
LINEAR TIME AND MEMORY-EFFICIENT COMPUTATIONKENNETH W. REGAN�Abstract. A realistic model of computation called the Block Move (BM) model is developed.The BM regards computation as a sequence of �nite transductions in memory, and operations aretimed according to a memory cost parameter �. Unlike previous memory-cost models, the BMprovides a rich theory of linear time, and in contrast to what is known for Turing machines, the BMis proved to be highly robust for linear time. Under a wide range of � parameters, many forms ofthe BM model, ranging from a �xed-wordsize RAM down to a single �nite automaton iterating itselfon a single tape, are shown to simulate each other up to constant factors in running time. The BMis proved to enjoy e�cient universal simulation, and to have a tight deterministic time hierarchy.Relationships among BM and TM time complexity classes are studied.Key Words. Computational complexity, theory of computation, machine models, Turingmachines, random-access machines, simulation, memory hierarchies, �nite automata, linear time,caching.AMS(MOS) subject classi�cation. 68Q05, 68Q15, 68Q25, 68Q68.1. Introduction. This paper develops a new theory of linear-time computation.The Block Move (BM) model introduced here extends ideas and formalism fromthe Block Transfer (BT) model of Aggarwal, Chandra, and Snir [2]. The BT is arandom access machine (RAM) with a special block transfer operation, together witha parameter � : N! N called a memory access cost function. The RAM's registersare indexed 0,1,2,: : : , and �(a) denotes the cost of accessing register a. A blocktransfer has the form copy [a1 : : : b1] into [a2 : : : b2],and is valid if these intervals have the same size m and do not overlap. With regardto a particular �, the charge for the block transfer is m + �(c) time units, wherec = maxf a1; b1; a2; b2 g. The idea is that after the initial charge of �(a) for accessingthe two blocks, a line of consecutive registers can be read or written at unit timeper item. This is a reasonable re
ection of how pipelining can hide memory latency,and accords with the behavior of physical memory devices (see [3], p1117, or [34],p 214). An earlier paper [1] studied a model called HMM which lacked the block-transfer construct. The main memory cost functions treated in these papers are�log(a) := dlog2(a+ 1)e, which re
ects the time required to write down the memoryaddress a, and the functions �d(a) := da1=de with d = 1; 2; 3; : : : ; which model theasymptotic increase in communication time for memory laid out on a d-dimensionalgrid. (The cited papers write f in place of � and � for 1=d.) The two-level I/Ocomplexity model of Aggarwal and Vitter [3] has �xed block-size and a �xed costfor accessing the outer level, while the Uniform Memory Hierarchy (UMH) model ofAlpern, Carter, and Feig [5] scales block-size and memory access cost upward in stepsat higher levels.The BM makes the following changes to the BT. First, the BM �xes the wordsizeof the underlying machine, so that registers are essentially the same as cells on aTuring tape. Second, the BM provides native means of shu�ing and reversing blocks.� Department of Computer Science, State University of New York at Bu�alo, 226 Bell Hall, Bu�alo,NY 14620-2000. Supported in part by NSF Research Initiation Award CCR-9011248.1



Third and most important, the BM allows other �nite transductions S besides copyto be applied to the data in a block operation. A block move has the formS [a1 : : : b1] into [a2 : : : b2].If x is the string formed by the symbols in cells a1 through b1, this means that S(x)is written to the tape beginning at cell a2 in the direction of b2, with the proviso thata blank B appearing in the output S(x) leaves the previous content of the target cellunchanged. This proviso implements shu�e, while reverse is handled by allowingb1 < a1 and/or b2 < a2. The block move is valid if the two intervals are disjoint, andmeets the strict boundary condition if S(x) neither over
ows nor under
ows [a2 : : : b2].The work performed in the block move is de�ned to be the number jxj of bits read,while the memory access charge is again �(c), c = maxf a1; b1; a2; b2 g. The �-time isthe sum of these two numbers. Adopting terms from [5], we call a BM M memory-e�cient if the total memory access charges stay within a constant factor (dependingonly on M) of the work performed, and parsimonious if the ratio of access chargesto work approaches 0 as the input length n increases.In the BT model, Aggarwal, Chandra, and Snir [2] proved tight nonlinear lowerbounds of �[n logn] with � = �1, �[n log logn] with � = �d, d > 1, and �[n log� n]with � = �log, for the so-called \Touch Problem" of executing a sequence of operationsduring which every value in registers R1 : : :Rn is copied at least once to R0. Sinceany access to Ra is charged the same as copying Ra to R0, this gives lower boundson the time for any BT computation that involves all of the input. In the BM model,however, the other �nite transductions can glean information about the input in away that copy cannot. Even under the highest cost function �1 that we consider,many interesting nonregular languages and functions are computable in linear time.Previous models. It has long been realized that the standard unit-cost RAMmodel [21, 31, 18] is too powerful for many practical purposes. Feldman and Shapiro[22] contend that realistic models M, both sequential and parallel, should have aproperty they call \polynomial vicinity" which we state as follows: Let C be a datacon�guration, and let HC stand for the �nite set of memory locations [or data items]designated as \scanned" in C. For all t > 0, let It denote the set of locations [oritems] i such that there exists an M-program that, when started in con�guration C,scans i within t time units. Then the model M has vicinity v(t) if for all C and t,jItj=jHC j � v(t). In 3D space, real machines \should have" at most cubic vicinity.The RAM model, however, has exponential vicinity even under the log-cost criterionadvocated by Cook and Reckhow [18]. So do the random-access Turing machine(RAM-TM) forms described in [30, 26, 7, 14, 64], and TMs with tree-structured tapes(see [57, 63, 51, 52]). Turing machines with d-dimensional tapes (see [31, 60, 50]) havevicinity O(td), regardless of the number of such tapes or number of heads on eachtape, even with head-to-head jumps allowed. The standard TM model, with d = 1,has linear vicinity. The \RAM with polynomially compact memory" of Grandjeanand Robson [29] limits integers i that can be stored and registers a that can be usedto a polynomial in the running time T . This is not quite the same as polynomialvicinity|if t� T , the machine within t steps could still address a number of registersthat is exponential in t. The BM has polynomial vicinity under �d (though not under�log), because any access outside the �rst td cells costs more than t time units. Thetheorem of [56] that deterministic linear time on the standard TM (DLIN) is properlycontained in nondeterministic TM linear time (NLIN) is not known to carry over toany model of super-linear vicinity. 2



Practical motivations. The BM attempts to capture, with a minimum ofadded notation, several important properties of computations on real machines thatthe previous models neglect or treat too coarsely. The motivations are largely thesame as those for the BT and UMH: As calibrated by �, memory falls into a hierarchyranging from relatively small amounts of low-indexed fast memory up through to largeamounts of slow external storage. An algorithm that enjoys good temporal locality ofreference, meaning that long stretches of its operation use relatively few di�erent dataitems, can be implemented as a BM program that �rst copies the needed items to lowmemory (�guratively, to a cache), and is rewarded by a lower sum of memory-accesscharges. Good spatial locality of reference, meaning that needed data items are storedin neighboring locations in approximately the order of their need, is rewarded by thepossibility of batching or pipelining a sequence of operations in the same block move.However, the BM appears to emphasize the sequencing of data items within a blockmore than the BT and UMH do, and we speak more speci�cally of good serial accessrather than spatial locality of reference. The BM breaks sequential computation intophases in which access is serial and the operation is a �nite transduction, and allows\random" access only between phases. Both �-time(n) and the count R(n) of blockmoves provide ways to quantify random access as a resource. The latter also servesas a measure of parallel time, since �nite transductions can be computed by parallelpre�x sum. Indeed, the BM is similar to the Pratt-Stockmeyer vector machine [61],and can also be regarded as a �xed-wordsize analogue of Blelloch's \scan" model [11].Results. The �rst main theorem is that the BM is a very robust model. Manydiverse forms of the machine simulate each other up to constant factors in �-time,under a wide range of cost functions �. Allowing multiple tapes or heads, expandingor limiting the means of tape access, allowing invalid block moves, making blockboundaries pre-set or data-dependent in a block move, even reducing the model downto a single �nite automaton that iterates itself on a single tape, makes no or littledi�erence. We claim that this is the �rst sweeping linear-time robustness result for anatural model of computation. A \linear speed-up" theorem, similar to the familiarone for Turing machines, makes the constant factors on these simulations as small asdesired. All of this gives the complexity measure �-time a good degree of machine-independence. Some of the simulations preserve the work (w) and memory-accesscharges (�-acc) separately, while others trade w o� against �-acc to preserve theirsum.Section 2 de�nes the basic BM model and also the reduced form. Section 3de�nes all the richer forms, and Section 4 proves their equivalence. The linear speed-up theorem and some results on memory-e�ciency are in Section 5. The second mainresult of this paper, in Section 6, shows that like the RAM but unlike what is knownfor the standard multitape Turing machine model (see [36, 24]), the BM carries only aconstant factor overhead for universal simulation. The universal BM given is e�cientunder any �d, while separate constructions work for �log. In consequence, for any�xed � = �d or �log, the BM complexity classes D�TIME[t] form a tight deterministictime hierarchy as the order of the time function t increases. Whether there is anyhierarchy at all when � rather than t varies is shown in Section 7 to tie back to olderquestions of determinism versus nondeterminism. This section also compares theBM to standard TM and RAM models, and studies BM complexity classes. Section8 describes open problems, and Section 9 presents conclusions.3
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 SFig. 1. BM with allowed head motions in a pass2. The Block Move Model. We use � for the empty string and B for theblank character. N stands for f 0; 1; 2; 3; : : :g. Characters in a string x of length mare numbered x0x1 � � �xm�1. We modify the generalized sequential machine (GSM)of [36] so that it can exit without reading all of its input.Definition 2.1. A generalized sequential transducer (GST) is a machine S withcomponents (Q;�; �; �; s; F ), where F � Q is the set of terminal states , s 2 Q n F isthe start state, � : (QnF )��! Q is the transition function, and � : (QnF )��! ��is the output function. The I/O alphabet � may contain the blank B.A sequence (q0; x0; q1; x1; : : : ; qm�1; xm�1; qm) is a halting trajectory of S on in-put x if q0 = s, qm 2 F , x0x1 : : : xm�1 is an initial substring of x, and for 0 �i � m� 1, �(qi; xi) = qi+1. The output S(x) is then de�ned to be �(q0; x0) ��(q1; x1) � � ��(qm�1; xm�1).By common abuse of notation we also write S(�) for the partial function computed byS. Except brie
y in Section 8, all �nite state machines we consider are deterministic.A symbol c is an endmarker for a GST S if every transition on c sends S to a terminalstate. Without loss of generality, B is an endmarker for all GSTs.The intuitive picture of our model is a \circuit board" with GST \chips," each ofwhich can process streams of data drawn from a single tape. The formalism is fairlyclose to that for Turing machines in [36].Definition 2.2. A Block Machine (BM) is denoted by M = (Q;�;�; �; B; S0; F ),where:� Q is a �nite set consisting of GSTs , move states , and halt states .� F is the set of halt states.� Every GST has one of the four labels Ra, La, 0R, or 0L.� Move states are labeled either ba=2c, 2a, or 2a+1.� � is the I/O alphabet of M , while the work alphabet � is used by all GSTs.� The start state S0 is a GST with label Ra.� The transition function � is a mapping from (Q n F )� � to Q.We �nd it useful to regard GSTs as \states" in a BM machine diagram, readingthe machine in terms of the speci�c functions they perform, and submerging theindividual states of the GSTs onto a lower level. M has two tape heads, called the\cell-0 head" and the \cell-a head," which work as follows in a GST pass (Figure 1).Let �[i] stand for the symbol in tape cell i, and for i; j 2 N with j < i allowed, let�[i : : :j] denote the string formed by the symbols from cell i to cell j.Definition 2.3. A pass by a GST S in a BM works as follows, with reference to thecurrent address a and each of the four modes Ra; La; 0R; 0L:4



(Ra) S reads the tape moving rightward from cell a. Since B is an endmarker forS, there is a cell b � a in which S exits. Let x := �[a : : :b] and y := S(x). Ify = �, the pass ends with no change in the tape. For y 6= �, let c := jyj � 1.Then y is written into cells [0 : : :c], except that if yi = B, cell i is leftunchanged. This completes the pass.(La) S reads the tape moving leftward from cell a. Unless S runs o� the left endof the tape (causing a \crash"), let b � a be the cell in which S exits. Asbefore let x := �[a : : :b], y := S(x), and if y 6= �, c := jyj� 1. Then formally,for 0 � i � c, if yi 6= B then �[i] := yi, while if yi = B then �[i] is unchanged.(0R) S reads from cell 0, necessarily moving right. Let c be the cell in which Shalts. Let x := �[0 : : :c], y := S(x), and b := a + jyj � 1. Then y is writtenrightward from a into cells [a : : :b], with the same convention about B asabove.(0L) Same as 0R, except that b := a � jyj + 1, and y is written leftward from ainto [a : : :b]:Here a, b, and c are the access points of the pass. Each of the four kinds of pass isvalid if either (i) y = �, (ii) a; b; c � 1, or (iii) c < minf a; b g: The case y = � iscalled an empty pass , while if jxj = 1, then it is called a unit pass .In terms of Section 1, Ra and La execute the block move S [a : : :b] into [0 : : :c],except that the boundaries b and c are not set in advance and can depend on the datax. Similarly 0R and 0L execute S [0 : : :c] into [a : : :b]. We make the distinction isthat in a pass the read and write boundaries may depend on the data, while in a blockmove (formalized in the next section) they are set beforehand. The tape is regardedas linear for passes or block moves, but as a binary tree for addressing. The root of thetree is cell 1, while cell 0 is an extra cell above the root. The validity condition saysthat the intervals [a : : :b] and [0 : : :c] must not overlap, with a technically convenientexception in case the whole pass is done in cells 0 and 1. If a pass is invalid, M isconsidered to \crash." A pass of type Ra or La �guratively \pulls" data to the leftend of the tape, and we refer to it as a pull ; similarly we call a pass of type 0R or0L a put . Furthering the analogy to internal memory or to a processor cache, thesepass types might be called a fetch and writeback , respectively. An La or 0L pass canreverse a string on the tape.Definition 2.4. A valid computation ~c by a BMM = (Q;�;�; �; B; S0; F ) is de�nedas follows. Initially a = 0, the tape contains x in cells 0 : : : jxj�1 with all other cellsblank, and S0 makes the �rst pass. When a pass by a GST S ends, let c be thecharacter read on the transition in which S exited. Then control passes to �(S; c):In a move state q, the new current address a0 equals ba=2c, 2a, or 2a+1 accordingto the label of q, and letting d be the character in cell a0, control passes to state�(q; d). All passes must be valid, and a valid computation ends when control passesto a halting state. Then the output , denoted by M(x), is de�ned to be �[0 : : :m�1],where �[m] is the leftmost non-� character on the tape. If M is regarded as anacceptor, then the language of strings accepted by M is denoted by L(M) := f x 2��jM(x) halts and outputs 1 g.The convention on output is needed since a BM cannot erase, i.e. write B. Alter-natively, for an acceptor, F could be partitioned into states labeled Accept andReject.Definition 2.5. A memory cost function is any function � : N ! N with theproperties (a) �(0) = 0, (b) (8a)�(a) � a, and (c) (8N � 1)(8a)�(Na) � N�(a).5
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c  →  c @Fig. 2. A BM that makes a fresh trackOur results will only require the property (c0): (8N � 1)(9N 0 � 1) (81a) �(Na) �N 0�(a). While property (c) can be named by saying that � is \sub-linear," we donot know a standard mathematical name for (c0), and we prefer to call either (c) or(c0) the tracking property for the following reason:Example 2.1. Tracking. Figure 2 diagrams a multichip BM routine that changes theinput x = x0x1 � � �xn�1 to x0@x1@� � �xn�2@xn�1@$, where @ acts as a \surrogateblank," and only @ or B appears to the right of the $. This divides the tape intotwo tracks of odd and even cells. A BM can write a string y to the second track bypulling it as By0By1 � � �Bym�1Bym, since the blanks B leave the contents of the �rsttrack undisturbed. Two strings can also be shu�ed this way. Since �(2a) � 2�(a),the tracking no more than doubles the memory access charges.The principal memory cost functions we consider in this paper are the log-costfunction �log(a) := dlog2(a+1)e, and for all d � 1, the d-dimensional layout function�d(a) := da1=de. These have the tracking property.Definition 2.6. For any memory cost function �, the �-time of a valid pass thatreads x and operates the cell-a head in the interval [a : : :b] is given by �(a)+jxj+�(b).The work of the pass is jxj, and the memory access charge is �(a) + �(b). A movestate that changes a to a0 performs 1 unit of work and has a memory access chargeof �(a) + �(a0). The sum of the work over all passes in a valid computation ~c isdenoted by w(~c ), the total memory access charges by �-acc(~c ), and the total �-timeby �(~c ) := w(~c ) + �-acc(~c ).Intuitively, the charge for a pass is �(a) time units to access cell a, plus jxj time unitsfor reading or writing the block, plus �(b) to communicate to the CPU that the passhas ended and to re-set the heads. We did not write maxf�(a); �(b) g because b isnot known until after the time to access a has already been spent; this makes nodi�erence up to a factor of two. Replacing jxj by jxj+ jS(x)j or by maxf jxj; jS(x)j g,or adding �(c) to �(a) + �(b), also make no di�erence in de�ning w or �-acc, thistime up to a constant factor that may depend on M .Definition 2.7. For any input x on which a BM M has halting computation ~c, wede�ne the complexity measuresWork: w(M;x) := w(~c ).Memory access: �-acc(M;x) := �-acc(~c ).�-time: �-time(M;x) := w(M;x) + �-acc(M;x).Space: s(M;x) := the maximum of a for all access points a in ~c .Pass count: R(M;x) := the total number of passes in ~c .M is dropped when it is understood, and the above are extended in the usual mannerto functions w(n), �-acc(n), �-time(n), s(n), and R(n) by taking the maximum over6



all inputs x of length n. A measure of space closer to the standard TM space measurecould be de�ned in the extended BM models of the next section by placing the inputx on a separate read-only input tape, but we do not pursue space complexity furtherin this paper. The pass count appears to be sandwiched between two measures ofreversals for multitape Turing machines, namely the now-standard one of [59, 35, 16],and the stricter notion of [43] which essentially counts keeping a TM head stationaryas a reversal.Definition 2.8. For any memory cost function � and recursive function t :N! N,D�TIME[t] stands for the class of languages accepted by BMs M that run in timet(n), i.e. such that for all x, �-time(M;x) � t(jxj). TLIN stands for D�1TIME[O(n)].We also write D�TIME[t] and TLIN for the corresponding function classes. Section7 shows that TLIN is contained in the TM linear-time class DLIN. We argue thatlanguages and functions in TLIN have true linear-time behavior even under the mostconstrained implementations.We do not separate out the work performed from the total memory access chargesin de�ning BM complexity classes, but do so in adapting the following notions andterms from [5] to the BM model.Definition 2.9. (a) A BM M is memory e�cient , under a given memory costfunction �, if there is a constant K such that for all x, �-time(M;x) �K �w(M;x).(b) M is parsimonious under � if �-time(M;x)=w(M;x)! 1 as jxj ! 1.Equivalently, M is memory e�cient under � if �-acc(M;x) = O(w), and parsimoniousunder � if �-acc(M;x) = o(w), where the asymptotics are as jxj ! 1. The intuition,also expressed in [5], is that e�cient or parsimonious programs make good use of amemory cache.De�nition 2.9 does not imply that the given BM M is optimal for the function fit computes. Indeed, from Blum's speed-up theorem [12] and the fact that �-time isa complexity measure, there exist computable functions with no �-time optimal pro-grams at all. To apply the concepts of memory e�ciency and parsimony to languagesand functions, we use the following relative criterion:Definition 2.10. (a) A function f is inherently �-e�cient if for every BM M0that computes f , there is a BM M1 which computes f and a constant K > 0such that for all x, �-time(M1; x) � K �w(M0; x).(b) f is inherently �-parsimonious if for every BM M0 computing f there is aBM M1 computing f such that lim supjxj!1 �-time(M1; x)=w(M0; x) � 1.By de�nition �-parsimony =) �-e�ciency, and if f is inherently e�cient (resp.parsimonious) under �1, then f is inherently e�cient (resp. parsimonious) underevery memory cost function � � �1:Just for the next three examples, we drop the validity condition on rightwardpulls; that is, we allow the tape intervals [a : : :b] and [0 : : :c] to overlap in an Ramove. This is intuitively reasonable so long as the cell-0 head does not overtake thecell-a head and write over a cell that the latter hasn't read yet. Theorem 4.1 willallow us to drop the validity condition with impunity, but the proof of Theorem 2.1below requires that it be in force.Example 2.2. Balanced Parentheses. Let D1 stand for the language of balancedparenthesis strings over � := f (; ) g. Let the GST S work as follows on any x 2 ��:7
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( ,λFig. 3. Reduced-form BM for the language of balanced parenthesesIf x = �, S goes to a terminal state marked Accept; if x begins with `)', S goes toReject. Else S erases the leading `(' and thereafter takes bits in twos, translating(( 7! ( )) 7! ) () 7! � )( 7! �:(1)If x ends in `(' or jxj is odd, S also signals Reject. Then S has the property that forany x 6= � that it doesn't immediately reject, x 2 D1 () S(x) 2 D1. Furthermore,jS(x)j < jxj=2. We can think of D1 as being self-reducible in a particularly sharpsense.Figure 3 shows the corresponding BM in the \reduced form" de�ned below. The`$' endmarker is written on the �rst pass, and prevents leftover \garbage" on the tapefrom interfering with later passes. We take this for granted in some later descriptionsof BMs. For any memory cost function �, the running time of M is bounded bylog2nXi=0 �(0) + 2i + �(2i);(2)which is O(n) even for � = �1. Hence the language D1 belongs to TLIN.Example 2.3. Counting . Let � := f a; bg. We can build a GST S with alphabet� = f a; b; 0; 1; $;B g that runs as follows on inputs of the form x0 = xu$ withx 2 f a; bg� and u 2 f 0; 1 g�: S erases bits x0; x2; x4; : : : of x and remembers jxjmodulo 2. S then copies u, and on reading the �nal $ (or on the �rst pass, B), Soutputs 0$ if jxj was even, 1$ if jxj was odd. S is also coded so that if x = �, S goesto Halt. Let M be the BM which iterates S on input x. Then M(x) halts with jxjin binary notation on its tape (followed by `$' and \garbage"). The �-time for thisiteration is likewise O(n) even for � = �1.Example 2.4. Simulating a TM. Let T := (Q;�;�; �; B; q0; F ) be a single-tape TMin the notation of [36]. De�ne the ID alphabet of T to be �I := (Q��)[�[ f^; $ g,where ^; $ =2 �. The simulating BMM on an input x = x0 � � �xn�1 makes a rightwardpull that lays down the delimited initial ID ^(q0; x0)x1x2 � � �xn�1$ of T (x). The �nitecontrol of T is turned into a single GST S with alphabet �I that produces successiveIDs in the computation with each pass. Whenever T writes a blank, M writes @.Let T be programmed to move its head to cell 0 before halting. Then the �nal passby M removes the ^ and $ and leaves exactly the output y := T (x) on the tape.Actually, because a BM cannot erase tape cells, y would be followed by some numberof symbols @, but De�nition 2.4 still makes y the output of M . Hence the BM is auniversal model of computation. 8



The machines in Examples 2.2{2.4 only make rightward pulls from cell 0. Each isreally a GST that iterates on its own output, a form generally known as a \cascading�nite automaton" (CFA). Up to small technical di�erences, CFAs are comparable tothe one-way \sweeping automata" studied by Ibarra et.al. [39, 41, 40, 37, 38, 15].These papers characterize both one-way and two-way arrays of identical �nite-statemachines in terms of these and other automata and language classes. The followingshows that the BM can be regarded as a generalization of these arrays, insofar as aBM can dynamically change its origin point a and direction of operation.Definition 2.11. The reduced form of the BM model consists of a single GST Swhose terminal states q have labels l1(q) 2 f a; ba=2c; 2a; 2a+1;Haltg and l2(q) 2fRa; La; 0R; 0L g. The initial pass has mode Ra with a = 0. Whenever a pass byS exits in some state q with l1(q) 6= Halt, the labels l1(q) and l2(q) determine theaddress and mode for the next pass. Computations and complexity measures arede�ned as before.Theorem 2.1. Every BM M is equivalent to a BM M 0 in reduced form, up toconstant factors in all �ve measures of De�nition 2.7.Proof. The idea is to combine all the GSTs of M into a single GST S and savethe current state of M in cells 0 and 1. Each pass of M is simulated by at most sixpasses ofM 0, except for a \staircase" of O(logn) moves at the end which is amortizedinto the constant factors. This simulation expands the alphabet but does not makeany new tracks. The details are somewhat delicate, owing to the lack of internalmemory when a pass by M 0 ends, and require the validity condition on passes. Thefull proof is in the Appendix.In both directions, the tape cells used byM andM 0 are almost exactly the same;i.e., M is simulated \in place." Hence we consider the BM and the reduced form tobe essentially identical. The idea of gathering all GSTs into one works with even lesstechnical di�culty for the extended models in the next section.3. Extensions of the BM. We consider �ve natural ways of varying the BMmodel: (1) Remove or circumvent the validity restriction on passes. (2) Provide\random addressing" rather than \tree access" in move states. (3) Provide delimitersa1; b1; a2; b2 for block moves S [a1 : : : b1] into [a2 : : : b2], where the cell b1 in which Sexits is determined or calculated in advance. (4) Require that for every such blockmove, b2 is such that S(x) exactly �lls [a2 : : : b2]. (5) Provide multiple main tapesand GSTs that can read from and write to k-many tapes at once. These extensionscan be combined. We de�ne them in greater detail, and in the next section, proveequivalences among them and the basic model.Definition 3.1. A BM with bu�er mechanism has a new tape called the bu�er tape,and GST chips S with the following six labels and functions:(RaB) The GST S reads x from the main tape beginning in cell a and writes S(x) tothe bu�er tape. The output S(x) must have no blanks in it, and it completelyreplaces any previous content of the bu�er. Taking b to be the cell in whichS exits, the �-time is �(a) + jxj+ �(b) as before.(LaB) As for RaB, but reading leftward from cell a.9



(BaR) Here S draws its input x from the bu�er, and S(x) is written on the maintape starting in cell a. Blanks in S(x) are allowed and treated as before.When S exits, even if it has not read all of the bu�er tape, the bu�er is
ushed. With b the destination of the last output bit (or b = a if none), the�-time is likewise �(a) + jxj+ �(b).(BaL) As for BaR, but writing S(x) leftward from cell a.(0B) As for RaB, but using the cell-0 head to read the input, and �-time jxj+�(c).(B0) As for BaR, but using the cell-0 head to write the output; likewise �-timejxj+ �(c).All six types of pass are automatically valid. Further details of computations andcomplexity measures are the same as before. A BM with limited bu�er mechanismhas no GSTs with labels B0 or 0B, and consequently has no cell-0 head.The original BM's moves of type Ra or La can now be simulated directly by RaBor LaB followed by B0, while 0R or 0L is simulated by 0B followed by BaR or BaL.For the limited bu�er mechanism the simulation is trickier, but for � = �d we willshow that it can be done e�ciently. The next extension allows \random access."Definition 3.2. The address mechanism adds an address tape and new load moveslabeled RaA, LaA, and 0A. These behave and are timed like the bu�er moves RaB ,LaB , and 0B respectively, but direct their output to the address tape instead. Aswith the bu�er, the output completely replaces the previous content of the addresstape. Addresses are written in binary notation with the least signi�cant bit leftmoston the tape. The output a0 of a load becomes the new current address. Move statesmay be discarded without loss of generality.Example 3.1. Palindromes . Let Pal denote the language of palindromes over agiven alphabet �. We sketch a BMM with address mechanism that accepts Pal . Oninput x, M makes a fresh track on its tape via Example 2.1, and runs the procedureof Example 2.3 to leave n := jxj in binary notation on this track. In running thisprocedure, we either exempt rightward pulls from the validity condition or give Mthe bu�er mechanism as well. The fresh-track cell which divides the right half of xfrom the left half has address n0 := 2bn=2c + 1. A single 0A move can read n butcopy the �rst bit as 1 to load the address n0. M then pokes a $ into cell n0. Anotherload prepends a `0' so as to address cell 2n, andM then executes a leftward pull thatinterleaves the left half of x with the right half. A bit-by-bit compare from cell 0�nishes the job. M also runs in linear �1-time.The address mechanism provides for indirect addressing via a succession of loads,and makes it easy to implement pointers, linked lists, trees, and other data structuresand common features of memory management on a BM, subject to charges for thenumber and size of the references.Thus far, all models have allowed data-dependent block boundaries. We callany of the above kinds of BM M self-delimiting if there is a sub-alphabet �e ofendmarkers such that all GSTs in M terminate precisely on reading an endmarker.(If we weaken this property slightly to allow a GST S to exit on a non-endmarker onits second transition, then it is preserved in the proof of Theorem 2.1.) The remainingextensions pre-set the read block [a1 : : : b1] and the write block [a2 : : : b2], and thisis when we speak of a block move rather than a pass . Having b1 �xed would let ususe the original GSM model from [36]. However, the machines that follow are alwaysable to drop an endmarker into cell b1 and force a GST S to read all of [a1 : : : b1].Hence we may ignore the distinction and retain `GST' for consistency.10



Definition 3.3. A block move is denoted by S [a1 : : : b1] into [a2 : : : b2] and has thise�ect on the tape: Let x := �[a1 : : : b1]. Then S(x) is written to the tape beginningat a2 and proceeding in the direction of b2, with the proviso that each blank in S(x)leaves the target cell unchanged, as in De�nition 2.3. The block move is valid solong as the intervals [a1 : : : b1] and [a2 : : : b2] are disjoint. It under
ows if jS(x)j <jb2 � a2j+ 1, and over
ows if jS(x)j> jb2 � a2j+ 1.By default we tolerate under
ows and over
ows in block moves. We draw an analogybetween the next form of the BM and a text editor in which the user may marka source and destination block and perform an operation on them. One importantpoint is that the BM does not allow insertions and deletions of the familiar \cut-and-paste" kind; instead, the output 
ows over the destination block and overwrites orlets stand according to the use of B in De�nition 2.3. Willard [69] describes a modelof a �le system that lacks insertion and deletion, and gives fairly e�cient algorithmsfor simulating them. Many text processors allow the user to de�ne and move markersfor points of immediate access in a �le. Usually the maximum number of markersallowed is �xed to some number m. Adopting a term from data structures, we givethe machine four �ngers , with labels a1; b1; a2; b2, which can be assigned among them markers and which delimit the source and destination blocks in any block move.Finger a1 may be thought of as the \cursor." The dual use of \a1" as the �xedlabel of a �nger and as the number of the cell its assigned marker currently occupiesmay cause some confusion, but we try to keep the meanings clear below. The sameapplies to a2, b1, and b2, and to later usage of these labels to name four special\address tapes."Definition 3.4. A �nger BM has four �ngers labeled a1; b1; a2; b2, and some numberm � 4 of markers . Initially one marker is on the last bit of the input, while allother markers and all four �ngers are on the �rst bit in cell 0. An invocation ofa GST S executes the block move S [a1 : : : b1] into [a2 : : : b2]. The work performedby the block move is jb1 � a1j + 1, while the memory-access charge is �(c), wherec = maxf a1; b1; a2; b2 g. In a move state, each marker on some cell a may be moved tocell ba=2c, 2a, or 2a+1 (or kept where it is), and the four �ngers may be redistributedarbitrarily among the markers. The cost of a move state is the maximum of �(a) overall addresses a involved in �nger or marker movements ; those remaining stationaryare not charged.One classical di�erence between \�ngers" and \pointers" is that there is no �xedlimit on the number of pointers a program can create. Rather than de�ne a form of theBM analogous to the pointer machines of Sch�onhage and others [45, 66, 67, 49, 10], wemove straight to a model that uses \random-access addressing," a mechanism usuallyconsidered stronger than pointers (for in-depth comparisons, see [9, 10] and also [68]).The following BM form is based on a random-access Turing machine (RAM-TM; cf.\RTM" in [30] and \indexing TM" in [14, 64, 8]), and is closest to the BT.Definition 3.5. A RAM-BM has one main tape, four address tapes labeleda1; b1; a2; b2 and given their own heads, and a �nite control comprised of RAM-TMstates and GST states . In a RAM-TM state, the current main-tape address a is givenby the content of tape a1. The machine may read and change both the character incell a and those scanned on the address tapes, and move each address tape head onecell left or right. In a GST state S, the address tapes give the block boundaries forthe block move S [a1 : : : b1] into [a2 : : : b2] as described above, and control passes tosome RAM-TM state. A RAM-TM step performs work 1 and incurs a memory-access11



charge of maxf�(a); �(b) g, where b is the rightmost extent of an address tape head.Block moves are timed as above. Both a RAM-TM step and a block move add 1 tothe pass count R(n). Other details of computations are the same as for the basic BMmodel.A �xed-wordsize analogue of the original BT model of [2] can now be had by makingcopy the only GST allowed in block moves. A RAM-BM with address loading canuse block moves rather than RAM-TM steps to write addresses.Definition 3.6. A �nger BM or a RAM-BM obeys the strict boundary condition ifin every block move S [a1 : : : b1] into [a2 : : : b2], jS(x)j equals jb2 � a2j+ 1.This constraint is notable when S is such that jS(x)j varies widely for di�erent x ofthe same length. The next is a catch-all for further extensions.Definition 3.7. For k � 2, a k-input GST has k-many input tapes and one outputtape, with � : (QnF )��k ! Q and � : (QnF )��k ! ��. Each input head advancesone cell at each step.Definition 3.8. A multitape BM has some number k � 2 of main tapes, eachpossibly equipped with its own address and/or bu�er tapes, and uses k-input GSTsin passes or block moves.Further details of computations and complexity measures for multitape BMs canbe inferred from foregoing de�nitions, and various validity and boundary conditionscan be formulated. The proofs in the next section will make the workings of thesemachines clear.Finally, given two machines M and M 0 of any kind and a cost function �, wesay M 0 simulates M linearly in � if �-time(M 0; x) = O(�-time(M;x)) +O(jxj). Theextra `O(n)' is stated because like the RAM-TM, several BM variants give a sensiblenotion of computing in sub-linear time, while all the simulations to come involve anO(n)-time preprocessing phase to set up tracks on the main tape. Now we can state:Main Robustness Theorem 3.1. For any rational d � 1, all forms of the BMde�ned above simulate each other linearly in �d-time.If we adapted a standard convention for Turing machines to state that every BM ona given input x takes time at least jxj+ 1 (cf. [36]), then we could say that all thesimulations have constant-factor overheads in �d-time.4. Proof of the Main Robustness Theorem. The main problems solved inthe proof are: (1) how to avoid overlaps in reading and writing by \tape-folding"(Theorem 4.1), (2) how to simulate random access with one read head whose move-ments are limited (Lemma 4.6), and (3) how to precompute block boundaries withoutlosing e�ciency (Lemma 4.11 through Theorem 4.15). Analogues of these problemsare known in other areas of computation, but solving them with only a constant factoroverhead in �-time requires some care. Some of the simulations give constant factoroverheads in both w and �-acc, but others trade o� the work against the memoryaccess charges. We also state bounds on w0 and �-acc 0 for the simulating machineM 0 individually, and on the number R0 of passes M 0 requires, in or after proofs. Thespace s0(n) is always O(s(n)). 12



4.1. Simulations for data-dependent block boundaries. The �rst simula-tion uses the tracking property �(Na) � N�(a) from De�nition 2.5, and does notgive constant-factor overheads in all measures. We give full details in this proof, inorder to take reasonable shortcuts later.Theorem 4.1. For every BM M with bu�er there is a BM M 0 such that forevery �, M 0 simulates M linearly in �-time.Proof. LetM have the bu�er mechanism. Let C be the largest number of symbolsoutput in any transition of any GST in M . Let K := dlog2(2C + 6)e and N := 2K .The BM M 0 �rst makes N -many tracks by iterating the procedure of Example 2.1.The track comprising cells 0; N; 2N; 3N; : : : represents the main tape of M , whilethe two tracks 
anking it are \marker tracks." The track through cells 2; N + 2; : : :represents the bu�er tape. The other tracks are an \extension track," a \holdingtrack," C-many \pull bays," and C-many \put bays." M 0 uses the symbol @ toreserve free space in tracks, and uses ^ and $ to mark places in the tape. A $ alsodelimits the bu�er track so that leftover \garbage" does not interfere. Two invariantsare that before every simulated pass byM with current address a, the current addressa0 of M 0 equals Na, and the tracks apart from the main and bu�er tracks containonly blanks and @ symbols.The move a := 2a by M is simulated directly by a0 := 2a0 in M 0. The movea := 2a+1 is simulated by e�ecting a0 := ba0=2c K-many times, then a0 := 2a0+1,and then a0 := 2a0 K-many times. The move a := ba=2c is simulated by e�ectinga0 := ba0=2c (K+1)-many times, and then a0 := 2a K-many times. Since K is aconstant, the overhead in �-acc for each move is constant. Henceforth we refer to\cell a on the main track" in place of a0:We need only describe how M 0 simulates each of the six kinds of pass by M .Since M has the 0B and B0 instructions, we may assume that the current address afor the other four kinds is always � 1. For each state q of a GST S of M , M 0 has aGST S 0q which simulates S starting in state q, and which exits only on the endmarker$. We write just S 0 when q = s or q is understood.(a) RaB. M 0 chooses a1 := 2a, pokes ^ to the left of cell a, and pokes $ to theleft of cell a1. M 0 then pulls y1 := S 0[a : : :a1�1] to the C-many pull bays. By thechoice of C, jy1j � Ca, and so the pull is valid.If the cell b in which S exits falls in the interval [a : : :a1�1], then S 0 likewise exitsin cell b. Since the exit character has no $, the transition out of S 0 communicates thatS has exited. M 0 then makes (K+1)-many moves a := 2a so that M 0 now addressescell Na1 on the main track, which is cell N2a1 overall. M 0 puts y := y1 onto theextension track and then pulls y onto the bu�er track. One more put then overwritesthe used portion of the extension track with @ symbols. M 0 then e�ects a := ba=2c(K+1)-many times so that it addresses the original cell a again, and re-simulates Sin order to overwrite the copy of y on the pull bays by @ symbols. All of these passesare valid. M 0 �nally removes the ^ and $ markers at cells a and a1. The originaltime charge toM was �(a) +m+ (b), where m = b� a+ 1. The time charged toM 0in this case is bounded by:�(Na) + 2 + �(Na� 1) + �(Na1) + 2 + �(Na1 � 1) (poke ^ and $)+ �(Na) +Nm+ �(Nb) (simulate S)+ 2K�(N2a1) (move to cell Na1)+ 3�(N2a1) + 3N2m+ 3�(N2a1 +N2(m� 1)) (put and pull y)13



+ 2K�(N2a1) + �(Na) +Nm+ �(Nb) + 2�(Na) + 4 + 2�(Na1) (clean up)� (14N + 8N2K + 12N2)�(a) + (3N2 + 2N)m+ 2N�(b) + 4: (m�1 � a)So far both the work w0 and the memory access charges �-acc 0 to M 0 are within aconstant factor of the corresponding charges to M .If S does not exit in [a : : :a1�1], S 0 exits on the $ marker. This tells M 0 to do adummy pull to save the state q that S was in when S 0 hit the $, and then to executea put that copies y1 from the pull bays to the put bays rightward from cell a. M 0then e�ects a := 2a so now a = a1, lets a2 := 2a1, pokes another $ to the left of cella2, pulls y2 := S 0q[a1 : : :a2�1] to the pull bays, and then puts y2 into the put baysrightward of cell a1. Since the $ endmarker is in cell Na1�1, this move is valid; nordoes y2 overlap y1. If S didn't halt in [a1 : : :a2�1],M 0 saves the state q0 that S was inwhen S 0 hit cell a2, setting things up for the next stage with a3 := 2a2. The processis iterated until S �nally exits in some cell b in some interval [aj�1 : : :aj�1]. Theny := y1y2 � � �yj equals S[a : : :b]. M 0 moves to cell Naj , puts y onto the extensiontrack rightward of cell Naj , pulls y to the bu�er track, and \cleans up" the extensiontrack as before. M 0 then takes (K+1)-many steps backward to cell aj�1 and cleansup the pull and put bays with a pull and a put. Finally M 0 e�ects a := ba=2c until it�nds the ^ originally placed at cell a, meanwhile removing all of the $ markers, andthen removes the ^. This completes the simulated pull by S.Let j be such that aj � b < aj+1. Then the number m of symbols read by S is atleast aj � a. An induction on j shows that the running totals of both w0 and �-acc0stay bounded by Dm, where D is a constant that depends only on M , not on a or j.Hence the �-time for the simulation by M 0 is within 2D times the �-time charged toM for the pass. (However, when j > 0, �-acc 0=�-acc may no longer be bounded bya constant.)(b) 0B. M 0 �rst runs S on cell 0 only and stores the output y0 on the �rst cellsof the C-many put bays. M 0 then follows the procedure for RaB with a = 1. Theanalysis is essentially the same.(c) LaB. M 0 �rst pokes a ^ to the left of cell a and $ to the left of cell ba=2c.The ^ allowsM 0 to detect whether a is even or odd; i.e., whether it needs to simulatea := 2a or a := 2a+1 to recover cell a. M 0 then pulls y1 := S0[a : : :ba=2c] to thepull bays. Note that cell ba=2c is included; M 0 avoids a crash by remembering the�rst 2C-many symbols of y1 in its �nite control. If S didn't exit in [a : : :ba=2c], M 0remembers the state q that S would have gone to after processing cell ba=2c. M 0then copies cells [0 : : :ba=2c�1] of the main track into cells [ba=2c+1 : : : a] of theholding track, and does a leftward pull by S 0q to �nish the work by S, stashing itsoutput y2 on the put bays. If S 0q does not exit before hitting the $, then S ran o�the left end of the tape and M crashed. Let y := y1y2. Since jyj � Ca, M 0 can copyy to the bu�er via cell Na of the extension track by means similar to before, and\clean up" the pull and put bays and holding and extension tracks before returningcontrol to cell a. Here both w0 and �-acc0 stay within a �xed constant factor of thecorresponding charges to M for the pass.(d) BaR. M 0 marks cell a on the left with a $, and does a dummy simulation of Son cells [0 : : :a�1] of the bu�er track. If S exits in that interval, M 0 puts S[0 : : :a�1]directly onto the main track, and this completes the simulated pass. If not, M 0 putsy0 := S[0 : : :a�1] onto the holding track rightward of cell a, and remembers the14



state q in which S 0 hits the $. M 0 then follows the procedure for simulating RaBbeginning with S 0q, except that it copies @ay0y1 � � �yj to the extension track via cellNaj . The �nal pull then goes to the main track but translates @ by B so that theoutput written by M lines up with cell a of the main track. There is no need to\clean up" the read portion of the bu�er tape since all writes to it are delimited. Acalculation similar to that for RaB yields a constant bound on the �-time and workfor the simulated pass, though possibly not on the �-access charges.(e) B0. Under the simulation, this is the same as 0B with the roles of the maintrack and bu�er track reversed, and @ translated to B.(f) BaL. M 0 marks cell a on the left with $ and puts y1 := S[0 : : :a�1] rightwardfrom cell a of the holding track. If S exits in that interval of the bu�er tape, M 0 thenpulls y1 to the left end of the holding track. Note that if jy1j > a+1 then M wasabout to crash. M 0 remembers the �rst symbol c0 of y1 in its �nite control to keepthis last pull valid just in case jy1j = a+1. Then M 0 puts c0 into cell a, pokes a $ tothe left of cell ba=2c, and executes a \delay-1 copy" of the holding track up to the $into the main track leftward from cell a. If a B or @ is found on the holding trackbefore the $, meaning that jy1j � ba=2c, the copy stops there and the simulated BaLmove is �nished. If not, i.e., if jy1j > ba=2c, then the delay allows the character c00in cell ba=2c�1 of the holding track to be suppressed when the $ is hit, so that thecopy is valid. Since jy1j > ba=2c, M 0 can now a�ord to do the following: poke a $ tothe right of cell a, e�ect a := 2a, and do a leftward pull of cells [2a : : :a+1] of theholding track into cells [0 : : :a�1] of the main track, translating @ as well as B byB to leave previous contents of the main track undisturbed. This stitches the restof y1 beginning with c00 correctly into place. M 0 also cleans up cells [0 : : :2a] of theholding track by methods seen before, and removes the $ signs.If S does not exit in [0 : : :a�1], M 0 executes a single Ra move starting S 0 fromcell a, once again holding back the �rst character of this output y2 just in case y1was empty and jy2j = a+1. If this pull is invalid then likewise jy2j > a+1 and Mcrashed anyway. M 0 then concatenates y2 to the string y1 kept on the holding trackto form y, and does the above with y. As in LaB , the overhead in both w and �-accis constant. This completes the proof.The converse simulation of a BM by a BM with bu�er is clear and has constant-factor overheads in all measures, by remarks following De�nition 3.1. It is interestingto ask whether the above can be extended to a linear simulation of a concatenablebu�er (cf. [46]), but this appears to run into problems related to the nonlinearlower bounds for the Touch Problem in [2]. The proof gives w0(n) = O(w(n) + n)and R0(n) = O(R(n) log s(n)). For �-acc0, the charges in the rightward moves arebounded by a constant times Plog bj=0 �(b=2j). For � = �d this sum is bounded by2d�d(b), and this gives a constant-factor overhead on �d-acc. However, for � = �logthere is an extra factor of log b.Corollary 4.2. A BM that violates the validity conditions on passes can besimulated linearly by a BM that observes the restrictions.We digress brie
y to show that allowing simultaneous read and overwrite on themain tape does not alter the power of the model, and that the convention on B givesno power other than shu�e. A two-input Mealy Machine (2MM) is essentially thesame as a 2-input GST with � : (Q n F )� �2 ! ��.15



Proposition 4.3. Let M be a BM with the following extension to the bu�ermechanism: in a put step, M may invoke any 2MM S that takes one input from thebu�er and the other from the main tape, writes to the main tape, and halts whenthe bu�er is exhausted. Then M can be simulated by a BM M 0 with bu�er at aconstant-factor overhead in all measures, for all �.Proof. To simulate the put by a 2MM S,M 0 copies the bu�er to a separate trackso as to interleave characters with the segment of the main tape ofM concerned. ThenM 0 invokes a GST S 0 that takes input symbols in twos and simulates S. Finally M 0copies the output of S 0 from its own bu�er over the main tape segment of M .Proposition 4.4. At a constant-factor overhead in all measures, for all �, a BMM can be simulated by a BM M 0 that lacks B but has the following implementationof shu�e: M 0 has the above bu�er extension, but restricted to the �xed 2MM whichinterleaves the symbols of its two input strings.Proof. Let �0 consist of � together with all ordered pairs of characters from �;then the �xed 2MM can be regarded as mapping �� � �� onto �0 �. Now considerany GST S of M that can output blanks. Let S 0 write a dummy character @ inplace of B, and let M 0 shu�e the output of S 0 with the content of the target blockof the main tape. Finally M 0 executes a pass which, for all c1; c2 2 � with c1 6= @,translates (c1;@) to c1 and (c1; c2) to c2.Besides the tracking property, our further simulations require something which,again for want of a standard mathematical name, we call the following:Definition 4.1. A memory access cost function � has the tape compression propertyif (8� > 0)(9� > 0)(81a)�(d�ae) < ��(a).Lemma 4.5. For any d � 1, the memory cost function �d has the tape compres-sion property. In consequence, Plog2 bi=0 �d(db=2ie) = O(�d(b)).Proof. Take � < �d. If � of the form 1=2k satis�es (a) for � := 1=2, then byelementary calculation, for all but �nitely many b, Plog2 bi=0 �(db=2ie) � 2k�(b).Lemma 4.5 promises a constant-factor overhead on the memory-access chargesfor \staircases" under �d, whereas an extra log factor can arise under �log. Thesimulation of random access by tree access in the next lemma is the lone obstacleto extending the results that follow to �log. Since any function �(m) with the tapecompression property must be 
[m�] for some � > 0, this pretty much narrows the�eld to the functions �d: To picture the tree we write Up, Down Left, and DownRight in place of the moves ba=2c, 2a, and 2a+1 by M 0.Lemma 4.6. For every BM M with address mechanism, there is a basic BM M 0such that for all d � 1, M 0 simulates M linearly under �d.Proof. We need to show how M 0 simulates a load step of M that loads anaddress a1 from cells [a0 : : : b0] of the main tape. Let m := ja0 � b0j+ 1. M 0 makesone spare track for operations on addresses. M 0 �rst pulls a1 in binary to the leftend of this track. By Theorem 4.1 we may suppose that this pull is valid. The cost isproportional to the charge of �(a0)+m+�(b0) toM for the load. By our conventionon addresses, the least signi�cant bit of a1 is leftmost. In this pull, M 0 replaces themost signi�cant `1' bit of a1 by a `$' endmarker. M 0 then moves Up until its cell-ahead reaches cell 1. With k := dlog2 a0e, the total memory access charges so farare proportional to Pki=0 �(2i), which is bounded by a �xed constant times �(a0) by16



Lemma 4.5. Since the number of bits in a1 is bounded by Cm, where C dependsonly on M , the work done by M 0 is bounded by 2Cm+ k. Since k < �(a0), we canignore k. Hence the �-time charged so far to M 0 is bounded by a �xed constant ofthat charged to M for the load.M 0 now executes a rightward pull that copies all but the bit b before the $endmarker, b being the second most signi�cant bit of a1. This pull is not valid owingto an overlap on the fresh track, but by Corollary 4.2 we may suppose that it isvalid. If b = 0 M 0 moves Down Left, while if b = 1, M 0 moves Down Right. M 0then executes a put that copies the remainder of a1 (plus the $) rightward from thenew location a. M 0 iterates this process until all bits of a1 are exhausted. At theend, a = a1. Because of the tracking, M 0 moves Down Left once more so that itscans cell 2a, which is cell a of the main track. This completes the simulated load.Recalling ja1j � Cm, and taking l := dlog2(a1)e, the �-time for this second part isbounded by a constant timeslXi=0 �(2i) + 2(m� i) + �(2i + 2(m� i)):(3)By Lemma 4.5, the total memory access charges in this sum are bounded by a �xedconstant times �(a1). The work to simulate the load is proportional to m � l, that is,to (log a1)2, which causes an extra log factor over the work by M in the load. Thekey point, however, is that since M loaded the address a1, M will be charged �d(a1)on the next pass, which is asymptotically greater than (loga1)2. Hence the �d-timeof M 0 stays proportional to the �d-time of M .Corollary 4.7. For every BM M with both the address and bu�er mechanism,we can �nd a basic BM M 0, and a BM M 00 with the limited bu�er mechanism, suchthat for any d � 1, M 0 and M 00 simulate M linearly under �d.Proof. The constructions of Lemma 4.6 and Theorem 4.1 yield M 0. For M 00, wemay �rst suppose thatM is modi�ed so that whenever M loads an address a, it �rststores a spare copy of a at the left end of a special track. Now consider a pass of typeB0 or 0B made by M . M 00 invokes a GST that remembers cell 0 and writes 1 to theaddress tape. Then with a0 = 1,M 00 simulates the pass by a Ba0R or Ra0B move. M 00then recovers the original address a by loading it from the track. Thus far M 00 is aBM with address and bu�er that doesn't use its cell 0 head. The method of Lemma4.6 then removes the address mechanism in a way una�ected by the presence of thebu�er.We remark that Lemma 4.6 and Theorem 4.1 apply to di�erent kinds of passby M , with two exceptions: First, pulling 1 to the left end of the track in the proofof Lemma 4.6 may require simulating a bu�er. However, this can be accountedagainst the cost to M for the load. Second, the bu�er is needed for overlaps inthe further processing of a1. However, this is needed for at most O(log log(a1))-many passes, each of which involves O(log a1) work, and these costs are dominatedby the time to process a1 itself. Hence in Corollary 4.7 the bounds from Lemma4.6 and Theorem 4.1 are additive rather than compounded, and with � = �d weobtain for M 0, �d-acc0(n) = O(�d-acc(n)), �log-acc 0(n) = O(�log-acc(n) log s(n)),w0(n) = O(w(n) + n +R(n) log s(n)), and R0(n) = O(R(n) log s(n)).Lemma 4.8. For every RAM-BM M , we can �nd a BM M 0 with the addressand bu�er mechanisms, such that for any memory cost function � that is 
(logn),M 0 simulates M linearly under �. 17



Proof. First, M 0 makes separate tracks for the address tapes and worktapes ofM , and also for storing the locations of the heads on these tapes of M . WheneverM begins a block move S [a1 : : : b1] into [a2 : : : b2], M 0 �rst computes the signs ofb1 � a1 and b2 � a2, and remembers them in its �nite control. M 0 then loads thetrue address of cell a1 on the main tape, and pulls the data through a copy of Slabeled RaB or LaB|depending on sign|to the bu�er. Then M 0 loads 0 to accessa2, loads a2 itself, and �nally copies the bu�er right or left from cell a2. Since � is
(logn), the �-time charged to M 0 is bounded by a �xed constant times the chargeof 1+ jb1� a1j+maxf�(a1); �(a2); �(b1); �(b2) g incurred by M . Similarly the �-acccharge toM 0 has the same order as that toM , though if jb1�a1j < log(b1), this maynot be true of the work.If M executes a standard RAM-TM transition, the cost toM is 1+�(a1)+�(c),where a1 is the cell addressed on the main tape and c is the greatest extent of anaddress tape or worktape head ofM . M 0 �rst loads a1 and writes the symbol writtenby M into location a1 with a unit put. Then M 0 loads each of the addresses for theother tapes ofM in turn, updates each one with a unit pull and a unit put, remembersthe head movement on that tape, and increments or decrements the correspondingaddress accordingly. The time charge for updating the other tapes stays within a�xed constant factor of �(c).Remark: It would be nice to have the last simulation work when the charge toM for a RAM-TM transition is just 1 + �(a1). The di�culty is that even thoughja1j < a1, it need not hold that c < a1, since M might be using a lot of space on itsworktapes. The issue appears to come down to whether a multitape TM running intime t can be simulated by a BM in �-time O(t). We discuss related open problemsin Section 8.Lemma 4.9. A �nger BM can be simulated by a BM with address and bu�ermechanisms, with the same bounds as in Lemma 4.8.Proof. M 0 stores and updates the �nitely-many markers on separate tracks ina similar manner to the last proof. The extra work per block move simulated towrite or load these addresses is O(log s(n)) as before. Both here and in Lemma 4.8,R0(n) = O(R(n)).Theorem 4.10. Let M be a RAM-BM, a �nger BM, or a BM with the addressand/or bu�er mechanisms. Then we can �nd a BM M 0 that simulates M linearlyunder any �d.Proof. This follows by concatenating the constructions of the last two lemmaswith that of Corollary 4.7. Since R0(n) = O(R(n)) in the former, the bounds onwork and pass count remain w0(n) = O(w(n) + n + R(n) log s(n)) and R0(n) =O(R(n) log s(n)).This completes the simulation of most of the richer forms of the model by thebasic BM, with a constant factor overhead in �d-time . By similar means, one canreduce the number of markers in a �nger BM all the way to four. In going up tothe richer forms, we encounter the problem that the �nger BM and RAM-BM havepre-set block boundaries for input, and if the strict boundary condition is enforced,also for output. 18



4.2. Simulations for pre-set block boundaries. The simulation in Theorem4.1 does not make M 0 self-delimiting because it does not predetermine the cell b 2[a0 : : : a1] in which its own simulating GST S 0 will exit. We could try forcing S 0 toread all of [a0 : : : a1], but part (a) of the proof of Theorem 4.1 had a1 := 2a0, and ife.g. �(a0) = pa0 and b � a is small, M 0 would do much more work than it should.However, if one chooses the initial increment e to be too small in trying a1 := a0+ e,a2 := a0 + 2e, a3 := a0 + 4e : : :, the sum of the �-access charges may outstrip thework. To balance the charges we take e := �(a0). This requires M 0 to calculate �(a)dynamically during its computation, and involves a concept of \time-constructiblefunction" similar to that de�ned for Turing machines in [36].Definition 4.2. Let � be a memory cost function, and let t : N ! N be anyfunction. Then t is �-time constructible if t(n) is computable in binary notation bya BM M in �-time O(t(n)).Note that the time is in terms of n, not the length of n. We use this de�nition fort = � itself, in saying that � is �-time constructible. The following takes d to berational because there are real numbers d � 1 such that no computable functionwhatever gives dm1=de to within a factor of 2 for all m. In this section it would su�ceto estimate dm1=de by some binary number of bit-length jmj=d, but we need the proofidea of incrementing �ngers and the exact calculation of �d(m) for later reference.Lemma 4.11. For any rational d � 1, the memory cost function �d is �d-timeconstructible by a �nger BM that observes the strict boundary condition.Proof. For any rational d � 1, the function dm1=de is computable in polynomialtime, hence in time (logm)O(1) by a single-tape TM T . The �nger BM M simulatesthe tape of T beginning in cell 2, and tracks the head of T with its \main marker"m1. M also uses a character @ which is combined into others like so: if T scans somecharacter c in cell a, M scans (c;@). M then uses two unit block moves S[a : : :a]into [0 : : :0] and S[0 : : :0] into [a : : :a] to read and write what T does. It remains tosimulate the head moves by T .To picture a tree we again say Up, Down Left, and Down Right in place ofmoves from a to ba=2c, 2a, or 2a+1. M can test whether a is a left or right child bymoving Up and Down Left and seeing whether the character scanned contains the@. If T moves right and a is a left child, M then intersperses moves Up and DownRight with unit block moves to and from cell 0 to change (c;@) back to c and place@ into cell a+1. If instead a is a right child, M introduces a new marker m5 into cell1, and writes ^ there. M moves m5 Down Left to count how far Up m1 has to gountil it reaches either a left child or the root (i.e., cell 1). By unit block moves, Mcarries @ along with m1, and by assigning a �nger to marker m5, can test whetherm5 is on cell 1. If m1 reaches a left child, M moves it Up, Down Right, and thenDown Left until m5 comes back to the ^. Then m1 is in cell a+1. If m1 hits theroot marked by ^, then a had the form 2k � 1, and so M moves m1 Down Left ktimes. The procedure for decrementing m1 when T moves left is similar, with Rightand Left reversed.For each step by T , the work by M is proportional to log a. By Lemma 4.5 for�d, the total memory-access charge for incrementing or decrementing a �nger in cella is O(�d(a)). Since a � (logm)O(1), the total �d-time for the simulation is still apolynomial in logm, and hence is o(�d(m)).This procedure can also be carried out on one of 2K-many tracks in a largermachine, computing a�2K instead of a�1 to follow head moves by T . The counting19



idea of the next lemma resembles the linear-size circuits constructed for 0-1 sortingin [55].Lemma 4.12. The function #a(x), which gives the number of occurrences of `a'in a string x 2 f a; bg�, is computable in linear �1-time by a BM that observes thestrict boundary condition.Proof. The BM M operates two GSTs S1 and S2 that read bits of x in pairs.Each records the parity p of the number of pairs `ab' or `ba' it has seen thus far, andif jxj is odd, each behaves as though the input were xb. S1 outputs the �nal value ofp to a second track. S2 makes the following translationsaa 7! a bb 7! b ab,ba 7! �b if p = 0a if p = 1to form a string x0 such that jx0j = djxj=2e. Then #a(x) = 2#a(x0) + p. This isiterated until no a's are left in x, at which point the bits p combine to form #a(x) inbinary notation with the least signi�cant bit �rst.M begins with one markerm1 in cell n�1. We �rst note that even setting up thetwo tracks requires a trick to get two more markers to cell n�1. M starts a markerm5 in cell 1 and moves it Down Left or Down Right according to whether m1 ison a left or right child. When m1 reaches cell 1, m5 records n�1 in reverse binarynotation. Then M starts moving m5 back up while ferrying m2; m3 along with m1.ThenM places m2 andm3 into cells 2n and 4n�1, and with reference to Example 2.1,executes (c 7! c@)[0 : : :n�1] into [2n : : :4n�1] and copy [2n : : :4n�1] into [0 : : :2n�1].This also uses one increment and decrement of a marker as in the proof of Lemma4.11.M uses a new marker m6 to locate where the next bit p will go, incrementingm6 after running S1. In running S2, always jS2(x0)j = djx0j=2e, and by appropriateparity tests using its markers m1, m2, and m3, M can place its �ngers so that allthese moves are valid and meet the strict boundary condition. For the kth iterationby S2, these three markers are all on cells with addresses lower than n=2k�2, andeven if each needs to be incremented by 1 with the help of m5, the �1 charges forsimulating the iteration still total less than a �xed constant times n=2k�2. This alsosubsumes the O(log2 n) charge for updating m6. Hence the sum over all iterations isstill O(n).Theorem 4.13. For every BM M and rational d � 1, we can �nd a �nger BMM 0 that simulates M linearly under �d and observes the strict boundary condition.Proof. As in the proof of Theorem 4.1, let C be the maximum number of charac-ters output in any GST transition of M , and let K := log2(2C + 6). M 0 �rst makesN := 2K tracks, by using the last proof's modi�cation of the procedure of Example2.1. Besides 2C-many tracks for handling the output of passes and one track for themain tape of M , M 0 uses one track to record the current address a of M with theleast signi�cant bit rightmost , one to compute and store e := �d(a) via Lemma 4.11,one to store addresses aj below, two for Lemma 4.12, and one for other arithmetic onaddresses. M 0 uses eight markers. Marker m1 occupies cell Na to record the currentaddress a ofM . A move to ba=2c byM is handled by moving m1 Up K+1 times andDown Left K times, and other moves are handled similarly. Meanwhile, markerm6stays on the last bit of the stored address a, and updating a requires only one markerincrement or decrement and O(log log a) work overall. From here on we suppress thedistinction between a and Na and other details that are the same as in Theorem 4.1.20



First consider a rightward pull by M that starts a GST S from cell a0 on itsmain tape. M 0 has already stored a0 in binary, and computes e := �d(a0). Since�d(a0) � a0, e �ts to the left of marker m6 in cell jaj. M 0 then places m3 into celljaj+1 and m4 into cell 2jaj+1, and executes two block moves from [jaj : : :0] and[0 : : : jaj] into [jaj+1 : : :2jaj+1] that shu�e a0 and e on their respective tracks withthe least signi�cant bits aligned and leftmost. M 0 then executes add [jaj+1 : : :2jaj+1]into [jaj : : :0] to produce a1. A �nal carry that would make ja1j > ja0j and cause acrash can be caught and remembered in the �nite control ofM 0 by running a \dummyaddition" �rst, and then marking cell 2jaj+1 to suppress its output by the GST add .Then M 0 \walks" marker m2 out to cell a1 by using m3 to read the value of a1 andm5 to increment m3.Next M 0 walks m4 out to cell e (i.e., Ne), and keeps m3 in cell 0. Let S 0 bea copy of S which pads the output of each transition out to length exactly C, andwhich sends its output z to the C-many tracks used as \pull bays." S 0 is also codedso that if S exits, S 0 records that fact and writes @C in each transition thereafter.ThenM 0 can execute S 0[a1 : : : a2] into [0 : : :e] in compliance with the strict boundarycondition. NowM 0 can calculate the number i of non-@ symbols in z by the methodof Lemma 4.12. To write the true output y1 = S[a0 : : : a1] and ensure the block moveis valid, M 0 must still use the pull bays to hold y1, so M 0 calculates i0 := di=Ce(actually, i0 = Ndi=Ce). Next M walks m4 out to cell i0, and can �nally simulate the�rst segment of the pass by S by executing S[a1 : : : a2] into [0 : : : i0].If S exited in [a0 : : : a1],M 0 need only transfer the output y1 of the last pass ontothe left end of the main track. This can be done in two block moves after locatingmarkers into cells i0, Ci0, and 2Ci0. Else, M 0 transfers y1 instead to the put bays andassigns a new marker m7 to the \stitch point" in the put bays for the next segmentof y. The �nal marker m8 goes to cell a1 and is used for the left-end of the readblock in all succeeding segments. In three block moves, M 0 can both double e to2e and compute a2 := a0 + 2e using add as before. If and when the current valueof e has length greater than ja0j, M 0 reassigns marker m6 to the end of e ratherthan a0, incrementing it each time e is doubled. Then M 0 walks m2 out to cell a2and, remembering the state q of S where the previous segment left o�, producesy2 := Sq[a1+1 : : :a2] by the same counting method as before. To stitch y2 into placeon the put bays,M 0 converts the current location of m7 into a numeric value k, addsit to i := jy2j, and �nds cells i+ k and 2i+ k for two block copies. In case S did notexit in [a1 : : : a2], m7 is moved to cell i+ k, m8 to a2, m2 to a3 := a0 + 4e, and theprocess is repeated.Let b be the actual cell in which S exits, and let j � 0 be such that aj < b � aj+1.Then the �d-time charged to M for the pull is at leasttj := �d(a0) + �d(a0 + 2j�1e) + 2j�1e � 2e+ 2j�1e:(4)(For j = 0, read \2j�1" as zero.) By Lemma 4.5, the memory access charge forwalking a marker out to cell aj is bounded by a constant (depending only on d) times�d(aj). The charges for the marker arithmetic come to a polynomial in log aj , andthe charges for stitching segments yj into place stay bounded by the work performedby M 0. Hence the �d-time charged to M 0 is bounded by a constant timesuj := �d(a0) + jXi=0 �d(a0 + 2ie) + e + j�1Xi=0 2ie:(5)Then uj � e+Pji=0 �d(2i+1a0) + 2je � 2j+2e+ 2je � 10tj .21



For a leftward pull step by M , M 0 uses the same choice of e := �d(a0). Ife > a0=2, then M 0 just splits [0 : : :a0] into halves as in the (LaB) part of the proof ofTheorem 4.1. Else, M 0 proceeds as before with aj+1 := a0 � 2je, and checks at eachstage whether aj+1 � a0=2 so that the next simulated pull will be valid. If not, thenthe amount of work done by M thus far, namely 2j�1e, is at least a0=4. Thus M 0can copy all of [aj : : :0] to another part of the tape and �nish it o� while remainingwithin a constant factor of the charge to M . The remaining bounds are much thesame as those for a rightward pull above.For a rightward or leftward put, marker m1 is kept at the current address a, cell0 is remembered in the �nite control, and the procedure for a rightward pull is begunwith a0 = 1 and m8 assigned there. Here e = 1, and the rest is a combination of the(BaR) or (BaL) parts of the proof of Theorem 4.1 to ensure validity, and the aboveways to meet the strict boundary condition in all block moves.Remarks: This simulation can be made uniform by providing d as a separateinput. It can also be done using 8 tracks rather than 2C + 6, though even takinge := �d(a0)=C does not guarantee that the third stage of a rightward pull, whichreads [a0 + 2e; a0 + 4e], will be valid. The �x is �rst to write the strings yj furtherrightward on the tape, then assemble them at the left end. Theorem 4.13 preservesw(n)+�d-acc(n) up to constant factors, but doesn't do so for either w(n) or �d-acc(n)separately. When d < 1, the case b = a gives a worst-case extra work of a1=d, whilethe case of b = 2a gives a total memory access charge of roughly 2(log a)(d � 1)=dtimes �d(a). This translates into w0(n) = O(w(n)+n+R(n)s(n)1=d) and �d-acc 0(n) =O(�d-acc(n) log s(n)). However, when d = 1, both w and �1-acc are preserved up toa factor of 10N . Allowing that �d(a0) can be estimated to within a constant factor inO(log a0) block moves, the pass count still carries R0(n) = O(R(n) log2 s(n)) becauseeach movement in walking a marker to aj adds 1 to R0. The following shows sometechnical improvements of having addressing instead of tree access.Theorem 4.14. Let � = �log or � = �d with d rational. Then every BM M canbe simulated linearly under � by a RAM-BM M 0 with address loading that observesthe strict boundary condition.Proof. For �d the simulation of the �nger BM M 0 from the last proof by aRAM-BM is clear|the RAM-BM can even use RAM-TM steps for the address arith-metic. For �log, the point is that M 0 can take e := ja0j, and we may presume e isalready stored. The calculated quantities aj can be loaded in one block move. (Us-ing RAM-TM steps to write them would incur �log access charges proportional tolog a0 log log a0.) The tradeo� argument of the proof of Theorem 4.13 works even for�log, and the above takes care of a constant-factor bound on the other steps in thesimulation. This also gives R0(n) = O(R(n) log s(n)).The tradeo� method of Theorem 4.13 seems also to be needed for the following\tape-reduction theorem."Theorem 4.15. For every rational d � 1, a multitape BM M can be simulatedlinearly in �d-time by a one-tape BM M 0.Proof. Suppose thatM uses k tapes, each with its own bu�er, and GSTs S thatproduce k output strings as well as read k inputs. We �rst modifyM to a machineM 0that has k main tracks, k address tracks, one \input track," and one \bu�er track."For any pass byM with S,M 0 will interleave the k inputs on the input track, do oneseparate pull for each of the k outputs of S, and interleave the outputs on its bu�er22



track. When M subsequently invokes a k-input GST T to empty its bu�ers, M 0 usesa 1-tape GST that simulates T on the bu�er track, invoking it k times to write eachof the k outputs of T to their destinations on the main tracks.It remains only to show how M 0 marks the portions of the inputs to interleave.As in the proof of Theorem 4.13, there is the di�culty of not knowing in advancehow long S will run on its k inputs. The solution is the same. M 0 �rst calculatesthe maximum aj of the addresses a1; : : : ; ak on its address tracks, and then calculatese := �d(aj). For each i, 1 � i � k, M 0 drops an endmarker into cell ai � e accordingto the direction on main track i. Then M 0 copies only the marked-o� portions of thetracks, putting those on its input track, and simulates the one-tape version S1 of S.If S1 exits within that portion, then M 0 continues as M 0 does. If S1 does not exitwithin that portion, M 0 tries again with ai � 2e, ai � 4e; : : : until it does. The samecalculation as in Theorem 4.13, plus the observation that if the direction on track jis leftward then no track uses an address greater than 2aj , completes the proof.Finally we may restate the Main Robustness Theorem 3.1 in a somewhat strongerform:Theorem 4.16. For any rational d � 1, all of the models de�ned in Section 3are equivalent, linearly in �d-time, to a BM in reduced form that is self-delimitingwith `$' as its only endmarker.Proof. This is accomplished by Theorems 2.1 through 4.15. The proceduresof Lemmas 4.13 and 4.6 and Theorem 4.1 are self-delimiting, and need only oneendmarker $. The trick of writing $ on special tracks into the cell immediately leftor right of the addressed cell a allows $ to survive the proof of Theorem 2.1 withoutbeing \tupled" into the characters c0, c1, or ca.With all this said and veri�ed, we feel justi�ed in claiming that there is onesalient Block Machine model, and that the formulations given here are natural. Thebasic BM is the tightest for investigating the structure of computations, and helpsthe lower bound technique we suggest in Section 8. The richer forms make it easierto show that certain functions do belong to D�dTIME[t(n)].5. Linear Speed-Up and E�ciency. The following \linear speed-up" theo-rem shrinks the constants in all the above simulations, at the usual penalty in alphabetsize. First we give a precise de�nition:Definition 5.1. The linear speed -up property for a model of computation and mea-sure of time complexity states that for every machine M with running time t(n), andevery � > 0, there is a machine M 0 that simulates M and runs in time � � t(n)+O(n):In the corresponding de�nition for Turing machines in [36], the additive O(n) termis n+1 and is used to read the input. For the DTM, time O(n) properly containstime n+1, while for the NTM these are equal [13]. For the BM under cost function�, the O(n) term is n+ �(n).Theorem 5.1. With respect to any unbounded memory cost function � that hasthe tape compression property, all of the BM variants described in Sections 2 and 3have the linear speed-up property.Proof. Let the BM M and � > 0 be given. The BM M 0 uses two tracks tosimulate the main tape of M . Let � in the tape compression property be such thatfor almost all n, �(�n) � (�=12C) � �(n). Here C is a constant that depends only on23



M . Let k := d1=2�e, let `@' stand for the blank in �, and let �0 := �k [fB g. M 0 usesB only to handle its own two tracks. We describe M 0 as though it has a bu�er; theconstant C absorbs the overhead for simulating one ifM 0 lacks the bu�er mechanism.On any input x of length n,M 0 �rst spends O(n) time units on a pull step that writesx into dn=ke-many characters over the compressed alphabet �0 on the main track.Thereafter, M 0 simulates M with compressed tapes. In any pass by M that writesoutput to the main tape, M 0 writes the compressed output to the alternate track.M 0 then uses the pattern of @ symbols in each compressed output character to maskthe elements of each main track character that should not be overwritten, sendingthe combined output to the bu�er. One more pass writes the result back to the maintape. If the cost toM for the pass was �(a) + jb� aj+�(b), the cost to M 0, allowingfor the tracking, is no more than3 [�(2da=ke) + (2=d)jb� aj+ 2 + �(2db=ke)]� (�=2)�(a) + (�=2)jb� aj+ 6 + (�=2)�(b):The `+2' and `+6' allow for an extra cell at either end of the compressed block. Since� is unbounded, we have �(a) � (�=2) + 6 � � � �(a) for all but �nitely many a. Themain technical di�culty of the standard proof for TMs is averted because � absorbsany time that M might spend moving back and forth across block boundaries. Thecompression by a factor of � holds everywhere except for cells 1; : : : ; m on the maintape, where m is least such that �(m) � 12=�, but M 0 can keep the content of thesecells in its �nite control. The remaining details are left to the reader. For BMs withaddress tapes, we may suppose that the addresses are written in a machine-dependentradix rather than in binary.Corollary 5.2. For all of the simulations in Theorems 2.1{4.15, and all � > 0:(a) If M runs in �d-time t(n) = !(n), then M 0 can be constructed to run in�d-time �t(n) for all but �nitely many n:(b) If M runs in �d-time O(n), then M 0 can be made to run in �d-time (1+ �)n.Mostly because of Lemma 4.6 and Theorem 4.13, the above simulations do not guar-antee constant factor overheads in either w or �-acc. They do, however, preserve�-e�ciency.Proposition 5.3. For all of the simulations of a machine M by a machine M 0in Theorems 2.1{4.15, and memory cost functions � they hold for, if M is �-e�cientthen M 0 is also �-e�cient.Proof. Let K1 be the constant from the simulation ofM byM 0, and let K2 comefrom De�nition 2.9(a) for M . Then for all but �nitely many inputs x, we have�-time(M 0; x) � K1(�-time(M;x)+ jxj) � K1(K2(w(M;x)+ jxj) � 2K1K2w(M 0; x):The last inequality follows because every simulation has w(M 0; x) � w(M;x) andw(M 0; x) � jxj. Hence M 0 is �-e�cient.So long as we adopt the convention that every function takes work at least n+1 tocompute, we can state:Corollary 5.4. For any memory cost function �d, with d � 1 and rational, thenotion of a language or function being memory e�cient under �d does not depend onthe choice among the above variants of the BM model.24



We do not have analogous results for parsimony. However, the above allows usto conclude that for d = 1; 2; 3; : : :, memory-e�ciency under �d is a fundamentalproperty of languages or functions. Likewise we have a robust notion of the classD�dTIME[t(n)] of functions computable in �d-time t(n), for any time bound t(n) � n.The next section shows that for any �xed d, the classes D�dTIME[t(n)] form a tighthierarchy as the time function t varies.6. Word Problems and Universal Simulation. We use a simple repre-sentation of a list ~x := (x1; x2; : : : ; xm) of nonempty strings in �� by the stringx1# : : :#xm#, where # =2 �. More precisely, we make the last symbol c of each ele-ment a pair (c;#) so as to separate elements without adding space, and also use paircharacters (c;@) or (c; $) to mark selected elements. The size of the list is m, whilethe bit-length of the list is n :=Pmi=1 jxij. We let r stand for maxf jxij : 1 � i � m g.Following [16] we call the list normal if the strings xi all have length r. We numberlists beginning with x1 to emphasize that the xi are not characters.Lemma 6.1.(a) The function mark(~x ; y), which marks all occurrences of the string y in thenormal list ~x , belongs to TLIN.(b) The function shu�e(~x ; ~y ), which is de�ned for normal lists ~x :=(x1; : : : ; xm) and ~y := (y1; : : : ; ym) of the same length and element size rto be (x1; y1; x2; y2; : : : ; xm; ym), belongs to TLIN. Here r as well as m mayvary.Remark: Even if the lists ~x and ~y are not normal, mark and shu�e can be computedin linear �1-time so long as they are balanced in the sense that (9k)(8i)2k�1 < jxij �2k. This is because a balanced list can be padded out to a normal list in linear�1-time (we do not give the details here), and then the padding can be removed. Tonormalize an unbalanced list may expand the bit-length quadratically, and we do notknow how to compute shu�e in linear �1-time for general lists.Proof. (a) Let r be the element size of the normal list ~x . If jyj 6= r, then there isnothing to do. Else, the BM M uses the idea of \recursive doubling" (cf. the sectionon vector machines in [6]) to produce yk, where k = dlog2me. This time is linear as afunction of n = rm. Then M interleaves ~x and yk on a separate track, and a singlepass that checks for matches between # signs marks all the occurrences of y in ~x (ifany).(b) Suppose m is even. M �rst uses two passes to divide ~x into the \odd list"x1@rx3@r : : :xm�1@r and the \even list" @rx2@rx4@r : : :@rxm. Single passes thenconvert these to x1@3rx3@3r : : : xm�1@3r and @2rx2@3rx4@3r : : :@3rxm. A pull stepthat writes the second over the �rst but translates @ to B then produces ~x 0 :=x1@rx2@rx3@r : : :@rxm. If m is odd then the \odd list" is x1@rx3@r : : :@rxm andthe \even list" is @rx2@rx4@r : : :@rxm�1@r, but the �nal result ~x 0 is the same. Bya similar process M converts ~y to ~y 0 := @ry1@ry2 : : :@rym@r. Writing ~y 0 on top of~x 0 and translating @ to B then yields shu�e(~x ; ~y ). This requires only a constantnumber of passes.A monoid is a set H together with a binary operation � de�ned on H , such that� is associative and H has an element that is both a right and a left identity for �.We �x attention on the following representation of the monoid of transformationsMS of a �nite-state machine S. MS acts on the state set Q of S and is generatedby the functions f gc : c 2 � g de�ned by gc(q) = �(q; c) for all q 2 Q, by letting25



� be composition of maps on Q, and closing out the gc under �. Here we ignorethe output function � of S, intending to use it once the trajectory of states S enterson an argument z is computed. We also remark that MS need not contain theidentity mapping on Q, though it does no harm for us to adjoin it. By using knowndecomposition theorems for �nite transducers [47, 32, 48], we could restrict attentionto the cases where each gc either is the identity on Q or identi�es two states (a \resetmachine") or each gc is a permutation of Q and MS is a group (a \permutationmachine"; cf. [17]). These points do not matter here. We encode each state in Qas a binary string of some �xed length k, and encode each element g of MS bythe list q#g(q)# : : : over all q 2 Q. Without loss of generality we extend Q toQ0 := f 0; : : : ; 2k�1 g and make g the identity on elements q � n.The word problem for monoids is: given a list ~g := gngn�1 � � �g2g1 of elements ofthe monoid, not necessarily distinct, compute the representation of gn �gn�1� : : :�g2�g1. Let us call the following the trajectory problem: given ~g and some w 2 f 0; 1 gk,compute the n-tuple (g1(w); g2(g1(w)); : : : ; ~g (w)). The basic idea of the following isthat \parallel pre�x sum" is �1-e�cient on a BM.Lemma 6.2. There is a �xed BM M that, for any size parameter k, solves theword and trajectory problems for monoids acting on f 0; 1 gk in �1-time O(n � k2k).In particular, these problems for any �xed �nite monoid belong to TLIN.Proof. Let T be a TM which, for any k, composes two mappings h1; h2 :f 0; 1 gk ! f 0; 1 gk using the above representation. For ease of visualization, wemake T a single-tape TM which on any input of the form h2#h1# uses only the2k � 2k cells occupied by the input as workspace, and which outputs h2 � h1# shuf-
ed with `@' symbols so that the output has the same length as the input. We alsoprogram T so that on input h#, T leaves h unchanged. The running time t(k) of Tdepends only on k and is O(k2k)2. As in Example 2.4, we can create a GST S whoseinput alphabet is the ID alphabet of T , such that for any nonhalting ID I of T , S(I)is the unique ID J such that I `T J:The BM M operates as follows on input ~g := gn#gn�1# � � �#g2#g1#. It �rstsaves ~g in cells [(nk � 2k + 1) : : :(2nk � 2k)] of a separate storage track. We maysuppose that n is even; if n is odd, gn is left untouched by the current phase ofthe recursion. M �rst sets up the initial ID of T on successive pairs of maps, viz.^q0gn#gn�1# ^ q0gn�2#gn�3# � � � ^q0g2#g1#. Then M invokes S in repeated left-to-right pulls, until all simulated computations by T have halted. Then M erases allthe @s, leaving (gn � gn�1)#(gn�2 � gn�3)# � � �(g2 � g1)# on the tape. The number ofsweeps is just t(k), and hence the total �1-time of this phase is � 2t(k) � n = O(n):M copies this output to cells [((n=2)k � 2k + 1) : : :(nk � 2k)] of the storage track,and then repeats the process, until the last phase leaves h := gn � gn�1 � : : : � g2 � g1on the tape. Since the length of the input halves after each phase, the total �1-timeis still O(n). This �nishes the word problem.To solve the trajectory problem, M uses the stored intermediate results to re-cover the path (w; g1(w); g2(g1(w)); : : : ; h(w)) =: (w;w1; w2; : : : ; wn) of the givenw 2 f 0; 1 gk. Arguing inductively from the base case (w; h(w)), we may supposethat M has just �nished computing the path (w;w2; w4; : : : ; wn�2; wn). M shu�esthis with the string g1#g3#g5# : : :#gn�1 and then simulates in the above manner aTM T 0 that given a g and a w computes g(w). All this takes �1-time O(n).The following presupposes that all BMs M are described in such a way that thealphabet �M of M can be represented by a uniform code over f 0; 1 g�: This code is26



extended to represent monoids M as described above.Theorem 6.3. There is a BM MU and a computable function code such that forany BM M and rational d � 1, there is a constant K such that for all inputs x to M ,MU on input (code(M); code(x); d) simulates M(x) within �d-time K��d-time(M;x).Proof. MU uses the alphabet �U := f 0; 1;@; $; (0;#); (1;#); (@;#);�; B g. ByTheorem 2.1, we may suppose that M has a single GST S = (Q;�M ;�M ; �; �; s0).Let k := dlog2 j�M je, and let l be the least integer above log2jQj that is a multiple ofk. The code function on strings codes each c 2 �M by a 0-1 string of length k, exceptthat the last bit of code(c) is combined with # and B is coded by @k�1(@;#).The monoidM of transformations of S is encoded by a k-tuple of elements of theform code(c)code(gc) over all c 2 �M . Here code(gc) is as described before Lemma 6.2.Dummy states are added toQ so that code(gc) has length exactly 2l�2l; then code(M)has length exactly 2k(k+2l�2l). Let C be the maximum number of symbols written inany transition ofM . The code of S includes a string code(�) that gives the output foreach transition in �, padded out with @ symbols to length exactly C (i.e., length Ckunder code). The rest of the code of M lists the mode-change information for eachterminal state of S. Finally, the input x toM is represented by the string code(x) oflength jxj2k:MU has four tracks: one for the main tape of M , one for the code of M , onefor simulating passes by M , and one for scratchwork. MU uses d to compute e :=�d(a), and follows just the part of the proof of Theorem 4.13 that locates the cellsaj := a� 2j�1e, in order to drop $ characters there. This allows MU to pull o� fromits main track in cells [a : : :aj ] the code of the �rst m := 2j�1e=4k characters of thestring x that M reads in the pass being simulated. (If this pass is a put rather thana pull, then e = 1 and x is in cells [1 : : :2j�1]:) Then MU changes code(z) toz0 := (code(z0))j � (code(z1))j � � �(code(zm�1))j ;where m := jzj and j := 2k(1 + 2(l=k)2l). This can be done in linear �1-time byiterating the procedure for shu�e in Lemma 6.1(b). Now for each i, 0 � i � m� 1,the ith segment of z0 has the same length as code(M). Next, M uses \recursivedoubling" to change code(M) to (code(M))m. This also takes only O(m) time.Then the strings z0 and (code(M))m are interlaced on the scratchwork track. Asingle pass that matches the labels code(c) to segments of z0 then pulls out the wordgz := gz0 � gz1 � � �gzm�1 :M evaluates this word by the procedure of Lemma 6.2, yielding the encodedtrajectory s0 := (s0; s1; : : : ; sm) of S on input z. By a process similar to that of thelast paragraph, MU then aligns s0 with (code(�))m and interleaves them, so that asingle pass pulls out the output y of the trajectory. Then code(y) is written to themain tape, erasing the symbols � used for padding and translating @ to B. Theterminal state sm of the trajectory is matched against the list that gives the modeinformation for the next pass of M (Lemma 6.1a), and MU changes its mode and/orcurrent address accordingly.If the original pass by M cost �-time �(a) +m+ �(b), then the simulation takes�-time �(4a) + O(m) + �(4b). The constant in the `O(m)' depends only on M .We have described MU as though there were no validity restrictions on passes, butTheorems 4.1 and 2.1 convertMU to a basic BM while keeping the constant overheadon �d-time. 27



Remarks: This result implies that there is a �xed, �nite collection of GSTs thatform an e�cient \universal chipset." It might be interesting to explore this set ingreater detail. The constant on the `O(m)' is on the order of 22(l+k)(l + k). Weinquire whether there are other representations of �nite automata or their monoidsthat yield notably more e�cient o�-line simulations than the standard one used here.The universal simulation in Theorem 6.3 does not preserve w or �d-acc individuallybecause it uses the method of Theorem 4.13 to compensate for its lack of \foreknowl-edge" about where a given block move by M will exit. The simulation does preservememory-e�ciency, on account of Proposition 5.3. If, however, we suppose that M isalready self-delimiting in a way made transparent by code, then we obtain constantoverheads in both w and �-acc, and the simulation itself becomes independent of �.Theorem 6.4. There is a BM MU and a computable function code such thatfor any memory cost function � and any self-delimiting BM M , there is a constantK such that for all inputs x to M , MU on input x0 = (code(M); code(x)) simulatesM(x) with w(U; x0) � Kw(M;x) and �-acc(U; x0) � K�-acc(M;x).Proof. The function code is changed so that it encodes the endmarkers of M bystrings that begin with `$'. Then MU pulls o� the portion x of its main track up to$. The rest of the operation of MU is the same, and the bounds now require only thetracking property of �. (If the notion of \self-delimiting" is weakened as discussedbefore De�nition 3.3, then we can have MU �rst test whether a GST S exits on thesecond symbol of x.)To use these results for diagonalization, we need two preliminary lemmas. Recallthat a function t is �-time constructible if t(n) is computable in binary notation in�-time O(t(n)). Since all of n must be read, t must be 
(logn).Lemma 6.5. If a BM M is started on an input of length n, then any pass byM either takes �1-time O(n), or else no more than doubles the accumulated �-timebefore the pass.Proof. Any portion of the tape other than the input that is read in the pass musthave been previously written in some other pass or passes. (Technically, this uses ourstipulation that B is an endmarker for GSTs.) Thus the conclusion follows.Lemma 6.6. For any memory cost function � that is �-time constructible, aBM M can maintain a running total of its own �-time with only a constant-factorslowdown.Proof. To count the number m = jb � aj + 1 of transitions made by one of itsGST chips S in a given pass, a BM M can invoke a \dummy copy" of S that copiesthe content x of the cells up to where S exits to a fresh track, and then count jxjon that track by the O(m)-time procedure of Example 2.3. Then M invokes S itselfand continues operation as normal. Since � is 
(logn), the current address a can becopied and updated on a separate track in �-time O(�(a)). Also in a single pass, Mcan add a and m in �-time O(�(a) +m), and thus obtain b itself. M then calculates�(b) in �-time O(�(b)), and �nally adds k := �(a) +m + �(b) to its running total tof �-time. In case t is much longer than k, we want the work to be proportional tojkj, not to jtj. Standard \carry-save" techniques, or alternatively an argument thatlong carries cannot occur too often, su�ce for this.Theorem 6.7. Let d � 1 be rational, and let t1 and t2 be functions such that t2is �d-time constructible, and t1 is o(t2). Then D�TIME[t1] is properly contained inD�TIME[t2]. 28



Proof. The proof of Theorem 6.3 encoded BMs M over the alphabet �U , butlet code 0 re-code M over (00 [ 11)�. We build a BM MD that accepts a languageD 2 D�TIME[t2] nD�TIME[t1] as follows. MD has two extra tracks on which it logsits own �-time, as in Lemma 6.6. On any input x, MD �rst calculates n := jxj, andthen calculates t2(n) on its \clock track." Next, MD lets w be the maximal initialsegment of doubled bits of x. Since the set f code(M) :M is a BM g is recursive, MDcan decide whether w is the code 0 of a BMM in some time U(n). The device of usingw ensures that there are 1-many inputs in which any given BM M is presented toMD. If w is not a valid code, MD halts and rejects.If so, MD runs MU on input code(M) �code(x), except that after every pass byMU ,MD calculates the �-time of the pass and subtracts it from the total on its clocktape. If the total ever falls below t2(n)=2, MD halts and rejects. Otherwise, if thesimulation of M(x) �nishes before the clock \rings," MD rejects if M accepts, andaccepts if M rejects. By Lemma 6.5, the total �-time of MD never exceeds t2(n):Now let L be accepted by a BM ML that runs in �-time t1(n). Let K1 be theconstant overhead forMU to simulateML in Theorem 6.3, and let K2 be the overheadin Lemma 6.6. Since t1 is o(t2), there exists an x such that t2(jxj)=t1(jxj) > 4K1K2,the maximal initial segment w 2 (00[11)� of x is code0(ML), and U(jwj) < jxj. Thenthe simulation of ML(x) by MD �nishes within �-time (1=2)t2(jxj), and MD(x) 6=ML(x).It is natural to ask whether the classes D�dTIME[t(n)] also form a tight hierarchywhen t is held constant and d varies. The next section relates this to questions ofdeterminism versus nondeterminism.We observe �nally that the BM in its original, reduced, and bu�er forms all givethe same de�nition of D�logTIME[t(n)], and we have:Theorem 6.8. For any time functions t1; t2 such that t1(n) � n, t1 = o(t2), andt2 is �log-time constructible, D�logTIME[t1] is properly contained in D�logTIME[t2].Proof. Here the strict boundary condition is not an issue, but the e�cient univer-sal simulation still requires delimiting the read block in advance. The idea is to locatecells a1; a2; a3 : : : in the proof of Theorem 4.13 without addressing by the followingtrick. As in Theorem 4.14, the current address a0 is already stored and e = ja0j. In arightward pull, rather than add a0+e,M 0 puts a0 itself in binary rightward from cella0 on a separate track, appending an endmarker $. By \recursively doubling" thestring a0, M 0 can likewise delimit the cells a2; a3; : : : Leftward pull steps are handledsimilarly, and put steps do not need �log(a0) at all. This is all that is needed for thee�cient universal simulation. The remainder follows as above, since �log is �log-timeconstructible|in fact, �log(a) = jaj is computable in �1-time O(jaj).A similar statement holds for the perhaps-larger �log-time classes for the BM variantsthat do use addressing.7. Complexity Theory and the BM Model. Our �rst result shows that theconstruction in the Hennie-Stearns theorem [33], which states that any multitapeTM that runs in time t(n) can be simulated by a 2-tape TM in time t(n) log t(n),is memory-e�cient on the BM under �1. It has been observed in general that thisconstruction is an e�cient caching strategy. DTIME[t(n)] refers to TM time, andDLIN stands for DTIME[O(n)]:Theorem 7.1. For any time function t, DTIME[t(n)] � D�1TIME[t(n) log t(n)].29



Proof. With reference to the treatment in [36], let M1 be a multitape TM withalphabet � that runs in time t(n), and let M2 be the two-tape TM in the proof.The k-many tapes of M1 are simulated on 2k-many tracks of the �rst tape of M2 sothat all tape heads of M1 are maintained on cell 0 of each track. M2 uses its secondtape only to transport blocks of the form [2j�1 : : :2j�1] from one part of the �rsttape to another. The functions used in these moves are homomorphisms between thealphabets �2k and �k that pack and unpack characters in blocks. Thus a BM M3simulating M2 can compute each move in a single GST pass. By the structure of theblocks, any pass that incurs a memory-access charge of �1(2j) = 2j simulates at least2j�1 moves ofM2. Hence the work and the �1 charges toM3 are both O(t(n) log t(n)).We do not know whether the random access capability of a BM can be exploited togive an O(t log t) simulation that holds the work to O(t), even for � = �log. Indeed,O(t log t) is the best bound we know for all memory cost functions � between �logand �1. One consequence of this proposition is that sets in DLIN can be padded outto sets in TLIN.Corollary 7.2.(a) For every L 2 DLIN, the language f x#0jxj log jxj : x 2 L g belongs to TLIN.(b) TLIN contains P-complete languages, so TLIN � NC () P = NC.Hence it is unlikely that all TLIN functions can be computed in polylog-many passeslike the examples in this paper. If a BM quickly compresses the amount of informa-tion remaining to be processed into cells [0 : : :pn ], it can then spend O(pn) timeaccessing these cells in any order desired and still run in linear �1-time.Theorem 7.3. Let M be a BM that runs in �-time t(n) and space s(n). Thenwe can �nd a DTM T that simulates M in time O[t(n)s(n)=�(s(n))].Proof. T has two tapes: one for the main tape of M , and one used as temporarystorage for the output in passes. (IfM has the bu�er mechanism, then the second tapeof T simulates the bu�er.) Let s stand for s(n). Consider a move by M that changesthe current address a to ba=2c. T can �nd this cell in at most 3a=2 steps by keepingcount with its second tape. Since s=a � 1, the tracking property �(Na) � N�(a)with N := s=a gives a=�(a) � s=�(s). Hence the ratio of the time used by T to the�-time charged to M stays O[s=�(s)]. The same holds for the moves a := 2a anda := 2a+1. T has every GST S of M in its �nite control, and simulates a pull bywriting S[a : : :b] to its second tape, moving to cell 0, copying S[a : : :b] over the �rsttape, and moving back to cell a. Both this and the analogous simulation of a putby T take time O(a + b), and even the ratio of this to the memory access charges�(a)+�(b), not even counting the number of bits processed byM , keeps the runningtotal of the time logged by T below t(n)s=�(s).Corollary 7.4. For any time bound t(n) � n, D�1TIME[t(n)] � DTIME[t(n)].In particular, TLIN � DLIN.More generally, for any d � 1, D�dTIME[t(n)] � DTIME[t2�(1=d)(n)]. Allowing TMsto have d-dimensional tapes brings this back to a linear-time simulation:Lemma 7.5. For any integer d � 1 and time bound t(n) � n, a BM M that runsin �d-time t(n) can be simulated in time O(t(n)) by a d-dimensional TM T .Proof. T has one d-dimensional tape on which it winds the main tape of M in aspiral about the origin, and one linear tape on which it bu�ers outputs by the GST30



S of M . In any pass that incurs a �d charge of a1=d, T can walk between cell a andthe origin within a1=d steps and complete the move.Let us say that a language or function in D�dTIME[O(n)] has dimension d. For aproblem above linear time, we could say that its dimensionality is the least d, if any,for which the problem has relatively optimal BM programs that are �d-e�cient (seeDe�nition 2.10). The main robustness theorem is our justi�cation for this concept ofdimensionality. Lemma 7.5 says that it is no less restrictive than the older conceptgiven by d-dimensional Turing machines. For d > 1 we suspect that it is notice-ably more restrictive. The d-dimensional tape reduction theorem of Paul, Seiferas,and Simon [58] gives t0(n) roughly equal to t(n)1+1=d, and when ported to a BM,incurs memory access charges close to t(n)1+2=d. Intuitively, the problem is that ad-dimensional TM can change the direction of motion of its tape head(s) at any step,whereas this would be considered a break in pipelining for the simulating BM, andthus subject to a memory-access charge.We write RAM-TIMElog for time on the log-cost RAM. A log-cost RAM can besimulated with constant-factor overhead by a TM with one binary tree-structuredtape and one standard worktape [57], and the latter is simulated in real time by aRAM-TM.Proposition 7.6. For any time function t,(a) RAM-TIMElog[t(n)] � D�logTIME[t(n) log t(n)].(b) D�logTIME[t(n)] � RAM-TIMElog[t(n) log t(n)].Proof. Straightforward simulations give these bounds. (The extra log t(n) factorin (b) dominates a factor of log log n that was observed by [44] for the simulation ofa TM (or RAM-TM) by a log-cost RAM.)For quasilinear time, i.e. time qlin = n(logn)O(1), the extra log n factors inTheorem 7.1 and Proposition 7.6 do not matter. Following Schnorr [65], we writeDQL and NQL for the TM time classes DTIME[qlin] and NTIME[qlin]. Gurevich andShelah proved that RAM-TIMElog[qlin] is the same as deterministic nearly linear timeon the RAM-TM and several other RAM-like models, and perhaps more surprisingly,that the nondeterministic counterparts of these classes are all equal to NQL.Corollary 7.7.(a) D�1TIME[qlin] = DQL.(b) D�logTIME[qlin] = RAM-TIMElog[qlin] � NQL.Thus obtaining any separation by more than factors of logn of the classesD�TIME[O(n)] as � varies from �1 through �d to �log runs into the problem ofwhether DQL 6= NQL, which seems as hard as showing P 6= NP. Whether they canbe separated by even one logn factor is discussed in the next section.8. Open Problems and Further Research. The following languages havebeen much studied in connection with linear-time algorithms and nonlinear lowerbounds. We suppose that the lists in Ldup and Lint are all normal.(a) Pattern matching: Lpat = f p#t : (9u; v 2 f 0; 1 g�) t = upv g:(b) Element (non)distinctness: Ldup = f x1# : : :#xm : (9i; j) i < j ^ xi = xj g:(c) List intersection: Lint = f x1# : : :#xm, y1# : : :#ym : (9i; j) xi = yj g:(d) Triangle: L� = fA : A is the adjacency matrix of an undirected graph thatcontains a triangleg. 31



Lpat belongs to DLIN (see [25, 23]), and was recently shown not to be solvable by aone-way non-sensing multihead DFA [42]. Ldup and Lint can be solved in linear timeby a RAM or RAM-TM that treats list elements as cell addresses. L� is not believedto be solvable in linear time on a RAM at all. The best method known involvescomputing A2 + A, and squaring n � n integer matrices takes time approximatelyN1:188, where N = n2, by the methods of [19]. (For directed triangles, cubing A isthe best way known.)Open Problem 1. Do any of the above languages belong to TLIN? If not, provenonlinear lower bounds.A BM can be made nondeterministic (NBM) by letting �(q; c) be multiply valued,and more strongly, by using nondeterministic GSTs or GSM mappings in block moves.De�ne NTLIN to be linear time for NBMs of the weaker kind. Then all four of theabove languages belong to NTLIN. Moreover, they require only O(logn) bits ofnondeterminism.Open Problem 2. Is NTLIN 6= TLIN? For reasonable � and time bounds t, isthere a general separation of N�TIME[t(n)] from D�TIME[t(n)]?Grandjean [27, 28] shows that a few NP-complete languages are also hard forNLIN under TM linear time reductions, and hence by the theorem of [56] lie outsideDLIN, not to mention TLIN. However, these languages seem not to belong to NTLIN,nor even to linear time for NBMs of the stronger kind. The main robustness theoremand subsequent simulations hold for the weaker kind of nondeterminism, but ourproofs do not work for the stronger because they re-run the GST S used in a pass.We suspect that di�erent proofs will give similar results. A separation of the two kindscan be shown with regard to the pass count measure R(n), which serves as a measureof parallel time (e.g. R(n) = polylog(n) and polynomial work w(n) by deterministicBMs characterizes NC [62]). P. van Emde Boas [personal communication, 1994]has observed that while deterministic BMs and NBMs of the weaker kind belong tothe second machine class of [68] with R(n) as time measure, NBMs of the strongerkind have properties shown there to place models beyond the second machine class.Related to Problem 2 is whether the classes D�dTIME[O(n)] di�er as d varies. It isalso natural to study memory-e�cient reductions among problems.The following idea for obtaining such separations and proving nonlinear lowerbounds in �-time on a deterministic BM M suggests itself: Let �M;x stand for theset of access points used in the computation of the BM M on input x. In orderfor M to run in linear �-time, �M;x must thin out at the high end of memory. Inparticular for � = �1, there are long segments between access points that can bevisited only a constant number of times. The technical di�culty is that block movescan still transport information processed in low memory to these segments, and theproof of Theorem 7.1 suggests that a lower bound of 
[n logn] may be the bestachievable in this manner. In general, we advance the BM as a logical next step inthe longstanding program of proving nonlinear lower bounds for natural models ofcomputation. In particular, we ask whether the techniques used by Dietzfelbinger,Maass, and Schnitger [20] to obtain lower bounds for Boolean matrix transpose andseveral sorting-related functions on a certain restricted two-tape TM can be appliedto the di�erently-restricted kind of two-tape TM in Theorems 7.1 and 7.3. The latterkind is equivalent to a TM with one worktape and one pushdown store with therestriction that after any Pop, the entire store must be emptied before the nextPush. 32



We have found two variants to the BM model that seem to depart from the clusterof robustness results shown in this paper. They relate to generally-known issues ofdelay in computations. The �rst de�nition is the special case for GSTs of Manacher'snotion of a \fractional on-line RAM algorithm with steady-paced output" [53].Definition 8.1. Let d � 0 and e � 1 be integers. A GST S runs in �xed outputdelay d=e if for every terminal trajectory (q0; x0; q1; : : : ; xm�1; qm), and each i �m � 2, j�(qi; xi)j = d if e divides i+1, = 0 otherwise. For the exiting transition,j�(qm�1; xm�1)j depends only on (m mod e). The quantity C := d=e is called theexpansion factor of S.Note that the case d = 0 is allowed. Every GST function g can be written as e � f ,where f is �xed-delay and e is an erasing homomorphism: pad each output of theGST for g to the same length with `@' symbols, and let e erase them. A k-inputGST with stationary moves allowed may keep any of its input heads stationary ina transition. Such a machine can be converted to an equivalent form coded like anordinary GST in which every state q has a label j 2 f 1; : : : ; k g such that q reads andadvances only the head on tape j.Definition 8.2. (a) A BM runs in �xed output delay if every GST chip in Mruns in �xed output delay.(b) A pause bu�er BM is a BM with bu�er whose put steps may use 2-inputGSTs with variable input delay (cf. Proposition 4.3).Put another way, the BM model presented in this paper requires �xed delay in readinginput but not in writing output, while (a) requires both and (b) requires neither. Wedid not adopt (b) because we feel that stationary moves by a 2-GST in the course of apass require communication between the heads, insofar as further movements dependon the current input symbols, and hence should incur memory-access charges. Wedefend our choice against a similar criticism that would require (a) by contending thatin a single-tape GST pass, the motion of the read head is not a�ected by the writehead, and the motion of the write head depends only on local factors as bits comein to it. Also, every BM has a limit C on the number of output bits per input bitread by a GST. The main robustness theorem, in particular the ability to forecast thelength of the output of a pass by �xed-delay means shown in Theorem 4.13, satisfyour doubts about this.The robustness results in this paper do carry over to the case of �xed outputdelay:Theorem 8.1. For any rational d � 1, the �xed-delay restrictions of the BMand all the variants de�ned in Section 3 simulate each other up to constant factorsin �d-time.Proof. All auxiliary operations in the simulations in Section 4 use GSTs that runin �xed output delay, except for the second, unpadded run of the GST S in Theorem4.13. However, if S already runs in �xed output delay, so does this run.Under the proof of Theorem 2.1 the corresponding notion for the reduced form ofthe model is \�xed delay after the initial transition." Our proof of e�cient universalsimulation does not quite carry over for �xed output delay because the quantities kand l in the proof of theorem 6.3 may di�er for di�erentM . The operations that pullo� the word gz and the padded output code(y) run in \stride" a function of k andl, but this is not �xed. We believe that the proof can be modi�ed to do so under adi�erent representation scheme for monoids.33



Whether a similar robustness theorem holds for the pause-bu�er BM leads toan open problem of independent interest: can every k-input GST be simulated by acomposition tree of 2-input GSTs when stationary moves are allowed? The questionsof the power of both variants versus the basic BM can be put in concrete terms.Open Problem 3. Can the homomorphism Er2 : f 0; 1; 2 g� ! f 0; 1 g�, whicherases all 2's in its argument, be computed in linear �1-time by a BM that runsin �xed output delay?Open Problem 4. For every 2-input GST S with stationary moves allowed, doesthe function S 0(x#y) := S(x; y) belong to TLIN?Theorem 8.2.(a) The answer to Problem 3 is `yes' i� for every memory cost function � andBM M , there is a BM M 0 that runs in �xed output delay and simulates Mlinearly under �.(b) The answer to Problem 4 is `yes' i� for every memory cost function � andpause-bu�er BM M , there is a BM M 0 that simulates M linearly under �.Proof. For the forward implication of (a), M 0 pads every output by M with @symbols, coding the rest over f 0; 1 g�, and runs Er@ on a separate track to removethe padding. That of (b) is proved along the lines of Proposition 4.3. The reverseimplications are immediate, and all this needs only the tracking property of �.Alon and Maass [4] prove substantial time-space tradeo�s for the related \sequenceequality" problem SE[n]: given x; y 2 f 0; 1; 2 gn, does Er2(x) = Er2(y)? We inquirewhether their techniques, or those of [54], can be adapted to the BM. The BM inTheorem 7.1 runs in output delay 1=2, 1, or 2 for all passes, so the two kinds of BMcan be separated by no more than a log factor. A related question is whether everylanguage in TLIN, with or without �xed output delay, has linear-sized circuits.Further avenues for research include analyzing implementations of certain impor-tant algorithms on the BM, as done for the BT and UMH in [2, 5]. Here the BMis helped by its proximity to the Pratt-Stockmeyer vector machine, since conservingmemory-access charges and parallel time often lead to similar methods. One can alsostudy storage that is expressly laid out on a 2D grid or in 3D space, where a passmight be de�ned to follow either a 1D line or a 2D plane. We expect the formernot to be much di�erent from the BM model with its 1D tape, and we also notethat CD-ROM and several current 2D drive technologies use long 1D tracks. Theimportant issue may not be so much the topology of the memory itself, but whether\locality is one-dimensional" for purposes of pipelining.Last, we ask about meaningful technical improvements to the simulations in thispaper. The lone obstacle to extending the main robustness theorem for � = �log isthe simulation of random access by tree access in Lemma 4.6. The constants on ouruniversal simulation are fairly large, and we seek a more-e�cient way of representingmonoids and computing the products. Two more questions are whether the BM losespower if the move option a := 2a+1 is eliminated, and whether the number m ofmarkers in a �nger BM can be reduced to m�1 or to 4 without multiplying thenumber of block moves by a factor of log t(n).9. Conclusion. In common with motivations expressed in [2] and [5], the BMmodel fosters a �ner analysis of many theoretical algorithms in terms of how theyuse memory, and how they really behave in running time when certain practicalities34



of implementation are taken into account. We have shown that the BM model isquite robust, and that the concept of functions and languages being computable in amemory-e�cient manner does not depend on technical details of setting up the model.The richer forms of the model are fairly natural to program, providing random accessand the convenience of regarding �nite transductions such as addition and vectorBooleans as basic operations. The tightest form of the model is syntactically simple,retains the bit-string concreteness of the TM, and seems to be a tractable object ofstudy for lower bound arguments. The robustness is evidence that our abstraction is\right."In contrast to the extensive study of polynomial-time computation, very little isknown about linear time computation. Owing to an apparent lack of linear-time ro-bustness among various kinds of TMs, RAMs, and other machines, several authoritieshave queried their suitability as a model for computation in O(n) time. Since we have� as a parameter we have admittedly not given a single answer to the question \Whatis Linear Time?", and leave TLIN, D�2TIME[O(n)], and D�3TIME[O(n)] as leadingcandidates. However, the BM model does supply a robust yardstick for assessingthe complexity of many natural combinatorial problems, and for investigating thestructure of several other linear-time complexity classes. It has a tight deterministictime hierarchy right down to linear time. The e�cient universal simulator which wehave constructed to show this result uses the word problem for �nite monoids in aninteresting manner. The longstanding program of showing nonlinear lower boundsin reasonable models of computation has progressed up to machines apparently justbelow the BM (under �1) in power, so that attacking the problems given here seemsa logical next step. The authors of [3] refer to the \challenging open problem" of ex-tending their results when bit-manipulations for dissecting records are available. Thebit operations given to the BM seem to be an appropriate setting for this problem.A true measure of the usefulness of the BM model will be whether it provides goodground for developing and connecting methods that solve older problems not framedwith the term \BM." We o�er the technical content of this paper as appropriatelydiligent spadework.Acknowledgments.. I would like to thank Professor Michael C. Loui for commentson preliminary drafts of this work, and for bringing [2] and [5] to my attention.Professors Pierre McKenzie and Gilles Brassard gave me a helpful early opportunityto test these ideas at an open forum in a University of Montreal seminar. Specialthanks are due to Professors Klaus Ambos-Spies, Steven Homer, Uwe Sch�oning, andother organizers of the 1992 Schloss Dagstuhl Workshop on Structural Complexity forinviting me to give a presentation out of which the present work grew. Last, I thankan anonymous referee and several colleagues for helpful suggestions on nomenclatureand presentation. REFERENCES[1] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir, A model for hierarchical memory, inProc. 19th Annual ACM Symposium on the Theory of Computing, 1987, pp. 305{314.[2] A. Aggarwal, A. Chandra, and M. Snir, Hierarchical memory with block transfer, in Proc.28th Annual IEEE Symposium on Foundations of Computer Science, 1987, pp. 204{216.[3] A. Aggarwal and J. Vitter, The input-output complexity of sorting and related problems,Comm. ACM, 31 (1988), pp. 1116{1127.[4] N. Alon and W. Maass, Meanders and their application to lower bound arguments, J. Comp.Sys. Sci., 37 (1988), pp. 118{129. 35
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35 (1988), pp. 748{754.[68] P. van Emde Boas, Machine models and simulations, in Handbook of Theoretical ComputerScience, J. V. Leeuwen, ed., Elsevier and MIT Press, 1990, pp. 1{66.[69] D. Willard, A density control algorithm for doing insertions and deletions in a sequentiallyordered �le in a good worst-case time, Info. Comp., 97 (1992), pp. 150{204.Appendix: Proof of Theorem 2.1.For every move state q in M we add a new GST Sq that performs a 1-bit emptypull just to read the currently-scanned character d, and then sends control to �(q; d).This modi�cation no more than doubles the �-access charges, and gives M the fol-lowing property: for any pass by a GST Si, the next GST Sk to be invoked (orHalt)is a function only of i and the character c that caused Si to exit, and there is at mostone intervening move. Henceforth we assume that M has this form, and number itsGST chips by S0; : : : ; Sr, with S0 as start chip.M 0 uses an alphabet �0 which includes the alphabet � of M , a surrogate blank@, tokens f s0; : : : ; sr g for the chips of M , markers fmU ; mL; mR; mno; mH g for thethree kinds of move, \no move," and Halt, special instruction markers f I0; : : : ; I12 g,plus certain tuples of length up to 7 of the foregoing characters. We also use @ toindicate that the symbol written to cell 0 is immaterial.During the simulation, the �rst component of every tuple in a cell i is the char-acter ci 2 � in that cell of the tape ofM . Except initially, cell 1 holds both c0 and c1,so that cell 0 can be overwritten by other characters. This also allowsM 0 to simulateall moves by M without ever moving its own cell-a head back to cell 0. The markersI0 and I1 tell M 0 when the cell-a head of M is in cell 0 or 1. For a � 2, the heads ofM and M 0 coincide. The other main invariant of the simulation is that the only cellbesides cells 0 and 1 to contain multiple symbols is cell a. The two initial moves ofM 0 set up these invariants.Character(s) read Action (Initial mode is Ra, a = 0.)c0; c1 Pull [c0; c1] to cell 0, a := a, mode := 0R.[c0; c1]; c1 Put @ into cell 0 and [c1; c0; s0; I0] into cell 1, a := 2a + 1,mode := Ra.The �rst move must automatically be executed every time M 0 moves its tape head toa new cell a, a � 2, since this cell and cell a+ 1 will always contain single charactersover �. However, the second move is unique to the initialization because cell 1 willnever again hold a single character. The cell-a head of M 0 is now on cell 1, but theI0 enables M to record that the cell-a head of M is still on cell 0.The lone GST S of M 0 includes two copies of each GST Si of M . The �rstis a \dummy copy" which simulates Si but suppresses output until it picks up thecharacter c that causes Si to exit. On this exiting transition, the dummy outputsa token sk for the next GST Sk and a token m for the intervening move, or mnofor none, or mH for Halt. The other copy simulates the actual pass by Si. It hasspecial states that distinguish whether Si has written zero, one, or at least two outputsymbols in the pass, since the �rst one or two symbols of the output y are altered. IfSi performs a pull and jyj � 2, we de�ne c00 := y0 if y0 6= B, but c00 := c0 if y0 = B.Similarly c01 := y1 if y1 6= B, but c01 := c1 if y1 = B. On the tape of M 0, the output ylooks like [c00; c01; : : :][c01; c00; : : :]y2 � � �yl, where l = jyj. For jyj � 1, treat the missing y1and/or y0 as B. Besides these functional conventions on sk , m, c00, and c01, we omitreference to the address a if it is not changed, and omit the second character read byS when it does not a�ect control at the large initial branch. Let Si be the currentGST of M: 38



Character(s) read Action (Current mode is Ra, a = 1.)[c1; c0; si; I0] By the validity conditions (De�nition 2.3), the output y by Sihas length at most 2. Hence the next-move token m and next-GST token sk can be picked up and the output y written inone pass, without needing the dummy copy of Si. If m = mH ,S pulls @ to cell 0 and [c01; c00; I12] to cell 1. If m = mR, pulls@[c01; c00; sk; I1] to signify that the cell-a head of M is now oncell 1. Else S pulls @[c01; c00; sk; I0], and this step repeats. Ineach case, mode := Ra.[c1; c0; I12] Pull c0 into cell 0, c1 into cell 1, and Halt.[c1; c0; si; I1] Simulate Si as for [c1; c0; si; I0] to get m, sk, and y, buttreat c1 as the �rst input character to Si. If m = mH pull@[c01; c00; I12], if m = mU pull @[c01; c00; sk; I0], and if m = mno,pull @[c01; c00; sk; I1]. In these three cases, the address of M 0stays at 1. Ifm = mL, then pull @[c01; c00; sk] and e�ect a := 2a.If m = mR, pull @[c01; c00; sk] and e�ect a := 2a + 1. In everycase, the mode stays Ra.The last two cases give a � 2. When a � 2, the next pass by S encounters a singlecharacter ca 2 � on its start transition (possibly ca = B), and S must perform the�rst operation above. This overwrites the @ in cell 0. However, the new character[c01; c00; sk] in cell 1 prevents the initial sequence from recurring, viz.:Character(s) read Action (Current mode is Ra, a � 2.)ca; ca+1 Pull [ca; ca+1] to cell 0, a := a, mode := 0R.B Pull [@;@; I0] to cell 0, a := a, mode := 0R.[ca; ca+1]; [c1; c0; si] Put [ca; c0; c1; si; I2] into cell a. If the label of Si is La thenmode := La, else mode := Ra.[ca; c0; c1; si; I2] If Si is labeled 0L or 0R, then pull [c0; c1; ca; si; I6] into cell 0,andmode := the mode of Si. Else S simulates the dummy copyof Si to �ndm and sk, treating ca as the �rst input character toSi, and pulls [c0; c1; ca; m; sk; si; I3] to cell 0 with mode := 0R.[c0; c1; ca; m; sk; si; I3] Put [ca; c0; c1; m; sk; si; I4] into cell a, mode := the mode of Si:[ca; c0; c1; m; sk; si; I4] Simulate the pull by Si, copying the output y as[c00; c01; ca; m; I5][c01; c00; sk]y2 � � �yl, and change mode to 0R. Re-mark: For ca to be correct, it is vital that cell a not be over-written in this pull.[c0; c1; ca; m; I5] Put ca into cell a. On exit, ifm = mno then leave a unchanged,if m = mU e�ect a := ba=2c, if m = mL e�ect a := 2a, andif m = mR e�ect a := 2a + 1. In each of these four cases,mode := Ra. For m = mH , see below.If the last move was up, i.e. a to ba=2c, we may now have a = 1 again. Since the\sentinel" in cell 1 is always correctly updated to the next GST Si, this is handledby:[c1; c0; si] Same as for [c1; c0; si; I1]:If still a � 2, then S once again senses single characters in cells a and a+ 1, and thecycle repeats. The other branch with instruction 6 goes:39



[c0; c1; ca; si; I6] Here Si is labeled 0L or 0R, and this is the current mode. Streats c0; c1 as the �rst two input characters in simulating thedummy copy of Si, and puts [ca; c0; c1; m; sk; si; I7] into cell awith mode := Ra.[ca; c0; c1; m; sk; si; I7] Pull [c0; c1; ca; m; sk; si; I8] into cell 0, mode := the mode of Si:[c0; c1; ca; m; sk; si; I8] Simulate the put by Si. If the output y is empty or begins withB, let c0a := ca. Else let c0a := y0. Copy y as [c0a; c0; c1; m; sk; I9],and set mode := 0R.[ca; c0; c1; m; sk; I9] Pull [c0; c1; ca; m; I5] to cell 0 and [c1; c0; sk] to cell 1, mode :=Ra.The validity conditions prevent cell a from being overwritten in a pull. It is possiblefor cell 1 to be overwritten by a leftward put that exits after just one input bit, butthis can only happen if a � C, where C is the maximum number of bits a leftwardpull chip of M can write in its �rst transition. The problem can be solved either byexploiting the ability ofM itself to remember C-many characters in its �nite control,or by reprogrammingM so that no leftward pull chip outputs more than one symbolon its �rst step. Details are left to the reader.The �nal halting routine involves a \staircase" to leave the tape exactly the sameas that of M at the end of the computation. It picks up in the case [c0; c1; ca; m; I5]with m = mH :[c0; c1; ca; mH ; I5] Put [ca; c0; c1; I10] into cell a, mode := Ra.[ca; c0; c1; I10] Pull [c0; c1; ca; I11] to cell 0 and [c1; c0; I12] to cell 1, withmode := 0R.[c0; c1; ca; I11] Put ca into cell a, e�ect a := ba=2c, mode := Ra.ca; ca+1 Pull [ca; ca+1] to cell 0, mode := 0R.[ca; ca+1]; [c1; c0; I12] Put ca into cell a, e�ect a := ba=2c, mode := Ra.[c1; c0; I12] As above, pull c0 into cell 0, c1 into cell 1, and Halt.M 0 uses exactly the same tape cells as M , making at most eight passes of equalor less cost for each pass by M . The �nal \staircase" down from cell a is accountedagainst the �-charges for M to have moved out to cell a. Hence both the numberof bits processed by M 0 and the �-acc charges to M 0 are within a constant factor oftheir counterparts in M:For the converse simulation of the reduced form S by a BMM , the only technicaldi�culty is that S may have di�erent exiting transitions on the same character c. Thesolution is to run a dummy copy of S that outputs a token t for the state in whichS exits. Then t is used to send control to the move state of M 0 that corresponds tothe label l1(t), and thence to a copy of S with the pass-type label l2(t). The detailsof running the dummy copy are the same as above.By using more \instruction markers" one can make the mode of M 0 always followthe cycle Ra; 0R;La; 0L. Hence the only decision that need depend on the terminalstate of the lone GST S is the next origin cell a.40


