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Abstract

Despite the fact that image understanding and natural language
processing constitute two major areas of Al, there have only been a
few attempts towards the integration of computer vision and the gen-
eration of natural language expressions for the description of image
sequences. In this contribution we will report on practical experience
gained in the project VITRA! (VIsual TRAnslator) concerning the de-
sign and construction of integrated knowledge-based systems capable
of translating visual information into natural language descriptions.

Our approach towards simultaneous scene description emphasizes
concurrent image sequence evaluation and natural language process-
ing, carried out on an incremental basis, an important prerequisite
for real-time performance. One major achievement of our cooperation
with the vision group at the Fraunhofer Institute (IITB, Karlsruhe)
is the automatic generation of natural language descriptions for rec-
ognized trajectories of objects in a real world image sequence. In this
survey, the different processes pertaining to high-level scene analysis
and natural language generation will be discussed.

*A revised version of this paper will appear in Artificial Intelligence Review Journal,
8, Special Volume on the Integration of Natural Language and Vision Processing, 1994.

!The work described here was partly supported by the Sonderforschungsbereich 314 der
Deutschen Forschungsgemeinschaft, “Kiinstliche Intelligenz und wissensbasierte Systeme”

Projekt N2: VITRA.



1 Introduction

Computer vision and natural language processing constitute two major areas
of research within Al but have generally been studied independently of each
other. There have been only a few attempts towards the integration of image
understanding and the generation of natural language descriptions for real
world image sequences.

The relationship between natural language and visual perception forms
the research background for the VITRA project (cf. [Herzog et al. 93b]),
which is concerned with the development of knowledge-based systems for the
natural language access to visual information. According to [Wahlster 89],
two main goals are pursued in this research field:

1. “The complex information processing of humans underlying the inter-
action of natural language production and visual perception is to be
described and explained exactly by means of the tools of computer
science.”

2. “The natural language description of images is to provide the user
with an easier access to, and a better understanding of, the results of
an image understanding system.”

It is characteristic of Al research, that, apart from the cognitive science per-
spective (1), an application-oriented objective is also pursued (2). From this
engineering perspective, the systems envisaged here could serve such prac-
tical purposes as handling the vast amount of visual data accumulating, for
example, in medical technology ([Tsotsos 85], [Niemann et al. 85]), remote
sensing ([Bajcsy et al. 85]), and traffic control ([Wahlster et al. 83], [Neu-
mann 89], [Walter et al. 88], [Koller et al. 92b; Kollnig & Nagel 93]).

The main task of computer vision is the construction of a symbolic scene
representation from (a sequence of) images. In the case of image sequence
analysis, the focus lies on the detection and interpretation of changes which
are caused by motion. The intended output of a vision system is an explicit,
meaningful description of physical objects. One goal of approaches towards
the integration of computer vision and natural language processing is to
extend the scope of scene analysis beyond the level of object recognition.
Natural language access to vision systems requires processes which lead to
conceptual units of a higher level of abstraction. These processes include the
explicit description of spatial configurations by means of spatial relations,
the interpretation of object movements, and even the automatic recognition
of presumed goals and plans of the observed agents. Based upon such a high-
level scene analysis, natural language image descriptions have the advantage,
that they allow to vary the degree of condensation of visual data according
to application-specific demands.



In VIiTRA, different domains of discourse and communicative situations
are examined with respect to natural language access to visual information.
Scenarios under investigation include:

e Answering questions about observations in traffic scenes (cf. [Schirra et

al. 87])

e Generating running reports for short sections of soccer games (cf. [André

et al. 88; Herzog et al. 89))

e Describing routes based on a 3-dimensional model of the University

Campus Saarbriicken (cf. [Herzog et al. 93a; Maaf} et al. 93])
e Communicating with an autonomous mobile robot (cf. [Liith et al. 94])

In this survey, we will concentrate on our joint work with the vision group
at the Fraunhofer Institute (IITB, Karlsruhe) regarding the automatic inter-
pretation of dynamic imagery.

2 The Visual Translator

The task of the vision group at the II'TB is to recognize and to track moving
objects within real world image sequences. Information concerning mobile
objects and their locations over time together with knowledge about the sta-
tionary background constitutes the so-called geometrical scene description.
In [Neumann 89] this intermediate geometrical representation, enriched with
additional world knowledge about the objects, has been proposed as an ide-
alized interface between a vision component and a natural language system.

Figure 1: Three frames from the soccer domain

First results had been obtained in the investigation of traffic scenes and
short sequences from soccer matches (cf. fig. 1). Apart from the trajectory



data supplied by the ACTIONS system ([Sung & Zimmermann 86; Sung 88])
synthetic scenes have been studied in VITRA as well (c.f. [Herzog 86]). Since
an automatic classification and identification of objects is not possible in
ACTIONS, object candidates are interactively assigned to previously known
players and the ball. The more recent XTRACK system ([Koller 92; Koller et
al. 92a]) accomplishes the automatic model-based recognition, tracking, and
classification of vehicles in traffic scenes.

Figure 2: Geometric model of a human body

Research described in [Rohr 93] concentrates on the model-based 3D-
reconstruction of non-rigid bodies. A cylindric representation and a kine-
matic model of human walking, which is based on medical data, is utilized
for the incremental recognition of pedestrians and their exact state of motion.
This approach for the geometric modeling of an articulated body has been
adopted in VITRA in order to represent the players in the soccer domain (cf.
[Herzog 92b]). In fig. 2 different movement states of the walking cycle are
shown.

The goal of our joint efforts at combining a vision system and a natural
language access system is the automatic simultaneous description of dynamic
imagery. Thus, the various processing steps from raw images to natural
language utterances must be carried out on an incremental basis. Fig. 3
shows how these processes are organized into a cascade within the VITRA
system.

An image sequence, i.e., a sequence of digitized video frames, forms the
input for the processes on the sensory level. Based on the visual raw data,
the image analysis component constructs a geometrical representation of the
scene, stating the locations of the visible objects at consecutive points in
time. The contents of the geometrical scene description, which is constructed
incrementally, as new visual data arrive, are further interpreted by the the
processes on the cognitive level. This high-level scene analysis extracts spatial



relations, interesting motion events, as well as presumed intentions, plans,
and plan interactions of the observed agents. These conceptual structures
bridge the gap between visual data and natural language concepts, such as
spatial prepositions, motion verbs, temporal adverbs and purposive or causal
clauses. They are passed on to the processes on the linguistic level which
transform them into natural language utterances. In terms of reference se-
mantics, explicit links between sensory data and natural language expressions
are established.
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Figure 3: Cascaded processing in VITRA

A peculiarity in VITRA is the existence of a listener model with mental
images. The system provides a running report of the scene it is watching for



a listener who cannot see the scene her/himself, but who is assumed to have
prior knowledge about its static properties. In order to generate communica-
tively adequate descriptions, the system must take into account the visual
conceptualizations that the system’s utterance elicits in the listener’s mind

(cf. [Neumann 89], [Wahlster 89]).

3 Incremental high-level scene analysis

Natural language access systems like HAM-ANS ([Wahlster et al. 83]) and
NA0S ([Neumann & Novak 86]) concentrate on an a posteriori analysis. Low
level vision considers the entire image sequence for the recognition and cueing
of moving objects; motion analysis happens afterwards, based on complete
trajectories. Since only information about a past scene can be provided,
these systems generate retrospective scene descriptions. In VITRA we favour
an incremental analysis. Input data is supplied and processed simultaneously
as the scene progresses. Information about the present scene is provided
and immediate system reactions (like motor actions of a robot, simultaneous
natural language utterances) are possible.

3.1 Interpreting spatial relations and object move-
ments

The definition and representation of the semantics of spatial relations is an
essential condition for the synthesis of spatial reference expressions in natural
language. The computation and evaluation of spatial relations in VITRA is
based on a multilevel semantic model, that clearly distinguishes between
context specific conceptual knowledge and the basic meaning of a spatial
relation (cf. [Gapp 94]).

The detailed geometric knowledge, grounded in visual perception, can be
exploited for the definition of a reference semantics, that does not assign
simple truth values to spatial predications, but instead introduces a measure
of degrees of applicability that expresses the extent to which a spatial relation
is applicable (cf. [André et al. 89]). Since different degrees of applicability
can be expressed by linguistic hedges, such as ‘directly’or ‘more or less’, more
exact scene descriptions are possible. Furthermore, if an object configuration
can be described by several spatial predications, the degree of applicability
is used to select the most appropriate reference object(s) and relation for
verbalization.

In the context of the VITRA project, different classes of spatial rela-
tions have been examined in more detail. [Wazinski 93a; Wazinski 93b] is
concerned with topological relations. Orientation-dependent relations are
treated in [André et al. 87a; André et al. 89]. Since the frame of reference



is explicitly taken into account, the system is able to cope with the intrin-
sic, extrinsic, and deictic use of directional prepositions (cf. [Retz-Schmidt
88]). Recently, the algorithms developed so far have been generalized for
3-dimensional geometric representations (cf. [Gapp 93; Gapp 94]).

Figure 4: A passing event in a traffic scene

It a real-world image sequence is to be described simultaneously as it is
perceived, one has to talk about object motions even while they are currently
happening and not yet completed. Thus, motion events have to be recognized
stepwise as they progress and event instances must be made available for
further processing from the moment they are noticed first. Consider the
examples given in fig. 4, where a white station wagon is passing a pick-up
truck, and in fig. 1, where a player is transfering the ball to a team mate.

Since the distinction between events that have and those that have not
occured is insufficient, we have introduced the additional predicates start,
proceed, and stop which can be used to characterize the progression of an
event (cf. [André et al. 88]). Labeled directed graphs with typed edges, so
called course diagrams, are used to model the prototypical progression of
an event. The recognition of an occurrence can be thought of as traversing
the course diagram, where the edge types are used for the definition of our
basic event predicates. Course diagrams rely on a discrete model of time,
which is induced by the underlying image sequence. They allow incremental
event recognition, since exactly one edge per unit of time is traversed. Using
constraint-based temporal reasoning, the course diagrams are constructed
automaticly from interval-based concept definitions (cf. [Herzog 92al).

The event concepts are organized into an abstraction hierarchy, based on
specialization (e.g., walking is a moving) and temporal decomposition (e.g.,
passing consists of swing-out, drive-beside, and swing-into-1line). This
conceptual hierarchy can be utilized in the language production process in
order to guide the selection of the relevant propositions.



3.2 Recognizing intentions, interactions, and causes
of plan failures

Human observers do not only pay attention to the spatio-temporal aspects
of motion. They also make assumpions about intentional entities underlying
the behaviour of other people (e.g., player A does not simply approach player
B, but he tackles him).

One criterion for the choice of soccer as a domain of discourse in VITRA
was the fact that the influence of the agents assumed intentions on the de-
cription is particularly obvious here. Given the position of players, their team
membership and the distribution of roles in standard situations, stereotypical
intentions can be assumed for each situation. As described in [Retz-Schmidt
91; Retz-Schmidt 92], the VITRA system is able to incrementally recognize
intentions of and interactions between the agents as well as the causes of
possible plan failures.

Partially instantiated plan hypotheses taken from a hierarchically orga-
nized plan library are successively instantiated according to the incrementally
recognized events. The leaves of the plan hierarchy represent observable
events and spatial relations. An inner node corresponds to an abstract ac-
tion. An egde, that connects two nodes either represents a decomposition or
a specialization relation. In addition, a node also contains information about
necessary preconditions of the action it represents as well as information
about its intended effect.

In a continually changing domain it would be computationally untractable
to keep track of all agents that occur in the scene. Therefore, domain specific
focussing heuristics are applied in order to reduce the number of agents whose
actions have to be observed. In the soccer domain, for example, the system
would focus on the agents that are near the goal or the player who has the
ball.

Knowledge about the cooperative (e.g., double-pass) and antagonistic
behaviour (e.g., offside-trap) of the players is represented in the inter-
action library. A successful plan triggers the activation of a corresponding
interaction schema. Similar to the plan recognition process this interaction
schema has to be fully instantiated before the particular interaction is rec-
ognized.

There are several possibilities for a plan failure that can be detected with
respect to the underlying plan and interaction recognition component: (i)
An agent might assume a precondition for a plan that is not given, (ii) an
antagonistic plan can lead to a plan failure, or (iii) in case of an cooperative
interaction the partner fails.



4 Simultaneous natural language description

Since an image sequence is not described a posterior: but rather as it pro-
gresses, the complete course of the scene is unknown at the moment of text
generation. In addition, temporal aspects such as the time required for text
generation and decoding time of the listener or reader have to be consid-
ered for the coordination of perception and language production. These
peculiarities of the conversational setting lead to important consequences for
the planning and realization of natural language utterances (cf. [André et al.
87b]). As the description should concentrate on what is currently happening,
it is necessary to start talking about motion events and actions while they
are still in progress and not yet completely recognized. In this case encoding
has to start before the contents of an utterance have been planned in full
detail. Other characteristics of simultaneous reporting besides incremental
generation of utterances need to be dealt with. The description often lags
behind with respect to the occurrences in the scene and unexpected topic
shifts occur very frequently.

Language generation in VITRA includes processes that handle the selec-
tion, linearization and verbalization of propositions (cf. [André et al. 88]).
The listener model provides an imagination component, in order to anticipate
the listener’s visual conceptualizations of the described scene,

4.1 Selection and linearization of propositions

As the time-varying scene has to be described continuously, language gener-
ation underlies strong temporal restrictions. Hence, the system cannot talk
about all events and actions which have been recognized, but instead it has
to decide which propositions should be verbalized in order to enable the lis-
tener to follow the scene. According to the conversational maxims of Grice
(cf. [Grice 75]), the listener should be informed about all relevant facts and
redundancy should be avoided.

Relevance depends on factors like: (i) salience, which is determined by the
frequency of occurrence and the complexity of the generic event or action con-
cept, (ii) topicality, and (iii) current state, i.e., fully recognized occurrences
are preferred. Topicality decreases for terminated movements and actions as
the scene progresses and during recognition events and plans enter different
states, i.e., relevance changes continually. To avoid redundancy, an occur-
rence will not be mentioned if it is implied by some other proposition already
verbalized, e.g., a have-ball event following a pass will not be selected for
verbalization.

Additional selection processes are used to determine deep cases and to
choose descriptions for objects, locations, and time; in these choices the
contents of the text memory and the listener model must also be considered.



The linearization process determines the order in which the selected
propositions should be mentioned in the text. The temporal ordering of the
corresponding events and actions is the primary consideration for lineariza-
tion; secondarily, focusing criteria are used to maintain discourse coherence.

4.2 Anticipating the listener’s visual imagination

After relevant propositions are selected and ordered, they are passed on to
the listener model ANTLIMA (cf. [Schirra & Stopp 93]). In the sense of an
anticipation feedback loop (cf. [Jameson & Wahlster 82]), the construction
of an assumed imagination is used to control the planning of utterances.
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Figure 5: Examples of typicality distributions

An adequate mental image is constructed by searching for a maximally
typical representation of the situation described by the selected propositions.
The typicality distribution corresponding to a certain proposition is encoded
in a so-called Typicality Potential Field (TyPoF), a function mapping loca-
tions to typicality values. TyPoFs are instances of typicality schemas as-
sociated with spatial relations as well as event and action concepts. Each
TyPoF takes into account the dimensionality, size, and shape of the objects
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involved. In fig. 5, the TyPoFs for ‘player A in front of player B’ and ‘in
front of the goal area’ are visualized. A typicality value associated with a
spatial expression corresponds to the (degree of) applicability of a spatial
relation for a given object configuration.

If several propositions impose restrictions on an object, the correspond-
ing TyPoFs are combined by taking the average. In the case of incompatible
restrictions the preliminary text plan has to be retracted. Hillclimbing is em-
ployed in order to find an interpretation with maximal typicality. Then the
mental image is re-analyzed, i.e., the processes of high-level analysis are ap-
plied to it. The resulting set of propositions are compared to the propositons
computed from the image sequence and detected misunderstandings may be
dispeled by changing the preliminary text plan.

4.3 Incremental verbalization

The encoding of the selected propositions includes lexicalization, the deter-
mination of morphosyntactic information, and surface transformations.

In the process of transforming symbolic event descriptions into natural
language utterances, first a verb is selected by accessing the concept lexicon,
and the case-roles associated with the verb are instantiated. Control passes
back to the selection component, which decides which information concerning
the case-role fillers should be conveyed. The selected information is trans-
formed into natural-language expressions referring to time, space or objects.
Time is indicated by the verb tense and by temporal adverbs; spatial prepo-
sitions and appropriate objects of reference are selected to refer to spatial
relations. Internal object identifiers are transformed into noun phrases by
the selection of attributes that enable the listener to uniquely identify the
intended referent. If an object cannot be characterized by attributes stored a
priori in the partner model, it will be described by means of spatial relations,
such as ‘the left goal’, or by means of occurrences already mentioned in which
it was (is) involved, e.g., ‘the player who was attacked’. Anaphoric expres-
sions are generated if the referent is in focus and no ambiguity is possible.

Recognized intentions can be reflected in natural language descriptions
in various ways. For instance, they can be expressed explicitly ( “She wants
to do A’) or be construed as expectations and formulated in future tense.
They can also be expressed implicitly, using verbs that imply intention (e.g.,
‘chase’). In addition, relationships between intentions and actions or among
several intentions of a single agent can be described, e.g., using purposive
clauses (‘He did A in order to achieve B’). Cooperative interactions can be
summarized most easily, using a natural language expression describing the
collective intention. Cooperative as well as antagonistic interactions can be
described in more detail using temporal adverbs and conjunctions. Plan
failures can also be stated explicitly, or they can be related to their causes by
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means of causal clauses. In our current implementation it is only possible to
explicitly express intentions and relationships between intentions of a single
agent.

To meet the requirements of simultaneous scene description, information
concerning partly-recognized events and actions is also provided. Conse-
quently, language generation cannot start from completely worked-out con-
ceptual contents; i.e., the need for an incremental generation strategy arises
(see, e.g., [Reithinger 92]). In the newest version of the VITRA system the
incremental generation of surface structures is realized with the module de-
scribed in (cf. [Harbusch et al. 91; Finkler & Schauder 92]), an incremental
generator for German and English, which is based on Tree Adjoining Gram-
mars.

5 Conclusion

VITRA is the first system that automatically generates natural language de-
scriptions for recognized trajectories of objects in a real world image se-
quence. High-level scene analysis in VITRA is not restricted to the purely
visual, i.e., spatio-temporal, properties of the scene, but also aims at the
recognition of presumed goals and plans of the observed agents. In addition,
the listener model in VITRA anticipates the listener’s assumed imagination
for the generation of the most appropriate description.

Our approach towards simultaneous scene description emphasizes con-
current image sequence evaluation and natural language processing. The
processing in all subcomponents is carried out on an incremental basis, and
hence provides an important prerequisite for real-time performance.

Despite these promising results, we are still far away from a universally
applicable Al system capable of describing an arbitrary sequence of images.
Nonetheless, the VITRA system will serve as a workbench for the further
investigation of problems arising in the field of integrated vision and natural
language processing.

In order to improve the quality of text production in the VITRA prototype,
the language generation component will be extended for the description of
plan failures and interactions, i.e., information that can already be provided
by the high-level scene analysis.

So far, we have only been concerned with a bottom-up analysis of image
sequences, recorded with a stationary TV-camera. Future work will concen-
trate on expectation-driven scene analysis. Intermediate results of the high-
level analysis shall support low-level vision in focussing on relevant objects
and in providing parameters for the active control of the sensor adjustement.
These issues will we studied in the context of natural language interaction
with an autonomous mobile robot, equipped with several sensors.
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6 Technical Notes

The current version of the VITRA system is written in Common Lisp and
CLOS, with the graphical user interface implemented in CLIM. The system
has been developed on Symbolics 36xx Lisp Machines, Symbolics UX12005
Lisp Coprocessors, and on Hewlett Packard 9720 and SPARC Workstations.
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