Lemma 6.2, yielding the encoded
trajectory s’ := (sg,81,...,85) of S on input z. By a process similar to that of the
last paragraph, My then aligns s’ with (code(p))™ and interleaves them, so that a
single pass pulls out the output y of the trajectory. Then code(y) is written to the
main tape, erasing the symbols A used for padding and translating @ to B. The
terminal state s, of the trajectory is matched against the list that gives the mode
information for the next pass of M (Lemma 6.1a), and My changes its mode and/or
current address accordingly.

If the original pass by M cost p-time p(a)+ m 4 u(b), then the simulation takes
p-time p(4a) + O(m) + p(4b). The constant in the ‘O(m)’ depends only on M.
We have described My as though there were no validity restrictions on passes, but
Theorems 4.1 and 2.1 convert My to a basic BM while keeping the constant overhead
on pg-time. O
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Remarks: This result implies that there is a fixed, finite collection of GSTs that
form an efficient “universal chipset.” It might be interesting to explore this set in
greater detail. The constant on the ‘O(m)’ is on the order of 22(+K)(] 4+ k). We
inquire whether there are other representations of finite automata or their monoids
that yield notably more efficient off-line simulations than the standard one used here.
The universal simulation in Theorem 6.3 does not preserve w or py-acc individually
because it uses the method of Theorem 4.13 to compensate for its lack of “foreknowl-
edge” about where a given block move by M will exit. The simulation does preserve
memory-efficiency, on account of Proposition 5.3. If, however, we suppose that M is
already self-delimiting in a way made transparent by code, then we obtain constant
overheads in both w and p-ace, and the simulation itself becomes independent of p.

THEOREM 6.4. There is a BM My and a computable function code such that
for any memory cost function p and any self-delimiting BM M, there is a constant
K such that for all inputs @ to M, My on input @’ = (code(M), code(x)) simulates
M(z) with w(U,2") < Kw(M,z) and p-ace(U, 2") < Kp-ace(M, z).

Proof. The function code is changed so that it encodes the endmarkers of M by
strings that begin with ‘$’. Then My pulls off the portion # of its main track up to
$. The rest of the operation of My is the same, and the bounds now require only the
tracking property of u. (If the notion of “self-delimiting” is weakened as discussed
before Definition 3.3, then we can have My first test whether a GST 5 exits on the
second symbol of z.) [

To use these results for diagonalization, we need two preliminary lemmas. Recall
that a function ¢ is u-time constructible if t(n) is computable in binary notation in
p-time O(¢(n)). Since all of n must be read, ¢ must be Q(logn).

LEMMA 6.5. If a BM M is started on an input of length n, then any pass by
M either takes py-time O(n), or else no more than doubles the accumulated p-time
before the pass.

Proof. Any portion of the tape other than the input that is read in the pass must
have been previously written in some other pass or passes. (Technically, this uses our
stipulation that B is an endmarker for GSTs.) Thus the conclusion follows. O

LEMMA 6.6. For any memory cost function p that is p-time constructible, a
BM M can maintain a running total of its own p-time with only a constant-factor
slowdown.

Proof. To count the number m = |b — a| + 1 of transitions made by one of its
GST chips 5 in a given pass, a BM M can invoke a “dummy copy” of S that copies
the content z of the cells up to where § exits to a fresh track, and then count |z|
on that track by the O(m)-time procedure of Example 2.3. Then M invokes S itself
and continues operation as normal. Since p is Q(logn), the current address a can be
copied and updated on a separate track in p-time O(u(a)). Also in a single pass, M
can add @ and m in p-time O(u(a) + m), and thus obtain b itself. M then calculates
p(b) in p-time O(p(b)), and finally adds k := p(a) + m + p(b) to its running total ¢
of p-time. In case t is much longer than k, we want the work to be proportional to
|k|, not to |t|. Standard “carry-save” techniques, or alternatively an argument that
long carries cannot occur too often, suffice for this. O

THEOREM 6.7. Let d > 1 be rational, and let t1 and ty be functions such that ty
is pig-time constructible, and t1 is o(ty). Then DuTIME[t1] is properly contained in
DuTIME).
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Proof. The proof of Theorem 6.3 encoded BMs M over the alphabet I'yy, but
let code’ re-code M over (00 U 11)*. We build a BM Mp that accepts a language
D € DuTIME[tz] \ DuTIME[#] as follows. Mp has two extra tracks on which it logs
its own p-time, as in Lemma 6.6. On any input @, Mp first calculates n := |z|, and
then calculates t2(n) on its “clock track.” Next, Mp lets w be the maximal initial
segment of doubled bits of . Since the set { code(M) : M is a BM } is recursive, Mp
can decide whether w is the code’ of a BM M in some time U(n). The device of using
w ensures that there are oo-many inputs in which any given BM M is presented to
Mp. If wis not a valid code, Mp halts and rejects.

If so, Mp runs My on input code(M)-code(x), except that after every pass by
Myr, Mp calculates the p-time of the pass and subtracts it from the total on its clock
tape. If the total ever falls below t3(n)/2, Mp halts and rejects. Otherwise, if the
simulation of M (z) finishes before the clock “rings,” Mp rejects if M accepts, and
accepts if M rejects. By Lemma 6.5, the total pu-time of Mp never exceeds t3(n).

Now let L be accepted by a BM My, that runs in p-time #1(n). Let Ky be the
constant overhead for My; to simulate My, in Theorem 6.3, and let K5 be the overhead
in Lemma 6.6. Since #; is o(y), there exists an z such that ty(|z])/t1(|z]) > 4K K5,
the maximal initial segment w € (00U 11)* of x is code’(Mp,), and U(|w|) < |2|. Then
the simulation of My (z) by Mp finishes within p-time (1/2)t3(]z|), and Mp(z) #
Mp(z). D

It is natural to ask whether the classes Dyug TIME[¢(n)] also form a tight hierarchy
when t is held constant and d varies. The next section relates this to questions of
determinism versus nondeterminism.

We observe finally that the BM in its original, reduced, and buffer forms all give
the same definition of Dy, TIME[t(7)], and we have:

THEOREM 6.8. For any time functions t1,ty such that t1(n) > n, t1 = o(tz), and
la s fllog-time constructible, Dy, TIME[t] is properly contained in Dpnog TIME[,].

Proof. Here the strict boundary condition is not an issue, but the efficient univer-
sal simulation still requires delimiting the read block in advance. The idea is to locate
cells a1, as,as3...in the proof of Theorem 4.13 without addressing by the following
trick. As in Theorem 4.14, the current address ag is already stored and e = |ag|. In a
rightward pull, rather than add ag + e, M’ puts ag itself in binary rightward from cell
ap on a separate track, appending an endmarker $. By “recursively doubling” the
string ag, M’ can likewise delimit the cells as, as, ... Leftward pull steps are handled
similarly, and put steps do not need pog(ag) at all. This is all that is needed for the
efficient universal simulation. The remainder follows as above, since o is fi1og-time
constructible—in fact, piog(a) = |a| is computable in pq-time O(]al). D

A similar statement holds for the perhaps-larger po,-time classes for the BM variants
that do use addressing.

7. Complexity Theory and the BM Model. Our first result shows that the
construction in the Hennie-Stearns theorem [33], which states that any multitape
TM that runs in time #(n) can be simulated by a 2-tape TM in time t(n)logt(n),
is memory-efficient on the BM under p. It has been observed in general that this

construction is an efficient caching strategy. DTIME[t(n)] refers to TM time, and
DLIN stands for DTIME[O(n)].

THEOREM 7.1. For any time functiont, DTIME[t(n)] C Dy TIME[¢(n) logt(n)].
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Proof. With reference to the treatment in [36], let M; be a multitape TM with
alphabet I' that runs in time #(n), and let My be the two-tape TM in the proof.
The k-many tapes of My are simulated on 2k-many tracks of the first tape of M, so
that all tape heads of My are maintained on cell 0 of each track. M, uses its second
tape only to transport blocks of the form [27!...27 —1] from one part of the first
tape to another. The functions used in these moves are homomorphisms between the
alphabets I'?* and T* that pack and unpack characters in blocks. Thus a BM Mjs
simulating My can compute each move in a single GST pass. By the structure of the
blocks, any pass that incurs a memory-access charge of ,u1(2j) = 27 simulates at least
2/~ moves of My. Hence the work and the yy charges to M3 are both O(¢(n)logt(n)).
d

We do not know whether the random access capability of a BM can be exploited to
give an O(tlogt) simulation that holds the work to O(t), even for p = po,. Indeed,
O(tlogt) is the best bound we know for all memory cost functions p between fiog
and pq. One consequence of this proposition is that sets in DLIN can be padded out
to sets in TLIN.

COROLLARY T7.2.
(a) For every L € DLIN, the language { z#011°gl=l . o ¢ L} belongs to TLIN.
(b) TLIN contains P-complete languages, so TLIN C NC <= P =NC. O

Hence it is unlikely that all TLIN functions can be computed in polylog-many passes
like the examples in this paper. If a BM quickly compresses the amount of informa-
tion remaining to be processed into cells [0...y/n], it can then spend O(y/n) time
accessing these cells in any order desired and still run in linear pq-time.

THEOREM T7.3. Let M be a BM that runs in p-time t(n) and space s(n). Then
we can find a DTM T that simulates M in time O[t(n)s(n)/u(s(n))].

Proof. T has two tapes: one for the main tape of M, and one used as temporary
storage for the output in passes. (If M has the buffer mechanism, then the second tape
of T simulates the buffer.) Let s stand for s(n). Consider a move by M that changes
the current address a to |a/2]. T can find this cell in at most 3a/2 steps by keeping
count with its second tape. Since s/a > 1, the tracking property u(Na) < Npu(a)
with N := s/a gives a/u(a) < s/u(s). Hence the ratio of the time used by 7' to the
p-time charged to M stays O[s/u(s)]. The same holds for the moves a := 2a and
a:= 2a+1. T has every GST 5 of M in its finite control, and simulates a pull by
writing S[a...b] to its second tape, moving to cell 0, copying S[a...b] over the first
tape, and moving back to cell a. Both this and the analogous simulation of a put
by T take time O(a + b), and even the ratio of this to the memory access charges
p(a)+ p(b), not even counting the number of bits processed by M, keeps the running
total of the time logged by T below t(n)s/u(s). O

COROLLARY 7.4. For any time bound t(n) > n, Du; TIME[t(n)] C DTIME[¢(n)].
In particular, TLIN C DLIN. O
More generally, for any d > 1, Dug TIME[t(n)] € DTIME[t>~(/9(n)]. Allowing TMs
to have d-dimensional tapes brings this back to a linear-time simulation:

LEMMA 7.5. For any integer d > 1 and time bound t(n) > n, a BM M that runs
in pig-time t(n) can be simulated in time O(t(n)) by a d-dimensional TM T.

Proof. T has one d-dimensional tape on which it winds the main tape of M in a
spiral about the origin, and one linear tape on which it buffers outputs by the GST
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S of M. In any pass that incurs a ug charge of a*/, T can walk between cell a and
the origin within a'/? steps and complete the move. 0

Let us say that a language or function in DugTIME[O(n)] has dimension d. For a
problem above linear time, we could say that its dimensionality is the least d, if any,
for which the problem has relatively optimal BM programs that are ugq-efficient (see
Definition 2.10). The main robustness theorem is our justification for this concept of
dimensionality. Lemma 7.5 says that it is no less restrictive than the older concept
given by d-dimensional Turing machines. For d > 1 we suspect that it is notice-
ably more restrictive. The d-dimensional tape reduction theorem of Paul, Seiferas,
and Simon [58] gives #(n) roughly equal to ¢(n)'*'/¢ and when ported to a BM,
incurs memory access charges close to t(n)1+2/d. Intuitively, the problem is that a
d-dimensional TM can change the direction of motion of its tape head(s) at any step,
whereas this would be considered a break in pipelining for the simulating BM, and
thus subject to a memory-access charge.

We write RAM-TIME"8 for time on the log-cost RAM. A log-cost RAM can be
simulated with constant-factor overhead by a TM with one binary tree-structured
tape and one standard worktape [57], and the latter is simulated in real time by a

RAM-TM.

PrOPOSITION 7.6. For any time function t,
(a) RAM-TIME" ®[t(n)] C Do TIME[t(n)log t(n)].
(b) Dinog TIME[t(n)] € RAM-TIME"#[t(n)log t(n)].

Proof. Straightforward simulations give these bounds. (The extra logt(n) factor
in (b) dominates a factor of loglog n that was observed by [44] for the simulation of

a TM (or RAM-TM) by a log-cost RAM.) O

For quasilinear time, i.e. time glin = n(log n)o(l), the extra logn factors in
Theorem 7.1 and Proposition 7.6 do not matter. Following Schnorr [65], we write
DQL and NQL for the TM time classes DTIME[q¢lin] and NTIME[¢lin]. Gurevich and
Shelah proved that RAM—TIMEIOg[qlin] is the same as deterministic nearly linear time
on the RAM-TM and several other RAM-like models, and perhaps more surprisingly,
that the nondeterministic counterparts of these classes are all equal to NQL.

COROLLARY 7.7.
(a) Dui TIME[glin] = DQL.
(b) Dpnog TIME[glin] = RAM-TIMElOg[qlz'n] C NQL.O

Thus obtaining any separation by more than factors of logn of the classes
DuTIME[O(n)] as p varies from gy through pg to poe runs into the problem of
whether DQL # NQL, which seems as hard as showing P # NP. Whether they can

be separated by even one logn factor is discussed in the next section.

8. Open Problems and Further Research. The following languages have
been much studied in connection with linear-time algorithms and nonlinear lower
bounds. We suppose that the lists in Lg4,, and L;,; are all normal.

(a) Pattern matching: L,,; = {p#t: (Ju,v € {0,1}*)t = upv }.
Element (non)distinctness: Lgy, = {19 ... #2p 1 (30, )) i< j ANz =25 }.

(b)

(c) List intersection: L = {a1# ... #H2m, i#t .. Fym 1 (34, )z =y, }.

(d) Triangle: La = {A: A is the adjacency matrix of an undirected graph that
contains a triangle}.
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Lyt belongs to DLIN (see [25, 23]), and was recently shown not to be solvable by a
one-way non-sensing multihead DFA [42]. Lg4,, and L, can be solved in linear time
by a RAM or RAM-TM that treats list elements as cell addresses. La is not believed
to be solvable in linear time on a RAM at all. The best method known involves
computing A% + A, and squaring n X n integer matrices takes time approximately
N8 where N = n?, by the methods of [19]. (For directed triangles, cubing A is
the best way known.)

OPEN PrROBLEM 1. Do any of the above languages belong to TLINT' If not, prove
nonlinear lower bounds.

A BM can be made nondeterministic (NBM) by letting é(¢q, ¢) be multiply valued,
and more strongly, by using nondeterministic GSTs or GSM mappings in block moves.
Define NTLIN to be linear time for NBMs of the weaker kind. Then all four of the
above languages belong to NTLIN. Moreover, they require only O(logn) bits of
nondeterminism.

OpreEN ProBLEM 2. Is NTLIN # TLINI' For reasonable p and time bounds ¢, is
there a general separation of NuTIME[t(n)] from DuTIME[#(n)]I"

Grandjean [27, 28] shows that a few NP-complete languages are also hard for
NLIN under TM linear time reductions, and hence by the theorem of [56] lie outside
DLIN, not to mention TLIN. However, these languages seem not to belong to NTLIN,
nor even to linear time for NBMs of the stronger kind. The main robustness theorem
and subsequent simulations hold for the weaker kind of nondeterminism, but our
proofs do not work for the stronger because they re-run the GST 5 used in a pass.
We suspect that different proofs will give similar results. A separation of the two kinds
can be shown with regard to the pass count measure R(n), which serves as a measure
of parallel time (e.g. R(n) = polylog(n) and polynomial work w(n) by deterministic
BMs characterizes NC [62]). P. van Emde Boas [personal communication, 1994]
has observed that while deterministic BMs and NBMs of the weaker kind belong to
the second machine class of [68] with R(n) as time measure, NBMs of the stronger
kind have properties shown there to place models beyond the second machine class.
Related to Problem 2 is whether the classes Dy TIME[O(n)] differ as d varies. It is
also natural to study memory-efficient reductions among problems.

The following idea for obtaining such separations and proving nonlinear lower
bounds in p-time on a deterministic BM M suggests itself: Let I'ps, stand for the
set of access points used in the computation of the BM M on input z. In order
for M to run in linear p-time, I'ps, must thin out at the high end of memory. In
particular for g = pq, there are long segments between access points that can be
visited only a constant number of times. The technical difficulty is that block moves
can still transport information processed in low memory to these segments, and the
proof of Theorem 7.1 suggests that a lower bound of Q[nlogn| may be the best
achievable in this manner. In general, we advance the BM as a logical next step in
the longstanding program of proving nonlinear lower bounds for natural models of
computation. In particular, we ask whether the techniques used by Dietzfelbinger,
Maass, and Schnitger [20] to obtain lower bounds for Boolean matrix transpose and
several sorting-related functions on a certain restricted two-tape TM can be applied
to the differently-restricted kind of two-tape TM in Theorems 7.1 and 7.3. The latter
kind is equivalent to a TM with one worktape and one pushdown store with the
restriction that after any Pop, the entire store must be emptied before the next
Pusu.
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We have found two variants to the BM model that seem to depart from the cluster
of robustness results shown in this paper. They relate to generally-known issues of
delay in computations. The first definition is the special case for GSTs of Manacher’s
notion of a “fractional on-line RAM algorithm with steady-paced output” [53].

DErINITION 8.1. Let d > 0 and e > 1 be integers. A GST § runs in fized output
delay d/e if for every terminal trajectory (qo,Zo,¢1,--,%m—-1,¢m), and each i <
m — 2, |p(q;,z;)| = d if e divides i+1, = 0 otherwise. For the exiting transition,
|p(Gm—1,2m—1)| depends only on (m mod e). The quantity C' := d/e is called the
expansion factor of 5.

Note that the case d = 0 is allowed. Every GST function g can be written as e o f,
where f is fixed-delay and e is an erasing homomorphism: pad each output of the
GST for g to the same length with ‘@’ symbols, and let e erase them. A k-input
GST with stationary moves allowed may keep any of its input heads stationary in
a transition. Such a machine can be converted to an equivalent form coded like an
ordinary GST in which every state ¢ has alabel j € {1,...,k} such that ¢ reads and
advances only the head on tape j.

DEFINITION 8.2. (a) A BM runs in fized output delay if every GST chip in M
runs in fixed output delay.
(b) A pause buffer BM is a BM with buffer whose put steps may use 2-input
GSTs with variable input delay (cf. Proposition 4.3).

Put another way, the BM model presented in this paper requires fixed delay in reading
input but not in writing output, while (a) requires both and (b) requires neither. We
did not adopt (b) because we feel that stationary moves by a 2-GST in the course of a
pass require communication between the heads, insofar as further movements depend
on the current input symbols, and hence should incur memory-access charges. We
defend our choice against a similar criticism that would require (a) by contending that
in a single-tape GST pass, the motion of the read head is not affected by the write
head, and the motion of the write head depends only on local factors as bits come
in to it. Also, every BM has a limit C' on the number of output bits per input bit
read by a GST. The main robustness theorem, in particular the ability to forecast the
length of the output of a pass by fixed-delay means shown in Theorem 4.13, satisfy
our doubts about this.

The robustness results in this paper do carry over to the case of fixed output
delay:

THEOREM 8.1. For any rational d > 1, the fized-delay restrictions of the BM
and all the variants defined in Section 3 simulate each other up to constant factors
n pg-time.

Proof. All auxiliary operations in the simulations in Section 4 use GSTs that run
in fixed output delay, except for the second, unpadded run of the GST S in Theorem
4.13. However, if 5 already runs in fixed output delay, so does this run. O

Under the proof of Theorem 2.1 the corresponding notion for the reduced form of
the model is “fixed delay after the initial transition.” Qur proof of efficient universal
simulation does not quite carry over for fixed output delay because the quantities k
and [ in the proof of theorem 6.3 may differ for different M. The operations that pull
off the word ¢. and the padded output code(y) run in “stride” a function of & and
[, but this is not fixed. We believe that the proof can be modified to do so under a
different representation scheme for monoids.
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Whether a similar robustness theorem holds for the pause-buffer BM leads to
an open problem of independent interest: can every k-input GST be simulated by a
composition tree of 2-input GSTs when stationary moves are allowedI' The questions
of the power of both variants versus the basic BM can be put in concrete terms.

OprEN PrOBLEM 3. Can the homomorphism Ery : {0,1,2}* — {0,1}*, which
erases all 2’s in its argument, be computed in linear py-time by a BM that runs
in fixed output delayl’

OPEN PROBLEM 4. For every 2-input GST 5 with stationary moves allowed, does
the function S'(z#y) := S(z,y) belong to TLINT

THEOREM 8.2.

(a) The answer to Problem 3 is ‘yes’ iff for every memory cost function p and
BM M, there is a BM M’ that runs in fived output delay and simulates M
linearly under 1.

(b) The answer to Problem 4 is ‘yes’ iff for every memory cost function p and
pause-buffer BM M, there is a BM M’ that simulates M linearly under p.

Proof. For the forward implication of (a), M’ pads every output by M with @
symbols, coding the rest over { 0,1 }*, and runs Frq on a separate track to remove
the padding. That of (b) is proved along the lines of Proposition 4.3. The reverse
implications are immediate, and all this needs only the tracking property of u. 0O

Alon and Maass [4] prove substantial time-space tradeoffs for the related “sequence
equality” problem SE[n]: given z,y € {0,1,2}", does Ery(z) = Ery(y)l' We inquire
whether their techniques, or those of [54], can be adapted to the BM. The BM in
Theorem 7.1 runs in output delay 1/2, 1, or 2 for all passes, so the two kinds of BM
can be separated by no more than a log factor. A related question is whether every
language in TLIN, with or without fixed output delay, has linear-sized circuits.

Further avenues for research include analyzing implementations of certain impor-
tant algorithms on the BM, as done for the BT and UMH in [2, 5]. Here the BM
is helped by its proximity to the Pratt-Stockmeyer vector machine, since conserving
memory-access charges and parallel time often lead to similar methods. One can also
study storage that is expressly laid out on a 2D grid or in 3D space, where a pass
might be defined to follow either a 1D line or a 2D plane. We expect the former
not to be much different from the BM model with its 1D tape, and we also note
that CD-ROM and several current 2D drive technologies use long 1D tracks. The
important issue may not be so much the topology of the memory itself, but whether
“locality is one-dimensional” for purposes of pipelining.

Last, we ask about meaningful technical improvements to the simulations in this
paper. The lone obstacle to extending the main robustness theorem for u = py, is
the simulation of random access by tree access in Lemma 4.6. The constants on our
universal simulation are fairly large, and we seek a more-efficient way of representing
monoids and computing the products. Two more questions are whether the BM loses
power if the move option a := 2a+1 is eliminated, and whether the number m of
markers in a finger BM can be reduced to m—1 or to 4 without multiplying the
number of block moves by a factor of logt(n).

9. Conclusion. In common with motivations expressed in [2] and [5], the BM
model fosters a finer analysis of many theoretical algorithms in terms of how they
use memory, and how they really behave in running time when certain practicalities

34



of implementation are taken into account. We have shown that the BM model is
quite robust, and that the concept of functions and languages being computable in a
memory-eflicient manner does not depend on technical details of setting up the model.
The richer forms of the model are fairly natural to program, providing random access
and the convenience of regarding finite transductions such as addition and vector
Booleans as basic operations. The tightest form of the model is syntactically simple,
retains the bit-string concreteness of the TM, and seems to be a tractable object of
study for lower bound arguments. The robustness is evidence that our abstraction is
“right.”

In contrast to the extensive study of polynomial-time computation, very little is
known about linear time computation. Owing to an apparent lack of linear-time ro-
bustness among various kinds of TMs, RAMs, and other machines, several authorities
have queried their suitability as a model for computation in O(n) time. Since we have
W as a parameter we have admittedly not given a single answer to the question “What
is Linear Timel”, and leave TLIN, Du; TIME[O(n)], and Dus TIME[O(n)] as leading
candidates. However, the BM model does supply a robust yardstick for assessing
the complexity of many natural combinatorial problems, and for investigating the
structure of several other linear-time complexity classes. It has a tight deterministic
time hierarchy right down to linear time. The efflicient universal simulator which we
have constructed to show this result uses the word problem for finite monoids in an
interesting manner. The longstanding program of showing nonlinear lower bounds
in reasonable models of computation has progressed up to machines apparently just
below the BM (under y7) in power, so that attacking the problems given here seems
a logical next step. The authors of [3] refer to the “challenging open problem” of ex-
tending their results when bit-manipulations for dissecting records are available. The
bit operations given to the BM seem to be an appropriate setting for this problem.
A true measure of the usefulness of the BM model will be whether it provides good
ground for developing and connecting methods that solve older problems not framed
with the term “BM.” We offer the technical content of this paper as appropriately
diligent spadework.
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Appendix: Proof of Theorem 2.1.

For every move state g in M we add a new GST 5, that performs a 1-bit empty
pull just to read the currently-scanned character d, and then sends control to §(¢, d).
This modification no more than doubles the p-access charges, and gives M the fol-
lowing property: for any pass by a GST 5;, the next GST 9y, to be invoked (or HALT)
is a function only of 2 and the character ¢ that caused 5; to exit, and there is at most
one intervening move. Henceforth we assume that M has this form, and number its
GST chips by Sg,...,5,, with Sy as start chip.

M’ uses an alphabet I which includes the alphabet I' of M, a surrogate blank
@, tokens { sg, ..., s, } for the chips of M, markers { my, mp, mp, my,,, mp } for the
three kinds of move, “no move,” and HALT, special instruction markers { Iy,..., 112},
plus certain tuples of length up to 7 of the foregoing characters. We also use @ to
indicate that the symbol written to cell 0 is immaterial.

During the simulation, the first component of every tuple in a cell 2 is the char-
acter ¢; € I'in that cell of the tape of M. Except initially, cell 1 holds both ¢g and ¢4,
so that cell 0 can be overwritten by other characters. This also allows M’ to simulate
all moves by M without ever moving its own cell-a head back to cell 0. The markers
Iy and I; tell M’ when the cell-a head of M is in cell 0 or 1. For a > 2, the heads of
M and M’ coincide. The other main invariant of the simulation is that the only cell
besides cells 0 and 1 to contain multiple symbols is cell a. The two initial moves of
M’ set up these invariants.

Character(s) read  Action (Initial mode is Ra, ¢ = 0.)
g, C1 Pull [cg, 1] to cell 0, a := a, mode := OR.

[co, 1], €1 Put @ into cell 0 and [¢q,¢q, S0, [o] into cell 1, a := 2a + 1,
mode := Ra.

The first move must automatically be executed every time M’ moves its tape head to

a new cell a, a > 2, since this cell and cell a 4+ 1 will always contain single characters

over I'. However, the second move is unique to the initialization because cell 1 will

never again hold a single character. The cell-a head of M’ is now on cell 1, but the

Iy enables M to record that the cell-a head of M is still on cell 0.

The lone GST S of M’ includes two copies of each GST S; of M. The first
is a “dummy copy” which simulates 5; but suppresses output until it picks up the
character ¢ that causes S; to exit. On this exiting transition, the dummy outputs
a token sp for the next GST S5; and a token m for the intervening move, or m,,
for none, or my for HALT. The other copy simulates the actual pass by 5;. It has
special states that distinguish whether S; has written zero, one, or at least two output
symbols in the pass, since the first one or two symbols of the output y are altered. If
S; performs a pull and |y| > 2, we define ¢, := yo if yo #Z B, but ¢, := ¢o if yo = B.
Similarly ¢} := 3 if y1 # B, but ¢} := ¢; if y1 = B. On the tape of M’, the output y
looks like [¢f, ¢}, .. .J[¢}, ¢hy - Jya -+ -y, where I = |y|. For |y| < 1, treat the missing yq
and/or yo as B. Besides these functional conventions on si, m, ¢, and ¢}, we omit
reference to the address a if it is not changed, and omit the second character read by
S when it does not affect control at the large initial branch. Let 5; be the current

GST of M.
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Character(s) read ~ Action (Current mode is Ra, a = 1.)

[c1, €0, Sy Ip] By the validity conditions (Definition 2.3), the output y by 5;
has length at most 2. Hence the next-move token m and next-
GST token si can be picked up and the output y written in
one pass, without needing the dummy copy of \S;. If m = myy,
S pulls @ to cell 0 and [¢], ¢}, [12] to cell 1. If m = mpg, pulls
Q@[c}, ¢, sk, I1] to signify that the cell-a head of M is now on
cell 1. Else S pulls @[¢], ¢f, sk, lo], and this step repeats. In

each case, mode := Ra.
[c1, €0, I12] Pull ¢ into cell 0, ¢; into cell 1, and HarT.
[c1, €0, S5y I1] Simulate S; as for [eq,co,8;, o] to get m, sg, and y, but

treat ¢q as the first input character to S;. If m = mpg pull
Q@[c), b, I12], if m = my pull @[}, cf, sk, lo], and if m = my,,
pull @[¢}, ¢}, sk, [1]. In these three cases, the address of M’
stays at 1. If m = my, then pull @[¢], ¢}, sx] and effect a := 2a.
If m = mp, pull @Q[c}, ¢}, st] and effect @ := 2a + 1. In every
case, the mode stays Ra.
The last two cases give @ > 2. When a > 2, the next pass by 5 encounters a single
character ¢, € I' on its start transition (possibly ¢, = B), and 5 must perform the
first operation above. This overwrites the @ in cell 0. However, the new character
[c],ch, sk] in cell 1 prevents the initial sequence from recurring, viz.:

Character(s) read ~ Action (Current mode is Ra, a > 2.)

Cas Cat1 Pull [¢4, cqq1] to cell 0, a := a, mode := 0R.

B Pull [@, @, Ij] to cell 0, a := a, mode := 0R.

[CasCati]s €1, €0, 8]  Put [eq,co, 1,85, 3] into cell a. If the label of 5; is La then
mode := La, else mode := Ra.

[cas Cos €1,y 85 I2] If 5; is labeled 0L or OR, then pull [cg, ¢y, ¢4, $;, Ig] into cell 0,

and mode := the mode of 5;. Else 5 simulates the dummy copy
of 5; to find m and sg, treating ¢, as the first input character to
S;, and pulls [co, €1, €q, M, Sk, Si, I3] tO cell 0 with mode := OR.
[co, €1, Cay My Sk, 8iy I3] Put [cq, co, €1, M, S, 8;, I4] into cell a, mode := the mode of ;.

[Ca, €Oy €1, M, Sy 8i, I4] Simulate  the pull by S;, copying the output y as
[chs s ey m, IS][€], ¢f, Sk]y2 - - - y1, and change mode to OR. Re-
mark: For ¢, to be correct, it is vital that cell ¢ not be over-
written in this pull.

[co, €1, Cqs 2, I5] Put ¢, into cell a. On exit, if m = m,,, then leave ¢ unchanged,
if m = my effect @ := |a/2], if m = my, effect a := 2a, and
if m = mpg effect @ := 2a + 1. In each of these four cases,

mode := Ra. For m = my, see below.

If the last move was up, i.e. a to |a/2|, we may now have @ = 1 again. Since the
“sentinel” in cell 1 is always correctly updated to the next GST 5;, this is handled
by:

[c1, €0, Si] Same as for [cy, g, $;, I1].

If still @ > 2, then S once again senses single characters in cells @ and a 4 1, and the
cycle repeats. The other branch with instruction 6 goes:
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[co, €1y Cay Siy I6] Here 5; is labeled 0L or OR, and this is the current mode.
treats cg, ¢ as the first two input characters in simulating the
dummy copy of S;, and puts [¢,, co, ¢1, m, Sk, i, I7] into cell a
with mode := Ra.

[Cas €O,y €1, M Sy 8i, I7] Pull [eq, €1, ¢4, m, Sk, 8, Ig] into cell 0, mode := the mode of ;.

[co, €1, Cay My Sk, 8i, Ig] Simulate the put by 9;. If the output y is empty or begins with
B, let ¢! :=¢,. Elselet ¢/, := yo. Copy y as [c],, co, ¢1, m, S, I9],
and set mode := 0R.

[Cas oy €1,y SE, o] Pull [co, €1, ¢q, m, I5] to cell 0 and [eq, g, si] to cell 1, mode :=
Ra.

The validity conditions prevent cell a from being overwritten in a pull. It is possible

for cell 1 to be overwritten by a leftward put that exits after just one input bit, but

this can only happen if ¢ < ', where (' is the maximum number of bits a leftward
pull chip of M can write in its first transition. The problem can be solved either by
exploiting the ability of M itself to remember C'-many characters in its finite control,
or by reprogramming M so that no leftward pull chip outputs more than one symbol
on its first step. Details are left to the reader.

The final halting routine involves a “staircase” to leave the tape exactly the same
as that of M at the end of the computation. It picks up in the case [co, ¢1, ¢, m, I5]
with m = my.

[co, €1, Cay mpg, I5] Put [e,, ¢o, ¢1, I10] into cell a, mode := Ra.

[€as €O, €1, T10] Pull [eg, c1,¢q,I11] to cell 0 and [eq,co, [12] to cell 1, with
mode := OR.

[co, €1y Cay T11] Put ¢, into cell a, effect a := |a/2], mode := Ra.

Cas Cat1 Pull [¢4, cqr1] to cell 0, mode := OR.

[Cas Cat1], €1, C0, [12] Put ¢4 into cell a, effect a := |a/2], mode := Ra.
[c1, €0, I12] As above, pull ¢g into cell 0, ¢1 into cell 1, and HarT.

M’ uses exactly the same tape cells as M, making at most eight passes of equal
or less cost for each pass by M. The final “staircase” down from cell a is accounted
against the p-charges for M to have moved out to cell a. Hence both the number
of bits processed by M’ and the p-acc charges to M’ are within a constant factor of
their counterparts in M.

For the converse simulation of the reduced form S by a BM M, the only technical
difficulty is that 5 may have different exiting transitions on the same character ¢. The
solution is to run a dummy copy of S that outputs a token ¢ for the state in which
S exits. Then ¢ is used to send control to the move state of M’ that corresponds to
the label [1(%), and thence to a copy of S with the pass-type label l3(¢). The details
of running the dummy copy are the same as above. O

By using more “instruction markers” one can make the mode of M’ always follow
the cycle Ra,0R, La,0L. Hence the only decision that need depend on the terminal
state of the lone GST 5 is the next origin cell a.
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