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Real-time Lexicon-free Scene Text
Localization and Recognition

Lukáš Neumann, Jiřı́ Matas

Abstract—An end-to-end real-time text localization and recognition method is presented. Its real-time performance is achieved
by posing the character detection and segmentation problem as an efficient sequential selection from the set of Extremal Regions.
The ER detector is robust against blur, low contrast and illumination, color and texture variation. In the first stage, the probability
of each ER being a character is estimated using features calculated by a novel algorithm in constant time and only ERs with
locally maximal probability are selected for the second stage, where the classification accuracy is improved using computationally
more expensive features. A highly efficient clustering algorithm then groups ERs into text lines and an OCR classifier trained on
synthetic fonts is exploited to label character regions. The most probable character sequence is selected in the last stage when
the context of each character is known.
The method was evaluated on three public datasets. On the ICDAR 2013 dataset the method achieves state-of-the-art results
in text localization; on the more challenging SVT dataset, the proposed method significantly outperforms the state-of-the-art
methods and demonstrates that the proposed pipeline can incorporate additional prior knowledge about the detected text. The
proposed method was exploited as the baseline in the ICDAR 2015 Robust Reading competition, where it compares favourably
to the state-of-the art.

Index Terms—text-in-the wild, scene text, end-to-end text recognition, photo OCR
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1 INTRODUCTION

S CENE text localization and recognition (also
known as photo OCR or text-in-the-wild problem) is

an open problem with many interesting applications,
ranging from helping the visually impaired, language
translation with automatic input of text written in an
unknown script, to indexing large image and video
databases by their textual content (e.g. Google Street
View, Flickr, etc.).

Unlike traditional printed document OCR, no scene
text recognition methods has yet achieved sufficient
accuracy for practical applications - the winning
method in the most recent ICDAR 2013 contest was
able to localize only 66% words correctly [1] despite
the fact that the dataset is not fully realistic - the
word orientations are only horizontal, they occupy a
significant part of the image, there is no perspective
distortion or significant noise. In the competition, text
recognition was evaluated in an artificial setup where
the words are manually localized by a human annota-
tor. The winner [2] was able to correctly recognize 82%
of such “cut-out” words; end-to-end text recognition
combining both localization and recognition was not
included because of too few potentially participating
methods.

Text localization can be computationally very ex-
pensive because in an image of N pixels generally any
of its 2N subsets can correspond to text. Generally,
two approaches to deal with this issue exist in the
literature.

The methods in the first group exploit a sliding-
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Fig. 1. Scene text localization and recognition by the
proposed method.

window approach to localize individual characters [2],
[3] or whole words [4], drawing inspiration from other
object detection problems where this approach has
been has been successfully applied [5]. Strengths of
such methods include robustness to noise and blur,
since features aggregated over the whole region of
interest are exploited. The main drawback is that the
number of rectangles that needs to be evaluated grows
rapidly when text with different scale, aspect, rotation
and other distortions has to be found.

The second, recently more popular approach [6]–
[8] is based on localizing individual characters as
connected components using local properties of an
image such as color, intensity or stroke-width. The
complexity of these methods does not depend on
the parameters of the text as characters of all scales
and orientations can be detected in one pass and the
connected component representation also provides a
character segmentation which can be exploited in an
OCR stage. The biggest disadvantage of such methods
is a dependence on the assumption that a character is
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a connected component, which is brittle - a change in
a single image pixel introduced by noise can cause an
unproportional change in the connected component
size, shape or other properties, which subsequently
may affect its classification.

In this paper, we present an end-to-end real-time1

text localization and recognition method, which does
not rely on any prior knowledge of words to be
detected (unlike lexicon-based methods [3], where the
method output is limited to a relatively small set).
The method falls into the latter category since it first
detects individual characters and then subsequently
builds more complex structures (words, text lines).
The real-time performance is achieved by posing the
character detection problem as an efficient sequential
selection from the set of Extremal Regions (ERs). The
ER detector is robust against blur, low contrast and
illumination, color and texture variation. Its complex-
ity is O(pN), where p denotes number of channels
(projections) used and N denotes the number of image
pixels.

In the first stage, the probability of each ER being a
character is estimated using features calculated with
O(1) complexity and only ERs with locally maximal
probability are selected for the second stage, where
the classification accuracy is improved using more
computationally expensive features. A highly efficient
clustering algorithm then groups ERs into text lines
and an OCR classifier trained on synthetic fonts is
exploited to label character regions (see Figure 1).
Finally, the most probable character sequence (of seg-
mentations and their labels) is selected in the very
last stage of the processing when the context of each
character in a text line is known2.

For the standard ICDAR 2013 dataset and proto-
col [1], the proposed method achieves state-of-the-
art results in text localization (f-measure 76.3%). On
the more challenging Street View Text dataset, the
proposed method achieves the f-measure of 68.1%
for end-to-end text recognition, which significantly
outperforms the state-of-the-art methods and demon-
strates that the proposed pipeline can be altered to
incorporate additional prior knowledge about the de-
tected text (lexicon) if required. The proposed method
was also exploited as the baseline in the ICDAR 2015
Robust Reading competition [9], where it compares
favourably to the state-of-the art.

Although several individual parts of the proposed
method have been previously presented [10]–[13], this
paper is the first comprehensive description of the
proposed method, which has inspired many deriva-
tive works of other authors.

The rest of the paper is structured as follows: In

1. We consider a text recognition method real-time if the process-
ing time is comparable with the time it would take a human to read
the text.

2. A www service allowing testing of the method is available at
http://www.textspotter.org/

Section 2, an overview of previously published meth-
ods is given. The proposed method is described in
Section 3. In Section 4, the experimental evaluation is
presented. The paper is concluded in Section 5.

2 PREVIOUS WORK

Numerous methods which focus solely on text local-
ization in real-world images have been published [4],
[6], [7]. The “sliding-window” based methods [4] use
a window which is moved over the image and the
presence of text is estimated on the basis of local
image features.

The majority of recently published methods for text
localization however uses the connected component
approach [6]–[8], [14], [15]. The methods differ in their
approach to individual character detection, which
could be based on edge detection, character energy
calculation or extremal region detection. While the
methods are paying great attention to individual char-
acter detection, the decision about final segmentation
is done at a low level using only local features. The
method of Ephstein et al. [6] converts an input image
to a greyscale and uses the Canny detector [16] to
find edges. Pairs of parallel edges are then used to
calculate stroke width for each pixel and pixels with
a similar stroke width are grouped together into char-
acters. This method is sensitive to noisy and blurry
images because it depends on successfully detected
edges and it provides only a single segmentation
for each character which might not necessarily be
the best one for an OCR module. A similar edge-
based approach with different connected component
algorithm is presented in [17]. The winning method
in text localization of Yin et al. [8] of the ICDAR 2013
Robust Reading competition [1] detect characters as
Maximally Stable Extremal Regions (MSERs) [18] and
then uses a single-link clustering algorithm with a
trained distance.

Other methods focus only on text recognition,
where the text is manually localized by a human
annotator. The text is recognized either on the char-
acter [19], [20] or the whole word level [2], [14], [21]–
[24]. The winning method [2] was able to correctly
recognize 82.8% of the manually cropped-words in
the latest ICDAR Robust Reading competition [1].
Although the methods for cropped-word recognition
give an upper-bound on currently achievable text
recognition performance, they in fact assume there
exists a text localization method with a 100% accuracy,
which currently is far from being true. Moreover, since
the text was localized by a human, it is not clear
that such text localization is even possible without
the recognition, because the human annotator could
have used the actual content of the text to create
the annotation for localization. In other words, it
may be impossible to correctly localize text without
the recognition phase and therefore joining the text
localization and the text recognition into a single
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Fig. 2. Overview of the method. For an input image
the method finds a set of words, where each word is
assigned a Unicode string and its position in a form of
a rectangular bounding-box. Character candidates are
effectively detected across multiple scales and image
projections (channels). Note that this enumeration can
be easily parallelized.

end-to-end pipeline may improve the overall system
performance.

Only few methods for end-to-end text localization
and recognition have been published. The method
of Wang and Belongie [3] finds individual characters
as visual words using the sliding-window approach
and then uses a lexicon to group characters into
words. Similarly, the method of Wang et al. [25] uses
a sliding-window approach combined with convolu-
tional neural network classifiers. These methods are
able to cope with noisy data, but their generality
is limited as a lexicon of words (which contains no
more than 500 words in their experiments) has to
be supplied for each image and the sliding-window
approach is limited to horizontal rectangles with a
limited number of scales and aspects.

For an exhaustive survey of text localization and
recognition methods refer to the ICDAR Robust Read-
ing competition results [1], [26].

3 THE PROPOSED METHOD

3.1 Character Detection

In the first stage, character candidates are efficiently
detected as Extremal Regions (ER) selected in a two-
stage classification process, operating on a coarse
Gaussian scale space pyramid and on multiple image
projections (see Figure 2).

3.1.1 Extremal Regions
Let us consider an image I as a mapping I : D ⊂ N2 →
V , where V typically is {0, . . . , 255}3 (a color image).
A channel C of the image I is a mapping C : D → S
where S is a totally ordered set and fc : V → S is a
projection of pixel values to a totally ordered set. Let
A denote an adjacency (neighborhood) relation A ⊂
D ×D. In this paper we consider 4-connected pixels,

(a) (b) (c)

Fig. 3. Intensity gradient magnitude channel ∇. (a)
Source image. (b) Projection output. (c) Extremal Re-
gions at threshold θ = 24 (ERs bigger than 30% of the
image area excluded for better visualization)

i.e. pixels with coordinates (x±1, y) and (x, y±1) are
adjacent to the pixel (x, y).

Region R of an image I (or a channel C) is a
contiguous subset of D

∀pi, pj ∈ R ∃pi, q1, q2, . . . , qn, pj : piAq1, q1Aq2, . . . , qnApj
(1)

Outer region boundary ∂R is a set of pixels adjacent
but not belonging to R

∂R = {p ∈ D \ R : ∃q ∈ R : pAq} (2)

Extremal Region (ER) is a region whose outer boundary
pixels have strictly higher values than the region itself

∀p ∈ R, q ∈ ∂R : C(q) > θ ≥ C(p) (3)

where θ denotes threshold of the Extremal Region.
In this paper, we consider RGB and HSI color

spaces [27] and additionally an intensity gradient chan-
nel (∇) where each pixel is assigned the value of
“gradient” approximated by the maximal intensity
difference between the pixel and its neighbors (see
Figure 3):

C∇(p) = max
q∈D : pAq

{
|CI(p)−CI(q)|

}
(4)

In real-world images there are certain instances
where characters are formed of smaller elements (see
Figure 4 left) or a single element consists of multiple
joint characters (see Figure 4 right). By pre-processing
the image in a Gaussian pyramid, in each level of
the pyramid only a certain interval of character stroke
widths is amplified - if a character consists of multiple
elements, the elements are merged together into a
single region and furthermore, serifs and thin joints
between multiple characters are eliminated. This does
not represent a major overhead as each level is 4 times
faster than the previous one.

3.1.2 Incrementally Computable Descriptors
The key prerequisite for fast classification of ERs is a
fast computation of region descriptors that serve as
features for the classifier.

An ER r at threshold θ is formed as a union of one
or more (or none) ERs at threshold θ−1 and pixels of
value θ. This induces an inclusion relation amongst ERs
where a single ER has one or more predecessor ERs
(or no predecessor if it contains only pixels of a single
value) and exactly one successor ER (the ultimate
successor is the ER at threshold 255 which contains
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s = 1 s = 1

s = 1/8 s = 1/4

Fig. 4. Processing with a Gaussian pyramid (the
pyramid scale denoted by s). Characters formed of
multiple small regions merge together into a single
region (left column). A single region which corresponds
to characters “ME” is broken into two regions and serifs
are eliminated (right column)
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Fig. 5. Incrementally computable descriptors. Regions
already existing at threshold θ − 1 marked grey, new
pixels at threshold θ marked red, the resulting region
at threshold θ outlined with a dashed line

all pixels in the image). As proposed by Zimmerman
and Matas [28], it is possible to use a particular class of
descriptors and exploit the inclusion relation between
ERs to incrementally compute descriptor values.

Let Rθ−1 denote a set of ERs at threshold θ− 1. An
ER r ∈ Rθ at threshold θ is formed as a union of pixels
of regions at threshold θ − 1 and pixels of value θ,

r =
(⋃

u ∈ Rθ−1
)
∪
(⋃

p ∈ D : C(p) = θ
)

(5)

Let us further assume that descriptors φ(u) of all ERs
at threshold u ∈ Rθ−1 are already known. In order
to compute a descriptor φ(r) of the region r ∈ Rθ
it is necessary to combine descriptors of regions u ∈
Rθ−1 and pixels {p ∈ D : C(p) = θ} that formed the
region r,

φ(r) =
(
⊕ φ(u)

)
⊕
(
⊕ ψ(p)

)
(6)

where ⊕ denotes an operation that combines de-
scriptors of the regions (pixels) and ψ(p) denotes an
initialization function that computes the descriptor for
given pixel p. We refer to such descriptors where ψ(p)
and ⊕ exist as incrementally computable (see Figure 5).

It is apparent that one can compute descriptors of
all ERs simply by sequentially increasing threshold
θ from 0 to 255, calculating descriptors ψ for pixels
added at threshold θ and reusing the descriptors of
regions φ at threshold θ−1. Note that the property im-
plies that it is necessary to only keep descriptors from
the previous threshold in the memory and that the ER
method has a significantly smaller memory footprint
when compared with MSER-based approaches. More-
over if it is assumed that the descriptor computation
for a single pixel ψ(p) and the combining operation ⊕
has constant time complexity, the resulting complexity
of computing descriptors of all ERs in an image
of N pixels is O(N), because φ(p) is computed for
each pixel just once and combining function can be
evaluated at most N times, because the number of
ERs is bound by the number of pixels in the image.

In this paper we used the following incrementally
computed descriptors:

Area a. Area (i.e. number of pixels) of a region. The
initialization function is a constant function ψ(p) = 1
and the combining operation ⊕ is an addition (+).

Bounding box (xmin, ymin, xmax, ymax). Top-right
and bottom-left corner of the region. The initialization
function of a pixel p with coordinates (x, y) is a
quadruple (x, y, x+ 1, y+ 1) and the combining oper-
ation ⊕ is (min,min,max,max) where each operation
is applied to its respective item in the quadruple. The
width w and height h of the region is calculated as
xmax − xmin and ymax − ymin respectively.

Perimeter p. The length of the boundary of the
region (see Figure 5a). The initialization function ψ(p)
determines a change of the perimeter length by the
pixel p at the threshold where it is added

ψ(p) = 4− 2|{q : qAp ∧C(q) ≤ C(p)}| (7)

and the combining operation ⊕ is an addition (+). The
complexity of ψ(p) is O(1), because each pixel has at
most 4 neighbors.

Euler number η. Euler number (genus) is a topolog-
ical feature of a binary image which is the difference
between the number of connected components and
the number of holes. A very efficient yet simple
algorithm [29] calculates the Euler number by count-
ing 2 × 2 pixel patterns called quads. Consider the
following patterns of a binary image:

Q1 =

{
1 0
0 0

,
0 1
0 0

,
0 0
0 1

,
0 0
1 0

}
(8)

Q2 =

{
0 1
1 1

,
1 0
1 1

,
1 1
1 0

,
1 1
0 1

}
(9)

Q3 =

{
0 1
1 0

,
1 0
0 1

}
(10)

Euler number is then calculated as

η =
1

4
(C1 − C2 + 2C3)) (11)
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where C1, C2 and C3 denote number of quads Q1, Q2

and Q3 respectively in the image.
It follows that the algorithm can be exploited

for incremental computation by simply counting the
change in the number of quads in the image. The
value of the initialization function ψ(p) is determined
by the change in the number of the quads Q1, Q2 and
Q3 by changing the value of the pixel p from 0 to 1
at given threshold C(p) (see Figure 5b),

ψ(p) =
1

4
(∆C1 −∆C2 + 2∆C3)) (12)

The complexity of ψ(p) is O(1), because each pixel is
present in at most 4 quads. The combining operation
⊕ is an addition (+).

Horizontal crossings ci. A vector (of length h)
with number of transitions between pixels belonging
(p ∈ r) and not belonging (p /∈ r) to the region in
given row i of the region r (see Figure 5c and 8).
The value of the initialization function is given by the
presence/absence of left and right neighboring pixels
of the pixel p at the threshold C(p). The combining
operation ⊕ is an element-wise addition (+) which
aligns the vectors so that the elements correspond to
same rows. The computation complexity of ψ(p) is
constant (each pixel has at most 2 neighbors in the
horizontal direction) and the element-wise addition
has constant complexity as well assuming that a data
structure with O(1) random access and insertion at
both ends (e.g. double-ended queue in a growing
array) is used.

3.1.3 Sequential Classifier

In the proposed method, each channel is processed
separately over a coarse Gaussian pyramid (in the
original and inverted projections) and ERs are de-
tected. In order to reduce the high false positive rate
and the high redundancy of the ER detector, only
distinctive ERs which correspond to characters are
selected by a sequential classifier. The classification is
broken down into two stages for better computational
efficiency (see Figure 6).

In the first stage, a threshold is increased step by
step from 0 to 255, incrementally computable descrip-
tors (see Section 3.1.2) are computed in O(1) for each
ER r and the descriptors are used as features for a clas-
sifier which estimates the class-conditional probability
p(character|r). The value of p(character|r) is tracked
using the inclusion relation of ER across all thresholds
(see Figure 7) and only the ERs which correspond to
local maximum of the probability p(character|r) are
selected (if the local maximum of the probability is
above a global limit pmin and the difference between
local maximum and local minimum is greater than
∆min).

In this paper, a Real AdaBoost [30] classifier with
decision trees was used with the following features

Source 2MP image Intensity channel extracted

ERs selected in O(N) by the
first stage of the sequential
classifier

ERs selected by the second
stage of the classifier

Text lines formed Only ERs in text lines selected
and labelled by a character
classifier
run time No. of ERs

Initial image - 6× 106

Char. det. (1st stage) 820ms 2671

Char. det. (2nd stage) 130ms 40
Text line formation 20ms 25
Character Recognition 110ms 25
Sequence Selection 15ms 12

Fig. 6. Typical number of regions and timings in each
stage (character detection in a single channel only) on
a standard 2GHz PC

p
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(a) (b)

Fig. 7. In the first stage of the sequential classi-
fication the probability p(character|r) of each ER is
estimated using incrementally computable descriptors
that exploit the inclusion relation of ERs. (a) A source
image cut-out and the initial seed of the ER inclusion
sequence (marked with a red cross). (b) The value of
p(character|r) in the inclusion sequence, ERs passed
to the second stage marked red
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Fig. 8. The horizontal crossings feature used in the 1st
stage of ER classification
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Fig. 9. The precision-recall curve of the first stage of
the sequential classifier obtained by cross-validation.
The configuration used in the experiments marked red
(recall 95.6%, precision 67.3%)

(calculated in O(1) from incrementally computed de-
scriptors): aspect ratio (w/h), compactness (

√
a/p),

number of holes (1 − η) and a horizontal crossings
feature (ĉ = median {c 1

6w
, c 3

6w
, c 5

6w
}) which estimates

number of character strokes in horizontal projection -
see Figure 8. Only a fixed-size subset of c is sampled
so that the computation has a constant complexity.
The output of the classifier is calibrated to a prob-
ability function p(character|r) using Logistic Correc-
tion [31]. The parameters were set experimentally to
pmin = 0.2 and ∆min = 0.1 to obtain a high value of
recall (95.6%) (see Figure 9).

In the second stage, the ERs that passed the first
stage are classified into character and non-character
classes using more informative but also more com-
putationally expensive features. In this paper, an
SVM [32] classifier with the RBF kernel [33] was
used, the parameter values σ and C were found by
cross-validation on the training set. The classifier uses
all the features calculated in the first stage and the
following additional features:
• Hole area ratio. ah/a where ah denotes number

of pixels of region holes. This feature is more
informative than just the number of holes (used
in the first stage) as small holes in a much larger
region have lower significance than large holes in
a region of comparable size.

• Convex hull ratio. ac/a where ac denotes the area
of the convex hull of the region.

• The number of outer boundary inflexion points
κ. The number of changes between concave and
convex angle between pixels around the region
border (see Figure 10). A character typically
has only a limited number of inflexion points
(κ < 10), whereas regions that correspond to
non-textual content such as grass or pictograms
have boundary with many spikes and thus more
inflexion points.

Let us note that all features are scale-invariant, but
not all are rotation-invariant - namely the aspect ratio
and the horizontal crossings. However, the features
are somewhat robust against small rotations (approx.
±15◦), so text of multiple orientations can be detected
by simply rotating the input image 6 times, at the cost
of only a slightly lower precision (see Section 4.2).

κ = 0 κ = 5 κ = 6 κ = 14 κ = 15 κ = 93
(a) (b)

Fig. 10. The number of boundary inflexion points κ. (a)
Characters. (b) Non-textual content

3.2 Text Line Formation

Let R denote the set of regions (character candidates)
in all channels and scales detected in the previous
stage. Even though the cardinality of R (and sub-
sequently R) is linear in number of pixels, the car-
dinality of the search space of all sequences is still
exponential (the complexity has decreased from 22

n

to 2n only).
In the proposed method, the space of all sequences

is searched by effectively finding all region triplets
that could correspond to a (sub-)sequence of charac-
ters. Such triplets are then formed into text lines by
an agglomerative clustering approach, which exploits
bottom line estimates and additional typographical
constraints as the distance measure between individ-
ual clusters.

Data: a set of regions R
Result: a set of triplets T
T←− ∅;
for r1 ∈ R do

for r2 ∈ N (r1) do
if v

(
{r1, r2}

)
= 0 then

continue;
end
for r3 ∈ N (r2) do

if v
(
{r2, r3}

)
= 0 then

continue;
end
t←− {r1, r2, r3};
if v′(t) = 1 then

T←− T ∪ t;
end

end
end

end
Algorithm 1: Exhaustive enumeration of region pairs
and triplets to form initial text line candidates

In the first step of the text line formation (see Algo-
rithm 1), character candidates r1 ∈ R are exhaustively
enumerated and region pairs and triplets are formed
by considering region’s r1 neighbours r2 ∈ N (r1)
and neighbours of the neighbours r3 ∈ N (r2). In our
method, a region r2 is considered a neighbour of r1(
r2 ∈ N (r1)

)
, if r2 is amongst K = 5 closest regions

to r1, where the distance of two regions is measured
as the distance of their centroids. Additionally, a left-
to-right direction of the text is enforced by limiting
the set r2 ∈ N (r1) to regions r2 whose centroid is
to the right of the centroid of r1, i.e. cx(r2) > cx(r1)
where cx(r) denotes the x-coordinate of the region’s
r centroid.
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In the exhaustive search, region pairs (r1, r2) and
(r2, r3) and region triplets (r1, r2, r3) are pruned by
constraints v (respectively v′), which verify that the
region pair (resp. region triplet) corresponds to the
trained typographical model and which ensure the
exhaustive search does not combinatorially explode.
In our method both constraints are implemented as an
AdaBoost classifier [30]; the binary constraint v uses
height ratio and region distance normalized by region
width as features, whilst the ternary constraint v′ uses
distance from the bottom line normalized by text line
height and region centroid angle. In our experiments,
the classifiers were trained on the ICDAR 2013 Train-
ing set.

Data: a set of triplets T
Result: a set of text lines L
// Estimate parameters of each triplet and

create an initial set of text lines
L←− ∅;
for {r1, r2, r3} ∈ T do

b←− bottom line estimate of {r1, r2, r3};
x←− minimal x-coordinate of {r1, r2, r3};
x←− maximal x-coordinate of {r1, r2, r3};
h←− maximal height of {r1, r2, r3};
l←−

(
{r1, r2, r3}, b, x, x, h

)
;

L←− L ∪ l;
end
// Agglomerative clustering of text lines
repeat

// Find two closest text lines
d←− dmax;
for l ∈ L do

for l′ ∈ L \ l do
if dist(l, l′) < d then

d←− dist(l, l′);
m←− l,m′ ←− l′;

end
end

end
if d < dmax then

// Merge the two text lines

M = {r1, . . . , rn ∈ m} ∪ {r1, . . . , rn
′
∈ m′};

estimate b, x, x, h for M ;
L←− L ∪

(
M, b, x, x, h

)
;

L←− L \m1,m2;
end

until d < dmax;
Algorithm 2: Text line formation

In the second step (see Algorithm 2), each triplet is
first turned into a text line (of a length 3) and an initial
bottom line direction b is estimated by Least Median
of Squares. In addition to the bottom line estimate,
a horizontal bounding-box which contains all (3) text
line regions is calculated and its co-ordinates x (left),
x (right) and h (height) are kept as well.

Next, text lines l and l′ with smallest mutual dis-
tance dist(l, l′) are found, the two sets of their regions
are merged together and a new bottom line direction
and bounding-box co-ordinates are updated based
on the merged set of text line regions. The distance
between two lines dist(l, l′) is defined as normalized
vertical distance between their bottom lines measured

at the beginning and end of a bounding-box formed
as a union of the two text lines’ bounding-boxes

dist(l, l′) =
max(|bl(χ)− bl′(χ)|, |bl(χ′)− bl′(χ′)|)

min(hl, hl′)

χ = min(xl, xl′)

χ′ = min(xl, xl′) (13)

The process continues until the smallest distance
between any two text lines is below the threshold
dmax (in our experiments, we set dmax = 0.2).

As a final step of the text line formation, conflicting
text lines are eliminated - two (or more) text lines are
in conflict if they contain the same region, which is not
permitted as in this paper we assume that a character
can be present in one word only (see Section 3.4).
Conflicting text lines are typically created in images
where the text is arranged into multiple rows - in such
case, the same region is a member of two or more
different triplets (this is quite common as there is no
limitation in Algorithm 1 to ensure unique assignment
of a region into one triplet), but in the second step
the triplets are not merged together into a single text
line because their bottom line direction is completely
different.

In order to eliminate the conflicts, text lines which
share at least one region with another text line are
first grouped into clusters based on the presence of
identical regions - two text lines are a member of
the same cluster if they have at least one region in
common. This process therefore forms isolated text
clusters consisting of multiple text lines, which are
(possibly transitively) “connected” to each other by
a shared region(s), and on contrary each region is
present in precisely one cluster. Each cluster is then
processed individually in the following iterative pro-
cess: First, the text line with the the highest number
of regions in the cluster is added to the output and all
text lines which share a region with the selected text
line (including the selected one) are removed from
the cluster. The process then continues until the text
cluster does not contain any text line. This can be
viewed as a voting process, where in each cluster text
lines vote for text direction and the text line with
highest number of regions (i.e. the text direction of
the longest text line) gets selected for the output,
whilst all text lines which shared any region with
the selected text line (which must have different text
direction, otherwise they would have been merged
into the selected text line in the previous process) are
eliminated.

Note that the algorithm is not affected by the order
in which the text lines are processed, because in the
first step each text cluster is a transitive closure (where
the binary relation between two text lines is given by
the existence of a shared region), and in the second
step the ordering is given by the descending number
of regions in each text line.
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→ ↘ ↓ ↙ ← ↖ ↑ ↗
Fig. 11. Character recognition features: Input charac-
ter (left). Features of the chain-code bitmap for each
direction (right).

3.3 Character Recognition

Let R denote a set of all text lines’ regions, i.e.

R =
⋃
l∈L

{r1, . . . , rn ∈ l} (14)

Each candidate region r ∈ R is labelled with a
Unicode code(s) using an (approximative) nearest-
neighbour classifier.

A set of labels L̂(r) ∈ A of a region r is defined as

L̂(r) =
{
l(t) : t ∈ NK(f(r)) | ‖f(t)− f(r)‖ ≤ d̄(l(t))

}
(15)

where l(t) denotes label of the training sample (tem-
plate) t, NK(f(r)) denotes K nearest-neighbours to
the region r in the character feature space f , d̄(l) is a
maximal distance for the label (class) l and A is the set
of supported Unicode characters (alphabet). In our ex-
periments, the alphabet consisted of 26 uppercase and
26 lowercase Latin characters and 10 digits (|A| = 62).
Let us also note that a region might not be assigned
any label, in which case it is rejected in the following
step (see Section 3.4).

The region is first normalized to a fixed-sized ma-
trix of 35 × 35 pixel, while retaining the centroid
of the region and aspect ratio. Next, a 8-directional
chain-code is generated [34] for boundary pixels and
each boundary pixel is inserted into a separate bitmap
depending on what direction of chain-code is assigned
to it (there are 8 bitmaps of 35×35 pixels, one bitmap
for each chain-code direction - see Figure 11). After
Gaussian blurring (σ = 1.1) each bitmap is sub-
sampled to a matrix of 5 × 5 pixels to generate 25
features for each direction. In total, 25 features × 8
directions generate 200 features per region.

In our experiments, the training set consists of im-
ages with a single black letter on a white background.
In total there were 5580 training samples (62 character
classes in 90 different fonts). Let us note that no
further distortions, blurring, scaling or rotations were
artificially introduced to the training set, in order to
demonstrate the power of the feature representation.
The method can be also easily extended to incorpo-
rate additional characters or even scripts, however
the recognition accuracy might be affected by the
increased number of classes.

The nearest-neighbor classifier NK was imple-
mented by an approximative nearest-neighbor clas-
sifier [35] for performance reasons and K was set to
11. The values d̄(l) were estimated for each class and
each feature representation by a cross-validation on

Θ = 180 Θ = 193 Θ = 198

Fig. 12. Character boundaries are often fuzzy and it
is not possible to locally determine the threshold value
unambiguously. Note the binarization of letters “ITE” in
the word ”SUITES” - as the threshold Θ is increased
their appearance goes from “IIE” through “ITE” to “m”

the training set as an average maximal distance over
all folds, multiplied by a tolerance factor of β. The
value of β represents a trade-off between detecting
more characters from fonts not in the training set and
more false positives. In our experiments, we used the
value β = 2.5, which yields the best performance on
the training subset of the ICDAR dataset (see Section
4).

3.4 Sequence Selection
Let us consider a word as a character sequence. Given
a set of regions R from the character detector with
a set of Unicode labels L(r) for each region r, the
method finds a set of words (i.e. a set of character
sequences) for each text line where in each sequence
a region with a label corresponds to a character and
the order of the regions in the sequence corresponds
to the order of the characters in the word. Note
that a solution might not be unambiguous, because
the character detector will typically output several
regions for the same character in the image (the same
character can be detected with different threshold or
in a different projection - see Figure 12), so ultimately
there can be several different regions that produce an
identical character sequence.

Given regions r1 and r2 in a text line, r1 is an
immediate predecessor of r2

(
r1Pr2

)
if r1 and r2 are part

of the same text line and the character associated with
r1 immediately precedes the one associated with r2 in
the sequence of characters. The predecessor relation
P induces a directed graph G for each text line, such
that nodes correspond to labeled regions

G = (V ,E ) (16)

V = {rl ∈ R×A : l ∈ L̂(r)} (17)
E = {(r1l1 , r

2
l2) : r1Pr2} (18)

where rl denotes a region r with a label l ∈ A. Regions
which don’t have any label assigned by the character
classifier (i.e. L̂(r) = ∅) are not part of the text line
graph and are therefore eliminated in this process.

In the proposed method, the immediate predecessor
relation P is modeled by ordering regions’ centroids
in the direction of the associated text line, i.e. a region
r1 is a predecessor of r2 if the centroid of r1 comes
before the centroid of r2 in the text line direction, the
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Fig. 13. Threshold interval overlap τ(r1, r2). A thresh-
old interval is an interval of thresholds during which
the region has not changed its OCR label (red). Note
that as the threshold is increased the region grows or
merges with other regions and the label changes

regions’ pixels do not overlap and there is no other
region closer to r2 (measured as a distance of the
centroids) which satisfies the conditions.

Each node rl and edge (r1l1 , r
2
l2

) has an associated
score s(rl) and s(r1l1 , r

2
l2

) respectively

s(rl) = α1ψ(r) + α2ω(rl) (19)
s(r1l1 , r

2
l2) = α3τ(r1, r2) + α4λ(l1, l2) (20)

where α1 . . . α4 denote weights which are determined
in a training stage.

Region text line positioning ψ(r) is calculated as
a negative sum of squared Euclidian distances of
the region’s top and bottom points from estimated
position of top and bottom text line respectively. This
unary term is incorporated to prefer regions which
better fit on the text line.

Character recognition confidence ω(rl) estimates
the probability, that the region r has the character label
l based on the confidence of the character classifier
(see Section 3.3). The estimate is calculated by taking
the sum of (approximative) distances in the character
feature space of at most K nearest templates from
training set with the label l, normalized by the dis-
tance of the nearest template dmin

dmin(r) = min
t′∈NK(f(r))

d(t′, r) (21)

ω(rl) ≈
1

K

∑
t∈NK(f(r)):l(t)=l

dmin(r)

d(t, r)
(22)

d(x, y) = ‖f(x)− f(y)‖ (23)

Threshold interval overlap is a binary term which
is incorporated to express preference for segmenta-
tions that follow one after another in a word to have
a similar threshold. A threshold interval is an interval of
thresholds during which the region has not changed

TABLE 1
Recall (R) and precision (R) of character detection by

ER detectors in individual channels and their
combinations. The channel combination used in the

experiments is in bold

Channel R (%) P (%)
R 83.3 7.7
G 85.7 10.3
B 85.5 8.9
H 62.0 2.0
S 70.5 4.1
I 85.6 10.1
∇ 74.6 6.3

Channel R (%) P (%)
I∪H 89.9 6.0
I∪S 90.1 7.2
I∪∇ 90.8 8.4
I∪H∪S 92.3 5.5
I∪H∪∇ 93.1 6.1
I∪R∪G∪B 90.3 9.2
I∪H∪S∪∇ 93.7 5.7
all (7 ch.) 94.8 7.1

its OCR label. A threshold interval overlap τ(r1, r2) is
the intersection of intervals of regions r1 and r2 (see
Figure 13).

Transition probability λ(l1, l2) estimates the proba-
bility that the label (character) l1 follows after the label
l2 in a given language model. Transition probabilities
are calculated in a training phase from a dictionary
for a given language.

As a final step of the method, the directed graph
is constructed with corresponding scores assigned to
each node and edge [13], the scores are normalized
by width of the area that they represent (i.e. node
scores are normalized by the width of the region and
edge scores are normalized by the width of the gap
between regions) and a standard dynamic program-
ming algorithm is used to select the path with the
highest score. The sequence of regions and their labels
induced by the optimal path is then broken down
into a sequence of words by calculating a median of
spacing sm between individual regions in the whole
sequence and by introducing a word boundary where
the spacing is above 2sm. This process associates a
sequence of words (or a single word if no word
boundary is found) with each text line, which is the
final output of the method.

4 EXPERIMENTS

4.1 Character Detector

An experimental validation shows that 85.6% char-
acters in the ICDAR 2013 dataset [1] are detected as
ERs in a single channel and that 94.8% characters are
detected if the detection results are combined from all
channels (see Table 1). A character is considered as
detected if bounding box of the ER matches at least
90% of the area of the bounding box in the ground
truth. In the proposed method, the combination of
intensity (I), intensity gradient (∇), hue (H) and satu-
ration (S) channels was used as it was experimentally
found as the best trade-off between short run time
and localization performance.

4.2 ICDAR 2013 Dataset

The proposed method was evaluated on the ICDAR
2013 Robust Reading competition dataset [1] (which
is the same dataset as in the 2011 competition),
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TABLE 2
Comparison with most recent text localization results

on the ICDAR 2013 dataset
method recall precision f-measure

proposed method 71.3 82.1 76.3
Yin et al. [8] 68.3 86.3 76.2

TexStar (ICDAR’13 winner) [1] 66.4 88.5 75.9
our previous method [13] 64.8 87.5 74.5

Kim (ICDAR’11 winner) [26] 62.5 83.0 71.3
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Fig. 14. Text localization performance on the rotated
ICDAR 2013 dataset

which contains 1189 words and 6393 letters in 255
images. There are some challenging text instances in
the dataset (reflections, text written on complicated
backgrounds, textures which resemble characters), but
on the other hand the text is English only, it is mostly
horizontal and the camera is typically focused on the
text area.

Using the ICDAR 2013 competition evaluation pro-
tocol [37], the method reaches the recall of 71.3%,
precision of 82.1% and the f-measure of 76.3% in text
localization (see Figure 15 for sample outputs). The
average processing time is 1.6s per image.

The method achieves significantly better recall
(71%) than the winner of ICDAR 2013 Robust Reading
competition (66%) and the recently published method
of Yin et al. [8] (68%). The improvement over our
previously published result [13] is due to an im-
proved text line clustering phase, which uses a trained
classifier rather than a heuristic function for region
pair/triplet verification. The overall f-measure (76%)
outperforms all published methods (see Table 2), but
the precision is slightly worse than the winner of the
ICDAR competition.

The main cause for the lower precision in text local-
ization in some images are missed characters, which
then result in a word being only partially detected
or detected as multiple words; this is heavily penal-
ized by the evaluation protocol, because such word
detection is assigned a precision of 0% (see Figure 16).
The proposed method also fails to detect text where
there are not enough regions to form a text line (the

TABLE 3
Comparison with most recent end-to-end text

recognition results on the ICDAR 2013 dataset
(case-sensitive).

method recall precision f-measure
proposed method 45.4 44.8 45.2

Weinman et al. [36] 41.1 36.5 33.7

EAST
HILL

MILL
ANTIQUES

FINE
EXTINGUISHER

BREAK
GLASS

CANARY
WHARF
STATION

First
ti

Eastern
National

Bus
Times

Famous
for
our
fish
chips

Fig. 15. Text localization and recognition results on
the ICDAR 2013 dataset. Ground truth marked green,
method output marked red

r = 0.6 p = 0.43 r = 0.33 p = 0.33 r = 0.33 p = 0.5

Fig. 16. The main cause for the lower precision in
text localization in some images are missed characters,
which then result in a word being only partially detected
or detected as multiple words. Such partial/multiple
detections are heavily penalized by the evaluation pro-
tocol (overall image recall r and precision p denoted
below each image)

text formation algorithm needs to form at least one
triplet - see Section 3.2), where the word consists of
connected letters (even if the line is formed, such
region consisting of multiple letters is then rejected by
the character classifier) or where there is no threshold
in any projection which separates a character from its
background - see Figure 17.

In end-to-end text recognition, the method correctly
localized and recognized 549 words (46%), where
a word is considered correctly recognized if all its
characters match the ground truth using case-sensitive
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(a) (b) (c) (d)

Fig. 17. Samples of missed text in the ICDAR 2013
dataset. Not enough letters to form a text line (a),
very low contrast (b), letters are connected to the
surrounding area which has the same color (c) and
multiple characters joint together (cursive) (d).
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Fig. 18. Precision and recall of end-to-end word detec-
tion and recognition on the Street View Text dataset.
The configuration with the highest f-measure (68.1%)
marked red

comparison, and the method “hallucinated” 60 words
in total which do not have any overlap with the
ground truth.

The proposed method outperforms the method of
Weinman et al. [36] (see Table 3), mostly benefiting
from a superior text localization phase. The dataset
was also exploited in the ICDAR 2015 Robust Reading
competition (see Section 4.4, Table 7).

In the second experiment, the dataset was rotated
by 5◦ increments in the [−45◦; 45◦] interval, thus
creating a synthetic dataset of 4845 images of multi-
oriented text with complete annotations. The ability of
the proposed method to detect text of different orien-
tations was then evaluated by calculating the average
text localization f-measure for each dataset rotation
(see Figure 14). With small rotations (≤ 15◦) the f-
measure drops only slightly (the recall remains the
same, but the precision is slightly worse), but both the
recall and the precision drops for rotations over 30◦. If
the pipeline is altered to rotate the input image 6 times
(using 15◦ increments) and to combine the rotated
channels in the sequence selection stage, the precision
on the original dataset drops from 82.1% to 68.1% and
the recall remains virtually the same. However, for
the rotated dataset the recall is maintained across all
rotations and the precision is only slightly worse for
rotations over 35◦ (see Figure 14 - red).

4.3 Street View Text Dataset
The Street View Text (SVT) dataset [3] contains 647
words and 3796 letters in 249 images harvested from
Google Street View. Images in the dataset are more
challenging because text is present in different orien-
tations, the variety of fonts is bigger and the images

TABLE 4
Comparison with the most recent end-to-end word

detection and recognition results on the Street View
dataset

method f-measure
proposed method 68.1

proposed method (general language model) 64.7
T. Wang et al. [25] 46.0
K. Wang et al. [3] 38.0

AVIS YMCA

CASBAH

TRIPLE
DOOR
THE
THE

HOULIHAN
HOULIHAN

GRAND
BOHEMIAN
HOTEL

Fig. 19. Text localization and recognition results on
the SVT dataset. Ground truth marked green, method
output marked red

are noisy; on the other hand, the task formulation
is slightly easier because with each test image the
evaluated method is also given a list of words (called
lexicon) and the method only needs to localize (and
therefore recognize) words from the lexicon. Let us
note that not all lexicon words are in the image (these
are called confuser words) and vice-versa not all words
present in the image are in the lexicon.

In order to make a fair comparison with the previ-
ously published work [3], [25] and to make the pro-
posed method compatible with the aforementioned
task formulation, the proposed pipe-line was slightly
modified in order to exploit the presence of a lexicon.
Firstly, the character transition probabilities λ(c1, c2)
(see Section 3.4) were calculated for each image in-
dividually from its associated lexicon, which makes
the method prefer character sequences present in the
lexicon. And secondly, the output of the method was
further refined using the image lexicon - the words
whose edit distance from a lexicon word is below
a selected threshold were considered a match and
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(a) (b) (c)

Fig. 20. Samples of missed text in the SVT dataset.
Letters are connected to the surrounding area which
has the same color (a), multiple letters joint together
(b) and artistic fonts (c)

GARAGE
COMMON
THREADS

THE
CARPENTER

SIX
FEET
UNDER
COM

HOLLYWOOD
POSTERS
POSTERS

Fig. 21. “False positives” in the SVT dataset are fre-
quently caused by confusing actual text for a confuser
word from the lexicon (left column) or by incorrect
ground truth where “confuser” words from the lexicon
are actually present in the image (right column)

included in the final output, whereas words whose
edit distance was above the threshold were discarded.
The edit distance threshold is a parameter which
makes the method accept more or less similar output
words as lexicon words (see Figure 18).

Using the same evaluation protocol as [25], the
proposed method achieves the f-measure of 68.1% for
the best edit distance threshold, which significantly
outperforms the state-of-the-art methods (see Table
4). The method is able to cope with low-contrast and
noisy text and high variety of different fonts (see Fig-
ure 19 for output examples). The average processing
time is 3.1s per image, as the dataset images have a
higher resolution.

It can also be observed that many of the detections
which are considered as false positives are caused by
actual text in the image. This is either caused by the
fact that the edit distance of the detected text is too
close to a confuser word (see Figure 21 - left column)
or by incorrect ground truth where confuser words are
actually present in the image3 (see Figure 21 - right
column). The method fails to detect text where letters

3. We have contacted the authors of the dataset with suggestions
to correct the ground truth

BREADTALK RAMENPLAY

APACHE
NOMAD
DANGER
KEEP
OUT

RLD
OF

SPORTS

S150 SKYLIGHT

Fig. 22. Text localization and recognition results on the
ICDAR 2015 Incidental scene text dataset. Best viewed
zoomed in color.

are connected to the surrounding area which has the
same color, where multiple letters joint together or
where the font is artistic and therefore is not present
in the training set (see Figure 20).

If general character transition probabilities λ(c1, c2)
for English (i.e. the same ones as in the Section 4.2) are
used instead of lexicon-specific ones for each image,
the f-measure drops to 64.7%, which suggests that
the method is still competitive even with a general
language model.

4.4 ICDAR 2015 Competition
The proposed method was used as the baseline
method4 in the ICDAR 2015 Robust Reading Com-
petition [9] (see Figure 22). In the 2015 competition,
the emphasis was on the end-to-end text recognition
evaluation, rather than on the individual subtasks
(text localization, text segmentation, cropped word
recognition) as in the previous years, mainly because
the interpretation of individual subtasks’ results is
problematic because of the evaluation methodology
(see Figure 16 for an illustration of the problems in
the text localization protocol). Three different datasets
were exploited for the evaluation: Incidental scene text,
Video Text and Focused scene text.

The new Incidental scene text dataset contains 17, 548
annotated text regions in 1670 scene text images
captured with Google Glass. The dataset consists of
significantly more challenging images due to blur,
different text orientations, small text dimensions and

4. The proposed method did not participate in the competition
directly to avoid any conflict of interest because the authors helped
with data annotation of the newly introduced dataset
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TABLE 5
ICDAR 2015 Robust Reading competition [9] -

End-to-end Incidental text recognition
Method Strong Weak Generic

p r f p r f p r f
Stradvision-2 67.9 32.2 43.7 - - - - - -

proposed method 62.2 24.4 35.0 25.0 16.6 19.9 18.3 13.6 15.6
Stradvision-1 28.5 39.7 33.2 - - - - - -

NJU 48.8 24.5 32.6 - - - - - -
BeamSearch CUNI 37.8 15.7 22.1 33.7 14.0 19.8 29.6 12.4 17.5

Deep2Text-MO [8], [15] 21.3 13.8 16.8 21.3 13.8 16.8 21.3 13.8 16.8
OpenCV+Tessaract 40.9 8.3 13.8 32.5 7.4 12.0 19.3 5.0 8.0

BeamSearch CUNI+S 81.0 7.2 13.3 64.7 5.9 10.9 35.0 3.8 6.9

TABLE 6
ICDAR 2015 Robust Reading competition [9] -

End-to-end Video text recognition
Method MOTP MOTA ATA

proposed method 69.5 59.8 41.8
Stradvision-1 69.2 56.5 28.5

USTB-TexVideo [8], [15] 65.1 45.8 19.8
Deep2Text-I [8], [15] 62.1 35.4 18.6

USTB-TexVideo-II-2 [8], [15] 63.5 50.5 17.8
USTB-TexVideo-II-1 [8], [15] 60.5 21.2 13.8

many textures similar to text. It was introduced to
reduce the possibility of overfitting and to address the
aforementioned problems of the ICDAR 2013 Dataset
(see Section 4.2), which is now referred to as the
Focused scene text dataset.

In order to make a fair comparison between meth-
ods and to see the impact of prior knowledge, each
dataset comes with three lexicons of a different size:
the Strong lexicon contains 100 words specific for each
image, the Weak lexicon contains all words in the
dataset and the Generic lexicon contains 90K English
words.

On the Incidental Scene Text dataset, the pro-
posed method placed second using the Strong lexicon
(topped only by the deep-network based StradVision
method, which is not published) and placed first us-
ing the Weak lexicon (see Table 5). The best result with
the Generic lexicon is achieved by the BeamSearch
method, which is based on the proposed method dif-
fering only is its more sophisticated language model.

For the cropped word recognition subtask, the pro-
posed method recognized 14.2% words correctly. The
main reason for the lower performance when com-
pared to the end-to-end setup is the requirement to
initially detect at least 3 characters on a line, which
is less likely to be successful for images of individual
cut out words (and impossible for words containing

TABLE 7
ICDAR 2015 Robust Reading competition [9] -

End-to-end Focused text recognition
Method Strong Weak Generic

p r f p r f p r f
VGGMaxBBNet [38] 89.6 83.0 86.2 - - - - - -

Stradvision-1 88.7 75.0 81.3 84.0 73.7 78.5 69.5 65.0 67.2
proposed method 85.9 69.8 77.0 61.5 64.8 63.1 50.7 58.1 54.2

Deep2Text-II [8], [15] 81.7 69.8 75.3 81.7 69.8 75.3 81.7 69.8 75.3
NJU 80.2 69.6 74.5 - - - - - -

Deep2Text-I [8], [15] 84.0 66.7 74.4 84.0 66.7 74.4 84.0 66.7 74.4
MSER-MRF 84.5 61.4 71.13 - - - - - -

BeamSearch CUNI 67.9 59.0 63.1 65.1 57.5 61.0 59.4 52.9 56.0
OpenCV+Tessaract 75.7 49.0 59.5 69.5 47.1 56.0 51.0 37.6 43.3

BeamSearch CUNI+S 92.8 15.4 26.4 89.1 13.5 23.3 65.5 12.0 20.3

less than 3 characters) - 33.8% individual words were
missed completely in the cropped word recognition
setup because of this limitation.

On the Video Text dataset containing 15 test video
sequences, the proposed method (by processing the
video frame by frame and by feeding its output to
the FoT tracker [39]) outperformed all participants
(see Table 6) in all three metrics [40]: the Multiple
Object Tracking Precision (MOTP), the Multiple Object
Tracking Accuracy (MOTA) and the Average Tracking
Accuracy (ATA).

On the Focused Scene Text dataset (i.e. the ICDAR
2013 Dataset), the proposed method in the end-to-
end setup is outperformed only by the deep net-
work of Jaderberg et al. [38] trained on significantly
more data and the deep-network based StradVision
method, which is not published (see Table 7).

5 CONCLUSIONS

An end-to-end real-time text localization and recogni-
tion method is presented in the paper. In the first stage
of the classification, the probability of each ER being
a character is estimated using features calculated by
a novel algorithm of O(1) complexity and only ERs
with locally maximal probability are selected across
several image projections (channels) for the second
stage, where the classification is improved using more
computationally expensive features. A highly efficient
exhaustive search is then applied to group ERs into
text lines and an OCR classifier trained on synthetic
fonts is exploited to label character regions. Finally,
the most probable character sequence (of segmenta-
tions and their labels) is selected by standard dynamic
programming in the very last stage of the processing
when context of each character in a text line is known.

The method was evaluated on three public datasets.
On the ICDAR 2013 dataset the method achieves state-
of-the-art results in text localization (recall 71.3%,
precision 82.1%, f-measure 76.3%). On the more chal-
lenging Street View Text dataset the proposed method
achieves the f-measure of 68.1%, which significantly
outperforms the state-of-the-art methods and demon-
strates that the proposed pipeline can easily incorpo-
rate additional prior knowledge about the detected
text (lexicon). Robustness of the proposed method
against noise and low contrast of characters is demon-
strated by “false positives” caused by actual but unan-
notated text present in the image.

The proposed method was also exploited as the
baseline in the ICDAR 2015 Robust Reading competi-
tion, where it placed first in the Video Text and second
(first when using the Weak lexicon) in the challenging
Incidental Scene Text end-to-end recognition.
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Jiřı́ Matas is Professor at the the Center
for Machine Perception of Czech Techni-
cal University in Prague, Czech Republic.
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