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VIsual TRAnslator:Linking Perceptions and Natural LanguageDescriptions�Gerd Herzog, Peter WazinskiSFB 314, Project VITRAUniversit�at des SaarlandesD-66041 Saarbr�uckenvitra@cs.uni-sb.deApril 1994AbstractDespite the fact that image understanding and natural languageprocessing constitute two major areas of AI, there have only been afew attempts towards the integration of computer vision and the gen-eration of natural language expressions for the description of imagesequences. In this contribution we will report on practical experiencegained in the project Vitra1 (VIsual TRAnslator) concerning the de-sign and construction of integrated knowledge-based systems capableof translating visual information into natural language descriptions.Our approach towards simultaneous scene description emphasizesconcurrent image sequence evaluation and natural language process-ing, carried out on an incremental basis, an important prerequisitefor real-time performance. One major achievement of our cooperationwith the vision group at the Fraunhofer Institute (IITB, Karlsruhe)is the automatic generation of natural language descriptions for rec-ognized trajectories of objects in a real world image sequence. In thissurvey, the di�erent processes pertaining to high-level scene analysisand natural language generation will be discussed.�A revised version of this paper will appear in Arti�cial Intelligence Review Journal,8, Special Volume on the Integration of Natural Language and Vision Processing, 1994.1The work described here was partly supported by the Sonderforschungsbereich 314 derDeutschen Forschungsgemeinschaft, \K�unstliche Intelligenz und wissensbasierte Systeme"Projekt N2: VITRA. 1



1 IntroductionComputer vision and natural language processing constitute two major areasof research within AI, but have generally been studied independently of eachother. There have been only a few attempts towards the integration of imageunderstanding and the generation of natural language descriptions for realworld image sequences.The relationship between natural language and visual perception formsthe research background for the Vitra project (cf. [Herzog et al. 93b]),which is concerned with the development of knowledge-based systems for thenatural language access to visual information. According to [Wahlster 89],two main goals are pursued in this research �eld:1. \The complex information processing of humans underlying the inter-action of natural language production and visual perception is to bedescribed and explained exactly by means of the tools of computerscience."2. \The natural language description of images is to provide the userwith an easier access to, and a better understanding of, the results ofan image understanding system."It is characteristic of AI research, that, apart from the cognitive science per-spective (1), an application-oriented objective is also pursued (2). From thisengineering perspective, the systems envisaged here could serve such prac-tical purposes as handling the vast amount of visual data accumulating, forexample, in medical technology ([Tsotsos 85], [Niemann et al. 85]), remotesensing ([Bajcsy et al. 85]), and tra�c control ([Wahlster et al. 83], [Neu-mann 89], [Walter et al. 88], [Koller et al. 92b; Kollnig & Nagel 93]).The main task of computer vision is the construction of a symbolic scenerepresentation from (a sequence of) images. In the case of image sequenceanalysis, the focus lies on the detection and interpretation of changes whichare caused by motion. The intended output of a vision system is an explicit,meaningful description of physical objects. One goal of approaches towardsthe integration of computer vision and natural language processing is toextend the scope of scene analysis beyond the level of object recognition.Natural language access to vision systems requires processes which lead toconceptual units of a higher level of abstraction. These processes include theexplicit description of spatial con�gurations by means of spatial relations,the interpretation of object movements, and even the automatic recognitionof presumed goals and plans of the observed agents. Based upon such a high-level scene analysis, natural language image descriptions have the advantage,that they allow to vary the degree of condensation of visual data accordingto application-speci�c demands. 2



In Vitra, di�erent domains of discourse and communicative situationsare examined with respect to natural language access to visual information.Scenarios under investigation include:� Answering questions about observations in tra�c scenes (cf. [Schirra etal. 87])� Generating running reports for short sections of soccer games (cf. [Andr�eet al. 88; Herzog et al. 89])� Describing routes based on a 3-dimensional model of the UniversityCampus Saarbr�ucken (cf. [Herzog et al. 93a; Maa� et al. 93])� Communicating with an autonomous mobile robot (cf. [L�uth et al. 94])In this survey, we will concentrate on our joint work with the vision groupat the Fraunhofer Institute (IITB, Karlsruhe) regarding the automatic inter-pretation of dynamic imagery.2 The Visual TranslatorThe task of the vision group at the IITB is to recognize and to track movingobjects within real world image sequences. Information concerning mobileobjects and their locations over time together with knowledge about the sta-tionary background constitutes the so-called geometrical scene description.In [Neumann 89] this intermediate geometrical representation, enriched withadditional world knowledge about the objects, has been proposed as an ide-alized interface between a vision component and a natural language system.
Figure 1: Three frames from the soccer domainFirst results had been obtained in the investigation of tra�c scenes andshort sequences from soccer matches (cf. �g. 1). Apart from the trajectory3



data supplied by the Actions system ([Sung & Zimmermann 86; Sung 88])synthetic scenes have been studied in Vitra as well (c.f. [Herzog 86]). Sincean automatic classi�cation and identi�cation of objects is not possible inActions, object candidates are interactively assigned to previously knownplayers and the ball. The more recent Xtrack system ([Koller 92; Koller etal. 92a]) accomplishes the automatic model-based recognition, tracking, andclassi�cation of vehicles in tra�c scenes.
Figure 2: Geometric model of a human bodyResearch described in [Rohr 93] concentrates on the model-based 3D-reconstruction of non-rigid bodies. A cylindric representation and a kine-matic model of human walking, which is based on medical data, is utilizedfor the incremental recognition of pedestrians and their exact state of motion.This approach for the geometric modeling of an articulated body has beenadopted in Vitra in order to represent the players in the soccer domain (cf.[Herzog 92b]). In �g. 2 di�erent movement states of the walking cycle areshown.The goal of our joint e�orts at combining a vision system and a naturallanguage access system is the automatic simultaneous description of dynamicimagery. Thus, the various processing steps from raw images to naturallanguage utterances must be carried out on an incremental basis. Fig. 3shows how these processes are organized into a cascade within the Vitrasystem.An image sequence, i.e., a sequence of digitized video frames, forms theinput for the processes on the sensory level. Based on the visual raw data,the image analysis component constructs a geometrical representation of thescene, stating the locations of the visible objects at consecutive points intime. The contents of the geometrical scene description, which is constructedincrementally, as new visual data arrive, are further interpreted by the theprocesses on the cognitive level. This high-level scene analysis extracts spatial4



relations, interesting motion events, as well as presumed intentions, plans,and plan interactions of the observed agents. These conceptual structuresbridge the gap between visual data and natural language concepts, such asspatial prepositions, motion verbs, temporal adverbs and purposive or causalclauses. They are passed on to the processes on the linguistic level whichtransform them into natural language utterances. In terms of reference se-mantics, explicit links between sensory data and natural language expressionsare established.
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a listener who cannot see the scene her/himself, but who is assumed to haveprior knowledge about its static properties. In order to generate communica-tively adequate descriptions, the system must take into account the visualconceptualizations that the system's utterance elicits in the listener's mind(cf. [Neumann 89], [Wahlster 89]).3 Incremental high-level scene analysisNatural language access systems like Ham-Ans ([Wahlster et al. 83]) andNaos ([Neumann & Novak 86]) concentrate on an a posteriori analysis. Lowlevel vision considers the entire image sequence for the recognition and cueingof moving objects; motion analysis happens afterwards, based on completetrajectories. Since only information about a past scene can be provided,these systems generate retrospective scene descriptions. In Vitra we favouran incremental analysis. Input data is supplied and processed simultaneouslyas the scene progresses. Information about the present scene is providedand immediate system reactions (like motor actions of a robot, simultaneousnatural language utterances) are possible.3.1 Interpreting spatial relations and object move-mentsThe de�nition and representation of the semantics of spatial relations is anessential condition for the synthesis of spatial reference expressions in naturallanguage. The computation and evaluation of spatial relations in Vitra isbased on a multilevel semantic model, that clearly distinguishes betweencontext speci�c conceptual knowledge and the basic meaning of a spatialrelation (cf. [Gapp 94]).The detailed geometric knowledge, grounded in visual perception, can beexploited for the de�nition of a reference semantics, that does not assignsimple truth values to spatial predications, but instead introduces a measureof degrees of applicability that expresses the extent to which a spatial relationis applicable (cf. [Andr�e et al. 89]). Since di�erent degrees of applicabilitycan be expressed by linguistic hedges, such as `directly' or `more or less', moreexact scene descriptions are possible. Furthermore, if an object con�gurationcan be described by several spatial predications, the degree of applicabilityis used to select the most appropriate reference object(s) and relation forverbalization.In the context of the Vitra project, di�erent classes of spatial rela-tions have been examined in more detail. [Wazinski 93a; Wazinski 93b] isconcerned with topological relations. Orientation-dependent relations aretreated in [Andr�e et al. 87a; Andr�e et al. 89]. Since the frame of reference6



is explicitly taken into account, the system is able to cope with the intrin-sic, extrinsic, and deictic use of directional prepositions (cf. [Retz-Schmidt88]). Recently, the algorithms developed so far have been generalized for3-dimensional geometric representations (cf. [Gapp 93; Gapp 94]).
Figure 4: A passing event in a tra�c sceneIf a real-world image sequence is to be described simultaneously as it isperceived, one has to talk about object motions even while they are currentlyhappening and not yet completed. Thus, motion events have to be recognizedstepwise as they progress and event instances must be made available forfurther processing from the moment they are noticed �rst. Consider theexamples given in �g. 4, where a white station wagon is passing a pick-uptruck, and in �g. 1, where a player is transfering the ball to a team mate.Since the distinction between events that have and those that have notoccured is insu�cient, we have introduced the additional predicates start,proceed, and stop which can be used to characterize the progression of anevent (cf. [Andr�e et al. 88]). Labeled directed graphs with typed edges, socalled course diagrams, are used to model the prototypical progression ofan event. The recognition of an occurrence can be thought of as traversingthe course diagram, where the edge types are used for the de�nition of ourbasic event predicates. Course diagrams rely on a discrete model of time,which is induced by the underlying image sequence. They allow incrementalevent recognition, since exactly one edge per unit of time is traversed. Usingconstraint-based temporal reasoning, the course diagrams are constructedautomaticly from interval-based concept de�nitions (cf. [Herzog 92a]).The event concepts are organized into an abstraction hierarchy, based onspecialization (e.g., walking is a moving) and temporal decomposition (e.g.,passing consists of swing-out, drive-beside, and swing-into-line). Thisconceptual hierarchy can be utilized in the language production process inorder to guide the selection of the relevant propositions.7



3.2 Recognizing intentions, interactions, and causesof plan failuresHuman observers do not only pay attention to the spatio-temporal aspectsof motion. They also make assumpions about intentional entities underlyingthe behaviour of other people (e.g., player A does not simply approach playerB, but he tackles him).One criterion for the choice of soccer as a domain of discourse in Vitrawas the fact that the inuence of the agents assumed intentions on the de-cription is particularly obvious here. Given the position of players, their teammembership and the distribution of roles in standard situations, stereotypicalintentions can be assumed for each situation. As described in [Retz-Schmidt91; Retz-Schmidt 92], the Vitra system is able to incrementally recognizeintentions of and interactions between the agents as well as the causes ofpossible plan failures.Partially instantiated plan hypotheses taken from a hierarchically orga-nized plan library are successively instantiated according to the incrementallyrecognized events. The leaves of the plan hierarchy represent observableevents and spatial relations. An inner node corresponds to an abstract ac-tion. An egde, that connects two nodes either represents a decomposition ora specialization relation. In addition, a node also contains information aboutnecessary preconditions of the action it represents as well as informationabout its intended e�ect.In a continually changing domain it would be computationally untractableto keep track of all agents that occur in the scene. Therefore, domain speci�cfocussing heuristics are applied in order to reduce the number of agents whoseactions have to be observed. In the soccer domain, for example, the systemwould focus on the agents that are near the goal or the player who has theball.Knowledge about the cooperative (e.g., double-pass) and antagonisticbehaviour (e.g., offside-trap) of the players is represented in the inter-action library. A successful plan triggers the activation of a correspondinginteraction schema. Similar to the plan recognition process this interactionschema has to be fully instantiated before the particular interaction is rec-ognized.There are several possibilities for a plan failure that can be detected withrespect to the underlying plan and interaction recognition component: (i)An agent might assume a precondition for a plan that is not given, (ii) anantagonistic plan can lead to a plan failure, or (iii) in case of an cooperativeinteraction the partner fails. 8



4 Simultaneous natural language descriptionSince an image sequence is not described a posteriori but rather as it pro-gresses, the complete course of the scene is unknown at the moment of textgeneration. In addition, temporal aspects such as the time required for textgeneration and decoding time of the listener or reader have to be consid-ered for the coordination of perception and language production. Thesepeculiarities of the conversational setting lead to important consequences forthe planning and realization of natural language utterances (cf. [Andr�e et al.87b]). As the description should concentrate on what is currently happening,it is necessary to start talking about motion events and actions while theyare still in progress and not yet completely recognized. In this case encodinghas to start before the contents of an utterance have been planned in fulldetail. Other characteristics of simultaneous reporting besides incrementalgeneration of utterances need to be dealt with. The description often lagsbehind with respect to the occurrences in the scene and unexpected topicshifts occur very frequently.Language generation in Vitra includes processes that handle the selec-tion, linearization and verbalization of propositions (cf. [Andr�e et al. 88]).The listener model provides an imagination component, in order to anticipatethe listener's visual conceptualizations of the described scene,4.1 Selection and linearization of propositionsAs the time-varying scene has to be described continuously, language gener-ation underlies strong temporal restrictions. Hence, the system cannot talkabout all events and actions which have been recognized, but instead it hasto decide which propositions should be verbalized in order to enable the lis-tener to follow the scene. According to the conversational maxims of Grice(cf. [Grice 75]), the listener should be informed about all relevant facts andredundancy should be avoided.Relevance depends on factors like: (i) salience, which is determined by thefrequency of occurrence and the complexity of the generic event or action con-cept, (ii) topicality, and (iii) current state, i.e., fully recognized occurrencesare preferred. Topicality decreases for terminated movements and actions asthe scene progresses and during recognition events and plans enter di�erentstates, i.e., relevance changes continually. To avoid redundancy, an occur-rence will not be mentioned if it is implied by some other proposition alreadyverbalized, e.g., a have-ball event following a pass will not be selected forverbalization.Additional selection processes are used to determine deep cases and tochoose descriptions for objects, locations, and time; in these choices thecontents of the text memory and the listener model must also be considered.9



The linearization process determines the order in which the selectedpropositions should be mentioned in the text. The temporal ordering of thecorresponding events and actions is the primary consideration for lineariza-tion; secondarily, focusing criteria are used to maintain discourse coherence.4.2 Anticipating the listener's visual imaginationAfter relevant propositions are selected and ordered, they are passed on tothe listener model Antlima (cf. [Schirra & Stopp 93]). In the sense of ananticipation feedback loop (cf. [Jameson & Wahlster 82]), the constructionof an assumed imagination is used to control the planning of utterances.

Figure 5: Examples of typicality distributionsAn adequate mental image is constructed by searching for a maximallytypical representation of the situation described by the selected propositions.The typicality distribution corresponding to a certain proposition is encodedin a so-called Typicality Potential Field (TyPoF), a function mapping loca-tions to typicality values. TyPoFs are instances of typicality schemas as-sociated with spatial relations as well as event and action concepts. EachTyPoF takes into account the dimensionality, size, and shape of the objects10



involved. In �g. 5, the TyPoFs for `player A in front of player B' and `infront of the goal area' are visualized. A typicality value associated with aspatial expression corresponds to the (degree of) applicability of a spatialrelation for a given object con�guration.If several propositions impose restrictions on an object, the correspond-ing TyPoFs are combined by taking the average. In the case of incompatiblerestrictions the preliminary text plan has to be retracted. Hillclimbing is em-ployed in order to �nd an interpretation with maximal typicality. Then themental image is re-analyzed, i.e., the processes of high-level analysis are ap-plied to it. The resulting set of propositions are compared to the propositonscomputed from the image sequence and detected misunderstandings may bedispeled by changing the preliminary text plan.4.3 Incremental verbalizationThe encoding of the selected propositions includes lexicalization, the deter-mination of morphosyntactic information, and surface transformations.In the process of transforming symbolic event descriptions into naturallanguage utterances, �rst a verb is selected by accessing the concept lexicon,and the case-roles associated with the verb are instantiated. Control passesback to the selection component, which decides which information concerningthe case-role �llers should be conveyed. The selected information is trans-formed into natural-language expressions referring to time, space or objects.Time is indicated by the verb tense and by temporal adverbs; spatial prepo-sitions and appropriate objects of reference are selected to refer to spatialrelations. Internal object identi�ers are transformed into noun phrases bythe selection of attributes that enable the listener to uniquely identify theintended referent. If an object cannot be characterized by attributes stored apriori in the partner model, it will be described by means of spatial relations,such as `the left goal', or by means of occurrences already mentioned in whichit was (is) involved, e.g., `the player who was attacked'. Anaphoric expres-sions are generated if the referent is in focus and no ambiguity is possible.Recognized intentions can be reected in natural language descriptionsin various ways. For instance, they can be expressed explicitly (`She wantsto do A') or be construed as expectations and formulated in future tense.They can also be expressed implicitly, using verbs that imply intention (e.g.,`chase'). In addition, relationships between intentions and actions or amongseveral intentions of a single agent can be described, e.g., using purposiveclauses (`He did A in order to achieve B'). Cooperative interactions can besummarized most easily, using a natural language expression describing thecollective intention. Cooperative as well as antagonistic interactions can bedescribed in more detail using temporal adverbs and conjunctions. Planfailures can also be stated explicitly, or they can be related to their causes by11



means of causal clauses. In our current implementation it is only possible toexplicitly express intentions and relationships between intentions of a singleagent.To meet the requirements of simultaneous scene description, informationconcerning partly-recognized events and actions is also provided. Conse-quently, language generation cannot start from completely worked-out con-ceptual contents; i.e., the need for an incremental generation strategy arises(see, e.g., [Reithinger 92]). In the newest version of the Vitra system theincremental generation of surface structures is realized with the module de-scribed in (cf. [Harbusch et al. 91; Finkler & Schauder 92]), an incrementalgenerator for German and English, which is based on Tree Adjoining Gram-mars.5 ConclusionVitra is the �rst system that automatically generates natural language de-scriptions for recognized trajectories of objects in a real world image se-quence. High-level scene analysis in Vitra is not restricted to the purelyvisual, i.e., spatio-temporal, properties of the scene, but also aims at therecognition of presumed goals and plans of the observed agents. In addition,the listener model in Vitra anticipates the listener's assumed imaginationfor the generation of the most appropriate description.Our approach towards simultaneous scene description emphasizes con-current image sequence evaluation and natural language processing. Theprocessing in all subcomponents is carried out on an incremental basis, andhence provides an important prerequisite for real-time performance.Despite these promising results, we are still far away from a universallyapplicable AI system capable of describing an arbitrary sequence of images.Nonetheless, the Vitra system will serve as a workbench for the furtherinvestigation of problems arising in the �eld of integrated vision and naturallanguage processing.In order to improve the quality of text production in theVitra prototype,the language generation component will be extended for the description ofplan failures and interactions, i.e., information that can already be providedby the high-level scene analysis.So far, we have only been concerned with a bottom-up analysis of imagesequences, recorded with a stationary TV-camera. Future work will concen-trate on expectation-driven scene analysis. Intermediate results of the high-level analysis shall support low-level vision in focussing on relevant objectsand in providing parameters for the active control of the sensor adjustement.These issues will we studied in the context of natural language interactionwith an autonomous mobile robot, equipped with several sensors.12



6 Technical NotesThe current version of the Vitra system is written in Common Lisp andCLOS, with the graphical user interface implemented in CLIM. The systemhas been developed on Symbolics 36xx Lisp Machines, Symbolics UX1200SLisp Coprocessors, and on Hewlett Packard 9720 and SPARC Workstations.References[Andr�e et al. 87a] E. Andr�e, G. Bosch, G. Herzog, and T. Rist. Copingwith the Intrinsic and the Deictic Uses of Spatial Prepositions. In:K. Jorrand and L. Sgurev (eds.), Arti�cial Intelligence II: Methodol-ogy, Systems, Applications, pp. 375{382. Amsterdam: North-Holland,1987.[Andr�e et al. 87b] E. Andr�e, T. Rist, und G. Herzog. Generierungnat�urlichsprachlicher �Au�erungen zur simultanen Beschreibung zeit-ver�anderlicher Szenen. In: K. Morik (Hrsg.), GWAI-87, pp. 330{337.Berlin, Heidelberg: Springer, 1987.[Andr�e et al. 88] E. Andr�e, G. Herzog, and T. Rist. On the Simultane-ous Interpretation of Real World Image Sequences and their NaturalLanguage Description: The System SOCCER. In: Proc. of the 8thECAI, pp. 449{454, Munich, 1988.[Andr�e et al. 89] E. Andr�e, G. Herzog, and T. Rist. Natural LanguageAccess to Visual Data: Dealing with Space and Movement. Report 63,Universit�at des Saarlandes, SFB 314 (VITRA), Saarbr�ucken, 1989.Presented at the 1st Workshop on Logical Semantics of Time, Spaceand Movement in Natural Language, Toulouse, France.[Bajcsy et al. 85] R. Bajcsy, A. Joshi, E. Krotkov, and A. Zwarico.LandScan: A Natural Language and Computer Vision System for An-alyzing Aerial Images. In: Proc. of the 9th IJCAI, pp. 919{921, LosAngeles, CA, 1985.[Finkler & Schauder 92] W. Finkler and A. Schauder. E�ects of Incremen-tal Output on Incremental Natural Language Generation. In: Proc.of the 10th ECAI, pp. 505{507, Vienna, 1992.[Gapp 93] K.-P. Gapp. Berechnungsverfahren f�ur r�aumliche Relationen in3D-Szenen. Memo 59, Universit�at des Saarlandes, SFB 314, 1993.13



[Gapp 94] K.-P. Gapp. Einsatz von Visualisierungstechniken bei der Anal-yse von Realweltbildfolgen. In: Proc. of 1. Workshop \Visual Com-puting", 16.-17.3.94, Darmstadt, FRG, 1994.[Grice 75] H. P. Grice. Logic and Conversation. In: P. Cole and J. L.Morgan (eds.), Speech Acts, pp. 41{58. London: Academic Press,1975.[Harbusch et al. 91] K. Harbusch, W. Finkler, and A. Schauder. In-cremental Syntax Generation with Tree Adjoining Grammars. In:W. Brauer and D. Hernandez (eds.), Verteilte K�unstliche Intelligenzund kooperatives Arbeiten: 4. Int. GI-Kongre� Wissensbasierte Sys-teme, pp. 363{374. Berlin, Heidelberg: Springer, 1991.[Herzog et al. 89] G.Herzog, C.-K. Sung, E. Andr�e, W. Enkelmann, H.-H.Nagel, T.Rist, W.Wahlster, and G. Zimmermann. Incremen-tal Natural Language Description of Dynamic Imagery. In: C. Freksaand W. Brauer (eds.), Wissensbasierte Systeme. 3. Int. GI-Kongre�,pp. 153{162. Berlin, Heidelberg: Springer, 1989.[Herzog et al. 93a] G. Herzog, W. Maa�, and P. Wazinski. VI-TRA GUIDE: Utilisation du Langage Naturel et de Repr�esentationGraphiques pour la Description d'Itin�eraires. In: Colloque Interdisci-plinaire du Comit�e National \Images et Langages: Multimodalit�e etMod�elisation Cognitive", pp. 243{251, Paris, 1993.[Herzog et al. 93b] G.Herzog, J. Schirra, und P.Wazinski. Arbeitsberichtf�ur den Zeitraum 1991{1993: VITRA { Kopplung bildverstehenderund sprachverstehender Systeme. Memo 58, Universit�at des Saarlan-des, SFB 314 (VITRA), 1993.[Herzog 86] G. Herzog. Ein Werkzeug zur Visualisierung und Generierungvon geometrischen Bildfolgenbeschreibungen. Memo 12, Universit�atdes Saarlandes, SFB 314 (VITRA), 1986.[Herzog 92a] G.Herzog. Utilizing Interval-Based Event Representations forIncremental High-Level Scene Analysis. In: M. Aurnague, A. Bo-rillo, M. Borillo, and M. Bras (eds.), Proc. of the 4th InternationalWorkshop on Semantics of Time, Space, and Movement and Spatio-Temporal Reasoning, pp. 425{435, Château de Bonas, France, 1992.[Herzog 92b] G.Herzog. Visualization Methods for the VITRA Workbench.Memo 53, Universit�at des Saarlandes, SFB 314 (VITRA), 1992.14



[Jameson & Wahlster 82] A. Jameson and W. Wahlster. User Modellingin Anaphora Generation. In: Proc. of the 5th ECAI, pp. 222{227,Orsay, France, 1982.[Koller et al. 92a] D. Koller, K. Daniilidis, T. Th�orhallson, and H.-H.Nagel. Model-based Object Tracking in Tra�c Scenes. In: G. Sandini(ed.), Proc. of Second European Conf. on Computer Vision, pp. 437{452. Berlin, Heidelberg: Springer, 1992.[Koller et al. 92b] D. Koller, N. Heinze, and H.-H. Nagel. AlgorithmicCharacterization of Vehicle Trajectories from Image Sequences by Mo-tion Verbs. In: Proc. of IEEE Conf. on Computer Vision and PatternRecognition, pp. 90{95, Maui, Hawaii, 1992.[Koller 92] D. Koller. Detektion, Verfolgung und Klassi�kation be-wegter Objekte in monokularen Bildfolgen am Beispiel von Stra�en-verkehrsszenen. St. Augustin: In�x, 1992.[Kollnig & Nagel 93] H. Kollnig and H.-H. Nagel. Ermittlung von begrif-ichen Beschreibungen von Geschehen in Stra�enverkehrsszenen mitHilfe unscharfer Mengen. Informatik Forschung und Entwicklung,8(4):186{196, 1993.[L�uth et al. 94] T. C. L�uth, T. L�angle, G. Herzog, E. Stopp, andU. Rembold. KANTRA: Human-Machine Interaction for Intelli-gent Robots Using Natural Language. In: 3rd IEEE Int. Workshopon Robot and Human Communication, RO-MAN'94, pp. 106{111,Nagoya, Japan, 1994.[Maa� et al. 93] W.Maa�, P.Wazinski, and G. Herzog. VITRA GUIDE:Multimodal Route Descriptions for Computer Assisted Vehicle Navi-gation. In: Proc. of the Sixth Int. Conf. on Industrial and EngineeringApplications of Arti�cial Intelligence and Expert Systems IEA/AIE-93, pp. 144{147, Edinburgh, Scotland, 1993.[Neumann & Novak 86] B. Neumann und H.-J. Novak. NAOS: EinSystem zur nat�urlichsprachlichen Beschreibung zeitver�anderlicherSzenen. Informatik Forschung und Entwicklung, 1:83{92, 1986.[Neumann 89] B. Neumann. Natural Language Description of Time-Varying Scenes. In: D. L. Waltz (ed.), Semantic Structures: Ad-vances in Natural Language Processing, pp. 167{207. Hillsdale, NJ:Lawrence Erlbaum, 1989.[Niemann et al. 85] H. Niemann, H. Bunke, I. Hofmann, G. Sagerer,F. Wolf, and H. Feistel. A Knowledge Based System for Analysis15
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