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a b s t r a c t

McCrink (McCrink, Dehaene, & Dehaene-Lambertz (2007). Moving along the number line:
Operational momentum in nonsymbolic arithmetic. Perception and Psychophysics, 69(8),
1324-1333) documented an ‘‘Operational Momentum” (OM) effect – overestimation of
addition and underestimation of subtraction outcomes in non-symbolic (dot pattern) arith-
metic. We investigated whether OM also occurs with Arabic number symbols. Participants
pointed to number locations (1–9) on a visually given number line after computing them
from addition or subtraction problems. Pointing was biased leftward after subtracting and
rightward after adding, especially when the second operand was zero. The findings gener-
alize OM to the spatial domain and to symbolic number processing. Alternative interpreta-
tions of our results are discussed.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The mental representation of numbers is under intense
investigation. This is partly a result of the discovery that
small numbers tend to be associated with left space, and
larger numbers with right space. This Spatial-Numerical
Association of Response Codes (SNARC) effect influences
response selection, attention allocation, manual pointing
and movement endpoints (Fischer, 2001, 2003; Song &
Nakayama, 2008; for reviews, see Fias & Fischer, 2005;
Hubbard, Piazza, Pinel, & Dehaene, 2005). The effect is
interpreted as indicating a spatially oriented ‘‘mental num-
ber line” (MNL, e.g., Dehaene, Bossini, & Giraux, 1993).
Importantly, SNARC effects have so far only been docu-
mented for single numbers, but the involvement of spatial
and attentional areas in the parietal lobes during mental
calculation predicts spatial biases also during more com-
plex numerical cognition, such as mental arithmetic (Hub-
. All rights reserved.

of Psychology, Ben-
, Israel. Tel.: +972 8
bard et al., 2005). McCrink, Dehaene, and Dehaene-
Lambertz (2007) reported a novel bias in mental arithme-
tic. They showed adults addition and subtraction problems
as moving dot patterns and found an ‘‘operational momen-
tum” (OM) effect: a bias toward larger presented outcome
values for addition and smaller values for subtraction
problems.

The combined evidence from SNARC and OM effects
suggests that mental arithmetic should be spatially biased:
Addition yields larger numbers, which are further right,
while subtraction yields smaller numbers, which are fur-
ther left on the MNL. We tested this prediction by present-
ing symbolic arithmetic problems (e.g., 2 + 4, 8 � 2) and
measuring how participants pointed to the locations of re-
sults on a visually presented line that represented the
numerical interval from 0 to 10 (cf. Siegler & Opfer,
2003). OM should induce systematic response shifts to
the left and right for subtraction and addition, respectively,
and also faster pointing to small and large results following
subtraction and addition, respectively.

Note that any OM effect could reflect the magnitude of
the first or second operand, or the result, or a bias induced
by the plus or minus sign. To reduce ambiguity about the
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origin of OM, we included zero problems (e.g., 2 + 0, 2 � 0)
which are considered rule-based problems (Butterworth,
Zorzi, Girelli, & Jonckheere, 2001; Campbell & Metcalfe,
2007; Wellman & Miller, 1986). Together with the fact that
zero is not usually represented on the MNL (e.g., Brysbaert,
1995; Tzelgov, Ganor-Stern, & Maymon-Schreiber, in
press), this should minimize OM from the second operand.

Single digit localization was measured before and after
the calculation task to establish baseline performance and
assess its stability. Pre-school children show logarithmic
compression in their spatial mapping of numbers, whereas
school children and adults show a linear metric (Siegler &
Opfer, 2003) in this task.

2. Method

2.1. Participants

Fourteen native English-speaking students (mean age
21 years; 1 male; two left-handers) participated in the
experiment for credit or £4. All had normal or corrected
vision.

2.2. Apparatus and stimuli

Stimuli appeared on an ELO 20’’ touch-screen with
1024 � 768 pixel resolution, controlled via E-Prime
(Schneider, Eschman, & Zuccolotto, 2002). A display se-
quence (Fig. 1) began with a green start box (40 � 40 pix-
els, 10 � 10 mm) at the bottom center of the grey screen.
All other stimuli were black. A horizontal line
(20 � 400 pixels, 5 � 100 mm) flanked by digits 0 and 10
(Courier New 30 point font) appeared at fixed height on
the screen (y coordinate = 350 pixels, 87.5 mm above the
start box) but its left edge varied pseudo-randomly be-
tween center (312 pixels), left (232 pixels) and right
(392 pixels) positions. Stimuli consisted of single digits
1–9 (except 51) or arithmetic problems derived from digits
1–9. Digits were presented in Courier New 40 point font
and appeared inside a rectangle (75 � 75 pixels,
19 � 19 mm). Problems appeared inside a wider rectangle
(166 � 75 pixels, 42 � 19 mm) with an operation sign (+ or
� sign, 5 pixels wide, 20 pixels long; 1.25 � 5 mm) between
the two operands.

2.3. Materials and design

For the localization task, each digit appeared randomly
nine times, resulting in 72 trials. This task was presented
both before and after the calculation task to assess the sta-
bility of spatial associations for these digits. For the calcu-
lation task, 18 addition and 18 subtraction problems were
generated on the basis of several considerations. For exam-
ple, for outcomes close to the edges of the interval used
there was an asymmetry between addition and subtraction
problems. Consequently, problems starting with 0, 1, or 9
were excluded because the operation was predictable from
1 We excluded 0, 5, and 10 because the edges or midpoint of the line
were much easier to attain in pilot tests than other target locations.
the magnitude of the first operand. We tested OM with
outcomes 4 and 6 because these were equally often the re-
sult of addition or subtraction, and because they had com-
parable second operands (0, 1, and 2). We included a total
of 12 problems (6 for each operation) with zero as the sec-
ond operand to assess ‘‘pure” OM without contamination
by a second magnitude. Table A1 (Appendix A) lists all 36
problems used. Each problem appeared nine times, result-
ing in 324 trials. Calculation problems were randomly pre-
sented in 6 successive blocks (54 trials per block).

2.4. Procedure

Participants sat on a height-adjustable chair about
50 cm from the touch-screen. They touched the start box
with the right index finger to trigger the display of either
a digit or a problem and the line with flankers. The digit
or problem disappeared after 200 ms. Participants were in-
structed to accurately point to where the digit or result
would be located on the line. Pointing time (PT) was the
interval between contacting the start box and the next
touch-down and reflected the sum of reaction time (an
indicator of movement planning) and movement time
(the time of movement execution). All touch coordinates
(in pixels, relative to the start of a line) and PTs (in ms)
were recorded. An error beep was played whenever PT ex-
ceeded 800 ms to induce fast responding.

3. Results

We successively eliminated trials with PTs outside 200–
800 ms, PTs outside 2.5 standard deviations from each
individual’s mean, and lift-off coordinates outwith the
start box or where the target line was clearly missed, leav-
ing 95% of data for statistical analysis.

3.1. Localization task

Average landing coordinates for numbers 1, 2, 3, 4, 6, 7,
8, and 9 were 36, 70, 104, 137, 231, 269, 299 and 332 pix-
els, respectively. A 2 (pre-test, post-test) � 8 (number
magnitude) analysis of variance (ANOVA) found an effect
of magnitude, F(7,91) = 1331.88, p < 0.01. Post hoc compar-
isons revealed a positive linear trend2 F(1,13) = 2645.19,
p < 0.01. There was also a reliable interaction, F(7,91) =
3.24, p < 0.01: post hoc contrasts showed that larger magni-
tudes (6–9) were localized 10 pixels further right
[F(1,13) = 8.34, p < 0.05], and smaller magnitudes (1–4) were
localized 5 pixels further left in the post-test compared to
the pre-test [F(1,13) = 5.03, p < 0.05].

Next, we computed differences between adjacent
means to assess whether distances decreased with increas-
ing magnitude, reflecting a logarithmic MNL, or whether
all distances would be equal, reflecting a linear structure
(Dehaene, 2001). The average distance between target
locations was 33.6 pixels. In the 2 (pre-test, post-test) � 6
2 In cases of unequal spacing between independent variable levels,
compatible linear trend coefficients were computed according to Robson
(1959).



Fig. 1. Illustration of the experimental procedure with the calculation task, not drawn to scale.
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(distances) ANOVA there were no reliable effects, all
p > 0.13. The linear MNL hypothesis also predicts increas-
ing variability with magnitude (scalar property) whereas
the logarithmic hypothesis predicts no change in variabil-
ity. The standard deviations for ascending numbers were
17, 20, 26, 26, 29, 29, 25, and 34 pixels, respectively,
F(7,91) = 6.23, p < 0.01, indicating increasing variability
for larger magnitudes. This was confirmed by a significant
linear trend, F(1,13) = 11.39, p < 0.01. There were no other
reliable effects, F < 1.

Finally, average PT was 587 ms. An effect of magnitude,
F(7,91) = 6.31, p < 0.01, indicated faster pointing as magni-
tude increased, F(1,13) = 23.19, p < 0.01. There were no
other effects, F < 1. Together, these localization results
show that participants understood the task, relied on a lin-
ear mapping of numbers to space, and made more com-
plete use of the number line in the post- compared to the
pre-test.

3.2. Calculation task

We determined the presence of OM by comparing hor-
izontal landing coordinates on the visually presented line
for ‘‘4” and ‘‘6” which each were the result of eight differ-
ent addition and subtraction operations. Separate ANOVAs
evaluated effects of result size (four, six), operation (addi-
tion, subtraction) and second operand size (zero, one, two)
on horizontal landing coordinates and on PTs. Participants
pointed further to the right to indicate ‘‘6” (209 pixels)
compared to ‘‘4” (136 pixels), F(1,13) = 407.79, p < 0.01.
Importantly, participants pointed further right following
addition (193 pixels) compared to subtraction (164 pixels),
F(1,13) = 10.52, p < 0.01, indicating an OM effect. The main
effect of second operand size, F(2,26) = 7.50, p < 0.01, re-
flected pointing further right when the second operand
was smaller (181 pixels for ‘‘0” and 186 pixels for ‘‘1”, no
reliable difference), than when it was larger (172 pixels
for ‘‘2”, which differed significantly from the former pair,
p < 0.01). There was also a significant triple interaction,
F(2,26) = 3.34, p = 0.05, depicted in Fig. 2. For ‘‘6”, post
hoc tests confirmed that the OM bias was present with
each second operand size, all p-values < 0.05, whereas for
‘‘4”, the OM effect was only reliable when the second oper-
and size was ‘‘0”.

We further checked for OM relative to baseline perfor-
mance by comparing horizontal landing coordinates of re-
sults ‘‘4” and ‘‘6” for each operation in the calculation task
with those of ‘‘4” and ‘‘6” in the localization task (averaged
across pre- and post-test). A target (four, six) � task (local-
ization, calculation-addition, calculation-subtraction) AN-
OVA found a reliable main effect of target,
F(1,13) = 503.2, p < 0.01, due to locating ‘‘6” (223 pixels)
further rightward than ‘‘4” (141 pixels). The main effect
of task, F(2,26) = 9.25, p < 0.01, reflected pointing further
to the left in subtraction (176 pixels) compared to baseline
(187 pixels), F(1,13) = 13.37, p < 0.01; there was no signifi-
cant rightward bias for addition (185 pixels) compared to
baseline, F < 1. There was also a reliable interaction,
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Fig. 2. Mean horizontal landing coordinates (pixels) as a function of result size, operation and second operand size. Vertical bars denote 95% confidence
intervals.
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F(2,26) = 25.02, p < 0.01. This was due to significant right-
ward bias with target ‘‘4” for addition compared to base-
line (141 vs. 137 pixels), F(1,13) = 4.88, p < 0.05, but no
leftward bias for subtraction (142 pixels), F(1,13) = 1.36,
ns. With target ‘‘6” (baseline 231 pixels) we found reliable
leftward bias for addition (222 pixels), F(1,13) = 6.93,
p < 0.05, but much more so for subtraction (201 pixels),
F(1,13) = 42.72, p < 0.01.

In the PT analysis, a reliable main effect of operation,
F(1,13) = 56.23, p < 0.01, showed that participants re-
sponded faster to addition (659 ms) than to subtraction
(688 ms). The main effect of second operand size,
F(2,26) = 13.8, p < 0.01, reflected faster pointing for ‘‘0”
(656 ms) compared to ‘‘1” or ‘‘2” (680 and 683 ms, respec-
tively). Fig. 3 shows that operation interacted significantly
with second operand size [F(2,26) = 8.47, p < 0.01] because
the addition advantage was significant for ”1”
[F(1,13) = 35.99, p < 0.01] and ‘‘2” [F(1,13) = 25.26,
p < 0.01], but not for ‘‘0” [F(1,13) = 1.6, ns]. All other effects
were not reliable, all p > 0.22.

We analyzed ‘‘pure” OM by looking at zero problems
without activation of second operand magnitudes. Sepa-
rate ANOVAs evaluated effects of operation (addition, sub-
traction) and result size (2, 3, 4, 6, 7, 8) on horizontal
landing coordinates and on PTs. For landing coordinates
(Fig. 4), the main effect of operation, F(1,13) = 20.48,
p < 0.01, showed that participants pointed significantly
further leftward when subtracting (177 pixels) compared
to adding (188 pixels). The main effect of result size,
F(5,65) = 517.51, p < 0.01, reflected the ordered target loca-
tions, and a significant linear trend, F(1,13) = 839, p < 0.01,
confirmed task compliance. Average landing coordinates
for results 2, 3, 4, 6, 7, and 8 were 77, 106, 138, 223, 263
and 287 pixels, respectively. Although there was no reli-
able interaction, F(5,65) = 1.4, ns, post hoc comparisons
checked each result for OM. OM was significant for results
‘‘2” [F(1,13) = 5.53, p < 0.05], ‘‘4” [F(1,13) = 14.71, p < 0.01],
‘‘6” [F(1,13) = 6.3, p < 0.05], and ‘‘7” [F(1,13) = 4.93,
p < 0.05], but not for ‘‘3” (F < 1) and ‘‘8” [F(1,13) = 1.92,
ns]. Further paired contrasts showed that almost all zero
problems had significantly more OM [for addition: 6 + 0
vs. (2 + 4, 4 + 2, 5 + 1); 7 + 0 vs. (3 + 4, 2 + 5); 8 + 0 vs.
3 + 5, but not 4 + 0 vs. 3 + 1; for subtraction: 2�0 vs.
(6�4, 7�5); 3�0 vs. (7�4, 8�5); 4�0 vs. (5�1, 6�2, 7�3,
8�4), but not 6�0 vs. (7�1, 8�2)], and significantly smal-
ler variability of landing coordinates in all subtraction
problems, with similar trends in all addition problems
(see Table A1 in Appendix A). We also noticed smaller var-
iability of pointing coordinates for two out of the three tie
problems (problems number 13 and 22, see Table A1 in
Appendix A) compared to non-tie problems with the same
result.

Comparing OM in zero problems to (averaged) baseline
performance with a target (2, 3, 4, 6, 7, 8) � task (localiza-
tion, calculation-addition, calculation-subtraction) ANOVA
revealed a main effect of target, F(5,65) = 700, p < 0.01,
reflecting left-to-right-ordered targets [F(1,13) = 1116.85,
p < 0.01]. The main effect of task, F(2,26) = 12.3, p < 0.01, re-
flected pointing further left in subtraction (177 pixels)
compared to baseline (185 pixels), F(1,13) = 10.96,
p < 0.01, and further right in addition (188 pixels) com-
pared to baseline, though this comparison failed to reach



Fig. 3. Mean PTs as a function of operation and second operand size. Vertical bars denote 95% confidence intervals.

Fig. 4. Mean horizontal landing coordinates (pixels) as a function of result size and operation for zero-problems. Vertical bars denote 95% confidence intervals.
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significance, F(1,13) = 1.83, ns. There was also a reliable
interaction, F(10,130) = 3.37, p < 0.01. Post hoc contrasts
showed rightward shift for addition in all targets but ‘‘8”,
although this bias was significant only in targets ‘‘2” and
‘‘4”; for subtraction, significant leftward shift was found
for all targets but ‘‘2” and ‘‘3” (see Table A2 in Appendix A).
The analysis of PTs in zero problems revealed a reliable
interaction of operation and result size [F(5,65) = 4.13,
p < 0.01]. Fig. 5 shows that for small results (2–4) re-
sponses were faster for subtractions than additions
[F(1,13) = 4.3, p = 0.05] while for large results (6–8) re-
sponses were faster for additions than subtractions



Fig. 5. Mean PTs as a function of result size and operation for zero-problems. Vertical bars denote 95% confidence intervals.
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[F(1,13) = 13.2, p < 0.01]. Further analyses showed reliably
faster PTs for all zero-problems compared to non-zero
problems with the same result, except for 4 + 0 vs. 3 + 1
(see Table A1 in Appendix A).
4. Discussion

Our study of speeded pointing to arithmetic results ex-
tends previous research on spatial-numerical associations
from single-digit tasks to more complex mental arithmetic.
It is, however, unclear whether SNARC and OM effects indi-
cate the same underlying activation of a spatially oriented
MNL. The original OM effect (McCrink et al., 2007) reflected
accepting the wrong results but the spatial OM effect in the
present study is too small to imply systematically distorted
calculation outcomes. Instead, while responding accu-
rately, our participants mapped the same number onto dif-
ferent segments of a spatial interval, depending on whether
they activated the number concept through addition or
subtraction. This is reminiscent of the flexibility of SNARC
with number range (Dehaene et al., 1993, Experiment 3)
or task instructions (Bächtold, Baumüller, & Brugger, 1998).

Our results document OM with symbolic numbers, thus
extending the work of McCrink et al. (2007) with dot pat-
terns into the domain of everyday numerical cognition and
showing that performance with precise quantities is prone
to similar biases. The authors offered two accounts of OM:
One hypothesis was that adding and subtracting are equiv-
alent to covert movements to the right and left along the
MNL, respectively. This is supported by congruency effects
in overt movement times (Fig. 5; see also Fischer, 2003),
and similar OM across operands (Fig. 4). Their alternative
account of OM as reflecting a logarithmically compressed
MNL can be rejected: Our baseline data reveal a linear
mapping of numbers (Siegler & Opfer, 2003) and even sug-
gest further expansion during testing. However, this latter
observation needs to be replicated in future studies, ideally
intermixing localization and calculation tasks.

We briefly discuss a third possible origin of OM. Assume
a left-to-right oriented MNL where each operand induces
spatially localized activation that competes for responses.
Such activation is always to the left of target for addition,
thus explaining our smaller OM for addition compared to
subtraction. Subtraction problems have the target either
between operands (e.g., 6–2) or to their left (e.g., 6–4), with
the latter case diluting OM the most. Inspection of Appen-
dix A supports this competition hypothesis: If landing
positions in zero problems reflect the unbiased response
range for a given result (e.g., ‘‘2” ranges from 74 to 81 pix-
els), then four of the six subtraction problems with both
operands to the right of the target show reduced OM from
attraction towards the second operand (problems number
5, 6, 9, and 10). For zero problems, in contrast, there is no
competing second operand, either because zero is not usu-
ally represented on the MNL (Brysbaert, 1995; Tzelgov
et al., 2008) or because these problems are solved on the
basis of rules instead of arithmetic operations (Butter-
worth et al., 2001; Campbell & Metcalfe, 2007; Wellman
& Miller, 1986). The result is less diffuse activation and a
clearer, operation-based spatial bias in zero problems, just
as we find. Smaller variability of landing distributions and
faster PTs for zero compared to non-zero problems, and
smaller variability for most tie problems compared to
other problems with the same result, are all consistent
with the idea of reduced spatial competition during move-
ment planning and/or execution with fewer activated
operands. We therefore suggest that OM reflects the
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combined bias of spatial activation from operands, operator,
and result size. Further research with this novel paradigm
can test these possibilities, also by studying movement
kinematics (Song & Nakayama, 2008). Our spatial competi-
tion hypothesis predicts least competition in zero problems,
more for tie problems, and most competition for problems
where the result differs from both operands.

Speeded pointing is a new tool for the study of on-line
activation of number representations and its behavioral
consequences. Although others have looked at how num-
bers are mapped onto a visually presented line (e.g., Siegler
& Opfer, 2003) this is the first application to mental arith-
metic. Future studies could look at effects of first operand
size and larger number ranges, to see whether spatial bias
increases with magnitude (McCrink et al., 2007), or at dif-
ferent arithmetic operations. Effects of expertise, gender
and handedness would also be of interest to establish the
validity of this task. The relation between numerical exper-
tise and spatial-numerical associations is understudied (see
Fischer, 2006, for discussion), and our combination of spa-
tial behaviour (male dominance) and numerical perfor-
mance (female dominance, Kimura, 1999) does not allow
clear predictions. Similarly, while the bilateral representa-
tion of numbers in the brain predicts that left- and right-
handers should perform equivalently on this task, reliance
Table A1
Materials used in the study and associated performance. PT (ms) = pointing time

Problem number Operand 1 Operation Operand 2

1 5 � 4
2 6 � 5
3 2 + 0
4 2 � 0
5 6 � 4
6 7 � 5
7 3 + 0
8 3 � 0
9 7 � 4
10 8 � 5
11 4 + 0
12 3 + 1
13 2 + 2
14 4 � 0
15 5 � 1
16 6 � 2
17 7 � 3
18 8 � 4
19 6 + 0
20 5 + 1
21 4 + 2
22 3 + 3
23 2 + 4
24 6 � 0
25 7 � 1
26 8 � 2
27 7 + 0
28 3 + 4
29 2 + 5
30 7 � 0
31 8 + 0
32 4 + 4
33 3 + 5
34 8 � 0
35 5 + 4
36 4 + 5
on different brain structures for different arithmetic opera-
tions might favor one over the other response side.

The pointing arithmetic task provides excellent control
over spatial and temporal aspects of stimulation and per-
formance and is likely to contribute to our understanding
of the link between numerical and spatial representations.
It might also point the way towards remedial techniques
for numerically impaired populations (Wood & Fischer,
2008) and have implications for the use of gestures in
mathematics teaching (e.g., Goldin-Meadow, Nusbaum,
Kelly, & Wagner, 2001).
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Appendix A

Appendix Table A1
Appendix Table A2
in milliseconds.

Result Horizontal landing coordinate (pixels) PT (ms)

Average Standard deviation

1 127 103 735
1 85 59 734
2 81 24 650
2 73 25 650
2 102 49 719
2 112 53 730
3 108 29 668
3 104 29 652
3 132 51 718
3 128 57 735
4 146 32 664
4 147 40 657
4 135 32 655
4 131 32 655
4 159 55 693
4 136 43 704
4 135 47 719
4 139 48 724
6 232 39 642
6 227 36 666
6 222 47 668
6 220 39 658
6 219 46 677
6 214 50 664
6 211 55 705
6 194 68 705
7 270 39 643
7 258 39 682
7 249 40 682
7 255 51 660
8 290 33 638
8 267 43 659
8 275 35 672
8 284 31 645
9 319 34 665
9 320 36 663



Table A2
Spatial performance (in pixels) for localization (separately for pre-test and post-test) and for calculation (based on zero problems only)

Target Localization – pre-test Localization – post-test Calculation – addition Calculation – subtraction

Average Standard deviation Average Standard deviation Average Standard deviation Average Standard deviation

2 73 19 66 21 81 24 73 25
3 108 26 99 25 108 29 104 29
4 138 29 136 23 146 32 131 32
6 226 29 236 29 232 39 214 50
7 265 29 273 28 270 39 255 51
8 294 28 304 22 290 33 284 31
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