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Abstract

We describe a new program package that is designed to perform numerical Molecular Dynamics (MD) and Monte Carlo (MC) simulations for a
broad class of soft matter systems in a parallel computing environment. Our main concept in developing ESPResSo was to provide a user friendly
and fast simulation tool which serves at the same time as a research platform capable of rapidly incorporating the latest algorithmic developments
in the field of soft matter sciences. A particular strength of ESPResSo is its efficient treatment of long range interactions for various geometries
using sophisticated algorithms like P3M, MMM2D, MMM1D and ELC. It is already equipped with a broad variety of interaction potentials,
thermostats, and ensemble integrators; it offers the usage of constraints, masses and rotational degrees of freedom; it allows to move between
different ensembles on-the-fly. An efficient MPI parallelization allows the usage of multi-processor architectures. Strict usage of ANSI-C for the
core functions and a Tcl-script driven user interface makes ESPResSo platform independent. This also ensures easily modifiable interfaces to
communicate with other MD/MC Packages, real-time visualization and other graphic programs. We tried to maintain a clear program structure to
keep ESPResSo extensible for future enhancements and additions. ESPResSo is implemented as an open source project with the goal to stimulate
researchers to contribute to the package.
 2005 Elsevier B.V. All rights reserved.
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PROGRAM FEATURES

Feature Exemplary Tcl-command

Integrators/Thermostats

(N,V,E)-ensemble thermostat off; integrate 1000
(N,V,T )-ensemble thermostat langevin 1 1; integrate 1000
(N,p,T )-ensemble thermostat npt_isotropic 1 1 1; integrate 1000

Nonbonded potentials

Lennard-Jones inter 0 1 lennard-jones 1 1 1.12246 0.25 0
Morse inter 0 1 morse 1 1 1.12246 0.25 0
Buckingham inter 0 1 buckingham 1 1 1 1 1.5 1 0.25
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Soft sphere inter 0 1 soft-sphere 1.2 1 1.5 0
LJ + cosine inter 0 1 ljcos 1 1 1.5 0
Gay–Berne inter 0 1 gay-berne 1 0.5 0.5 1.5
tabulated inter 0 1 tabulated mylj.dat

Bonded potentials

FENE inter 0 fene 10 1
harmonic inter 0 harmonic 10 1
angle inter 0 angle 10
dihedral inter 0 dihedral 1 10 0
tabulated inter 0 tabulated bond myfene.dat

Long-ranged potentials

3D Coulomb/P3M inter coulomb 1 p3m tunev2 accuracy 1e-4
2D Coulomb/MMM2D inter coulomb 1 mmm2d 1e-4
2D Coulomb/ELC inter coulomb elc 1e-4 10
1D Coulomb/MMM1D inter coulomb 1 mmm1d tune 1e-4
3D Coulomb/Maggs inter coulomb 1 maggs 0.1 32 1

General analysis

energy analyze energy
pressure analyze pressure
radial distribution analyze rdf 0 10 0.1
structure factor analyze structurefactor 0 10

Polymer analysis

end-to-end distance analyze re 0 30 200
radius of gyration analyze rg
g1,2,3 analyze g123

File I/O

ESPResSo blockfiles blockfile $file write particles id pos v
blockfile trajectories checkpoint_set ’’run_1’’
PSF/PDB writepsf ’’config’’; writepdb ’’config’’

Other

VMD visualization prepare_vmd_connection ”test”; imd positions

1. Introduction

Soft matter is a term for materials in states that are neither simple liquids nor hard solids of the type studied, for example, in
solid state physics. Examples are polymers, colloids, liquid crystals, glasses, and dipolar fluids. Many such materials are familiar
from everyday life—glues, paints, soaps, baby diapers—while others are important in industrial processes, such as polymer melts
that are molded and extruded to form plastics [1], or polymer networks for the development of rubber [2]. Biological materials are
mainly made out of soft matter as well—DNA, membranes, filaments and other proteins belong to this class. Furthermore, most of
the food we digest is soft matter.

All these materials have in common that a wide range of length and time scales is important for their microscopic behavior as
well as their macroscopic properties. Typical energies between different structures are similar to thermal energies. Hence, Brownian
motion or thermal fluctuations play a prominent role. Another key feature of soft matter systems is their propensity to self-assemble.
This often results in complex phase behaviors yielding a rich variety of accessible structures. Most of the biological systems are
usually not even in equilibrium but evolve among switchable steady states. Many of the soft matter systems are highly complex
in their composition and their interactions, and therefore they are also sometimes termed complex fluids. Much of today’s insight
has been gained through computer simulations of these systems at either the full atomistic level or on a coarse grained, so-called
mesoscopic, level.

In the past, our research has mainly focused on the study of charged polymers (polyelectrolytes) and charged colloids which
serve as important substances for many technical applications. Charged systems also occur in biological environments [3] (since
most biological matter is charged), and modeling explicit water molecules requires partial charges as well. The simulation of these
systems is not straightforward and very time consuming [4–6], since the effort scales at best linearly with the number of charges,
thus the production of single data points could take weeks or even months for complex biomolecular problems [7]. Consequently,
we have improved or developed a number of algorithms which yield fast expressions for the energy and forces of fully or partially
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periodic systems [8–12]. We are also interested in simulating such systems in various geometries, e.g., films or porous media and
with different topologies ranging from linear to branched to networks [13,14]. Another focus is to systematically coarse grain atom-
istic models such that one can access mesoscopic time and length scales with computer simulations [15–17]. This is necessary to
predict quantitatively dynamic properties or surface interactions for complex materials which depend on local chemical interactions
and local packing. For the coarse graining procedure it is required to switch back and forth between an atomistic and a coarse
grained description. This implies complicated steering schemes for a simulation. Therefore, we need a high flexibility of the steer-
ing level and an easy way to interact with other programs. Therefore the desired program has to be extensible such one can easily
implement and test new methods and algorithms. These are usually tasks that involve changes in the core part of the program.

Looking at other available simulation packages, e.g., BALL [18], GISMOS [19], GROMOS [20], GROMACS [21], LAMMPS [22],
NAMD [23,24], polyMD [25], Amber [26], NWChem [27], DL_Poly [28], and OCTA [29], we did not find a single package which
met all our needs. It should be easy to use, but scientifically sound; it should grant experts access to state-of-the-art techniques, but
enable beginners to investigate scientific problems easily and at the same time not limit them to run the program as a “black box”; it
should be general and flexible, but still fast; it should be easily extensible, but remain at the same time reliable and keep continuity
with older versions. This led us to design a newly structured program for this field of science, which we called an Extensible
Simulation Package for Research on Soft Matter Systems, ESPResSo for short, see Ref. [30] for an earlier account. Note that
in the meantime another project called Quantum-Espresso [31] has been established, which is a package for Car–Parinello MD
simulations and should not be confused with our program, despite the similar names.

Our program is designed to study soft matter model systems via Molecular dynamics (MD) algorithms, with particular emphasis
on extensibility for new, highly complex force/energy algorithms. ESPResSo is parallelizable and fast and thus able to compete
in speed with any of the above mentioned programs (see Section 6). On the steering level it is far more flexible than any other
simulation tool with a similar scope that we have seen. Still the clear program structure together with the documentation should
enable new users to run their own simulations after a very short time, and to contribute new features soon thereafter.

Here, we present the current version of the ESPResSo-package, which as of this writing continues to be expanded with new
features and capabilities undergoing thorough testing before officially announced. Downloads, updates and more documentation
can be found on the webpage http://www.espresso.mpg.de/. The distribution of the source code adheres to the open source standards
under the GPL License [32]. By this we hope to ignite the further development of our code into a valuable research tool for the soft
matter community, beyond the already participating groups, scientific institutes, and researchers at industrial companies.

We start the description of ESPResSo with a general outline of the design ideas that guided the development. The next section
gives an overview of the capabilities and algorithms included, followed by a discussion of some implementation details. After this,
we present benchmarks for sample systems and compare the speed to other simulation programs in Section 6. The paper is rounded
off by conclusions and an outlook about features that will be incorporated in the near future.

2. Program design

This section lists the main design goals and their implementation in the ESPResSo development. They are given in their order
of precedence, since as usual there has to be a certain trade-off between competing design goals. This order is also influenced by
the special needs of our work group, where we use coarse-grained descriptions of soft matter systems, mainly bead-spring models.
However, it had become evident in the past that applying a program to different scientific projects can only be successful if it
is easily possible to adjust it to the specific challenges each new project contains. If achieving this requirement results in some
performance loss this will be made up for by the smaller amount of human preparation time needed to initiate the actual simulation.

2.1. Goals and principles

Extensibility: Since we want to use our program for performing basic research, objectives can change, system complexities expand,
and often new challenges arise—a simulation package must enable the user to add custom code, otherwise it will only be useful for a
very restricted group of people. ESPResSo addresses these concerns by having an entirely modular integration and communication
core around which all other routines are structured. This allows the exploration of a wide range of models with a vast variety
of properties, and gives at the same time solid support for algorithm development. The extensibility of ESPResSo, its routines
and its data structures, has been proven during the incorporation of new algorithmic techniques like the Maggs algorithm (see
Section 3.3.3) and the lattice Boltzmann algorithm (see Section 7) which both required changes in the core of the program. This
makes us confident that the given program structure is well suited for further not yet foreseen changes and additional features.

Readability: Unless the structure and coding style are kept simple, extensibility would remain a theoretical issue. That is why
ESPResSo puts much emphasis on a clear structure and thorough documentation, to ensure that programmers with various degree
of programming skills are able to gain access to the different coding layers that form the simulation engine. Naturally, beginners
would want to start off with smaller tasks such as implementing a new potential (maybe following the How To-Guide in the
documentation) before attempting to alter core sections of ESPResSo, since the latter’s complexity naturally requires an increased
experience from the user.

http://www.espresso.mpg.de/
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Flexibility: ESPResSo’s scope of general applicability discourages the usage of highly specialized and optimized functions. Flex-
ibility requires looking at each functionality or data structure from multiple directions to ensure that it is useful to a large variety
of problems. Even if most enhancements probably originate from a very concrete application, the aim is to always extend them
towards a more universal usage before they are released. Examples for this flexibility are the usage of a very general Lennard-Jones
potential which enables the simulation of colloidal particles and the implementation of a particle structure which allows also the
treatment of anisotropic particles.

But this is only one part of ESPResSo’s flexibility. The employment of Tcl as the steering level opens vast opportunities for the
design and course of intended computer experiments. Moreover it opens the opportunity to implement new requirements on a script
language level at the same time being still in close linkage to the program core. This has, for example, been practiced for hybrid
Monte Carlo/MD simulations. This approach saves a huge amount of human development time, at the expense that the resulting
program will be somewhat slower than a highly optimized and specialized one that we however accept for the aforementioned
reasons.

Correctness: ESPResSo is not only a multi-user, but more importantly a multi-developer program where the full source code is
accessible to everyone. This has the advantage that whoever is a specialist in a certain (algorithmic) field will be implementing the
desired functions with expert knowledge. However, every individual contributor to the ESPResSo-project must be enabled to run
a thorough check on the added code fragments to ensure that the numerical and physical correctness of the package as a whole
remains intact even after the changes were applied.

For this purpose, ESPResSo includes a testsuite of various cases which quickly evaluates if the most important features are still
functioning properly; since this check takes only a few minutes, the inhibition threshold for developers to use is low. In addition,
there are also more elaborate test scenarios and sample scripts, that contain well known physical problems and systems that were
solved some time ago. These will provide a very thorough review of ESPResSo’s overall integrity by comparing the computed
results to the published reference data; although these tests take longer, they help to avoid programming bugs. Even though these
automatic control features already ensure a high degree of reliability of the package, we found it still necessary to check the
correctness and consistency of any larger change of the code by hand in a team effort.

Efficiency: Last, but surely not least, the applied algorithms should naturally be the most modern ones available, to ensure a fast ex-
ecution time of the simulation. For this purpose ESPResSo incorporates state-of-the-art electrostatic routines such as P3M or ELC,
provides multiple cell systems for choosing a particle storage organization optimized for the investigated systems, and constantly
adds new algorithms (e.g., a recent suggestion for treating electrostatics locally [33,34]) providing new features. However, all these
attempts must still fulfill the previous design criteria, particularly readability and flexibility—i.e. no hardcoded assembler loops or
platform dependent computation tricks will be implemented, because the achievable speedup through this would most likely render
further attempts of enhancing the program much harder, if not impossible.

These wide specifications and conflicting design goals enforced a thorough thinking about the program architecture, data struc-
tures and general programming guidelines for the development of ESPResSo. Since ESPResSo is a team project where basic
concepts evolve in a discussion process, further adjustments may be implemented, always having feasibility and applicability in
mind. In the end, everything will be documented in an understandable and usable way to ensure coherence and compliance for
future releases.

2.2. Basic program structure

ESPResSo is organized in two hierarchical program levels, each suited to optimize some of the main targets we had in mind:
the steering level for large flexibility, usability and extensibility, the simulation engine level for efficiency, readability and again
extensibility. The two program levels are:

Steering level: The steering of ESPResSo is done on a script language level, namely Tcl/Tk [35]. All tasks are implemented as
C-functions enhancing the Tcl-interpreter and acting as new Tcl-script commands. This includes input and output of data, setting
of particle properties, interactions, and parameters, and performing the integration and analysis of a given system. All commands
that interact with the simulation, are built such that they allow both for setting and retrieving information. For example, with the
command part, which deals with particle properties, one can set the particle coordinates, but one can also retrieve the particle
coordinates at later times. A sample simulation script for a Lennard-Jones fluid is given in Appendix A.

But steering a simulation in ESPResSo is much more than setting up system parameters. From the steering level one can
interact with the actual simulation in a very flexible way. That means one can change the system properties during the simulation in
any desired way, may this be the insertion or deletion of particles, a change of interaction parameters, a switch from one to another
thermodynamic ensemble, a change of parameters for the integrator or the thermostat—just to name a few possibilities. This allows,
e.g., for simulated annealing by modulating the temperature, or to perform a thermodynamic integration by gradually changing the
Hamiltonian of the system.

However, also in the equilibration of most systems, this feature is frequently used: For the simulation of dense, charged polymer
melts, as another example, one could start the equilibration without electrostatics, add polymers and some neutral spheres (the latter
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to become counterions later on) at the correct density; temporarily capping the excluded volume interactions would then allow to
carefully push overlapping particles apart, always supervised by the Tcl-script which could use analysis routines to monitor the
minimum distance of all particles until they are separated. Afterwards, the spatial positions of the monomers could be fixed before
the electrostatic interactions are activated, to prevent locally unbalanced charges to rupture the polymer’s bonds, allowing the coun-
terions to equilibrate. Releasing the chains is then the last step towards the physical system setup of a poor solvent polyelectrolyte
melt.

All steps described above are typically part of the Tcl-script that steers the simulation. Even more complex tasks can easily be
formulated with the Tcl language. It is also possible to conduct a wide range of data analysis during runtime of the simulation,
which is not only convenient but also allows to feedback analysis results into the steering of the simulation flow, e.g., to implement
cross checks surveying the kinetic temperature in an isothermal ensemble or the instantaneous pressure in (N,p,T ), to initiate
system configuration swaps, something needed to use parallel tempering [36], or to change the coarse graining level of the physical
system. This can involve replacing explicit particles with a larger and appropriately heavier center-of-mass representation, and vice
versa.

With all these possibilities available, the user is never constrained to a specific system, ensemble, or configuration. One can, in
principle, modify all of the initially chosen properties during runtime. Of course, instead of using the slower, but more flexible Tcl
interface, the user has always the option of adding features to the engine level of ESPResSo. As already mentioned in Section 2.1
the steering level enables the user to carry out a huge part of the programming work required for solving new problems on the
script language level rather than elaborate C-programming. Even though for standard simulations the script can be as simple as the
one shown in Appendix A the given possibilities can yield quite complex simulation scripts. These scripts perform not only the
steering of the simulation, but also analyze the data on the fly, report regularly the observables of interest, and export graphs of
the observables. The steering level also allows to manipulate the simulation from a graphical user interface (Tk) or via input from
external programs.

Simulation engine level: In contrast to the steering level, which uses the Tcl-script language for easy usability, the simulation
engine has to be efficient and is therefore implemented in ANSI-C. The engine is responsible for storing the particle and interaction
data on any number of processors, but it also performs the integration of Newton’s equation of motion as well as the necessary
calculations of basic quantities like forces, energies and pressures.

The simulation engine code has been organized to be as modular as possible, separating clearly different tasks like particle
organization, interaction organization, integration, or force calculation, for example. Some advanced algorithms, especially for the
calculation of the electrostatic interactions, require deep knowledge about the particle organization, making complex interfacing
necessary. Basic functions can be accessed using well-defined lean interfaces, hiding the details of the complex numerical algo-
rithms. For example, the particle data can always be accessed through a defined set of functions and variables, although internally
very different particle organization schemes can be applied (see Section 4).

Another example is the implementation of new potentials, which is possible without touching the integrator code, and in turn the
integrator can be modified without touching the potential implementations. In this way it is much easier to implement a new type
of interaction, a new integrator, or a new thermostat. It is also much easier for a beginner to understand what the program is doing
during the simulation. This is important in light of our belief that it is not useful to perform scientific research with a simulation
tool that appears mainly as a “black-box” to the scientist in charge.

Besides Tcl/Tk, ESPResSo relies on another Open Source package, namely the FFTW [37] in the P3M method for the electrosta-
tic interaction. For the parallelization MPI routines are used; on platforms running Linux and Darwin ESPResSo uses the LAM/MPI
[38] implementation, offering the option to employ other packages such as MPICH [39] as well.

3. Capability and algorithms

In this section we try to give a short overview of the algorithms and features already implemented in ESPResSo as of this
writing. These can range from different integrators over particle interactions up to data analysis routines, for e.g. the radius of
gyration. During the start of our program most of the implemented algorithms had been devoted to (charged) polymers, rod-like
objects, or membranes [30], while today ESPResSo is not limited to these applications anymore. Many features have been added in
the meantime, including the possibility to perform atomistic simulations and to employ various coarse graining techniques. Since
ESPResSo is constantly being extended, we keep an up-to-date listing in the Release Notes-file of the distribution and on our
webpage (http://www.espresso.mpg.de).

3.1. System setup

For a successful computer simulation a thorough preparation of the system to be investigated is the essential first task. The
Tcl-script level of ESPResSo allows for an easy and variable setup of the starting configurations together with the simulation
parameters, as well as choosing the desired algorithms. From placing particles and charges, defining potentials and interactions,

http://www.espresso.mpg.de
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assigning bonds and constraints, applying external forces and customized boundary conditions, to reading in existing configurations
in ESPResSo’s native blockfiles (see Section 3.5) and other formats, everything can be easily executed using few simple commands
within the Tcl-script. It is also possible to rely on pre-defined setup routines and sample topologies such as polymer chains, networks,
fullerenes, counterion- and salt-distributions which are provided as shortcut-like conveniences of commonly employed systems, and
the user may adjust to any custom needs arising.

Putting particles at random positions in the simulation box, for a simple Lennard-Jones fluid, for example, can be done directly
by a single loop:

set box_x [lindex [setmd box_l] 0]
set box_y [lindex [setmd box_l] 1]
set box_z [lindex [setmd box_l] 2]
for {set i 0} { $i < $n_part } {incr i} {

part $i pos [expr $box_x*[t_random]] \
[expr $box_y*[t_random]] \
[expr $box_z*[t_random]] type 0

}

An example of a pre-defined setup routine is the polymer command, which can be used, e.g., to setup a bead spring model of a
polymer melt. A melt consisting of 100 chains carrying 200 monomers each [40], can be set up by the command line

polymer 100 200 1.0 mode SAW

It fills the simulation box with the corresponding number of self-avoiding walks (SAW) of step size 1.0σ (the bond length), once
the excluded volume interactions and the bond potentials have been defined.

If one needs to constrain single particles, part... fix fixes their spatial coordinates, for example, if one wants to investigate
the force acting on them as a function of the (imposed) distance, or if one wants to model immobile surfaces.

The user’s influence is not limited to geometrical or topological issues. Besides specifying the particles’ interactions, choosing
thermostats, or the ensemble (e.g., constant volume or constant pressure), all other aspects of the simulation remain fully customiz-
able in the course of the whole simulation. All parameters may be freely adjusted depending on whatever criterion chosen. This is
useful in system equilibration, where interaction can be capped temporarily, or during the integration, e.g., to perform a simulated
annealing, or to add/remove/manipulate particles for grand canonical ensembles or multiscale approaches.

3.2. Integrators and thermostats

ESPResSo uses as default the Velocity Verlet Molecular Dynamics integration scheme [41,42] for rotationally invariant particles,
which is robust enough for most applications. If a simulation incorporates particles with rotationally degrees of freedom like dipoles
or cigar shaped Lennard-Jones particles, the rotational degrees of freedom are represented by quaternions, and an extension of the
velocity Verlet algorithm for rigid body motion is used [43]. Mass and inertia moments are fully implemented, but may be replaced
by the default reduced mass m∗ = 1 for performance reasons if no distinction of different masses is desired. For the simulation
of dynamic experiments like a simple shear flow, ESPResSo uses Non Equilibrium Molecular Dynamics (NEMD) [44,45]. In
addition to the intrinsic (N,V,E)-ensemble, the velocity Verlet integration scheme can be combined with one of the implemented
thermostats to obtain integrators for the (N,V,T )-ensemble. At the moment these include a Langevin thermostat, a Berendsen
thermostat [46] and a dissipative particle dynamics thermostat (DPD) [45,47]. The type and the temperature of the thermostat
can be changed during the simulation on the script level, allowing, e.g., simulated annealing. The DPD thermostat implements the
friction and noise as a particle pair force rather than a global one, and thus maintains momentum conservation, which is important
for yielding correct hydrodynamic interactions for equilibrium and non-equilibrium simulations [45].

Apart from (N,V,E)- and (N,V,T )-ensembles, ESPResSo is also able to keep the pressure constant during the particle
propagation, i.e. to simulate the (N,p,T )-ensemble [48]. This is implemented by introducing an artificial piston mass which acts
on the simulation box and rescales its dimensions isotropically. With the Langevin-type equations of motion for this new degree
of freedom one arrives at a stochastic MD integration scheme, enhancing the MD approach by Andersen, Nosé, and Hoover with
stochastic dynamics (SD), and follows the momentum of the piston such that its derivative corresponds to the difference between the
currently measured “instantaneous” pressure and the given external one. There is also a corresponding isotropic thermostat available
which adds friction and noise. In addition to the implementation given in [48], our algorithm allows for using a constant tension
ensemble as well, where only the pressure in one or two dimensions is considered, the rescaling adjusted to respond accordingly;
this is useful when studying, e.g., membranes under tension [49].

3.3. Force calculation strategies

ESPResSo distinguishes three kinds of forces: long ranged forces, short ranged forces, and bonded interactions. Short ranged
interactions have to be calculated only for particles within a small interaction range. To avoid unnecessary operations, information
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from the cell structure can be used for eliminating particle pairs that are far away from each other. Therefore, each cell structure
comes with an optimized force calculation routine for the short ranged forces. For example, when the particles are sorted by the
domain decomposition cell structure (see Section 4.1), only particles in adjacent cells can interact. This reduces drastically the
number of particle pairs that have to be considered. Additionally ESPResSo keeps a record of the particles interacting currently in
so-called Verlet lists. These reduce the computational work by another factor of around 8, since the lists have to be updated only
every few time steps. Currently, only short ranged pair-interactions are implemented, but extending ESPResSo to three or more
body forces should be easily possible.

The bonded interactions are treated together with the short ranged interactions. There is no limitation on the number of bond
partners, i.e. many-body bonded interactions are already implemented in ESPResSo. The efficient treatment of long range forces
is only possible using highly sophisticated algorithms. Those will be discussed later in a separate section.

3.3.1. Short ranged non-bonded potentials
ESPResSo features the following non-bonded short ranged potentials:

• Lennard-Jones potential. In our implementation the cut-off radius of this potential can be shifted to obtain a purely repulsive
interaction (so-called WCA potential [50]), or we can have an additional hard-core offset radius. The Lennard-Jones can be
capped during the warm-up phase of the simulation, such that even overlapping particles feel only a finite repulsive force. This
allows for an easy random placing of particles in an initial configuration.

• Combined Lennard-Jones-cosine potential. If the Lennard-Jones potential is not cut-off in its minimum, e.g., if one needs the
attractive tail, the forces are discontinuous. This potential adds a monotonous part of the cosine function to ensure that the force
are continuous everywhere [51].

• Buckingham potential [52]. This is another potential mimicking a van-der-Waals type interaction between particles. This is a
widely used force field in atomistic simulations.

• Gay–Berne potential [53]. This is essentially the anisotropic version of the Lennard-Jones potential, i.e. for cigar shaped objects.
It has to be used in conjunction with an integrator for rigid bodies.

• Debye–Hückel potential [54]. This potential describes a screened Coulomb interaction, which is short ranged. With a screening
length of infinity one gets the pure Coulomb potential. Note, however, that in this special case the integration loop is of order
O(N2) in the number of particles N .

• Tabulated potentials. ESPResSo can handle any number of tabulated potentials, where the force and the energy is described as
a piecewise linear function of the distance with finite support.

There are special model systems such as phantom networks, in which there are no nonbonded interactions between particles of the
same chain. This behavior can be implemented using different particle types. This is extremely inefficient if several thousand chains
are included. For this case, ESPResSo offers exclusions, which allow to specify particle pairs, for which the nonbonded interactions
are not calculated, for example, interactions along the chain backbone. These exclusions can be set manually. In standard atomistic
simulations one typically excludes the interactions of each particle with its neighbors within the molecule, which can be done
automatically by the part auto_exclude command.

3.3.2. Bonded potentials
The bonded potentials are:

• Pair forces: Two particles can be bound by FENE (finite extensible nonlinear elastic) [51] and harmonic bonds. As an alternative
to the exclusion mechanism, ESPResSo features a two-particle Lennard-Jones subtraction potential, which is simply a bonded
version of the Lennard-Jones potential with inverted sign. The exclusion code adds some additional overhead to the nonbonded
force calculation, since one needs to check for each pair of particles, whether they interact. If only a few interactions have to be
left out, it may be more efficient to calculate the nonbonded interactions as usual, and to subtract the interaction of non-wanted
particle pairs.

• Three-body forces: Three particles can be bound by a bond-angle potential. ESPResSo implements three different kinds of
bond-angle potentials. First, a harmonic potential around the optimal angle φ0, i.e. 1/2k(φ − φ0)

2, then a cosine potential
k(1 − cos(φ − φ0)), and finally a harmonic cosine potential (1/2)k(cos(φ) − cos(φ0))

2.
• Four body forces: Four particles can be bound by a dihedral angle potential. The implemented form is k(1 + δ cos(nθ)), where

θ is the dihedral angle, n = 1,2, . . . ,6 is the multiplicity and δ = ±1 is a phase factor. With this potential one can also mimic
force fields which use

∑
i ki cos(θ)i as the functional form for the dihedral interactions.

In addition to the potentials above, bonded potentials can be given in a tabulated form, where the energy and the force are given as
piecewise linear functions of the distance (two particles), the bond angle (three particles), or the dihedral angle (four particles).
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3.3.3. Long range potentials
While the implementation of the short ranged potential normally consists only of two short routines, namely the force and energy

calculations, the treatment of long ranged interactions requires much more care due to the large number of possible interaction part-
ners. The algorithms for long range interactions are highly sophisticated [5] and normally have their own parallelization strategies.
This enormous effort is justified by the fact that a simulation with electrostatic interactions might spend more than two thirds of
the computation time only for the calculation of the long range interactions. At the moment ESPResSo only handles Coulomb
interactions since this is the dominant force for soft matter problems, but fast algorithms for dipolar interactions are being currently
implemented.

For any finite geometry without periodic boundary conditions we simply use a loop over all N charged particles which is of
O(N2). For 3D periodic boundary conditions the standard Ewald method has in its optimal implementation still a complexity of
O(N3/2). To overcome this limitation we have implemented the P3M algorithm of Hockney and Eastwood [55] for 3D periodic
boundary conditions in a version as described in detail in Ref. [8]. This method is the optimal choice for the Fast Fourier transform
based “particle mesh Ewald” algorithms, since it uses the pair-force-error-optimized lattice Green’s function, and by construction
is superior to other variants [56,57]. The computational effort scales with O(N logN). An additional strength is that robust error
estimates exists [9]. Our implementation handles arbitrary dielectric constants at the boundary. For the Fourier transformation we
use the FFTW which exists for various platforms [37]. Our parallel implementation employs MPI and the one-dimensional FFTW.
The implementation of ESPResSo is more flexible than the parallel multidimensional FFT employed in the FFTW, since it does
not limit the maximal number of usable processors to be equal to the mesh size.

For systems with periodicity only in 2 or 1 dimensions, ESPResSo features the MMM2D [10,58] and MMM1D algorithms [59].
They are based on a convergence factor approach to evaluate the Coulomb sum. These algorithms are implemented for arbitrary box
shapes, but have scalings of O(N5/3) (2D) and O(N2) (1D). They also feature robust error estimates, and one of their advantages
is that high numerical precision is not computationally costly. For a more complete discussion see [10,58,60,61]. They are faster
and more robust than the 1D and 2D standard Ewald methods, or Lekner sums [62].

The scaling of MMM2D of O(N5/3) normally allows for not more than 1000 particles to be treated in a simulation. For higher
numbers of particles, or lower precision, as it is needed for dense electrostatically interacting systems as in biomolecular applica-
tions, ESPResSo features the ELC method, which stands for electrostatic layer correction [11,12,61]. Here one uses an algorithm
for fully periodic boundary conditions with its favorable scaling (in ESPResSo currently only P3M) for a 3D system, where only
two dimensions are periodically replicated. The summation order is made slabwise by a simple change in the dipole term [63]. The
unwanted interactions of particles with their images in the non-periodic dimension can be analytically computed by means of the
ELC term, and then are subsequently subtracted [11,12]. This term scales linearly with the number of charges and therefore keeps
the favorable scaling of the P3M method.

All our above described methods can be preset to a user defined accuracy, and will be optimized to the underlying hardware (at
this set error) by means of a tuning routine. The ability of choosing the accuracy and the tuning facility for all those algorithms is
unique to ESPResSo and is, as far as we are aware, absent in other packages.

In addition to the above described methods ESPResSo possesses a local electrostatic solver due to Maggs [33,64] in a version
of Pasichnyk and Dünweg [34] that was developed for MD simulations. The essential philosophy of this approach is to view
electrostatics as the quasi-static limit of a dynamic field theory, in this case Maxwell electrodynamics, and to explicitly simulate the
dynamics of the field degrees of freedom. The speed of light c appears as an adjustable parameter and realistic dynamics occurs for
particle velocities v � c. The Maxwell equations are discretized on a simple-cubic lattice, with scalars on the sites, electric fields
on the links, and magnetic fields on the plaquettes. The method is rather simple to implement and to parallelize, and appears to
be quite competitive with respect to efficiency. In principle, it should allow for a locally varying dielectric constant [64], also this
feature has not been implemented.

3.4. Constraints and external forces

For a non-bulk simulation the particles normally have to be constrained to some finite region of the space. In ESPResSo these
constraints are implemented as soft immobile objects, i.e. they interact with the particles through one of the short-ranged potentials.
ESPResSo features basic constraints such as walls, cylinders or spheres, which can be arbitrarily combined to form the desired
simulation region. Walls and cylinders with infinite extension, i.e. in periodic boundary conditions, can carry a charge for simula-
tions of charged surfaces. Besides this, more exotic constraints such as a two-dimensional array of spherical cavities interconnected
by circular holes, are available.

Other type of constraints are positional constraints and external forces. While the former type of constraint simply makes a
particle immobile in some or all of the spatial coordinates, allowing, e.g., pulling at a molecule fixed to a surface, the latter exerts
a constant force on specific particles as in an external field. For example, the potential of mean force between two macromolecules
can be determined by fixing their center-of-mass distance. A comfixed-constraint fulfills this task, which allows to explore the
configurational phase space as a function of the center-of-mass separation.
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{variable
{box_l 316.950192362 316.950192362 316.950192362}
{periodicity 1 1 1}
{time 5200}

} {interactions
{0 FENE 7.0 2.0}
{0 0 lennard-jones 1.75 1.0 2.5 0.004079222784 0.0 0.0 }

} {integrate
{ set nvt }

} {thermostat
{ langevin 1.0 1.0 }

} {particles {id pos type q}
{0 -0.933410431074 -4.396367828 4.07839266194 0 1.0}
{1 80.6308288023 73.5960975815 74.5619693121 0 1.0}

...
{3583 28.8582652959 75.2256394353 412.044956716 2 -1.0}

} {bonds
{0 { } } ...
{206 { {0 205} {0 1} } } ...

} {tclvariable {V1 31840000.0} }

Fig. 1. Example sketch of an ESPResSo-compatible blockfile (excerpt), displaying some of the different categories as described in the text. The variable block
contains informations on the simulation box (box length and boundary conditions) and the current simulation time in the variable block. The interactions
block describes a bonded FENE- and a nonbonded Lennard-Jones-potential. The integrate and thermostat blocks contain integrator settings for integrating an
(N,V,T )-ensemble with a Langevin thermostat at temperature T = 1ε and friction Γ = τ−1). Afterwards, unique identifier, 3D position, type number, and charge
are given for all particles in the system. The bonds block shows that no bond is stored with the zeroth particle, while the 206th is connected to particle 205 and
particle 1). Finally, the value of a user-defined Tcl-variable V1 is included, which could for example represent a parameter describing the system or an observable.

3.5. File input/output

Although Tcl provides built-in support for reading and writing (text-)files, ESPResSo introduces a unified file format for saving
and (automatically) restoring its computer simulation data to allow easy exchange between users. Based on the structure of Tcl-
lists, this blockfile format subdivides all informations on the current state of the program into categories (blocks). An example of an
ESPResSo compatible blockfile is shown in Fig. 1.

For each block type routines exist to write the block to a blockfile and to read its data back into the running simulation. ESPResSo
handles many block types by default, such as variable (contains global parameters such as simulation box length, skin, processor
node grid, cell grid, chosen periodicity), tcl-variable (contains Tcl-variables, such as important constants in the simulation script),
interactions (contains a list of all the employed bonded, non-bonded, and electrostatic potentials with their parameters), integrator,
thermostat, particle (contains informations such as positions, velocities, forces and charges), bonds (contains the bonding topology
of the system), random (contains the state of the random number generators) and configs (contains particle informations of past
timesteps for online-analysis of their trajectories).

In addition to these standard blocks, ESPResSo allows to add arbitrary blocks written in Tcl. Also the default block types are
implemented as Tcl routines. To add a new block type, one has to define only two Tcl procedures, one which is used to write the
block data and one to parse it. This feature can be used to conveniently write and parse observables. Note that the implementation
of these procedures is easy, since most ESPResSo commands are able to output their parameters in a form that can serve as their
own input.

The amount of informations to be included may be chosen entirely by the user. Some shortcut commands exist as well, i.e. to
create a simulation system snapshot which includes everything necessary for starting or resuming an integration. The output will be
saved in plain text (ASCII) format ensuring great flexibility, portability, and (more importantly) platform independence compared
to system dependent binary formats; the unavoidable size disadvantage is easily compensated when compressing the resulting files
(which can be done on-the-fly) using external programs such as gzip.

ESPResSo supports checkpoints, that can be created regularly during the simul-ation. These can be used to restart the system in
a well defined state, or for later off-line analysis of particle trajectories. For this matter, invocation of

checkpoint_set custom_name.$i.gz

from the Tcl-script will create a blockfile custom_name.$i.gz which will be compressed automatically, and which stores all
available information about the currently executed simulation. This file represents the ith entry to the list of checkpoints. Its filename
will be appended to custom_name.chk, allowing to keep track of the series of checkpoints built so far. Whenever it is necessary
or desired to resume the program,



H.J. Limbach et al. / Computer Physics Communications 174 (2006) 704–727 713
checkpoint_read custom_name.chk

will successively rebuild the stored trajectory, continuing the simulation exactly at the data status of the last checkpoint.
In addition to reading its own data format, ESPResSo is also able to read or write other file formats, such as pdb/psf-files which

are used by visualization software such as VMD [65] and file formats of simulation packages previously used in our work group.
There are is an ongoing project to include import and export of GROMOS and GROMACS files. Due to the use of the Tcl-script
language, adding new text file formats is particularly easy, which is often necessary if data from self-written simulation codes
should be imported to ESPResSo.

3.6. Data analysis

ESPResSo does not only supply the simulation kernel, but provides also tools for analyzing the data. This can be done both, after
the end of the simulation, and on-the-fly, i.e. while ESPResSo is still running. This is convenient since some simple plausibility
checks can be performed, e.g., for following energy conservation or the temporal evolution of selected observables, allowing to
abort or adapt the simulation accordingly. Typical derived observables range from the forces exerted on specific particles, the
energy, particle distributions, or typical properties of chain molecules. The pressure can be calculated both tensorial and isotropic.

Radial distribution functions can be computed for specific particle types, allowing for, e.g., the calculation of the distribution of
counterions around a macromolecule. Implemented observables for chain molecules are the average end-to-end distance RE , the
radius of gyration RG, the hydrodynamic radius RH , the average bond length 〈b〉, the internal distance distribution, and the mean
square displacements g1 of the particles, the mean square displacements g2 of chain particles relative to the chain’s center of mass,
and the center of mass displacements g3. For comparison with scattering experiments, structure factors, both as spatially averaged
single-chain form factors for polymers, as well as total structure factors for selected particle species or the entire system, can be
calculated. For membrane systems, ESPResSo can perform a fluctuation mode analysis [66].

Most of the data analysis does not only average over the current sample, but is also able to optionally average over an entire
series of past timesteps stored in memory. For this feature, ESPResSo allows to keep specific configurations loaded, building up
an entire trajectory for online analysis; of course, this trajectory can also be saved to disk for later re-usage employing the blockfile
format.

For a simple error analysis of the averaged observables, the standard deviation of the measured values is computed. The derivation
of more abstract error estimates is supported by a simple linear regression, or, for correlated observables, the uwerr command, which
calculates the errors of values derived by, in general, nonlinear functions from observables with known correlated errors [67].

3.7. Additional features

In addition to the built-in analysis procedures, there is a fast growing number of Tcl procedures for mathematical treatments,
analysis, and general data manipulation. The extensibility of ESPResSo also brought up some more unusual features: ESPResSo
can make use of the Tcl extension Tk, which allows for the creation of graphical interfaces. This is useful primarily for writing scripts
for visual simulation demonstrations. To this aim, ESPResSo also has an IMD interface that can send configurations during the
simulation to the visualization package VMD [65] which can provide animated movies of the simulation trajectories. ESPResSo can
automatically generate postscript graphics of graphs using gnuplot for direct plotting of any arbitrary combination and functional
expressions of measured observables.

3.8. Test-suite

Due to the scope and sheer size of ESPResSo it is an important task on its own to ensure that—despite the easy access of all
users to all parts of the program—it is possible to always ensure the physical correctness of the entire package, its reliability, and
backwards compatibility. To this aim, each of the major features in ESPResSo (e.g., each potential, each integrator, the thermostats,
common data analysis routines, specialties such as constraints, partial periodic boundary conditions, external forces, etc.) have their
own little test-case which quickly compares the output of the current version of the program to an earlier reference state, thereby
detecting any deviations (maybe inadvertently) introduced in between.

Before submitting modifications to the CVS-repository for future releases of ESPResSo, each developer is required to ensure an
error- and warning-free compilation on all the officially supported hardware platforms, checking for each architecture whether the
test-suite runs through without any problems. The test-suite is build into the project’s makefile for the compilation; hence, it can
be executed with a single command. By construction all the tests only add up to a few minutes of computation time to encourage
developers to use it as often as possible.

In addition, larger checks testing physical properties of “real” systems provide simple means to also trace more subtle bugs only
occurring for specific scenarios or unique combinations of features or circumstances. Being based on previous research projects
or “classic” simulation scenarios (e.g., the Kremer–Grest study of a polymer melt [40]), these may take considerable longer time
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to complete. The comparison of the output of the current program version to the published data, however, allows for an excellent
test of the overall correctness of ESPResSo. Done on a regular basis, all these verification scenarios are executed and need to be
fulfilled when releasing a new version of the code. In this way we hope to keep the number of newly created errors in updated
releases bound to a minimum, and to enhance stability of our program package.

4. Implementation details

After having described the overall structure, capabilities, and included algorithms of ESPResSo we will present in this section
some details of the implementation, especially of the particle data organization.

4.1. Data structures for parallel computation

The data ESPResSo needs during the integration are mainly particles, interactions, and constraints. While the number of in-
teractions and constraints is normally small, and simple lists are efficient enough for their storage, the particle data needs some
more elaborate organization. A particle itself is represented by a structure consisting of several substructures, which in turn rep-
resent basic physical properties such as position, velocity, force, mass (if enabled), or charge. The particles are organized in one
or more particle lists on each node, called cells. The cells themselves are again arranged by several possible systems, which are
called cell systems in the following. A cell system defines how the particles are stored in ESPResSo, i.e. how they are distributed
onto the processor nodes and how they are organized on each of them. ESPResSo currently supports three cell systems, namely
an N2-model, a layered model, and a domain decomposition model. For most simulations the last model is used, which is shown
schematically in Fig. 2. The cell models will be discussed in more detail in the following.

Technically, a cell is organized as a dynamically growing array, not as a list. This ensures that the data of all particles in a cell is
stored contiguously in the memory. The particle data is accessed transparently through a set of methods common to all cell systems.
These allocate the cells, add new particles, retrieve particle information and are responsible for communicating the particle data
between the nodes. Therefore, most parts of the code can access the particle data safely without direct knowledge of the currently
used cell system. Only the force, energy and pressure loops are implemented separately for each cell model, since the calculation
can benefit in different ways from the particle organization. For example, the computation of the pair forces can be implemented in
linear computation time using the domain decomposition method, which will be explained now.

The domain decomposition cell system is based on the link-cell algorithm [68–70], which will now be briefly reviewed. Many
pairwise interactions, such as the Lennard-Jones interaction, are short ranged, i.e. their value is small enough to be neglected at a
distance much smaller than the size of the simulated system. Therefore the interactions have to be calculated only with particles
close by, but since one has to check the particle distance for every pair of particles, this would still result in an algorithm with
a computation time scaling of O(N2), i.e. the number of necessary operations grows quadratically with the number of particles.
A more clever way is to set up so called link cells at the beginning of the simulation. These cells cover the entire simulation box
and contain links to all particles in their spatial domain. Their size is chosen slightly larger than the maximal interaction range. In
the force calculation only interactions between particles in adjacent cells have to be calculated, so that one only has to run through

Fig. 2. Schematic description of the particle data organization using the domain decomposition cell system within ESPResSo. The simulation box is split up into
equally sized regions assigned to a single processor each. The region assigned to a processor is then split up spatially into cells (solid lines). Around the cells a shell
of additional cells is wrapped that will contain data of the particles from neighboring processors (dashed lines). The cells are simple arrays of particles, which finally
consist of several substructures containing the position, force and other particle data. Depending on the type of simulations, the detailed contents of the substructures
can vary.
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the 27 neighbors for each cell (in three dimensions). At constant density and interaction ranges, the average number of particles in
a cell is constant and therefore the overall algorithm has order N (since we run once through all cells and therefore all particles).

The force calculation for this system can easily be parallelized as well: First the simulation box is split up equally into as many
smaller boxes as processors are available, and each of these boxes is assigned to a processor. The particles are then assigned to
the processor that is responsible for the box they are located in. Now these processor boxes are divided up into cells. Each node
calculates the interactions for all particles assigned to it. But to do this, the particles located in the cells adjacent to the processor
box are needed, too. This shell of cells around a processor box is called the ghost shell, and the particles in the ghost shell are called
ghost particles [25]. The ghost particles have to be communicated between the nodes, while all other particles have to be known
only on their respective node.

After propagating the system by one timestep, some particles may have moved out of their cell, which would require to update
the cell lists. In a multiprocessor simulation, that could even mean shifting around particles from processor node to processor node.
To reduce the number of particle reorganizations, one can exploit that the cell size is slightly larger than the maximal interaction
range. The difference between cell size and maximal interaction range is called the skin distance rskin. As long as no particle has
moved further than rskin/2, the distance of two particles did not increase by more than rskin, so that adjacent cells still contain all
interacting particle pairs, and the link cells do not have to be updated. Therefore, with each particle one stores the position where
the last sorting process took place, and checks whether this position is further away from the current position than rskin/2. If this
happens, the link cells are rebuild. The optimal value of rskin is hardware dependent as it reflects the tradeoff between having to
treat more particle pairs due to the increased cells size versus having to update the link cells. The skin can be as large as 20–40%
of the maximal interaction range, and normally the lists are updated about every 20–40 timesteps using ESPResSo on a Linux PC.
The skin value has to be determined manually by, e.g., running several integrations at different skin values, since the optimal value
depends heavily on the underlying hardware, especially on the performance of the inter-node communication. To safely cover a
wide range of simulation conditions, in contrast to many other programs, ESPResSo checks after each integration step if the Verlet
list has to be updated.

The domain decomposition cell system of ESPResSo implements the link cell algorithm. But instead of just having links to
the particles in the cells, the cells contain the particles themselves in an array. For an example let us assume that the simulation
box has size 20 × 20 × 20 and that we assign 2 processors to the simulation. Then each processor is responsible for the particles
inside a 10 × 20 × 20 box. If the maximal interaction range is 1.2, the minimal possible cell size is 1.25 for 8 cells along the first
coordinate, allowing for a small skin of 0.05. If one chooses only 6 boxes in the first coordinate, the skin depth increases to 0.467.
In this example we assume that the number of cells in the first coordinate was chosen to be 6 and that the cells are cubic. ESPResSo
would then organize the cells on each node in a 6 × 12 × 12 cell grid embedded at the center of a 8 × 14 × 14 grid. The additional
cells around the cells containing the particles represent the ghost shell in which the information of the ghost particles from the
neighboring nodes is stored. Therefore the particle information stored on each node resides in 1568 particle lists of which 864 cells
contain particles assigned to the node, the rest contain information of ghost particles.

If one particle has moved further than the rskin/2, all particles have to be sorted into their correct cells, as discussed above. In
the case of ESPResSo, this does not only mean to change the pointers in the cells, but the particle data has to be physically moved
to another particle list. This creates obviously considerably more overhead than just changing link pointers. On the other hand, one
avoids a lot of indirect particle accesses through the link cell pointers, and the particle data is accessed in larger contiguous blocks.
This is advantageous on modern computers, since random memory access is quite slow. While a contiguous block of memory can
be read at a rate of more than 1 GB/s or 250 words per microsecond from double data rate memory at 200 MHz, one can read
less than 50 words per microsecond from random memory positions, reducing the performance to 200 MB/s. In contrast to this,
an AMD Opteron processor can multiply 500 double precision floating point numbers per microsecond. To bypass the memory
bottleneck, modern processors have small amounts of directly attached fast memory, the caches. These allow to access the data at
processor clock speed, which corresponds to more than 700 words per microsecond. However, these can normally only contain the
data of a few 1000 particles. The approach of ESPResSo is designed to minimize the effects of the memory bottleneck even if the
processor caches are not sufficient.

The optimal skin size depends on the underlying hardware. If the memory system has a high throughput compared to the floating
point performance, it is favorable to use small skins. This minimizes the number of possible interaction partners, but requires
frequent particle re-sortings. For low memory bandwidth systems, large skins are more suitable, as they reduce the frequency of
particle re-sortings at the expense of an increased number of interaction partners. This effect will be demonstrated below in the
benchmarks section. To find the optimal size, a simple tuning script is provided with ESPResSo. Due to its different memory
organization, the optimal skin values of ESPResSo are slightly larger than the values typically used in other programs, which
simply reflects that the particle reorganization is more costly, while the interaction calculation is less costly.

Another side effect of this data organization is a slightly more readable code. The standard link cell algorithm requires a lot of
indirect accesses to the particles through the cell pointers in the particle re-sorting procedures, which are not needed in ESPResSo.
On the other hand the transfer of a particle from one cell to another is not more complicated than the update of a link address in the
code, as this is handled by a separate subroutine.
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The other two cell systems, namely the N2 cell system and the layered cell system, are not as efficient as the domain decompo-
sition and only have to be used with certain potentials. The N2 cell system will calculate the interactions for all particle pairs. This
is necessary, e.g., for MMM1D, a method for the calculation of the electrostatic interaction in one-dimensionally periodic systems,
or for the calculation of the electrostatic interaction with no periodic boundary conditions, e.g., like in a simple cell model that
possesses hard or open boundaries. Since all interactions have to be calculated anyway, a domain decomposition is unnecessary.
Instead of this, the particles are load balanced at the beginning of the simulation, i.e. the particle number does not differ by more
than one from the average particle number on each node. Once this load balancing is achieved, the particles are not re-sorted again.
This method requires only one particle list per node.

The layered cell system is very special and is a combination of the domain decomposition and the N2-method. The system is
split up into cells or layers only along the z-coordinate. Interactions are treated with all particles in the adjacent layers. This cell
system probably only makes sense in combination with MMM2D, a method for the calculation of the electrostatic interaction in
two-dimensionally periodic systems.

The concept of cell systems allow for quite different data organizations within ESPResSo, as is needed for some state of the art
algorithms. The way that ESPResSo stores the particle data is to our knowledge unique and highly efficient. In addition, the program
code is somewhat easier to read. It is easy to add new cell systems if a new algorithm requires a different particle organization.
Therefore, this data model fits optimally to our main goals: readable code, state of the art algorithms, efficiency, and of course,
extensibility.

4.2. Topology information in ESPResSo

For the storage of the topology information, ESPResSo tries to provide data structures that are optimized for specific algorithmic
tasks. Those can be quite different, e.g., integration versus data analysis, and consequently ESPResSo has different ways of storing
this information.

For the integrator it is sufficient to store the topology information locally at each particle. This is realized with a bond list at
each particle, containing the type of a bond and the identification of the bond partners. In this way the user is free in specifying any
topology on the script level and the topology information is automatically distributed to the node where this information is required
for the integration. Usually this is sufficient for the integrator making any additional topological concepts like molecules, polymer
chains or residues in a protein unnecessary (just think about what the term molecule means in a random network?). Nevertheless,
for some applications one might want to distinguish inter- and intramolecular interactions, e.g., in a phantom model [71,72]. For
this purpose, each particle has, in addition to the particle type, a molecule identity which then can be linked to the non-bonded
interaction potentials.

In contrast to the integrator, for purpose of data analysis the topology is stored in a global way, grouping the particles into
molecules. The topology is then stored as a list of molecules each of which consists of a list of particle identities. This is, for
example, useful for calculating molecular properties like the radius of gyration, the hydrodynamic radius or the structure factor
(form factor).

The three topology data structures are by default independent from each other, and can, for flexibility, be accessed separately
from the script. If desired, it is also possible to synchronize them such that they all contain the same information. A summary is
given in Fig. 3. All concepts can handle any topology containing n-body interactions. The number of bond partners is just restricted
by the types of potentials implemented.

Fig. 3. The three different topology concepts in ESPResSo. Shown are the location in the program package, the type of data storage and their main usage.
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4.3. Internal program flow

The Tcl script is interpreted by an Tcl interpreter on exactly one of the nodes, called the master node or node 0 in the following.
All other nodes are called slaves, and just wait for commands from the master node. The Tcl interpreter will call C-procedures on
the master node, that by convention have the same name as the corresponding Tcl commands, i.e. setmd will call the C-procedure
“setmd()”, with the variable name and value as (string) parameters. The C-procedure then parses the input, and performs the
operations necessary for the command, in this case it sets the value of a global variable. But this is not all—in a multiprocessor
environment the change of one parameter has to be communicated to all nodes. Therefore, the master node issues a command to
the slaves requesting to change the value of the corresponding variable, too. Since the number and order of commands issued by
the master node is not known at compile time, the communication during the script execution is asynchronous.

Another important point is that ESPResSo allows changing parameters at any time, even during the simulation run, which
requires some care to ensure consistency. Changing the processor grid, for example, might change the association of the par-
ticles to the different nodes, and therefore requires a reorganization of the internal particle structures. If the Bjerrum length is
changed, the currently used method for the calculation of the electrostatic interaction has to be reinitialized. Moreover, if this hap-
pens during the simulation, the forces stored in the particles for the current configuration are invalid and have to be recalculated.
Because of the large number of algorithms implemented in ESPResSo, the dependencies are actually even more complex. They
are resolved by handler procedures, for example, ‘‘on_parameter_change()’’, which is called, whenever a parameter
changes, or ‘‘on_coulomb_change()’’, which is called every time a parameter of an electrostatic method is changed (inside
‘‘on_parameter_change()’’). To keep the number of these handlers small, they are written in a quite general fashion and
often reinitialize more parts of the code than would be strictly necessary. This small drawback in computational speed is more than
compensated by the robustness of the code that this procedure produces. Parameter changes are propagated safely through the code,
which allows for a greater flexibility at the script level.

One of the asynchronous commands starts the propagation of the system in time, the integration. During the integration,
ESPResSo uses synchronous communication as do all other simulation programs for efficiency reasons, i.e. every node has to
know without prior request which MPI communication follows. This is less robust than the asynchronous communication scheme,
but the request–answer structure creates too big of an overhead, and is not needed in the integration, if everything is implemented
properly.

4.4. Error handling

The Tcl command extensions of ESPResSo use the standard Tcl error return mechanism. If the error is not caught, this mecha-
nism will terminate script execution and output a script backtrace, which, together with comprehensible error messages, allows to
easily identify the source of the error.

However, as the Tcl-Interpreter exists only on the master node, ESPResSo implements its own error reporting scheme for the
other nodes. Moreover, an immediate error reporting during the synchronous phase, i.e. integration, would be ineffective. Therefore,
instead of terminating on an error condition, only an error message is placed in an error buffer, and the parameters are adjusted
such that execution can continue. Before completing any Tcl command execution, and also during the integration loop, the master
node checks regularly for errors from the slaves, and in case of an error condition, creates a regular Tcl error, which in ESPResSo
is termed a background error. Background errors are reported in addition to regular Tcl errors and are reported as a string

background_errors 0 {<error>} {<error>}...

1 {<error>} {<error>}...

Following the background_errors keyword, the error messages are listed, preceded by the number of the node that raised
the error. If all nodes report the same error, for example, an unset timestep, then instead of repeating the error messages, a simple
<consent> is output for each node except the master. A typical example is

background_errors 0 {010 time_step not set} {011 skin not set}

{012 thermostat not initialized} 1 <consent>

which is the result if the integrator is started without setting up anything. Typical examples, where the messages are different from
node to node, are broken bonds, which look like

background_errors 0 {083 bond broken between particles 1 and 0}

1 {083 bond broken between particles 22 and 23}}

Each error message is assigned a unique three-digit code to support automated parsing of error messages. There are various
applications of this feature, for example, testing simulation parameters for validity during tuning, or speeding up warmup up by
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using larger timesteps. If a bond breaks, one can simply return to an earlier timestep, simulate more carefully for some time, and
then raise the timestep again. For polymer networks, this allows to reduce the warmup time considerably.

5. Documentation

ESPResSo is not intended to be a black-box-like package. Users are encouraged to try to understand its algorithms and routines,
and developers are strongly advised to do so before extending it. In order to preserve the knowledge about algorithms and their
physical/chemical background, it is important to provide and maintain a well structured documentation.

The hierarchical program design is reflected once more by the organization of the documentation. The first information for the
user is a separated documentation of the Tcl extensions to steer the simulation, to organize the data in- and output, and to analyze
the resulting data. Examples are the part command that modifies the particle data, or the analyze command that performs data
analysis. It also contains documentation of Tcl procedures that serve to abbreviate common programming tasks on the script level,
for example, setting up a polymer chain. In the meantime, we have also realized a through documentation of the program flow, the
integration schemes, and the basic data structures to give new users an introduction to the general program design and an overview
of the connection between the different modules.

The largest part of the documentation is done within the program code itself and will be automatically extracted, processed and
linked to the above described parts with help of the doxygen program [73]. The result is a cross-referencing HTML documentation
or a pdf-user manual. It is important to note that also the documentation of the Tcl commands and the underlying physical principals
and algorithms is directly linked to the corresponding source code documentation.

Changes and extensions made during the development process are documented via the log function of the CVS environment
(concurrent version system [74]) where the project resides in. To make important changes more visible to both users and developers,
the Release Notes contain information about all new features, relevant changes, and important bug fixes in a condensed and easy
accessible way.

6. Benchmarks and comparison

While the general aim in the development process of ESPResSo had been directed towards the flexibility and extensibility of
a simulation package and its portability to a wide range of commonly used scientific computation platforms and architectures,
ESPResSo is also comparable in performance with other state-of-the-art simulation codes in both single CPU and multi-processor
environments. ESPResSo does not use platform-dependent optimizations, but the clever particle organization (see Section 4.1)
together with algorithms like P3M or ELC still result in a high-performance code. With Moore’s Law still valid and the continuous
plunging of costs for faster and more powerful computers, it is no longer economically expedient to invest human resources into
developing hardware-related algorithms: Often the achievable speed-up becomes more than overcompensated by technological
advancements during the time frame of the implementation, particularly since switching to different platforms or different scientific
problems usually renders these optimizations useless. In this section the performance of ESPResSo will be demonstrated using
several benchmarking scenarios on various hardware platforms (systems).

We begin by demonstrating the scaling of the computation time with the number of particles on a single AMD Opteron 246
processor. The benchmark scenarios are:

(b1) a simple Lennard-Jones (LJ) liquid:
The scenario consists of N particles in a cubic simulation box at a density of ρ = 0.8442σ−3, with a purely repulsive Lennard-
Jones potential as the only interactions between them. Simulating a (N,V,E)-ensemble, the timestep was chosen to be
	t = 0.00462τ .
This scenario only uses the short ranged nonbonded interactions of ESPResSo. It is relatively dense, leading to a large
number of simple interactions to be calculated; therefore this benchmark stresses especially the memory architecture of the
used hardware platform.

(b2) a dilute electrostatic scenario:
The scenario consists of N unit charges in a cubic simulation box at a density of ρ = 10−3σ−3. Half of the charges are
positively charged, the other half is negative. The Bjerrum length, characterizing the strength of the electrostatic interactions,

is set to 
B = e2

4πε0εskBT
= 2σ , and again the particles also interact via a purely repulsive Lennard-Jones potential. This scenario

has a temperature of T = 1ε, which is maintained using the Langevin thermostat with a friction coefficient of Γ = τ−1, and a
timestep of 	t = 0.001τ . For the calculation of the electrostatic interactions the P3M algorithm is used, tuned to a force error
smaller than 10−2ε/σ .
In this scenario the calculation of the long ranged electrostatic interactions dominates the computation time. Here memory
bandwidth only plays a minor role compared to the floating point performance of the used CPU architecture.
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(b3) Kremer–Grest polymer melt:
The scenario consists of N particles in a cubic simulation box at a density of ρ = 0.85σ−3 grouped into polymer chains of
100 monomers each; in addition to a purely repulsive Lennard-Jones interaction between beads, their bonds are constructed
by a FENE-spring-potential with kF = 30 kBT

σ 2 and rF = 1.5σ (parameters taken from [40]); a timestep of 	t = 0.006τ with

T = 1ε and Γ = 0.5τ−1 were chosen.
This scenario tests the ability of ESPResSo to deal with bonded interactions, and allows to compare this additional effort to
the plain Lennard-Jones liquid b1 at a similarly dense density.

(b4) (N,p,T ) constant pressure thermostat:
The scenario is identical to the simple Lennard-Jones scenario, but uses the (N,p,T )-integrator of ESPResSo to maintain a
constant pressure of 2ε/σ−2. The (N,p,T )-algorithm prohibits the use of Verlet lists, therefore this test shows the efficiency
of the plain link cell implementation.
It also displays a typical performance difference when using ESPResSo’s extensibility to modify or rewrite its core integration
routine, since the (N,p,T )-algorithm is implemented as (optional) addition to the standard velocity Verlet integration scheme.

The time measurements are performed using a Tcl control script to ensure realistic numbers representing an entire integration
cycle, rather than only measuring the execution times of specific parts of the simulation code. For each benchmark case, five in-
dependent pre-equilibrated configurations were integrated for thousand MD steps each, and the computation time per particle and
timestep was measured. Prior to this, the cell size and, for the electrostatics test case, the P3M parameters were automatically tuned
using the built-in tuning functions. For all benchmarks only minimal ESPResSo components were compiled in (e.g., no electro-
statics, for the neutral cases b1, b3 and b4), and compiler flags for platform-dependent optimization were used where available.
Throughout this section computation times are given as wall times, as measured by the Tcl time command.

Fig. 4 shows the resulting computation times. As expected, the electrostatic scenario b2 is the slowest scenario, compared to
the simple Lennard-Jones liquid it is slower by a factor of ≈ 3.5. The computation time for this scenario shows a typical festoon
shape, which is generated by the interplay of the constant FFT computation time at fixed mesh size and an increasing real space
computation time. Whenever the real space computation becomes too costly, the optimal mesh size increases, creating a larger
constant offset.

For all other test cases, the computation time per particle decreases slightly for up to 1000 particles. This simply reflects that the
computation time scales proportional with the number of the particles plus a small constant overhead, which becomes negligible
with increasing number of particles. The data of more than 500 to 1000 particles and the necessary organizational data no longer
fit into the 1 MB L2 cache of the Opteron, and more and more data has to be fetched and put back to the slower main memory.
When finally the entire particle data has to be read from main memory, the computation time is around 70% larger compared to
the calculation that completely uses the cache. This drop is easily understood from the fact that even linear main memory accesses
are three times slower than cache accesses, see Section 4.1. Nevertheless, 1.4 µs per particle and timestep is still a very good
performance and comparable to other simulation codes. The cache effect is not visible in the electrostatics test case, since the
slowdown through the grid discretization is much stronger.

Fig. 4. Computation time T in microseconds per particle and timestep of ESPResSo for various benchmark test cases with different numbers of particles N , each
run on a single AMD Opteron 246 processor. The symbols stand for the test cases b1 (crosses), b2 (circles), b3 (squares) and b4 (triangles). The arrows denote the
P3M mesh size used, e.g., 8 for up to 500 particles, 16 for up to 4000 particles and so on. For details on the test cases, see text.
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Fig. 5. Computation time T in microseconds per particle and timestep of ESPResSo for the benchmark test cases b1 (stars), b2 (squares), b4 (circles) on an IBM
Regatta system of up to 16 pSeries 690 with different numbers of processors Nproc and 4000 particles per processor. For each test case, the dotted, lower lines
denote results for an otherwise unloaded 32 processor machine, while the solid, upper lines represent data for a fully loaded machine.

It is remarkable that the additional computation of the bonded interactions in the Kremer–Grest test case does not lead to a
significant increase in the computation time. This shows that, once the organizational part of the integration is done and the particle
data is loaded into the fast L1 cache of the CPU, the computation time spent in the actual force calculation is almost negligible.

The approximately constant offset between b4 and the two fastest test cases (b1 and b3) originates in the (N,p,T )-algorithm
itself, which requires an additional amount of operations for each particle (i.e. pressure evaluations, coordinate rescaling, and
thermostat application) without further accesses to stored data; consequently, the computation time increases compared to b1 and
b3 while displaying the same cache-related behavior on the amount of particles N in the simulation.

For a parallel simulation code the scaling with the number of processors is as important as the scaling with the number of
particles. In Fig. 5 we demonstrate the scaling of ESPResSo for the simple Lennard-Jones liquid test case b1, the electrostatics
test case b2, and the (N,p,T ) test case b4 on an IBM Regatta system consisting of up to 16 pSeries 690 system with 32 Power4
CPUs running at 1.3 GHz each. The Kremer–Grest test case b3 was not repeated on the multiprocessor system, as it is very similar
to the Lennard-Jones test case (see Fig. 4). The number of particles was chosen proportional to the number of processors, namely
4000 particles per processor. For less than 32 processors, a single machine was used for two runs, one on an otherwise unloaded
machine and one on a fully loaded machine (which is the more realistic scenario, but naturally generates larger error bars and may
increase the computation time if memory access is the bottleneck). For more than 32 processors, we always used entire 32 processor
machines, interconnected by an IBM federation switch.

From the computation times given in Fig. 5, it is easy to calculate the speedup factors for ESPResSo. The speedup factor for Np

processors is defined as the computation time for a single CPU divided by the computation time for Np processors. For testsystem
b1, the factor is between 95 and 105% for 1 to 16 processors, 85% for 32 processors, and slowly drops to 70% for 512 processors.

Both b1 and b4 scale extremely well with the number of processors. For the b2 scenario ESPResSo shows the typical festoon
behavior, which was already observed in the single CPU benchmarks, and which is due to the complex interplay of FFT time and real
space calculation time. It should be noted that ESPResSo scales extremely well up to 512 processors or 2 million particles, even for
the electrostatic scenario, and there is no fundamental reason that ESPResSo should not able to run on even larger supercomputers.

In the b2 test case, the Regatta system switches faster to higher grid sizes, which simply reflects that the Regatta FFTW im-
plementation performs extremely well. Again, the additional computational effort required for the (N,p,T ) is responsible for a
constant (i.e. N -dependent) decrease of that scenario’s performance compared to the LJ-liquid’s case. For the b1 and b4 scenario,
there is a noticeable computation time difference between a fully loaded and an unloaded machine. This is a result of the shared
memory architecture of the Regatta system: The CPUs are organized in dual core units with a small shared L2 cache of only
1.44 MB. Four of these dual core units form a processor board with a total of eight processors, which share an additional L3 cache
of 32 MB. If all 32 processors are loaded, the L2 cache per CPU is 768 kB, which is not enough for 4000 particles, and the CPU
has to resort to the L3 cache. However, if only one processor per dual core is active (as is the case for Nproc � 16 on an otherwise
unloaded machine), then it can use the full 1.44 MB L2 cache, which is sufficient for the data of 4000 particles. However, in a
production environment normally all 32 CPUs will be loaded, so that the numbers for the loaded system are more realistic.

In contrast to the memory organization of the Regatta system, the federation switch shows a high performance, and does not
seem to add a noticeable additional performance loss for less than 16 machines. Even for 16 machines, the impact is only small.
Therefore, it should be possible to simulate scenarios of several million charged particles using ESPResSo on a sufficiently large
IBM Regatta system. This is mainly due to the small latency of the federation switch, since the domain decomposition cell system
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Table 1
Computation time T in microseconds per particle and timestep for the b1 and b2 test cases with 4000 (top) and 16000 (bottom) particles on the platforms described
in the text

System Tb1 [µs] Ncells Tb2 [µs] Ncells Mesh

s1 1.31 (1.31,1.31) 10 5.32 (4.60,5.69) 8 16
s2 1.58 (1.57,1.59) 10 4.87 (4.85,4.89) 8 16
s3 3.35 (3.34,3.35) 10 11.36 (10.50,12.72) 7.6 (6,8) 16
s4 2.18 (1.99,2.48) 10.4 (10,11) 7.55 (5.66,10.24) 7.4 (7,8) 16
s5 2.27 (2.26,2.27) 10 8.69 (7.39,10.64) 7.6 (7,8) 16
s6 3.83 (3.54,4.08) 10.7 (10,11) 14.23 (13.43,16.45) 11.8 (7,14) 28.0 (16,32)

s7 2.37 (2.37,2.38) 11.2 (11,12) 7.58 (7.28,8.66) 13.6 (11,15) 32
s8 2.26 (2.23,2.29) 10.8 (10,11) 9.75 (9.70,9.82) 8 16

s1 1.53 (1.41,1.83) 15.9 (15,16) 4.77 (4.72,4.91) 14 32
s2 1.63 (1.63,1.64) 16 5.79 (5.76,5.81) 14 32
s3 4.11 (3.47,5.44) 15.6 (15,16) 15.88 (15.21,16.51) 13.6 (12,14) 32
s4 3.14 (3.06,3.17) 15 10.19 (7.58,12.05) 13.4 (13,14) 32
s5 3.05 (2.82,3.36) 15.8 (15,17) 9.27 (8.48,11.32) 13 (10,14) 32
s6 5.52 (4.26,6.64) 18.3 (15,17) 18.84 (14.06,22.47) 11.6 (11,13) 32
s7 2.60 (2.56,2.63) 17.8 (17,18) 7.16 (7.07,7.39) 14 32
s8 3.01 (2.93,3.07) 16.8 (16,17) 11.48 (11.34,11.60) 14 32

Ncells denotes the used cell grid sizes (due to the symmetry of the test cases, the cell grid is always cubic, i.e. Ncells × Ncells × Ncells). For the b2 test case, the
Coulomb mesh size is shown as well. The numbers are given as average(min,max) of the five runs performed for each system. If minimum and maximum are not
given, all five measurements produced the same value.

of ESPResSo is primarily communication intensive. For Np processors, 12Np communications per time step are necessary to
update the ghost information, of which Np/2 can be done in parallel. Bandwidth in turn is not as important, since the amount of
data transferred is quite small; only particles in the ghost shells at the processor boundaries are affected, which are normally less
than 10% of all particles.

Now that we have shown the scaling of ESPResSo for some of the built-in algorithms on a single CPU and a multiprocessor
system, we finally want to present results from different architectures, namely

(s1) dual AMD Opteron 246, 2 GB RAM, S.u.S.E.-Linux 9.1, gcc 3.3 [75],
(s2) single AMD Athlon64 3200+, 1 GB RAM, S.u.S.E.-Linux 9.1, gcc 3.3,
(s3) dual AMD AthlonMP 2000+, 1 GB RAM, S.u.S.E.-Linux 9.0, gcc 3.1,
(s4) dual Intel Xeon 2.8 GHz, 3 GB RAM, RedHat 9.0, icc v8.0 [76],
(s5) dual Apple G5 2.0 GHz, 1 GB RAM, MacOS X (Darwin 7.4.0), gcc 3.3,
(s6) IBM pSeries 690 Turbo, 32-way Power4 1.3GHz, 64 GB RAM, AIX 5.2, IBM xlc V6,
(s7) IBM pSeries 655, 8-way Power4 1.7 GHz, 16 GB RAM, AIX 5.2, IBM xlc v6,
(s8) dual Alpha 21264 833 MHz, 3 GB RAM, Tru64 V5.1A, Compaq C V6.4.

Again, the benchmarking cases b1 and b2 were run five times with 4000 and 16 000 particles on each architecture, measuring
the computation time per particle and timestep, as well as the used number of cells Ncells and mesh points per dimension. The
majority of the systems are multi processor systems with varying numbers of processors, however for comparability all tests were
done on only one of the CPUs. All other CPUs were loaded with other simulations in a typical production environment. Although
this perturbs the measured computation times a little bit (for systems with shared access to the memory banks, e.g., s3 or s6, but not
for systems such as s1 which have a n-way connection between CPU and RAM), it gives the best picture of what one can expect
when running ESPResSo for production. The results are shown in Table 1, giving an overview of the efficiency of ESPResSo on
the various platforms.

For scenario b1 and 4000 particles, the maximal possible number of cells is 14, for scenario b2 8 cells with a FFT mesh size
of 16 and a charge assignment order of 3, and 15 cells for a mesh size of 32 and order 3. The optimal grid sizes for the test cases
are slightly smaller, and correspond to skin sizes of 0.3–0.5σ . For 16 000 particles, the maximal number of cells is 23, and the
chosen cell sizes correspond to skin sizes of 0.3–0.6σ . Despite the fact that the number of cells is chosen automatically by a simple
golden section search, the resulting cell sizes correspond to skins which are only slightly larger than the values typically used by
other simulation codes, which range from 0.2σ to 0.4σ . The reason for this is, that the link cell implementation of ESPResSo
requires more memory operations during the particle reorganization, making it slower compared to other implementations, while
the building of the Verlet list and the force calculation are somewhat faster. The larger skin sizes that are optimal for ESPResSo
reflect this, since a larger skin means less frequent particle reorganization steps.

Systems s1 through s5 favor smaller cell grids compared to systems s6 through s8, especially for 16 000 particles. Since the cell
grid size represents a trade off between an increased number of particle moves for large numbers of cells, and an increased number
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of particle distance calculations for smaller grids, this means that memory operations are fast compared to floating point operations
on the latter systems. This is an effect of the different cache sizes of the used systems: Systems s1 through s5 have L2 cache sizes
of at most 1 MB, and only system s4 has an additional L3 cache of 2 MB per CPU. Therefore only for system s4 4000 particles fit
into the L3 cache. In contrast, systems s6 and s7 have 1.44 MB L2 cache per two CPUs and 32 MB L3 cache per eight CPUs, and
system s8 even has an 8 MB L2 cache. Therefore the latter systems easily fit the data of 16 000 particles into their caches, increasing
the memory performance dramatically.

The outstanding performance of the AMD 64-bit systems s1 and s2 is due to their large memory bandwidth and the additional 64-
bit registers, which can host floating point numbers and therefore speed up the force calculation. In contrast to this, the performance
of the IBM pSeries 690 system is rather weak. The much better performance of the pSeries 655, which has a faster memory
bus, as well as the multiprocessor results for the unloaded machines suggest that the primary reason for this lies in the memory
performance of the pSeries architecture, despite the large caches. For the electrostatic test case b2, the efficiency of the FFTW
routine is important, which on the Regatta is much better than the performance of the other ESPResSo components.

Compared to high performance MD simulation codes like GROMACS or LAMMPS, ESPResSo excels through its parallelization
where it is much faster than, e.g., GROMACS, although under certain conditions it may also be somewhat slower, depending on the
used hardware and the benchmark scenario employed. The main reason for such a performance drop in those cases is the flexibility
of the cell systems. As described before, different cell systems require different force evaluation strategies. Therefore the force
calculation routines for the potentials are used in several different loops, and therefore need a simple call interface. This interface
creates some overhead, mainly due to the inability of current compilers to keep the force array values in registers.

Since not all particles are stored in a single list in ESPResSo, the only way to allow easy access to the particle data, is the
organization of the particle data in a single structure, as described before. However, an organization of the different properties into
different arrays, such as in GROMACS or LAMMPS, would be computationally more efficient. The reason is that current processors
read and write data into their L2 cache always in 32 byte cache lines, but the position, velocity or force data consists of three doubles
or 24 bytes. Therefore a loop adding the force to the velocity will have to read 64 bytes into the L2 cache, but only 48 of them will
be actually used, and similarly, 32 bytes have to be written, also only 24 of them actually changed. If the force and velocity data is
organized consecutively, this is no problem, since the additionally read data belongs to the next particle. But in the case of a single
particle structure, this additionally read data are other informations on the same particle, which for the current loop are not used.
Since memory accesses are costly, this is responsible for a considerable performance drop. But in the C language, it is impossible
to write a simple interface for the force evaluation, if it has to get its data from various dynamically allocated arrays. We decided to
favor simplicity and flexibility over performance.

However, looking at the aforementioned unavoidable hardware restrictions, the impact of compiler optimization and the contin-
uing improvements expected therein, and the competitive performance of ESPResSo even for modified and customized scenarios,
our design goals from Section 2 seem once again confirmed.

7. Conclusion and outlook

Several publications have already appeared that used ESPResSo for data production [13,14,34,49,77–82]. As of this writing the
ESPResSo-package continues to undergo significant enlargement. We are currently implementing a dipolar Ewald sum [83] and
will also add a dipolar P3M version, which will enhance the capabilities to simulate ferrofluids or dipolar fluids like simple water
models.

For the dynamics of soft matter systems it is often necessary to include hydrodynamic interactions. Since in practice one cannot
consider all molecular details of the systems, this can be achieved on a coarse grained level by coupling the solvent degrees of
freedom to the simulated particles. We have almost finished the implementation of an advanced lattice Boltzmann algorithm [84]
that has already proven its usefulness in polymer dynamics simulations [85] and electrophoresis simulations of charged colloids
[86,87].

Clever Monte Carlo strategies are lacking so far. Although easily implementable on the Tcl-level [13], where, for example,
a hybrid Monte Carlo technique has been successfully employed [88,89], other, more efficient sampling methods, are planned for
the future.

Other features like the rattle algorithm for constraint dynamics, and more potentials suited for atomistic force fields are
already in progress and will continue to enable ESPResSo to handle atomistic simulations. The ultimate goal is to implement
multiscale simulation strategies which will allow probing different length and time scales within one single simulation run of
ESPResSo.

There are many more improvements planned for the years to come, and hopefully the capabilities of ESPResSo will grow even
further once more researchers take up our idea and contribute to the package by using, customizing, and extending it. Our hope is to
attract further developers that can contribute to our project, while keeping the anticipated program structure simple, extensible, well
documented, and easy to use. We realize that this is a challenging goal to achieve, although the past two years, in which ESPResSo
left its alpha stage and first external collaborations have started, encouraged us that this challenge can be mastered.
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Appendix A. Sample script

To demonstrate the use of the Tcl script language, here an ESPResSo control script for the (N,V,T ) simulation of a Lennard-
Jones liquid is given. With a small additional header (“she-bang”) the script can also be called directly from the command line like
any other program, which is very convenient for submitting several jobs at once. First some Tcl variables are set which will be used
later in the program to determine the simulation parameters:

# size of the cubic simulation box
set box_length 10.7437
# density of the liquid

set density 0.7

The next lines define some parameters of the simulation, the timestep, box length and the skin depth. The latter parameter is needed
for the link-cell algorithm (see Section 3.3), but has no influence on the physics of the simulated liquid.

setmd time_step 0.01
setmd skin 0.4

setmd box_l $box_length $box_length $box_length

Now particles are put into the simulation box. The first two lines show how mathematical expressions can be used inside Tcl. Here
the number of particles is determined from the box size and the density. The particles are added particle for particle at random
positions in a loop, using the built-in random number generator of ESPResSo. Here only the properties “position” and “type” are
set, other properties are, e.g., velocity or charge.

set volume [expr $box_l*$box_l*$box_l]
set n_part [expr floor($volume*$density)]

for {set i 0} { $i < $n_part } {incr i} {
set posx [expr $box_l*[t_random]]
set posy [expr $box_l*[t_random]]
set posz [expr $box_l*[t_random]]

part $i pos $posx $posy $posz type 0

}

The Langevin thermostat (see Section 3.2) is activated for a temperature of 1kT and a friction constant Γ = 1/τ by the command

set temp 1
set gamma 1

thermostat langevin $temp $gamma
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A purely repulsive Lennard-Jones interaction between all particles of type 0, which are all in our case, is defined by

set lj1_eps 1.0
set lj1_sig 1.0
set lj1_cut 1.12246
set lj1_shift [expr 0.25*$lj1_eps]

inter 0 0 lennard-jones $lj1_eps $lj1_sig $lj1_cut $lj1_shift 0

This interaction is used widely in computer simulations and is a smooth approximation of a hard core interaction between two
spheres of diameter 1.

Now a simulation loop for 1 million timesteps could look like

for {set i 0} { $i < 1000 } { incr i} {
puts ’’step $i ftime=[setmd time] energy=[analyze energy total]’’
puts ’’temp = [expr [analyze energy kinetic]/(1.5*[setmd n_part])]’’
integrate 1000

}

Every thousand timesteps the simulation time, total energy and the current temperature are printed out. Of course this is not enough
for a real simulation, as one normally wants to write out simulation data to configuration files. To this aim ESPResSo has commands
to write simulation data to a Tcl stream. The format written by these commands is called blockfile in the following. One could add
the following lines into the simulation to write configuration files “config_0” through “config_999”:

set f [open ’’config_$i’’ ’’w’’]
blockfile $f write variable {time_step skin}
blockfile $f write tclvariable {box_length density}
set temp [expr [analyze energy kinetic]/(1.5*[setmd n_part])]
puts $f ’’\{energy [analyze energy total] $temp\}’’
blockfile $f write particles {id pos type}

close $f

The created files “config_. . . ” look like

{variable
{time_step 0.01}
{skin 0.4}

}
{tclvariable

{box_length {10.7437}}
{density {0.7}}

}
{energy 5380.6 1.00005}
{particles {id pos type}

{0 11.5573 8.87179 4.80079 0}
{1 7.04209 2.96786 3.74511 0}
{2 8.08042 4.91621 6.53135 0}
.
.
.
{864 3.64869 8.02398 3.13255 0}
{865 7.66632 14.4887 1.31884 0}
{866 -0.654808 11.9669 0.43845 0}
{867 6.43409 5.75895 5.46044 0}

}

As one can see, the format of a blockfile corresponds to Tcl lists of tagged data sets, which are called blocks, and allows for adding
own data sets like the “energy” block in this case. Depending on the simulation, much more complex observables can be written
out here for an easy inspection during the simulation run.

Reading in the blockfiles is automated in ESPResSo. The tagged structure of a blockfile allows an easy identification of the
portions ESPResSo knows about and proper parsing. The command
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set f [open ’’config_999’’ ’’w’’]
while { [blockfile $f read auto] != ’’eof’’ } {}

close $f

will read in the variables time_step and skin and the Tcl variables box_length and density back in, as well as all particles, while the
energy entry is unknown and ignored.

The simulation as presented above will very likely not run smoothly, since the particles are placed randomly and therefore could
overlap. The Lennard-Jones potential is singular for vanishing particle distance, therefore overlapping particles have an extremely
high interaction energy. The high initial potential energy will in turn accelerate the particles to velocities larger than what can
be treated with the chosen timestep, and the simulation might crash. To avoid this, ESPResSo allows to cap the Lennard-Jones
interaction, i.e. below a certain distance the potential only grows linearly while the Lennard-Jones force is constant. This force cap
is gradually raised in an equilibration loop which might look like

set cap 10
while {[analyze mindist] < 0.95} {

inter ljforcecap $cap
integrate 1000
incr cap 30

inter ljforcecap 0

This loop will gradually increase the force cap until the minimal distance is larger than 0.95 and then switches off the force cap.
The code example given before is obviously a very simple one. More complicated simulation scripts can extend over thousands

of lines of code and contain automated adaption of parameters or online analysis. Parameters can be changed arbitrarily during
the simulation process, as needed for, e.g., simulated annealing. Another example is a simulation of a polymer which is fixed to
a surface with one end, while one pulls at the other end. The possibility to perform non-standard simulations without the need
of modifications to the simulation core was one of the main reasons why we decided to use a script language for controlling the
simulation core.
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