
Using Server-to-Server Communication in

Parallel File Systems to Simplify Consistency

and Improve Performance

Philip H. Carns

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, IL 60439

carns@mcs.anl.gov

Bradley W. Settlemyer and Walter B. Ligon, III

Dept. of Electrical and Computer Engineering

Clemson University

105 Riggs Hall

Clemson, SC 29634-0915

{bradles,walt}@clemson.edu

Abstract—The trend in parallel computing toward clusters
running thousands of cooperating processes per application has
led to an I/O bottleneck that has only gotten more severe as
the CPU density of clusters has increased. Current parallel file
systems provide large amounts of aggregate I/O bandwidth;
however, they do not achieve the high degrees of metadata
scalability required to manage files distributed across hundreds
or thousands of storage nodes. In this paper we examine the use of
collective communication between the storage servers to improve
the scalability of file metadata operations. In particular, we apply
server-to-server communication to simplify consistency checking
and improve the performance of file creation, file removal,
and file stat. Our results indicate that collective communication
is an effective scheme for simplifying consistency checks and
significantly improving the performance for several real metadata
intensive workloads.

I. INTRODUCTION

Due to the rapid increase in the number of multi-core, multi-

processor nodes running applications in high-end clusters, the

disparity between computational power and I/O throughput

does not appear to be lessening. Parallel file systems are able

to provide scalable I/O performance for applications access-

ing large contiguous file regions; however, the performance

of metadata operations and smaller, unaligned file accesses

still impinge upon performance for many types of scientific

applications. A typical workflow for a large parallel application

may require several data interaction steps [1], including:

1) Acquiring the data,

2) Staging/reorganizing the data onto a fast file system,

3) Analyzing the data,

4) Outputting results data,

5) Reorganizing the data for visualization,

6) And finally, processing the data for visualization.

Although high bandwidth data access is important for many of

these steps, it is also critical to have efficient data management

operations that reduce the time required to create files, remove

scratch files, and query file permissions and properties.

As parallel file systems increase in scale, efficient metadata

access becomes more difficult. Although client-driven serial

metadata techniques may perform adequately for a few hun-

dred clients accessing tens of metadata servers; when thou-

sands of application processes attempt to create files, remove

files, and list the contents of a directory, the performance of

client-driven metadata operations directly impacts the number

of storage nodes that can be deployed in a parallel file

system. Additionally, the difficulty in maintaining a consistent

view of the file system during independent and simultaneous

multi-step metadata operations encourages file system devel-

opers to deploy complicated distributed locking approaches

that increase fragility and further impact scalability. The use

of server-to-server communication neatly addresses both of

these problems. Server-to-server communication in a parallel

file system improves the scalability of the file system by

simplifying consistency control for metadata operations and

improves performance by leveraging collective communication

techniques to perform metadata operations more efficiently.

In the remainder of this section we describe related work

in file system metadata management. In section 2 we describe

the existing metadata algorithms in PVFS, a production-level

parallel file system. We also propose alternative algorithms that

leverage server-to-server communication in order to improve

scalability and simplify consistency maintenance. In section 3

we describe our methodology for evaluating the performance

improvements with both a simulator and a prototype imple-

mentation using PVFS. In section 4 we present our experi-

mental results, and in section 5 we discuss our conclusions

and possible further improvements available by extending the

techniques described here.

A. Related Work

Devulapalli and Wyckoff measured the benefits of com-

pound operations, handle leasing, and resource pre-creation

strategies to improve file create performance in distributed

file systems [2]. While all three optimizations are beneficial,

resource pre-creation proved a particularly effective scheme

for improving the performance of the file create operation.

The Lustre parallel file system uses intent-based locking

to perform some types of metadata operations [3]. When

acquiring a lock to perform a metadata operation, the client

sends along the operation request type. The server may then

optionally choose to perform the operation directly rather than

grant the lock. Multi-step metadata operations are still client

driven; however, the locking overhead for multiple clients

trying to perform similar operations on the same resource is

reduced (e.g. multiple clients creating different files in a single

directory).

GPFS uses a traditional distributed locking approach to

maintain a consistent file view during file creation and re-

moval [4]. To create a file, the client first acquires all of the

locks necessary to create a new directory entry and a new

inode. When all the locks are acquired, the client is then able

to proceed with file creation. GPFS also uses a shared locking

scheme that allows multiple clients to simultaneously update

a file’s metadata in a local cache. Before the cached data is

committed to disk, all of the updates are serialized through a

single file system client to ensure that updates are applied in

a consistent manner.

The Ceph file system has explored mechanisms for dis-

tributing the metadata workload across multiple servers by

dynamically partitioning the namespace, replicating metadata

across servers, and committing metadata to storage in a lazy

manner to limit metadata I/O [5]. Ceph’s embedded inodes

also lends itself to an efficient implementation of readdir_plus,

an optimization that performs a file stat on an entire directory

of files at once [6]. Their mechanism increases the amount of

data retrieved per server interaction rather than using collective

communication to improve the performance of the file stat

operation for distributed files.

A parallel file system mirroring protocol based on server-

to-server communication was evaluated using PVFS in [7].

The authors demonstrated that server-to-server communication

was an effective means for simplifying consistency while

replicating data across file system storage nodes.

II. METADATA ALGORITHMS

The metadata algorithms presented here are taken from

the Parallel Virtual File System (PVFS), an open source,

production-level parallel file system. The PVFS file system

runs as a set of distributed servers that act as a single file

system (Figure 1). Servers may be configured to host metadata,

file data, or both types of data. Client applications running on

dedicated compute nodes access the file system through an

MPI-IO driver, or using a Linux kernel module.

In PVFS a file is composed of a directory entry in the

parent directory, a metadata object, and one or more data

objects. The file system may be configured so that none of

the file’s parts are hosted on the same file system nodes, or

one node may host all of the file’s component parts. In this

paper we have configured PVFS to use the most distributed

approach, which has all of the servers configured to host

metadata and data objects. This configuration allows the file

system clients to have access to the largest possible aggregate

bandwidth, although specific application workloads may favor

other configurations. File metadata and directory entries are

Client 0 Client 1 Client 2 Client 3

Switched Network

PFS Server 0 PFS Server 1 PFS Server 2 PFS Server 3

Appl. Appl. Appl.

Process 0

Appl.

Process 1 Process 2 Process 3

Fig. 1. PVFS Configuration

stored as a table of key-value pairs using the Berkeley DB

libraries. The metadata object created for each file is assigned

to a server for persistence in a round-robin order. File data is

distributed across all of the data servers (one data object per

server) and persisted in secondary storage using a file in the

individual node’s local file system. For these experiments we

have not modified the PVFS metadata or data storage formats.

A. Collective Communication

The two major benefits of using collective communication

for metadata operations in parallel file systems are simpler

consistency semantics and improved performance. To perform

the collective communication, we use a typical binary tree

algorithm as shown in Figure 2. The collectives used are

similar to the scatter and gather primitives; however, the

servers do not each initiate the collective simultaneously.

Instead, the nodes send unexpected messages to the recipients

in the next level of the binary tree which then begin performing

the necessary disk operations and simultaneously send data

further down the binary tree. In our algorithms, the collective

operations block until all of the participants successfully

complete processing – the most popular semantic for file

system metadata operations. If a participant cannot complete

the collective operation (e.g. a local disk is full), the work

previously completed in the collective will need to be undone.

Error conditions are discussed more thoroughly during the

description of the individual metadata operations.

The performance characteristics of collective communica-

tion are well described in literature [8]. The total communica-

tion cost of a serial implementation of the scatter and gather

algorithms is described by the following equation:

Tserial = αp+βn (1)

Where p is the number of scatter recipients, α is the network

start up cost, β is the network transmission time per bit, and n

is the number of bits to be scattered. The communication cost

1

33 3 3

2 2

Fig. 2. Binary tree collective communication

of the collective scatter/gather algorithms is described by:

Tcoll = αlog(p)+βn(p−1) (2)

B. File Creation

The process of creating a file in a parallel file system

requires a considerable amount of work. A metadata object

must be initialized and populated with values, data objects

must be initialized on each storage server, and a directory entry

must be added in the parent directory. Although it is possible

to perform some of the work in an “as needed” fashion; lazy

creation techniques are unlikely to improve the performance

of typical application work loads. Typical file creation use

cases (e.g. copying files or data collection) immediately follow

file creation with writing a substantial amount of file data

to the file system. In such cases the notion that the file

system can populate only the metadata on an eager basis,

and then initialize the data storage resources on demand is

unlikely to result in better performance. Object pre-creation

strategies have been shown to improve performance [2], but

our optimizations are independent of such techniques, and so

we present metadata algorithms that do not rely on pre-created

data objects.

The file creation algorithm listing (and all following listings)

use the following conventions for brevity:

• C: represents a client process

• D: represents a data server

• M: represents a metadata server

• P: represents a parent directory server

• →: represents a request sent from a client to a server

(response is implied)

For example, the statement “C → M create metadata object”

indicates that a request was sent from the client to the metadata

server in order to create a metadata object. Each algorithm step

is implemented with atomic semantics. The client-driven file

creation process is shown in Figure 3.

First, the client retrieves the parent directory’s attributes

to verify that creation permissions exists. The client then

1 C → P g e t p a r e n t d i r e c t o r y a t t r s

2 C → M c r e a t e m e t a d a t a o b j e c t

3 f o r each D:

4 C → D c r e a t e d a t a o b j e c t

5 C → M s e t f i l e a t t r i b u t e s

6 C → P c r e a t e d i r e c t o r y e n t r y

Fig. 3. Client-initiated file create algorithm

creates a metadata object on the metadata server, and creates

the data objects on the data servers simultaneously. Once all

the data objects are initialized, the file metadata is populated

and the parent’s directory entry is created. By ordering the

operations carefully, the need for a distributed locking system

that acquires all the resources preemptively is avoided. In the

scenario where two clients attempt to simultaneously create the

same file, only one client will be able to successfully write the

directory entry; however, the client that fails to create the file

will need to perform further work to clean up the orphaned

metadata and data objects.

In addition to the possible leaked resources during creation

failure, data object creation is slower than it needs to be.

By making the client responsible for performing all the

communication necessary to create the data objects, the server

disk activity can be overlapped but the client’s network link

becomes a serialization point and a bottleneck for interacting

with the data servers. The collective algorithm shown in

Figure 4 resolves both of these issues.

1 C → P f i l e c r e a t e r e q u e s t

2 P l o c k s p a r e n t d i r e c t o r y

3 P → M c r e a t e m e t a d a t a o b j e c t

4 f o r each D: (c o l l e c t i v e)

5 P → D c r e a t e d a t a o b j e c t

6 P → M s e t f i l e a t t r i b u t e s

7 P c r e a t e s d i r e c t o r y e n t r y

8 P u n l o c k s p a r e n t d i r e c t o r y

9 C ← P a g g r e g a t e r e s p o n s e

Fig. 4. Collective file create algorithm

In this algorithm, the server responsible for the parent

directory entry is contacted by the client to perform the file

creation. The parent directory server serializes local access

to the parent directory and then creates the metadata object.

The parent server and data servers collectively implement the

binary tree communication algorithm shown in Figure 2 to

create all of the data objects for the file. The parent server

populates the metadata and creates the directory entry before

unlocking the parent directory and signaling success to the

client.

This algorithm simplifies consistency management because

the parent directory can perform local serialization on the

directory entry. There is no possibility of two clients making

partial progress toward creating the same file. Additionally,

if the collective communication fails, the parent can simply

unlock the parent directory locally rather than depend on a

remote lock timeout mechanism. The algorithm also improves

performance because the binary tree collective communication

creates all of the data objects in time proportional to O(lgn)
rather than O(n) where n is the number of data objects for the

file.

C. File Removal

File removal can be a very resource intensive operation for

parallel file systems. File data may be distributed over tens or

hundreds of data servers and orphaned data objects may result

in a significant loss in storage capacity until the file system can

be repaired (usually via an offline file system check). Figure 5

lists the basic client driven remove file algorithm.

1 C → M g e t f i l e a t t r i b u t e s

2 C → P remove d i r e c t o r y e n t r y

3 C → M remove m e t a d a t a o b j e c t

4 f o r each D:

5 C → D remove d a t a f i l e o b j e c t

Fig. 5. Client-initiated file remove algorithm

The client-initiated file removal algorithm demonstrates the

difficulties in developing a file system server without the use

of distributed locking. Consider the scenario where one client

attempts to delete a file while another client is simultaneously

modifying the file system permissions. Client 1 initiates the

remove, and succeeds in removing the parent directory’s entry

for the file. Client 1 then attempts to continue the removal

process by deleting the file metadata, but a network timeout

occurs causing the metadata removal to fail. At the same time,

client 2 modifies the permissions of the parent directory so

that further modifications by client 1 are not allowed. Client 1

can then attempt to recreate the directory entry in the parent

directory; however, since client 2 has modified the parent

permissions, the file has been deleted. This outcome results

in a large number of orphaned data files that waste significant

storage space. Even in the case where the application code

is simply interrupted immediately after the parent directory

entry has been removed will result in orphaned data objects

and wasted space until a file system check can be performed

to recover the storage space.

The server-driven file removal listing in Figure 6 does not

exhibit this behavior. By having the parent directory’s server

control the remove, access to the parent directory can be

trivially serialized with a local lock, and a change in the

permission’s of the file targeted for removal is detected by

the server and no repairs are necessary. Even if the client is

interrupted, the parent directory server will fully complete the

remove operation.

D. File Stat

File stat, while rare in parallel applications, is common

during system administration and interactive data set manage-

ment activities. One of the most common ways a user invokes

1 C → P a g g r e g a t e remove r e q u e s t

2 P l o c k s p a r e n t d i r e c t o r y

3 P → M g e t m e t a d a t a a t t r i b u t e s

4 f o r each D and M: (c o l l e c t i v e)

5 P → D remove d a t a o b j e c t

6 P → M remove meta o b j e c t

7 P remove d i r e c t o r y e n t r y

8 P u n l o c k p a r e n t d i r e c t o r y

9 C ← P a g g r e g a t e r e s p o n s e

Fig. 6. Collective file remove algorithm

the file stat command is using the UNIX utility ls. The ls

command lists the contents of a directory and, optionally, each

entries attributes (e.g. permissions, last modification time, file

size). Efficient performance in the file stat command is critical

to easing data management activities and improving the file

system’s interactivity. PVFS, like most file systems, employs

a client-side attribute cache to avoid retrieving file metadata

before every file interaction (e.g. to check permissions); how-

ever, metadata fields such as the file size and atime are not

kept up to date for the same reason – to avoid writing metadata

attributes after every successful file I/O. The file stat operation

allows the user to query all of the file’s metadata. The client-

initiated file stat algorithm is shown in Figure 7.

1 C → M g e t m e t a d a t a a t t r i b u t e s

2 i f f i l e s i z e i s r e q u e s t e d :

3 f o r each D:

4 C → D g e t d a t a a t t r i b u t e s

5 C compute l o g i c a l f i l e s i z e

Fig. 7. Client-initiated file stat algorithm

One important feature to note is that the client is only

required to contact the data servers if the user has requested

the file size. The more common operation of requesting the

file’s permissions only requires checking the attribute cache

and contacting the file’s metadata server if the cache entry

does not exist.

The collective file stat operation in Figure 8 differs from

create and remove in that the file’s metadata server initiates

the collective communication rather than the parent directory

server. Also, the collective data attribute request (Steps 5

and 6) acts like a gather operation instead of a reduction.

The metadata server receives all of the data object attributes

rather than just the computed size or latest access time. For

simplicity, we prefer to perform the metadata calculations at

the meta server, but a distributed reduction algorithm would

be a reasonable improvement upon this algorithm.

III. METHODS

In order to examine the runtime effects of the server-based

collective communication operations proposed in this paper,

we present both a simulation-based performance study and a

1 C → M a g g r e g a t e s t a t r e q u e s t

2 M l o c k s m e t a d a t a o b j e c t

3 M g e t m e t a d a t a a t t r i b u t e s

4 i f f i l e s i z e i s r e q u e s t e d :

5 f o r each D: (c o l l e c t i v e)

6 M → D g e t d a t a a t t r i b u t e s

7 M computes l o g i c a l f i l e s i z e

8 M u n l o c k s m e t a d a t a o b j e c t

9 C ← M a g g r e g a t e r e s p o n s e

Fig. 8. Collective file stat algorithm

prototype implemented within PVFS running on two different

platforms.

A. Simulation

We have developed a parallel file system simulator using

the OMNeT++ simulation framework to more easily analyze

and measure parallel file system extensions [9]. Our simulator

uses the INET simulation models to provide an accurate

representation of TCP/IP over an Ethernet network. We have

implemented a detailed simulation model of a parallel file

system and the underlying operating system using PVFS and

Linux as our models. Our software is still under development

and the disk and operating system models do not yet simulate

all operating system and disk activity as accurately as we

eventually plan to provide. However, in the case of small

network-bound metadata operations our simulator was able to

provide a representative model of how the modified version of

PVFS performs with the proposed improvements. The simu-

lator has been tuned at the individual message level to model

the performance of the Adenine cluster at Clemson University.

Our simulator is capable of modeling an arbitrary number of

file system nodes; however, it currently only simulates a single

connecting switch and so we have limited our scalability tests

to a maximum of 500 compute nodes.

B. Prototype Implementation

In addition to a simulation study, we have also implemented

the proposed optimizations in a widely available parallel file

system, PVFS. Our experiments were performed using the

number of file system servers as the independent variable and

the operation execution time as the dependent variable. We

gathered 35 samples for each file system configuration. The

first two samples were discarded to avoid experimental noise

related to startup costs. The remaining 33 samples achieved an

approximate normal distribution about the sample mean and

standard deviation. The presented data omits extreme outliers.

An extreme outlier is defined as being less than (Q1−3(IQR))
or greater than (Q3 +3(IQR)), where Q1 and Q3 represent the

first and third quartile of the sample set, and IQR represents

the maximum of the interquartile range or 5µs.

C. System Configurations

1) Adenine: Clemson University’s Adenine cluster is com-

posed of 75 compute nodes. Each compute node contains

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500

T
im

e
 (

m
s
)

Number of Servers

Client Driven (FastE)
Server Collective (FastE)

Client Driven (GigE)
Server Collective (GigE)

Fig. 9. File Create Performance on Adenine (Simulation)

dual Pentium III 1GHz processors with 1GB of RAM and

30GB Maxtor hard drives. All nodes are connected by a

100Mb/s (Fast Ethernet) network, while 48 nodes also have a

1Gb/s (GigE) network connection. Each network uses a single,

independent dedicated switch. The compute nodes run a Linux

2.6 kernel with an ext2 file system.

2) Jazz: Argonne National Laboratory’s Jazz cluster is

made up of 350 compute nodes, each containing a 2.4GHz

Pentium Xeon processor and at least 1GB of RAM. Each

node contains an 82GB IBM hard disk. The compute nodes

run a Linux 2.4.26 kernel with ext3 local file systems. The

nodes are interconnected with both a 100Mb/s Fast Ethernet

network and a high performance Myrinet-2000 network based

on the PCI64C network interface card with a message latency

of 6.7µs [10]. The transmission time of small messages sent

during metadata operations are primarily limited by message

latency, rather than the available bandwidth.

IV. RESULTS

A. Simulated Performance Measurements

Figure 9 shows the simulated performance of the client

driven and server collective file creation algorithms. The x-

axis shows the number of file system storage servers and the

y-axis shows the operation completion time in milliseconds.

The performance results for both 100 Mbit/s (FastE) and 1

Gbit/s (GigE) interconnection networks are shown. Figures 10

and 11 show the relative performance for the two algorithms

described for a single file remove and file stat.

In a parallel file system configured with 50 GigE storage

servers, we note that the speedup achieved for file creation

is 1.44. For file removal and file stat the speedups are 1.88

and 1.93, respectively. Figures 9, 10, and 11 clearly show the

improvement from linear runtime to logarithmic runtime as

predicted by equations 1 and 2.

Another, less obvious, benefit achieved in the collective

metadata algorithms is the better utilization of the high band-

width network. The simulated run times for the Fast Ethernet

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500

T
im

e
 (

m
s
)

Number of Servers

Client Driven (FastE)
Server Collective (FastE)

Client Driven (GigE)
Server Collective (GigE)

Fig. 10. File Remove Performance on Adenine (Simulation)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500

T
im

e
 (

m
s
)

Number of Servers

Client Driven (FastE)
Server Collective (FastE)

Client Driven (GigE)
Server Collective (GigE)

Fig. 11. File Stat Performance on Adenine (Simulation)

and GigE networks are nearly identical for the client driven

algorithms because the individual messages are quite small

and network performance is dominated by the setup cost (i.e.

latency). The collective metadata algorithms require sending

message sizes proportional to the depth of the tree. Thus,

collective metadata algorithms will increase in performance

(though, only logarithmically) as the bandwidth of the inter-

connect increases.

B. Prototype Performance Measurements

Figures 12, 13, and 14 show the measured performance

of the client driven and server collective based metadata

algorithms on the Jazz cluster using the 100Mbit/s Ethernet

network. The range bars show the minimum and maximum

observed execution times from each sample. For the server col-

lective performance results the range bars are rendered within

the individual line points, and cannot be easily distinguished.

The slope of the client driven timing curves is increasing

because the time spent in the client’s poll system call increases

proportionally to the number of servers [11]. The Linux kernel

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250

T
im

e
 (

m
s
)

Number of Servers

Client Driven
Server Collective

Fig. 12. File Create Performance on Jazz/Ethernet

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250

T
im

e
 (

m
s
)

Number of Servers

Client Driven
Server Collective

Fig. 13. File Remove Performance on Jazz/Ethernet

provided on the Jazz cluster does not provide the more modern

epoll system call, which runs in constant time rather than in

proportion to the number of open connections. We determined

that a significant amount of the increasing overhead could be

attributed to poll system call performance [12].

Additionally, as the number of servers increases, the prob-

ability of a long running interrupt occurring on one of the

servers also increases [13]. The increasing range between

the minimum and maximum recorded run times shown on

the range bars demonstrates this phenomena. The simulation

results shown in the last section do not exhibit the increasing

slope because the server run times and overheads are deter-

ministic rather than stochastic.

Figure 15 shows the prototype’s performance results for a

single file create on the Jazz cluster. The use of the Myrinet

network significantly reduces the run time of file creations

compared to the Ethernet results; however, the benefits of

using collective communication are readily observable on

configurations with as few as 20 storage nodes. When the file

system is increased in scale to 60 storage nodes, the time spent

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250

T
im

e
 (

m
s
)

Number of Servers

Client Driven
Server Collective

Fig. 14. File Stat Performance on Jazz/Ethernet

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 20 40 60 80 100 120

T
im

e
 (

m
s
)

Number of Servers

Client Driven
Server Collective

Fig. 15. File Create Performance on Jazz/Myrinet

performing file creation with collective communication is only

65% of the time required for the client driven approach.

Figures 16 and 17 show the prototyped performance results

for file remove and file stat using the Jazz cluster. The

relative runtime performance is clearly changed from linear

to logarithmic with respect to the number of file system

servers. On a file system configured with 60 storage servers,

the fraction of execution time required for file deletion and file

stat with the server collective algorithms are 48% and 39%,

respectively, of the client driven algorithms.

C. Interactive Workload Evaluation

We also measured the performance of the improved col-

lectives in real world scenarios that require the manipulation

of a large number of files. We chose three tasks commonly

performed by both software developers and system admin-

istrators. In the first representative test, we extracted all of

the files from a Linux-2.6.9 source file archive in tar format.

In the second test, we performed a full listing of all of

the files in the resulting source tree, which relied heavily

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 20 40 60 80 100 120

T
im

e
 (

m
s
)

Number of Servers

Client Driven
Server Collective

Fig. 16. File Remove Performance on Jazz/Myrinet

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120

T
im

e
 (

m
s
)

Number of Servers

Client Driven
Server Collective

Fig. 17. File Stat Performance on Jazz/Myrinet

on the implementation of the file stat operation. Finally,

we performed a recursive remove of all of the source files.

The 2.6.9 Linux kernel source is composed of over 1,000

directories and 16,000 files, with most of the files having a

small or moderate size. Figure 18 shows the runtime in seconds

for the three file manipulation tasks on a parallel file system

configured with 74 dedicated storage nodes using both the

simulation software and the prototype implementation running

on the Adenine cluster (100Mbit/s network).

The measurements in Figure 18 exemplify the idea that

optimizing the performance of the most critical operations

can provide substantial execution time improvement. Each of

the three tasks is composed of file system operations other

than file creation, removal, and stat; for example, archived

file extraction requires file I/O, directory creation, file cre-

ation, and metadata updates for atime. Still, the performance

improvement of nearly 49% can be attributed entirely to the

improved efficiency of the collective file creation technique.

Similarly, recursive file listing and recursive file removal re-

quire additional metadata operations such as readdir; however,

 0

 200

 400

 600

 800

 1000

tar -xf

ls -alhR

rm
 -rf

E
la

p
s
e

d
 T

im
e

 (
s
e

c
s
)

PFS Simulator
PFS Simulator w/Collective

PVFS
PVFS w/Collective

Fig. 18. Kernel Manipulation Performance on Adenine

the performance speedups in using collective file stat and

collective file remove improve the benchmark execution times

by 75% and 83%, respectively. In summary, with only the

collective metadata operations presented in this paper, we were

able to significantly improve the performance and interactivity

of these three common developer and administrative tasks.

V. DISCUSSION

We have described metadata algorithms that use server-

based collective communication to simplify consistency and

improve operation performance. Consistency is simplified

because access to the metadata resource in contention is

serialized on the server responsible for that resource. That

server then uses server-to-server communication to drive the

metadata operation to completion and signals success or failure

to the client upon completion. The operation performance is

improved because the server-to-server communication can be

performed using collective patterns that parallelize network

transactions and increase the scalability of parallel file systems.

We have also shown that our performance improvements are

not just applicable to slower commodity networks, but also

provide significantly better scalability on low latency message

passing interconnects. Finally, we have shown how our im-

proved metadata algorithms impact three common file system

tasks: file archive extraction, file listing, and file deletion. Al-

though these tasks use many operations, by accelerating three

fundamental metadata operations we were able to significantly

improve the performance of the three tasks.

Our experiments included parallel file system configurations

larger than most typical installations. In our simulator and pro-

totype experiments we showed the performance improvements

available on file systems using commodity networks to connect

up to 500 storage nodes. We were also able to prototype the

performance benefits of our modifications using 128 storage

nodes connected with a high speed interconnect. In the future,

we plan to continue exploring techniques to improve the

scalability of parallel file system metadata operations and

small file accesses. We also plan to continue improving our

parallel file system simulator. We hope that our simulator will

allow us to more easily evaluate candidate parallel file system

designs and modifications for emerging cluster architectures.

In conclusion, we believe that techniques such as server-

based communication in metadata operations are critical to

increasing the scale of parallel file systems. The I/O bottleneck

exists for many applications; however, in order to address the

bottleneck, the scalability limitations of storage systems will

need to be overcome as well. The scalability limitations do not

exist simply as a performance problem to be overcome, but

also as a resource control and complexity problem. Simpli-

fying consistency control and improving performance will be

critical to building large, high performance storage systems.

ACKNOWLEDGMENTS

This work was supported in part by the National Science

Foundation HECURA program under grant CCF-0621441.

We would like to thank Dr. Robert Ross and the PVFS

development team for their technical assistance in developing

our prototype. We also gratefully acknowledge use of the

“Jazz” cluster operated by the Mathematics and Computer

Science Division at Argonne National Laboratory as part of

its Laboratory Computing Resource Center.

REFERENCES

[1] U.S. Department of Energy, “The office of science data-management
challenge,” March-May 2004.

[2] A. Devulapalli and P. Wyckoff, “File creation strategies in a distributed
metadata file system,” Parallel and Distributed Processing Symposium,

2007. IPDPS 2007. IEEE International, pp. 1–10, 26-30 March 2007.
[3] P. J. Braam, “Scalable locking and recovery for network file systems,”

in Petascale Data Storage Workshop SC07, 2007.
[4] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for

large computing clusters,” in Proc. of the First Conference on File

and Storage Technologies (FAST), Jan. 2002, pp. 231–244. [Online].
Available: citeseer.ist.psu.edu/schmuck02gpfs.html

[5] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, “Dynamic
metadata management for petabyte-scale file systems,” in SC ’04:

Proceedings of the 2004 ACM/IEEE conference on Supercomputing.
Washington, DC, USA: IEEE Computer Society, 2004, p. 4.

[6] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: a scalable, high-performance distributed file system,” in OSDI

’06: Proceedings of the 7th symposium on Operating systems design

and implementation. Berkeley, CA, USA: USENIX Association, 2006,
pp. 307–320.

[7] B. W. Settlemyer and W. B. Ligon III, “A technique for lock-less
mirroring in parallel file systems,” in Workshop On Resiliency in

High-Performance Computing at 8th IEEE International Symposium on

Cluster Computing and the Grid, 2008.
[8] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel

Computing, Second Edition. Pearson Addison Wesley, 1994, pp. 157–
170.

[9] A. Varga, “The OMNeT++ discrete event simulation system,” in Pro-

ceedings of the European Simulation Multiconference, 2001.
[10] Myricom, Inc., “Myrinet GM 1.6.4 Performance,”

http://www.myri.com/scs/performance/Myrinet-2000/GM/gm-1.6.4-
perf.html, April 2003.

[11] K. Shemyak and K. Vehmanen, “Scalability of TCP servers, handling
persistent connections,” ICN ’07. Sixth International Conference on

Networking, 2007, pp. 89–89, 22-28 April 2007.
[12] P. H. Carns, “Achieving scalability in parallel file systems,” Ph.D.

dissertation, Clemson University, Clemson, SC, May 2005.
[13] F. Petrini, D. Kerbyson, and S. Pakin, “The case of the missing su-

percomputer performance: Achieving optimal performance on the 8,192
processors of ASCI Q,” Supercomputing, 2003 ACM/IEEE Conference,
pp. 55–55, 15-21 Nov. 2003.

